-Below are two correct solutions to the same integral, using
-two different choices for u. Which method would you prefer
-to use yourself?
+ Below are two correct solutions to the same integral, using two different choices for u. Which method would you prefer to use yourself?
-\displaystyle \int x\sqrt{4x+4}\,dx &\phantom{=}\text{Let }u=x+1
+ \displaystyle \int x\sqrt{4x+4}\,dx &\phantom{=}\text{Let }u=x+1
-&\phantom{=} 4u=4x+4
+ &\phantom{=} 4u=4x+4
-&\phantom{=} x=u-1
+ &\phantom{=} x=u-1
-&\phantom{=} du = dx
+ &\phantom{=} du = dx
-\displaystyle \int x\sqrt{4x+4}\,dx &= \displaystyle \int (u-1)\sqrt{4u}\,du
+ \displaystyle \int x\sqrt{4x+4}\,dx &= \displaystyle \int (u-1)\sqrt{4u}\,du
-&= \displaystyle \int (2u^{3/2}-2u^{1/2})\,du
+ &= \displaystyle \int (2u^{3/2}-2u^{1/2})\,du
-&= \dfrac{4}{5}u^{5/2}-\dfrac{4}{3}u^{3/2}+C
+ &= \dfrac{4}{5}u^{5/2}-\dfrac{4}{3}u^{3/2}+C
-&= \dfrac{4}{5}(x+1)^{5/2}
+ &= \dfrac{4}{5}(x+1)^{5/2}
-&\phantom{=}-\dfrac{4}{3}(x+1)^{3/2}+C
+ &\phantom{=}-\dfrac{4}{3}(x+1)^{3/2}+C
-\displaystyle \int x\sqrt{4x+4}\,dx &\phantom{=}\text{Let }u=\sqrt{4x+4}
+ \displaystyle \int x\sqrt{4x+4}\,dx &\phantom{=}\text{Let }u=\sqrt{4x+4}
-&\phantom{=} u^2=4x+4
+ &\phantom{=} u^2=4x+4
-&\phantom{=} x=\dfrac{1}{4}u^2-1
+ &\phantom{=} x=\dfrac{1}{4}u^2-1
-&\phantom{=} dx=\dfrac{1}{2}u\,du
+ &\phantom{=} dx=\dfrac{1}{2}u\,du
-\displaystyle \int x\sqrt{4x+4}\,dx &= \displaystyle \int \left(\dfrac{1}{4}u^2-1\right)(u)\left(\dfrac{1}{2}u\,du\right)
+ \displaystyle \int x\sqrt{4x+4}\,dx &= \displaystyle \int \left(\dfrac{1}{4}u^2-1\right)(u)\left(\dfrac{1}{2}u\,du\right)
-&= \displaystyle \int \left(\dfrac{1}{8}u^4-\dfrac{1}{2}u^2\right)\,du
+ &= \displaystyle \int \left(\dfrac{1}{8}u^4-\dfrac{1}{2}u^2\right)\,du
-&= \dfrac{1}{40}u^5-\dfrac{1}{6}u^3+C
+ &= \dfrac{1}{40}u^5-\dfrac{1}{6}u^3+C
-&= \dfrac{1}{40}(4x+4)^{5/2}
+ &= \dfrac{1}{40}(4x+4)^{5/2}
-&\phantom{=}-\dfrac{1}{6}(4x+4)^{3/2}+C
+ &\phantom{=}-\dfrac{1}{6}(4x+4)^{3/2}+C
@@ -280,99 +315,139 @@ to use yourself?
-Suppose we wanted to try the substitution method to find \displaystyle \int e^x\cos(e^x+3)\,dx. Which of these choices for u appears to be most useful?
+ Suppose we wanted to try the substitution method to find \displaystyle \int e^x\cos(e^x+3)\,dx. Which of these choices for u appears to be most useful?
-
-u=x, so du=dx
+ u=x, so du=dx
-
-u=e^x, so du=e^x\,dx
+ u=e^x, so du=e^x\,dx
-
-u=e^x+3, so du=e^x\,dx
+ u=e^x+3, so du=e^x\,dx
-
-u=\cos(x), so du=-\sin(x)\,dx
+ u=\cos(x), so du=-\sin(x)\,dx
-
-u=\cos(e^x+3), so du=e^x\sin(e^x+3)\,dx
+ u=\cos(e^x+3), so du=e^x\sin(e^x+3)\,dx
+
+
+ C: u=e^x+3, so du=e^x\,dx
+
+
-Complete the following solution using your choice from
-the previous activity to find \displaystyle \int e^x\cos(e^x+3)\,dx.
