Skip to content
Draft
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -35,10 +35,12 @@ class Generator(BaseGenerator):
"varmap": A*xs,
"varvector": xs,
"Sstandardmatrix": A,
"Scolumns": [{"i": i+1, "col": column_matrix(A.column(i))} for i in range(Scolumns)],
"Trows": Trows,
"Tcols": Tcolumns,
"Tstandardmatrix": B,
"vector": v,
"Tvector": B*v
"Tvector": B*v,
"Tcolumns": [{"i": i+1, "col": column_matrix(B.column(i))} for i in range(Tcolumns)],
}

87 changes: 66 additions & 21 deletions source/linear-algebra/exercises/outcomes/AT/AT2/template.xml
Original file line number Diff line number Diff line change
@@ -1,28 +1,73 @@
<?xml version='1.0' encoding='UTF-8'?>
<knowl mode="exercise" xmlns="https://spatext.clontz.org" version="0.2">
<knowl>
<content>
<p>Explain and demonstrate how to compute
the standard matrix for the linear transformation
<m>S:\mathbb{R}^{{Scols}} \to \mathbb{R}^{{Srows}}</m> given by
<me>S\left( {{varvector}} \right) = {{varmap}}</me>
by computing transformations of the standard basic vectors.</p>
</content>
<outtro>
<p><me>{{Sstandardmatrix}}</me></p>
</outtro>
<intro>
<p>
Consider the linear transformation
<m>S:\mathbb{R}^{{Scols}} \to \mathbb{R}^{{Srows}}</m> given by
<me>S\left( {{varvector}} \right) = {{varmap}}.</me>
</p>
</intro>
<knowl>
<content>
<p>
Compute the transformation of each vector from the standard
basis for <m>\mathbb R^{{Scols}}</m>.
</p>
</content>
<outtro>
<p><me>\hspace{1em}
<!-- {{#Scolumns}} -->
S(\vec e_{ {{i}} }) = {{col}} \hspace{1em}
<!-- {{/Scolumns}} -->
</me></p>
</outtro>
</knowl>
<knowl>
<content>
<p>
Explain and demonstrate how these are used to
form the standard matrix for this transformation.
</p>
</content>
<outtro>
<p><me>{{Sstandardmatrix}}</me></p>
</outtro>
</knowl>
</knowl>
<knowl>
<content>
<p>Let <m>T:\mathbb{R}^{{Tcols}} \to \mathbb{R}^{{Trows}}</m>
be the linear transformation given by the standard matrix
<me>{{Tstandardmatrix}}.</me>
Explain and demonstrate how to compute
<m>T\left({{vector}}\right)</m> by using the values of
transformed standard basic vectors.</p>
</content>
<outtro>
<p><me>T\left({{vector}}\right)={{Tvector}}</me></p>
</outtro>
<intro>
<p>
Consider the linear transformation
<m>T:\mathbb{R}^{{Tcols}} \to \mathbb{R}^{{Trows}}</m>
defined by the standard matrix <me>{{Tstandardmatrix}}.</me>
</p>
</intro>
<knowl>
<content>
<p>
Describe how this map transforms each of the vectors for the
standard basis of <m>\mathbb R^{{Tcols}}</m>.
</p>
</content>
<outtro>
<p><me>\hspace{1em}
<!-- {{#Tcolumns}} -->
T(\vec e_{ {{i}} }) = {{col}} \hspace{1em}
<!-- {{/Tcolumns}} -->
</me></p>
</outtro>
</knowl>
<knowl>
<content>
<p>
Explain and demonstrate how to use these to compute
<m>T\left({{vector}}\right)</m>.
</p>
</content>
<outtro>
<p><me>T\left({{vector}}\right)={{Tvector}}</me></p>
</outtro>
</knowl>
</knowl>
</knowl>