Skip to content

dchenam/sequence-labeling

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

1 Commit
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Sequence Labeling

Description

use TIMIT dataset to predict phoneme sequences using provided mfcc or fbank features

Project Link

Requirements

  • keras
  • tensorflow
  • python3
  • h5py
  • sklearn

Dataset

  • TIMIT Dataset
  • Features: mfcc and fbank
  • Labels: 48 kinds of phones

Pre-Processing

Label Preprocessing

  1. phone mapping 48 -> 39
  2. converting sequences to one hot encodings
  3. padding

Features Preprocessing

  1. standardization
  2. padding

Post-Processing

  1. convert phoneme to alphabet
  2. remove consecutive duplicates using a threshold
  3. trim the 'sil' character

Results

comparison

About

classifying TIMIT phonemes using LSTMs

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages