Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions .gitignore
Original file line number Diff line number Diff line change
@@ -0,0 +1 @@
.env
2 changes: 1 addition & 1 deletion README.md
Original file line number Diff line number Diff line change
Expand Up @@ -16,7 +16,7 @@
<br>
<hr>

</details>
</details>v

<details>
<summary>
Expand Down
215 changes: 215 additions & 0 deletions connection.ipynb
Original file line number Diff line number Diff line change
@@ -0,0 +1,215 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"id": "081e20bf",
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"import pandas as pd\n",
"from sqlalchemy import create_engine\n",
"from dotenv import load_dotenv\n",
"\n",
"load_dotenv(\".env\") # carga tu contraseña u otros secretos\n",
"\n",
"USER = \"root\"\n",
"PASSWORD = os.getenv(\"Key\")\n",
"HOST = \"localhost\"\n",
"PORT = \"3306\"\n",
"DB_NAME = \"sakila\"\n",
"\n",
"engine = create_engine(f\"mysql+pymysql://{USER}:{PASSWORD}@{HOST}:{PORT}/{DB_NAME}\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "c3ba4755",
"metadata": {},
"outputs": [],
"source": [
"# Funcion rentals month\n",
"def rentals_month(engine, month, year):\n",
" \"\"\"\n",
" Recupera todos los alquileres del mes y año especificados.\n",
" \"\"\"\n",
" query = f\"\"\"\n",
" SELECT *\n",
" FROM rental\n",
" WHERE MONTH(rental_date) = {month}\n",
" AND YEAR(rental_date) = {year};\n",
" \"\"\"\n",
" df = pd.read_sql(query, engine)\n",
" return df\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "2e2a2926",
"metadata": {},
"outputs": [],
"source": [
"# Funcion rental_count_month\n",
"def rental_count_month(df, month, year):\n",
" \"\"\"\n",
" Devuelve un DataFrame con el número total de alquileres por cliente.\n",
" \"\"\"\n",
" col_name = f\"alquileres_{month:02d}_{year}\"\n",
"\n",
" df_counts = (\n",
" df.groupby(\"customer_id\")\n",
" .size()\n",
" .reset_index(name=col_name)\n",
" )\n",
"\n",
" return df_counts\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "6263cb5f",
"metadata": {},
"outputs": [],
"source": [
"# Funcion compare_rentals\n",
"def compare_rentals(df1, df2):\n",
" \"\"\"\n",
" Combina dos DataFrames de conteo de alquileres por cliente\n",
" y calcula la diferencia entre ambos meses.\n",
" \"\"\"\n",
" df_merged = pd.merge(df1, df2, on=\"customer_id\", how=\"outer\").fillna(0)\n",
"\n",
" col1 = df1.columns[1]\n",
" col2 = df2.columns[1]\n",
"\n",
" df_merged[\"diferencia\"] = df_merged[col2] - df_merged[col1]\n",
"\n",
" return df_merged\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "91fba459",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>customer_id</th>\n",
" <th>alquileres_05_2005</th>\n",
" <th>alquileres_06_2005</th>\n",
" <th>diferencia</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>1</td>\n",
" <td>2.0</td>\n",
" <td>7.0</td>\n",
" <td>5.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>2</td>\n",
" <td>1.0</td>\n",
" <td>1.0</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>3</td>\n",
" <td>2.0</td>\n",
" <td>4.0</td>\n",
" <td>2.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>4</td>\n",
" <td>0.0</td>\n",
" <td>6.0</td>\n",
" <td>6.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>5</td>\n",
" <td>3.0</td>\n",
" <td>5.0</td>\n",
" <td>2.0</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" customer_id alquileres_05_2005 alquileres_06_2005 diferencia\n",
"0 1 2.0 7.0 5.0\n",
"1 2 1.0 1.0 0.0\n",
"2 3 2.0 4.0 2.0\n",
"3 4 0.0 6.0 6.0\n",
"4 5 3.0 5.0 2.0"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Check\n",
"df_may = rentals_month(engine, 5, 2005)\n",
"df_jun = rentals_month(engine, 6, 2005)\n",
"\n",
"count_may = rental_count_month(df_may, 5, 2005)\n",
"count_jun = rental_count_month(df_jun, 6, 2005)\n",
"\n",
"comparison = compare_rentals(count_may, count_jun)\n",
"comparison.head()\n"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.9"
}
},
"nbformat": 4,
"nbformat_minor": 5
}