This library computes the log-likelihood of binary heterozygosity sequences under a sequentially Markov coalescent model with recombination.
phlashlib.loglik(
data: Int[ArrayLike, "L"],
iicr: IICRCurve,
times: Float[ArrayLike, "T"],
theta: ScalarLike,
rho: ScalarLike,
warmup: int = 500,
chunk_size: int = None,
) -> Scalar- JAX-compatible:
vmap,jit,grad, etc. - GPU-accelerated via
cuda.core.experimental(fallback to CPU if unavailable)
from phlashlib.iicr import PiecewiseConstant
from phlashlib.loglik import loglik
import jax.numpy as jnp
times = jnp.array([0.0, 0.1, 0.5, 2.0])
rates = jnp.array([100.0, 10.0, 1.0])
iicr = PiecewiseConstant(t=times[:-1], c=rates)
data = jnp.array([0, 1, 1, 0, -1, 1, 0, 0], dtype=jnp.int8)
theta = 1.5
rho = 0.5
ll = loglik(data, iicr, times, theta, rho)from jax import jit, vmap, grad
# JIT
f = jit(loglik)
# Vectorized over data
batched_ll = vmap(loglik, in_axes=(0, None, None, None, None))(batch_data, iicr, times, theta, rho)
# Gradient w.r.t. theta
dtheta = grad(loglik, argnums=3)(data, iicr, times, theta, rho)data: 1Dint8, values in{0, 1, -1}iicr: subclass ofIICRCurve, e.g.PiecewiseConstanttheta,rho: scalar mutation and recombination rates- Internally uses a fused CUDA kernel with
jax.custom_vjpif available - Fallback implementation uses pure JAX