diff --git a/solution.ipynb b/solution.ipynb
new file mode 100644
index 0000000..2a41012
--- /dev/null
+++ b/solution.ipynb
@@ -0,0 +1,311 @@
+{
+ "cells": [
+ {
+ "cell_type": "code",
+ "execution_count": 23,
+ "id": "70a3d4bd",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import pandas as pd\n",
+ "from sqlalchemy import create_engine\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 24,
+ "id": "a06f6290",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "engine = create_engine(\n",
+ " \"mysql+pymysql://ironhack:ironhack123@localhost:3306/sakila\"\n",
+ ")\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 25,
+ "id": "642d6dee",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "from sqlalchemy import text\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 26,
+ "id": "dce446ce",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "def rentals_month(engine, month, year):\n",
+ " query = text(\"\"\"\n",
+ " SELECT\n",
+ " rental_id,\n",
+ " rental_date,\n",
+ " customer_id\n",
+ " FROM rental\n",
+ " WHERE MONTH(rental_date) = :month\n",
+ " AND YEAR(rental_date) = :year\n",
+ " \"\"\")\n",
+ " \n",
+ " with engine.connect() as conn:\n",
+ " df = pd.read_sql(query, conn, params={\"month\": month, \"year\": year})\n",
+ " \n",
+ " return df\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 27,
+ "id": "8d80bdb7",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " rental_id | \n",
+ " rental_date | \n",
+ " customer_id | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " | 0 | \n",
+ " 1 | \n",
+ " 2005-05-24 22:53:30 | \n",
+ " 130 | \n",
+ "
\n",
+ " \n",
+ " | 1 | \n",
+ " 2 | \n",
+ " 2005-05-24 22:54:33 | \n",
+ " 459 | \n",
+ "
\n",
+ " \n",
+ " | 2 | \n",
+ " 3 | \n",
+ " 2005-05-24 23:03:39 | \n",
+ " 408 | \n",
+ "
\n",
+ " \n",
+ " | 3 | \n",
+ " 4 | \n",
+ " 2005-05-24 23:04:41 | \n",
+ " 333 | \n",
+ "
\n",
+ " \n",
+ " | 4 | \n",
+ " 5 | \n",
+ " 2005-05-24 23:05:21 | \n",
+ " 222 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " rental_id rental_date customer_id\n",
+ "0 1 2005-05-24 22:53:30 130\n",
+ "1 2 2005-05-24 22:54:33 459\n",
+ "2 3 2005-05-24 23:03:39 408\n",
+ "3 4 2005-05-24 23:04:41 333\n",
+ "4 5 2005-05-24 23:05:21 222"
+ ]
+ },
+ "execution_count": 27,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "rentals_may = rentals_month(engine, 5, 2005)\n",
+ "rentals_june = rentals_month(engine, 6, 2005)\n",
+ "\n",
+ "rentals_may.head()\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 28,
+ "id": "6ab01c83",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "def rental_count_month(df, month, year):\n",
+ " column_name = f\"rentals_{month:02d}_{year}\"\n",
+ " \n",
+ " rentals_count = (\n",
+ " df.groupby(\"customer_id\")\n",
+ " .size()\n",
+ " .reset_index(name=column_name)\n",
+ " )\n",
+ " \n",
+ " return rentals_count\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 29,
+ "id": "0453b3dd",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "rentals_may_count = rental_count_month(rentals_may, 5, 2005)\n",
+ "rentals_june_count = rental_count_month(rentals_june, 6, 2005)\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 30,
+ "id": "37c3f199",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "def compare_rentals(df1, df2):\n",
+ " df = df1.merge(df2, on=\"customer_id\", how=\"inner\")\n",
+ " \n",
+ " col1 = df.columns[1]\n",
+ " col2 = df.columns[2]\n",
+ " \n",
+ " df[\"difference\"] = df[col2] - df[col1]\n",
+ " \n",
+ " return df\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 31,
+ "id": "2a294d7f",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " customer_id | \n",
+ " rentals_05_2005 | \n",
+ " rentals_06_2005 | \n",
+ " difference | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " | 0 | \n",
+ " 1 | \n",
+ " 2 | \n",
+ " 7 | \n",
+ " 5 | \n",
+ "
\n",
+ " \n",
+ " | 1 | \n",
+ " 2 | \n",
+ " 1 | \n",
+ " 1 | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " | 2 | \n",
+ " 3 | \n",
+ " 2 | \n",
+ " 4 | \n",
+ " 2 | \n",
+ "
\n",
+ " \n",
+ " | 3 | \n",
+ " 5 | \n",
+ " 3 | \n",
+ " 5 | \n",
+ " 2 | \n",
+ "
\n",
+ " \n",
+ " | 4 | \n",
+ " 6 | \n",
+ " 3 | \n",
+ " 4 | \n",
+ " 1 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " customer_id rentals_05_2005 rentals_06_2005 difference\n",
+ "0 1 2 7 5\n",
+ "1 2 1 1 0\n",
+ "2 3 2 4 2\n",
+ "3 5 3 5 2\n",
+ "4 6 3 4 1"
+ ]
+ },
+ "execution_count": 31,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "comparison = compare_rentals(rentals_may_count, rentals_june_count)\n",
+ "comparison.head()\n"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.12.9"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}