Skip to content

PH2 dataset training issues #12

@studentzqh

Description

@studentzqh

How many epochs should the PH2 dataset be trained for? According to your split ratio, after training for 15,000 epochs, I did not achieve results consistent with the paper. Overall, the performance was much lower, especially for SE.I hope you can answer.Below is my YAML content: run:
device: 'cuda'
save_imgs: "saved_imgs"
writer_dir: "./runs/ph2" # tensorboard runs
continue_training: false # whether to continue the training from the last epoch it was saved

model:
save_dir: './checkpoints/ph2'
name: 'dsd_p01' # the model will save and load with this config associated with this name.
class: 'DermoSegDiff' # do not change this line unless you implement a new model inside models folder
params: # the class arguments defined above
dim_x: 128
dim_g: 64
channels_x: 1 # mask
channels_g: 3 # rgb-image
# init_dim: null
out_dim: 1
# dim_mults: [1, 2, 3, 4, 5, 6]
dim_x_mults: [1, 2, 3, 4, 5, 6]
dim_g_mults: [1, 2, 4, 8, 16, 32]
resnet_block_groups: 8

diffusion:
schedule:
timesteps: 250
mode: "linear" # options: [linear, quadratic, cosine, sigmoid]
beta_start: 0.0004
beta_end: 0.08

dataset:
input_size: 128
name: "ph2"
class_name: "PH2DatasetFast" # do not change it unless you implement a new. this class loads all files into ram at once to speed up data loading.
data_dir: "/root/autodl-tmp/DermoSegDiff-main/DermoSegDiff-main/data/PH2" # inside of this folder must exist and folders. Inside of this folder the required numpy files will create inside of folder.
number_classes: 2
img_channels: 3
msk_channels: 1

data_scale: "full"

data_loader:
train:
batch_size: 32
shuffle: true
# num_workers: 16
pin_memory: true
validation:
batch_size: 32
shuffle: false
# num_workers: 16
pin_memory: true
test:
batch_size: 32
shuffle: false
# num_workers: 16
pin_memory: false

training:
epochs: 15000
intial_weights:
use: false
file_path: "path/to/file"
loss: # you must use at least one of the following losses or you can also enable some of them to use a hybrid loss
# l1:
# cofficient: 0.0
# huber:
# cofficient: 0.0
l2:
cofficient: 1.0
boundary:
cofficient: 0.25
params:
gamma: 0.25
root: "l2" # the root is one of above losses name to calculate weighted boundary loss respectively
optimizer:
name: 'Adam' # options: ["Adam", "SGD", "AdamW"]
params:
lr: 0.0001
betas: [0.7, 0.99]
weight_decay: 0.0
scheduler: # lr_scheduler.ReduceLROnPlateau
factor: 0.5
patience: 10
# verbose: true
ema: # https://github.com/lucidrains/ema-pytorch
use: true
params:
beta: 0.9999
update_after_step: 500
update_every: 1
inv_gamma: 1.0 # inv_gamma (float): Inverse multiplicative factor of EMA warmup. Default: 1.
power: 0.9 # power (float): Exponential factor of EMA warmup. Default: 1.

testing:
ensemble: 9
model_weigths:
overload: true # change to if you want to test with the below checkpoint weights
file_path: "/root/autodl-tmp/DermoSegDiff-main/DermoSegDiff-main/checkpoints/ph2/n-dsd_p01_s-128_b-32_t-250_sc-linear_best.pth"
result_imgs:
save: true # whether to save the test images generated by model for post-processing
dir: "./saved_imgs/ph2/dsd_p01"

augmentation:
p: 0.5
levels:
pixel:
p: 1.0
transforms:
# FDA:
# reference_images: img_path_list # DO NOT CHANGE THIS LINE
# p: 0.05
CLAHE:
clip_limit: 4
tile_grid_size: [3,3]
p: 0.05
Emboss:
p: 0.05
GaussNoise:
var_limit: [10, 200]
p: 0.05
HueSaturationValue:
hue_shift_limit: 7
sat_shift_limit: 30
val_shift_limit: 20
p: 0.05
MultiplicativeNoise:
multiplier: [0.8, 1.25]
elementwise: true
p: 0.05
RGBShift:
p: 0.05
RandomBrightnessContrast:
p: 0.05
RandomGamma:
gamma_limit: [70, 130]
p: 0.05
RandomToneCurve:
scale: 0.15
p: 0.05
Sharpen:
p: 0.05
Spatter:
mean: 0
std: 60
gauss_sigma: 2
cutout_threshold: 5
intensity: -3
p: 0.05
UnsharpMask:
p: 0.05
spacial:
p: 1
transforms:
Affine:
p: 0.05
CoarseDropout:
min_holes: 1
max_holes: 5
min_height: 4
max_height: 16
min_width: 4
max_width: 16
fill_value: [10, 20, 60]
p: 0.05
ElasticTransform:
alpha: 0.5
sigma: 1.3
alpha_affine: 20
border_mode: 2
p: 0.05
HorizontalFlip:
p: 0.05
VerticalFlip:
p: 0.05
Flip:
p: 0.05
GridDistortion:
border_mode: 4
p: 0.05
PiecewiseAffine:
p: 0.05
PixelDropout:
p: 0.05
RandomRotate90:
p: 0.05
Rotate:
border_mode: 4
p: 0.05

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions