Skip to content

This system takes a textual synopsis of a cryptographic scheme and extracts a structured summary that highlights its key components, such as the types of finite fields used, the encryption process, ke

Notifications You must be signed in to change notification settings

chigwell/cryptoschema-extractor

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

1 Commit
 
 
 
 
 
 

Repository files navigation

cryptoschema-extractor

PyPI version License: MIT Downloads LinkedIn

A Python package that extracts structured summaries of cryptographic schemes from textual descriptions.

Overview

This system takes a textual synopsis of a cryptographic scheme and extracts a structured summary that highlights its key components, such as the types of finite fields used, the encryption process, key generation, and the mathematical principles underlying the cryptosystem. It transforms unstructured textual references into a predictable, organized format suitable for inclusion in catalogs, research summaries, or educational material.

Installation

pip install cryptoschema_extractor

Usage

Basic Usage

from cryptoschema_extractor import cryptoschema_extractor

response = cryptoschema_extractor(user_input="Your text here")
print(response)

Using a Custom LLM

You can use any LLM compatible with LangChain by passing an instance of it to the cryptoschema_extractor function.

Example with OpenAI

from langchain_openai import ChatOpenAI
from cryptoschema_extractor import cryptoschema_extractor

llm = ChatOpenAI()
response = cryptoschema_extractor(user_input="Your text here", llm=llm)
print(response)

Example with Anthropic

from langchain_anthropic import ChatAnthropic
from cryptoschema_extractor import cryptoschema_extractor

llm = ChatAnthropic()
response = cryptoschema_extractor(user_input="Your text here", llm=llm)
print(response)

Example with Google

from langchain_google_genai import ChatGoogleGenerativeAI
from cryptoschema_extractor import cryptoschema_extractor

llm = ChatGoogleGenerativeAI()
response = cryptoschema_extractor(user_input="Your text here", llm=llm)
print(response)

Using a Custom API Key

If you want to use a custom API key for LLM7, you can pass it directly or set it as an environment variable.

Passing API Key Directly

from cryptoschema_extractor import cryptoschema_extractor

response = cryptoschema_extractor(user_input="Your text here", api_key="your_api_key")
print(response)

Setting API Key via Environment Variable

export LLM7_API_KEY="your_api_key"
from cryptoschema_extractor import cryptoschema_extractor

response = cryptoschema_extractor(user_input="Your text here")
print(response)

Parameters

  • user_input (str): The user input text to process.
  • llm (Optional[BaseChatModel]): The LangChain LLM instance to use. If not provided, the default ChatLLM7 will be used.
  • api_key (Optional[str]): The API key for LLM7. If not provided, the environment variable LLM7_API_KEY will be used.

Default LLM

By default, this package uses ChatLLM7 from langchain_llm7.

Rate Limits

The default rate limits for LLM7 free tier are sufficient for most use cases of this package. If you want higher rate limits, you can pass your own API key via the environment variable LLM7_API_KEY or directly to the cryptoschema_extractor function. You can get a free API key by registering at LLM7.

Issues

If you encounter any issues, please report them on the GitHub issues page.

Author

About

This system takes a textual synopsis of a cryptographic scheme and extracts a structured summary that highlights its key components, such as the types of finite fields used, the encryption process, ke

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages