Skip to content

AutonomousAgentsLab/slp_benchmark

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

26 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

SLPHelm

This repository contains scripts and instructions to run the SLPHelm benchmark.

There are two sub-folders:

  • finetune: scripts to finetune models with self-generated data.
  • finetune-ultrasuite: instructions to create UltraSuite dataset and finetune models with LLaMa-Factory framework.

How to run the benchmark

  1. Install Helm:
git clone https://github.com/martinakaduc/helm/ -b slp_helm
cd helm
pip install -e .
  1. Run the benchmark:
# Binary Classification
helm-run --run-entries \
    ultra_suite_classification:model={model_name} \
    --suite binary-suite \
    --output-path {evaluation_dir} \
    --disable-cache \
    --max-eval-instances 1000

# ASR Classification
helm-run --run-entries \
    ultra_suite_classification:model={model_name} \
    --suite asr-suite \
    --output-path {evaluation_dir} \
    --disable-cache \
    --max-eval-instances 1000

# ASR Transcription
helm-run --run-entries \
    ultra_suite_asr_transcription:model={model_name} \
    --suite trans-suite \
    --output-path {evaluation_dir} \
    --disable-cache \
    --max-eval-instances 1000

# Type Classification
helm-run --run-entries \
    ultra_suite_classification_breakdown:model={model_name} \
    --suite type-suite \
    --output-path {evaluation_dir} \
    --disable-cache \
    --max-eval-instances 1000

# Symptom Classification
helm-run --run-entries \
    ultra_suite_disorder_symptoms:model={model_name} \
    --suite symp-suite \
    --output-path {evaluation_dir} \
    --disable-cache \
    --max-eval-instances 1000

About

Evaluate LLMs on SLP Tasks

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 3

  •  
  •  
  •