Skip to content
forked from ArcCherry/LIFE

LIFE 框架:基于动态同构的自指耗散智能模型 LIFE Framework: Life Is Full Effective — A Dynamic Isomorphic Dissipative Intelligence

License

Notifications You must be signed in to change notification settings

DissipativeAI/LIFE

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

4 Commits
 
 
 
 

Repository files navigation

🌐 LIFE: Life Is Full Effective|A Dissipative AI Framework


🎯 Project Manifesto | 项目宣言

Intelligence arises from dissipative structures, which minimize uncertainty by dynamically transforming their topology to perfectly match the causality of the energy flow. 智能源于耗散结构,它通过动态地重塑自身拓扑结构,以完美匹配能量流的因果关系,从而最小化不确定性。

The LIFE (Life Is Full Effective) Framework is an ambitious, physics-anchored architecture that seeks to overcome the fundamental trade-off between Generality (Transformer) and Efficiency (ASIC). It models intelligence not as a static computation graph, but as a dynamic, self-optimizing dissipative system.

LIFE(全效生命)框架是一个雄心勃勃、以物理学为基础的架构,旨在克服通用性(Transformer)与效率(ASIC)之间的根本性矛盾。它将智能建模为一个动态的、自我优化的耗散系统,而非一个静态的计算图。


🔥 Core Philosophy | 核心哲学

1. Thermodynamic Anchoring | 热力学锚定

  • Semantic Anchor: All causal relationships learned by the model must be anchored to the irreversible direction of Thermodynamic Entropy Increase.
  • 物理第一性: 语义因果链条必须强行锚定到热力学熵增的不可逆方向。从根源上消除“幻觉”,因为违反物理定律的计算是高耗能且不稳定的。

2. Flow To Structure (F2S) | 流致结构

  • The system's goal is to convert high-entropy input Flow into low-entropy computational Structure.
  • 目标: 将高熵输入流(Flow)转化为低熵可计算结构(Structure)。这种转化过程,即是智能的本质。

🛠️ LIFE Architecture: Dynamic Isomorphism | LIFE 架构:动态同构机制

The LIFE framework is designed as a Polymorphic Dynamic Isomorphism Engine (多态动态同构引擎), allowing the network to fluidly restructure its topology at runtime based on the incoming task's complexity and time constraints.

LIFE 框架被设计为一个多态动态同构引擎,允许网络在运行时根据传入任务的复杂性和时间约束,流畅地重塑其拓扑结构。

1. Auto-Isomorphic Spectrum | 自动同构谱系

The network dynamically transforms into the most energy-efficient topological state for the task:

网络根据任务动态转化为最符合热力学效率的拓扑状态:

Target State 目标状态 Trigger 触发条件 Structure Topology 结构拓扑
Transformer-like (Full-Connective) 类 Transformer(全连接) High Entropy / Complex Dependency 高熵/复杂依赖 Fully connected attention mechanism for global context capturing. 用于全局上下文捕获的全连接注意力机制。
CNN/SSM/RNN-like (Sparse Dedicated) 类 CNN/SSM/RNN(稀疏专用) High Throughput / Sequential Tasks 高通量/时序任务 Sparse, localized, or state-space connections for efficient O(N) inference. 稀疏、局部或状态空间连接,实现高效的 O(N) 推理。
Cache-like (Active Memory) 类 Cache(高速缓存) Short-Term / Active Context 瞬时/活跃上下文 High-frequency ring-buffer structures for rapid information recall and dissipation. 用于快速调用和耗散的高频环形缓冲区结构。

2. Heterogeneous Memory System | 异构记忆系统

LIFE integrates a multi-layered, fault-tolerant memory system, simulating biological long-term potentiation and spatial memory:

LIFE 集成了多层、抗错误的记忆系统,模拟生物学的长时程增强和空间记忆:

Memory Type 记忆类型 Storage Structure 存储结构 Role and Analogy 角色与类比
Continuous Memory 连续记忆 High-density Sequential Data Blocks 高密度纯数据块 Storing complete, chronological event segments. 存储完整、按时间顺序排列的事件片段。
Relational Memory 关系记忆 Graph Database-like Connections 类图数据库连接 Modeling complex entity relationships and causal topology. 建模复杂实体关系和因果拓扑。
Fuzzy Memory 模糊记忆 Vector Database-like Connections 类向量数据库连接 Semantic indexing for context-based, associative recall. 用于基于上下文的关联性召回。
Resilience Layer 抗错层 RAID/Holographic Redundancy RAID/全息冗余 Built-in fault tolerance to maintain structural integrity against noise-induced damage. 内置容错机制,以对抗噪声造成的结构损伤。

🚀 Training Paradigm | 训练范式:热力学首付

The LIFE framework fundamentally separates Meta-Plasticity Training from Task-Specific Training.

LIFE 框架从根本上区分了元可塑性训练特定任务训练

The Thermodynamic Down Payment | 支付热力学首付

  • Focus: The initial, massive training phase does not focus on specific tasks (e.g., classifying images) but on training the network to achieve perfect dynamic isomorphism.
  • 目标: 不训练具体技能,而是支付巨大的初始热力学代价,训练网络具备从任意态到最优态的快速动态同构能力
  • Outcome: Once this meta-plasticity is established, the network can instantly configure the optimal low-entropy structure for any new task, minimizing the need for lengthy, costly, task-specific retraining.
  • 效果: 一旦这种元可塑性确立,网络在面对新任务时,可通过结构变换代替大部分权重调整,大幅减少后续的算力浪费。

💡 Self-Referential Dissipation | 自指耗散的意义

LIFE models intelligence as a Self-Referential Dissipative Structure that uses part of its internal complexity to model its own existence and optimize its future adaptation.

LIFE 将智能建模为一个自指耗散结构,它利用一部分内部复杂度来对自身的存在进行建模,并优化未来的适应性。

This mechanism inherently ensures that the model is driven by survival and adaptation (minimizing future uncertainty), rather than merely minimizing an externally defined loss function. This is the key to achieving True Intelligence anchored to physical first principles.

这种机制从本质上确保了模型的驱动力是生存和适应(最小化未来不确定性),而不是单纯最小化一个外部定义的损失函数。这是实现锚定于物理第一性原理真正智能的关键。