diff --git a/theories/gr_predicates.v b/theories/gr_predicates.v index f755011..5211076 100644 --- a/theories/gr_predicates.v +++ b/theories/gr_predicates.v @@ -1,4 +1,4 @@ -From iris.bi Require Export fixpoint. +From iris.bi Require Export fixpoint_mono. From iris.heap_lang Require Import lang proofmode notation. (* ################################################################# *) diff --git a/theories/resource_algebra.v b/theories/resource_algebra.v index c250030..918b346 100644 --- a/theories/resource_algebra.v +++ b/theories/resource_algebra.v @@ -604,7 +604,7 @@ Context {A : ofe}. (** The carrier of the exclusive RA, [excl], is the same as the carrier of the underlying resource algebra with the addition of a bottom element, - denoted [ExclBot]. + denoted [ExclInvalid]. *) Print excl. @@ -617,33 +617,33 @@ Lemma excl_core (ea : excl A) : pcore ea ≡ None. Proof. constructor. Qed. (** - Crucially, all elements except [ExclBot] are valid. + Crucially, all elements except [ExclInvalid] are valid. *) Lemma excl_valid (a : A) : ✓ (Excl a). Proof. constructor. Qed. -Lemma excl_bot_invalid : ¬ (✓ (ExclBot : excl A)). +Lemma excl_bot_invalid : ¬ (✓ (ExclInvalid : excl A)). Proof. intros contra. inversion contra. Qed. (** - And the combination of any two elements gives the invalid [ExclBot]. + And the combination of any two elements gives the invalid [ExclInvalid]. *) -Lemma excl_op (ea eb : excl A) : ea ⋅ eb ≡ ExclBot. +Lemma excl_op (ea eb : excl A) : ea ⋅ eb ≡ ExclInvalid. Proof. constructor. Qed. (** Let us return to our beloved dfrac. While the operation for dfrac adds two dfrac fractions together, the operation for two _exclusive_ dfrac - fractions simply results in [ExclBot]. + fractions simply results in [ExclInvalid]. *) Example excl_op_dfrac : - (Excl (DfracOwn (1/4))) ⋅ (Excl (DfracOwn (2/4))) ≡ ExclBot. + (Excl (DfracOwn (1/4))) ⋅ (Excl (DfracOwn (2/4))) ≡ ExclInvalid. Proof. constructor. Qed. End exclusive. @@ -668,7 +668,7 @@ Lemma token_valid : ✓ tok. Proof. apply excl_valid. Qed. (** ... but having the token twice gives the bottom element... *) -Lemma token_token_bot : tok ⋅ tok ≡ ExclBot. +Lemma token_token_bot : tok ⋅ tok ≡ ExclInvalid. Proof. apply excl_op. Qed. (* ... which is invalid. *)