From 4cd7db1ca8e1381d2f01d503f0ff138038e90b72 Mon Sep 17 00:00:00 2001 From: Ou Hai Date: Sat, 6 Dec 2025 21:04:41 +0100 Subject: [PATCH] Solved Lab --- lab-sql-python-connection.ipynb | 177 ++++++++++++++++++++++++++++++++ 1 file changed, 177 insertions(+) create mode 100644 lab-sql-python-connection.ipynb diff --git a/lab-sql-python-connection.ipynb b/lab-sql-python-connection.ipynb new file mode 100644 index 0000000..7331474 --- /dev/null +++ b/lab-sql-python-connection.ipynb @@ -0,0 +1,177 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 12, + "id": "e63e6101", + "metadata": {}, + "outputs": [], + "source": [ + "import pandas as pd\n", + "import numpy as np\n", + "import pymysql\n", + "from sqlalchemy import create_engine\n", + "import getpass\n", + "import urllib.parse\n", + "password = getpass.getpass()" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "id": "3faf64c3", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Engine(mysql+pymysql://root:***@localhost:3306/sakila)" + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "bd = \"sakila\"\n", + "\n", + "password_encoded = urllib.parse.quote(password)\n", + "\n", + "\n", + "connection_string = f\"mysql+pymysql://root:{password_encoded}@localhost:3306/{bd}\"\n", + "\n", + "engine = create_engine(connection_string)\n", + "\n", + "engine" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "id": "e67bca96", + "metadata": {}, + "outputs": [], + "source": [ + "def rentals_month(engine, month: int, year: int) -> pd.DataFrame:\n", + " query = text(\"\"\"\n", + " SELECT\n", + " rental_id,\n", + " rental_date,\n", + " inventory_id,\n", + " customer_id,\n", + " staff_id\n", + " FROM rental\n", + " WHERE EXTRACT(MONTH FROM rental_date) = :month\n", + " AND EXTRACT(YEAR FROM rental_date) = :year\n", + " \"\"\")\n", + "\n", + " df = pd.read_sql(query, engine, params={\"month\": month, \"year\": year})\n", + " return df" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "id": "41097caf", + "metadata": {}, + "outputs": [], + "source": [ + "def rental_count_month(df: pd.DataFrame, month: int, year: int) -> pd.DataFrame:\n", + " col_name = f\"rentals_{month:02d}_{year}\"\n", + " \n", + " counts = (\n", + " df.groupby(\"customer_id\")\n", + " .size()\n", + " .reset_index(name=col_name)\n", + " )\n", + "\n", + " return counts" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "c9719ccb", + "metadata": {}, + "outputs": [], + "source": [ + "def compare_rentals(df1: pd.DataFrame, df2: pd.DataFrame) -> pd.DataFrame:\n", + " merged = pd.merge(df1, df2, on=\"customer_id\", how=\"outer\")\n", + "\n", + " merged = merged.fillna(0)\n", + " count_cols = [c for c in merged.columns if c != \"customer_id\"]\n", + " if len(count_cols) != 2:\n", + " raise ValueError(\n", + " f\"Expected two rental count columns, but got:{count_cols}\"\n", + " )\n", + "\n", + " col1, col2 = count_cols\n", + "\n", + " merged[\"difference\"] = merged[col2] - merged[col1]\n", + "\n", + " return merged" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "id": "9260daa4", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " customer_id rentals_05_2005 rentals_06_2005 difference\n", + "0 1 2.0 7.0 5.0\n", + "1 2 1.0 1.0 0.0\n", + "2 3 2.0 4.0 2.0\n", + "3 4 0.0 6.0 6.0\n", + "4 5 3.0 5.0 2.0\n" + ] + } + ], + "source": [ + "\n", + "may_df = rentals_month(engine, 5, 2005)\n", + "june_df = rentals_month(engine, 6, 2005)\n", + "\n", + "may_counts = rental_count_month(may_df, 5, 2005)\n", + "june_counts = rental_count_month(june_df, 6, 2005)\n", + "\n", + "comparison = compare_rentals(may_counts, june_counts)\n", + "print(comparison.head())" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "afc86b70", + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "base", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.13.5" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +}