Task Hardness Estimation for Molecular Activity Prediction
A Python library for calculating distances between chemical datasets to enable intelligent dataset selection for molecular activity prediction tasks.
- Overview
- Installation
- Quick Start
- Usage Examples
- Use Cases
- Documentation
- Contributing
- Citation
- License
THEMAP is a Python library designed to calculate distances between chemical datasets for molecular activity prediction tasks. The primary goal is to enable intelligent dataset selection for:
- Transfer Learning: Identify the most relevant source datasets for your target prediction task
- Domain Adaptation: Measure dataset similarity to guide model adaptation strategies
- Task Hardness Assessment: Quantify how difficult a prediction task will be based on dataset characteristics
- Dataset Curation: Select optimal training datasets from large chemical databases like ChEMBL
The easiest way to install THEMAP with all features:
git clone https://github.com/HFooladi/THEMAP.git
cd THEMAP
source env.shThis automatically:
- Installs
uv(fast Python package manager) if needed - Creates a virtual environment in
.venv - Installs all dependencies
- Activates the environment
After installation, try an example:
python examples/basic/molecule_datasets_demo.pyTo reactivate the environment later:
source .venv/bin/activateFor more control, install with pip:
pip install themap # Basic installation from PyPI
pip install -e ".[all]" # Full installation (editable)
pip install -e ".[protein]" # Protein analysis only
pip install -e ".[otdd]" # Optimal transport only
pip install -e ".[dev,test]" # Development + testingFor GPU support with specific CUDA versions:
conda env create -f environment.yml
conda activate themap
pip install -e . --no-deps- Python 3.10 or higher
- For GPU features: CUDA-compatible GPU and drivers
import os
from dpu_utils.utils.richpath import RichPath
from themap.data.molecule_dataset import MoleculeDataset
# Load datasets
source_dataset_path = RichPath.create(os.path.join("datasets", "train", "CHEMBL1023359.jsonl.gz"))
source_dataset = MoleculeDataset.load_from_file(source_dataset_path)
# Basic dataset analysis (works with minimal installation)
print(f"Dataset size: {len(source_dataset)}")
print(f"Positive ratio: {source_dataset.get_ratio}")
print(f"Dataset statistics: {source_dataset.get_statistics()}")
# Validate dataset integrity
try:
source_dataset.validate_dataset_integrity()
print("✅ Dataset is valid")
except ValueError as e:
print(f"❌ Dataset validation failed: {e}")# Only works with pip install -e ".[ml]" or higher
from themap.data.molecule_dataset import MoleculeDataset
dataset_path = RichPath.create(os.path.join("datasets", "train", "CHEMBL1023359.jsonl.gz"))
# Load dataset
dataset = MoleculeDataset.load_from_file(dataset_path)
# Calculate molecular embeddings (requires ML dependencies)
try:
features = dataset.get_features("ecfp")
print(f"Features shape: {features.shape}")
except ImportError:
print("❌ ML dependencies not installed. Use: pip install -e '.[ml]'")# Only works with pip install -e ".[all]"
from themap.data.tasks import Tasks, Task
from themap.distance import MoleculeDatasetDistance, ProteinDatasetDistance, TaskDistance
# Create Tasks collection from your datasets
source_dataset_path = RichPath.create(os.path.join("datasets", "train", "CHEMBL1023359.jsonl.gz"))
source_dataset = MoleculeDataset.load_from_file(source_dataset_path)
target_dataset_path = RichPath.create(os.path.join("datasets", "test", "CHEMBL2219358.jsonl.gz"))
target_dataset = MoleculeDataset.load_from_file(target_dataset_path)
source_task = Task(task_id="CHEMBL1023359", molecule_dataset=source_dataset)
target_task = Task(task_id="CHEMBL2219358", molecule_dataset=target_dataset)
# Step 1: Create Tasks collection with train/test split
tasks = Tasks(train_tasks=[source_task], test_tasks=[target_task])
# Step 2: Compute molecule distance with method-specific configuration
try:
# Use different methods for different data types
mol_dist = MoleculeDatasetDistance(
tasks=tasks,
molecule_method="otdd", # OTDD for molecules
)
mol_dist._compute_features()
distance = mol_dist.get_distance()
print(distance)
except ImportError:
print("❌ Distance calculation dependencies not installed. Use: pip install -e '.[all]'")# Find the most similar training datasets for your target task
candidate_datasets = ["CHEMBL1023359", "CHEMBL2219358", "CHEMBL1243967"]
target_dataset = "my_target_assay"
distances = calculate_all_distances(candidate_datasets, target_dataset)
best_source = min(distances, key=distances.get) # Closest dataset for transfer learning# Assess how much domain shift exists between datasets
domain_gap = calculate_dataset_distance(source_domain, target_domain)
if domain_gap < threshold:
print("Direct transfer likely to work well")
else:
print("Domain adaptation strategies recommended")# Predict task difficulty based on dataset characteristics
hardness_score = estimate_task_hardness(dataset, reference_datasets)
print(f"Predicted task difficulty: {hardness_score}")Pre-computed molecular embeddings and distance matrices for the FS-Mol dataset are available on Zenodo.
- Download data from Zenodo
- Extract to
datasets/fsmol_hardness/ - Run the provided Jupyter notebooks in the
notebooks/directory
Full documentation is available at themap.readthedocs.io or can be built locally:
mkdocs serve # Serve locally at http://127.0.0.1:8000We welcome contributions! Please see our Contributing Guidelines for details.
git clone https://github.com/HFooladi/THEMAP.git
cd THEMAP
pip install -e ".[dev,test]"pytest
pytest --cov=themap # with coverageruff check && ruff format # linting and formatting
mypy themap/ # type checkingIf you use THEMAP in your research, please cite our paper:
@article{fooladi2024quantifying,
title={Quantifying the hardness of bioactivity prediction tasks for transfer learning},
author={Fooladi, Hosein and Hirte, Steffen and Kirchmair, Johannes},
journal={Journal of Chemical Information and Modeling},
volume={64},
number={10},
pages={4031-4046},
year={2024},
publisher={ACS Publications}
}This project is licensed under the MIT License - see the LICENSE file for details.
Ready to optimize your chemical dataset selection for machine learning? Start with THEMAP today! 🚀