+ Complete the following solution using your choice from the previous activity to find \displaystyle \int e^x\cos(e^x+3)\,dx.
-\displaystyle \int e^x\cos(e^x+3)\,dx &&\text{Let }&u=\unknown
+ \displaystyle \int e^x\cos(e^x+3)\,dx &&\text{Let }&u=\unknown
-&&& du = \unknown\,dx
+ &&& du = \unknown\,dx
-\displaystyle \int e^x\cos(e^x+3)\,dx &= \displaystyle \int \unknown\, du
+ \displaystyle \int e^x\cos(e^x+3)\,dx &= \displaystyle \int \unknown\, du
-&= \cdots
+ &= \cdots
-&= \sin(e^x+3)+C
+ &= \sin(e^x+3)+C
+
+
+
+ \displaystyle \int e^x\cos(e^x+3)\,dx &&\text{Let }&u=e^x + 3
+
+
+ &&& du = e^x\,dx
+
+
+ \displaystyle \int e^x\cos(e^x+3)\,dx &= \displaystyle \int \cos(u)\, du
+
+
+ &= \sin(u) + C
+
+
+ &= \sin(e^x+3)+C
+
+
+
-Complete the following integration by substitution
-to find \displaystyle \int \dfrac{x^3}{x^4+4}\,dx.
+ Complete the following integration by substitution to find \displaystyle \int \dfrac{x^3}{x^4+4}\,dx.
-\displaystyle \int \dfrac{x^3}{x^4+4}\,dx &&\text{Let }&u=\unknown
+ \displaystyle \int \dfrac{x^3}{x^4+4}\,dx &&\text{Let }&u=\unknown
-&&& du = \unknown\,dx
+ &&& du = \unknown\,dx
-&&& \unknown \, du = \unknown\,dx
+ &&& \unknown \, du = \unknown\,dx
-\displaystyle \int \dfrac{x^3}{x^4+4}\,dx &= \displaystyle \int \dfrac{\unknown}{\unknown}\, du
+ \displaystyle \int \dfrac{x^3}{x^4+4}\,dx &= \displaystyle \int \dfrac{\unknown}{\unknown}\, du
-&= \cdots
+ &= \cdots
-&= \dfrac{1}{4}\ln|x^4+4|+C
+ &= \dfrac{1}{4}\ln|x^4+4|+C
+
+
+
+ \displaystyle \int \dfrac{x^3}{x^4+4}\,dx &&\text{Let }&u=x^4 + 4
+
+
+ &&& du = 4x^3 \,dx
+
+
+ &&& \dfrac{1}{4} \, du = x^3\,dx
+
+
+ \displaystyle \int \dfrac{x^3}{x^4+4}\,dx &= \displaystyle \int \dfrac{1/4}{u}\, du
+
+
+ &= \dfrac{1}{4}\ln|u| + C
+
+
+ &= \dfrac{1}{4}\ln|x^4+4|+C
+
+
+
+
-Given that
-\displaystyle \int \dfrac{x^3}{x^4+4}\,dx
-= \dfrac{1}{4}\ln|x^4+4|+C
-, what is the value of
-\displaystyle \int_0^2 \dfrac{x^3}{x^4+4}\,dx
-?
+ Given that \displaystyle \int \dfrac{x^3}{x^4+4}\,dx = \dfrac{1}{4}\ln|x^4+4|+C , what is the value of \displaystyle \int_0^2 \dfrac{x^3}{x^4+4}\,dx?
\dfrac{8}{20}
@@ -381,6 +456,11 @@ Given that
\dfrac{1}{4}\ln(4)-\dfrac{1}{4}\ln(20)
+
+
+ C: \dfrac{1}{4}\ln(20)-\dfrac{1}{4}\ln(4)
+
+
@@ -389,70 +469,74 @@ What's wrong with the following computation?
-\displaystyle \int_0^2 \dfrac{x^3}{x^4+4}\,dx &&\text{Let }&u=x^4+4
+ \displaystyle \int_0^2 \dfrac{x^3}{x^4+4}\,dx &&\text{Let }&u=x^4+4
-&&& du = 4x^3\,dx
+ &&& du = 4x^3\,dx
-&&& \dfrac{1}{4} du = x^3\,dx
+ &&& \dfrac{1}{4} du = x^3\,dx
-\displaystyle \int_0^2 \dfrac{x^3}{x^4+4}\,dx &= \displaystyle \int_0^2 \dfrac{1/4}{u}\, du
+ \displaystyle \int_0^2 \dfrac{x^3}{x^4+4}\,dx &= \displaystyle \int_0^2 \dfrac{1/4}{u}\, du
-&= \left[\dfrac{1}{4}\ln|u|\right]_0^2
+ &= \left[\dfrac{1}{4}\ln|u|\right]_0^2
-&= \dfrac{1}{4}\ln 2-\dfrac{1}{4}\ln 0
+ &= \dfrac{1}{4}\ln 2-\dfrac{1}{4}\ln 0
-
-The wrong u substitution was made.
