Draft
Conversation
Member
|
@finsberg i think you could use: https://github.com/scientificcomputing/fenicsx_ii/blob/main/src/fenicsx_ii/interpolation.py where you make your points into a 0-D mesh with a DG-0 space. |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Add this suggestion to a batch that can be applied as a single commit.This suggestion is invalid because no changes were made to the code.Suggestions cannot be applied while the pull request is closed.Suggestions cannot be applied while viewing a subset of changes.Only one suggestion per line can be applied in a batch.Add this suggestion to a batch that can be applied as a single commit.Applying suggestions on deleted lines is not supported.You must change the existing code in this line in order to create a valid suggestion.Outdated suggestions cannot be applied.This suggestion has been applied or marked resolved.Suggestions cannot be applied from pending reviews.Suggestions cannot be applied on multi-line comments.Suggestions cannot be applied while the pull request is queued to merge.Suggestion cannot be applied right now. Please check back later.
Adding function to construct pointwise observation matrix$\mathbf{B}$ than maps a function $u$ to points in $\mathbb{R}^m$ , i.e
If$u$ is a function
then the entries are defined as:
This is useful if you e.g have a misfit functional$J$ given by
where$\mathcal{O}$ is an operator that maps $u$ to observations (for examples if we have observations of $u$ at specific points). If $\mathcal{O}(\mathbf{u}) = \mathbf{B}\mathbf{u}$ , then the gradient is simply