+ The wrong u substitution was made.
-
-The antiderivative of \dfrac{1/4}{u} was wrong.
+ The antiderivative of \dfrac{1/4}{u} was wrong.
-
-The x values 0,2 were plugged in for the variable u.
+ The x values 0,2 were plugged in for the variable u.
+
+
+ C: The x values 0,2 were plugged in for the variable u.
+
+
-Here's one way to show the computation of this definite integral by
-tracking x values in the bounds.
+ Here's one way to show the computation of this definite integral by tracking x values in the bounds.
-\displaystyle \int_0^2 \dfrac{x^3}{x^4+4}\,dx &&\text{Let }&u=x^4+4
+ \displaystyle \int_0^2 \dfrac{x^3}{x^4+4}\,dx &&\text{Let }&u=x^4+4
-&&& du = 4x^3\,dx
+ &&& du = 4x^3\,dx
-&&& \dfrac{1}{4} du = x^3\,dx
+ &&& \dfrac{1}{4} du = x^3\,dx
-\displaystyle \int_{x=0}^{x=2} \dfrac{x^3}{x^4+4}\,dx &= \displaystyle \int_{x=0}^{x=2} \dfrac{1/4}{u}\, du
+ \displaystyle \int_{x=0}^{x=2} \dfrac{x^3}{x^4+4}\,dx &= \displaystyle \int_{x=0}^{x=2} \dfrac{1/4}{u}\, du
-&= \left[ \dfrac{1}{4}\ln|u|\right]_{x=0}^{x=2}
+ &= \left[ \dfrac{1}{4}\ln|u|\right]_{x=0}^{x=2}
-&= \left[ \dfrac{1}{4}\ln|x^4+4|\right]_{x=0}^{x=2}
+ &= \left[ \dfrac{1}{4}\ln|x^4+4|\right]_{x=0}^{x=2}
-&= \dfrac{1}{4}\ln(20)-\dfrac{1}{4}\ln(4)
+ &= \dfrac{1}{4}\ln(20)-\dfrac{1}{4}\ln(4)
@@ -460,71 +544,92 @@ tracking x values in the bounds.
-Instead of unsubstituting u values for x values,
-definite integrals may be computed by also substituting x values in
-the bounds with u values. Use this idea to complete
-the following solution:
+ Instead of unsubstituting u values for x values, definite integrals may be computed by also substituting x values in the bounds with u values. Use this idea to complete the following solution:
-\displaystyle \int_1^3 x^2e^{x^3}\,dx &&\text{Let }&u=\unknown
+ \displaystyle \int_1^3 x^2e^{x^3}\,dx &&\text{Let }&u=\unknown
-&&&du = 3x^2\,dx
+ &&&du = 3x^2\,dx
-&&&\dfrac{1}{3}du = x^2\,dx
+ &&&\dfrac{1}{3}du = x^2\,dx
-\displaystyle \int_1^3 x^2e^{x^3}\,dx &= \displaystyle \int_{x=1}^{x=3} e^{(x^3)} (x^2\,dx)
+ \displaystyle \int_1^3 x^2e^{x^3}\,dx &= \displaystyle \int_{x=1}^{x=3} e^{(x^3)} (x^2\,dx)
-&= \displaystyle \int_{u=\unknown}^{u=\unknown} e^{u} \dfrac{1}{3}\, du
- -->
+ &= \displaystyle \int_{u=\unknown}^{u=\unknown} e^{u} \dfrac{1}{3}\, du
+
-&= \left[\dfrac{1}{3}e^{u}\right]_{\unknown}^{\unknown}
+ &= \left[\dfrac{1}{3}e^{u}\right]_{\unknown}^{\unknown}
-&= \unknown
+ &= \unknown
+
+
+
+
+ \displaystyle \int_1^3 x^2e^{x^3}\,dx &&\text{Let }&u=x^3
+
+
+ &&&du = 3x^2\,dx
+
+
+ &&&\dfrac{1}{3}du = x^2\,dx
+
+
+ \displaystyle \int_1^3 x^2e^{x^3}\,dx &= \displaystyle \int_{x=1}^{x=3} e^{(x^3)} (x^2\,dx)
+
+
+ &= \displaystyle \int_{u=1}^{u=27} e^{u} \dfrac{1}{3}\, du
+
+
+ &= \left[\dfrac{1}{3}e^{u}\right]_{1}^{27}
+
+
+ &= \dfrac{1}{3}e^{27} - \dfrac{1}{3}e
+
+
+
+
-Here is how one might write out the explanation
-of how to find
-\displaystyle \int_1^3 x^2e^{x^3}\,dx from start to finish by
-leaving bounds in terms of x instead:
+ Here is how one might write out the explanation of how to find \displaystyle \int_1^3 x^2e^{x^3}\,dx from start to finish by leaving bounds in terms of x instead:
-\displaystyle \int_1^3 x^2e^{x^3}\,dx &&\text{Let }&u=x^3
+ \displaystyle \int_1^3 x^2e^{x^3}\,dx &&\text{Let }&u=x^3
-&&& du = 3x^2\,dx
+ &&& du = 3x^2\,dx
-&&& \dfrac{1}{3}du = x^2\,dx
+ &&& \dfrac{1}{3}du = x^2\,dx
-\displaystyle \int_1^3 x^2e^{x^3}\,dx &= \displaystyle \int_{x=1}^{x=3} e^{(x^3)} (x^2\,dx)
+ \displaystyle \int_1^3 x^2e^{x^3}\,dx &= \displaystyle \int_{x=1}^{x=3} e^{(x^3)} (x^2\,dx)
-&= \displaystyle \int_{x=1}^{x=3} e^{u} \dfrac{1}{3}\, du
+ &= \displaystyle \int_{x=1}^{x=3} e^{u} \dfrac{1}{3}\, du
-&= \left[\dfrac{1}{3}e^{u}\right]_{x=1}^{x=3}
+ &= \left[\dfrac{1}{3}e^{u}\right]_{x=1}^{x=3}
-&= \left[\dfrac{1}{3}e^{x^3}\right]_{x=1}^{x=3}
+ &= \left[\dfrac{1}{3}e^{x^3}\right]_{x=1}^{x=3}
-&= \dfrac{1}{3}e^{3^3} - \dfrac{1}{3}e^{1^3}
+ &= \dfrac{1}{3}e^{3^3} - \dfrac{1}{3}e^{1^3}
-&= \dfrac{1}{3}e^{27} - \dfrac{1}{3}e
+ &= \dfrac{1}{3}e^{27} - \dfrac{1}{3}e
@@ -532,71 +637,101 @@ leaving bounds in terms of x instead:
-Use substitution to show that
-\displaystyle \int_1^4 \dfrac{e^{\sqrt x}}{\sqrt x}\,dx=2e^2-2e.
+ Use substitution to show that
+ \displaystyle \int_1^4 \dfrac{e^{\sqrt x}}{\sqrt x}\,dx=2e^2-2e.
-Use substitution to show that
-\displaystyle \int_0^{\pi/4} \sin(2\theta)\,d\theta=\dfrac{1}{2}.
+ Use substitution to show that
+ \displaystyle \int_0^{\pi/4} \sin(2\theta)\,d\theta=\dfrac{1}{2}.
+
-Use substitution to show that
+ Use substitution to show that
-\displaystyle \int u^5(u^3+1)^{1/3}\,du=
-\dfrac{1}{7}(u^3+1)^{7/3}-
-\dfrac{1}{4}(u^3+1)^{4/3}+C
+ \displaystyle \int u^5(u^3+1)^{1/3}\,du= \dfrac{1}{7}(u^3+1)^{7/3} - \dfrac{1}{4}(u^3+1)^{4/3}+C
.
+
-Consider \displaystyle \int (3x-5)^2\,dx.
+ Consider \displaystyle \int (3x-5)^2\,dx.
-
-Solve this integral using substitution.
-
+
+
+ Solve this integral using substitution.
+
+
+
+
+ \displaystyle \int (3x-5)^2\, dx = \dfrac{1}{9}(3x-5)^3 + C
+
+
-
-Replace (3x-5)^2 with (9x^2-30x+25)
-in the original integral, the solve using
-the reverse power rule.
-
+
+
+ Replace (3x-5)^2 with (9x^2-30x+25) in the original integral, the solve using the reverse power rule.
+
+
+
+
+ \displaystyle \int 9x^2 - 30x + 25\, dx = 3x^3 - 15x^2 + 25x + C
+
+
+
+
+ Which method did you prefer?
+
+
-Which method did you prefer?
+
-Consider \displaystyle \int \tan(x)\,dx.
+ Consider \displaystyle \int \tan(x)\,dx.
-
-Replace \tan(x) in the integral with
-a fraction involving sine and cosine.
-
+
+
+ Replace \tan(x) in the integral with a fraction involving sine and cosine.
+
+
+
+
+ \displaystyle \int \tan(x)\, dx = \int \dfrac{\sin(x)}{\cos(x)}\, dx
+
+
-
-Use substitution to solve the integral.
-
+
+
+ Use substitution to solve the integral.
+
+
+
+
+ \displaystyle \int \dfrac{\sin(x)}{\cos(x)}\, dx = -\ln |\cos(x)| + C or \ln |\sec(x)| + C
+
+
From 165d1a84505e5eea353e417b64a43fb9e2b5e2fc Mon Sep 17 00:00:00 2001
From: Cory Wilson <40644848+cg2wilson@users.noreply.github.com>
Date: Thu, 22 May 2025 19:09:41 +0000
Subject: [PATCH 2/4] add answers for TI2
---
source/calculus/source/05-TI/02.ptx | 432 ++++++++++++++++++++++------
1 file changed, 348 insertions(+), 84 deletions(-)
diff --git a/source/calculus/source/05-TI/02.ptx b/source/calculus/source/05-TI/02.ptx
index 99e3c4de1..086fe133c 100644
--- a/source/calculus/source/05-TI/02.ptx
+++ b/source/calculus/source/05-TI/02.ptx
@@ -11,63 +11,121 @@
Activities
-
+
+
Answer the following.
+
- Using the product rule, which of these is derivative of x^3e^x with respect to x?
-
- 3x^2e^x
- 3x^2e^{x}+x^3e^x
- 3x^2e^{x-1}
- \dfrac{1}{4}x^4 e^x
-
+
+
+ Using the product rule, which of these is derivative of x^3e^x with respect to x?
+
+ 3x^2e^x
+ 3x^2e^{x}+x^3e^x
+ 3x^2e^{x-1}
+ \dfrac{1}{4}x^4 e^x
+
+
+
+
+
+ B: 3x^2 e^x + x^3e^x
+
+
- Based on this result, which of these would you suspect to equal \displaystyle \int 3x^2e^x+x^3e^x\,dx?
-
- x^3e^x+C
- x^3e^x+\dfrac{1}{4}x^4e^x+C
- 6xe^x+3x^2e^x+C
- 6xe^x+3x^2e^x+3x^2e^x+x^3e^x+C
-
+
+
+ Based on this result, which of these would you suspect to equal \displaystyle \int 3x^2e^x+x^3e^x\,dx?
+
+ x^3e^x+C
+ x^3e^x+\dfrac{1}{4}x^4e^x+C
+ 6xe^x+3x^2e^x+C
+ 6xe^x+3x^2e^x+3x^2e^x+x^3e^x+C
+
+
+
+
+
+ A: x^3e^x + C
+
+
+
Answer the following.
- Which differentiation rule is easier to implement?
-
- Product Rule
- Chain Rule
-
+
+
+ Which differentiation rule is easier to implement?
+
+ Product Rule
+ Chain Rule
+
+
+
+
+
+ Answers vary, but probably A: Product Rule.
+
+
- Which differentiation strategy do you expect to be easier to reverse?
-
- Product Rule
- Chain Rule
-
+
+
+ Which differentiation strategy do you expect to be easier to reverse?
+
+ Product Rule
+ Chain Rule
+
+
+
+
+
+ Answers vary, but likely A: Product Rule.
+
+
+
Answer the following.
- Which of the following equations is equivalent to the formula \dfrac{d}{dx}[uv]=u'v+uv'?
-
- uv'=-\dfrac{d}{dx}(uv)-vu'
- uv'=-\dfrac{d}{dx}(uv)+vu'
- uv'=\dfrac{d}{dx}(uv)+vu'
- uv'=\dfrac{d}{dx}(uv)-vu'
-
+
+
+ Which of the following equations is equivalent to the formula \dfrac{d}{dx}[uv]=u'v+uv'?
+
+ uv'=-\dfrac{d}{dx}(uv)-vu'
+ uv'=-\dfrac{d}{dx}(uv)+vu'
+ uv'=\dfrac{d}{dx}(uv)+vu'
+ uv'=\dfrac{d}{dx}(uv)-vu'
+
+
+
+
+
+ D: uv'=\dfrac{d}{dx}(uv)-vu'
+
+
- Which of these is the most concise result of integrating both sides with respect to x?
-
- \displaystyle \int(uv')\,dx=uv-\int(vu')\,dx
- \displaystyle \int(u)\,dv=uv-\int(v)\,du
- \displaystyle \int(uv')\,dx=uv-\int(vu')\,dx+C
- \displaystyle \int(u)\,dv=uv-\int(v)\,du+C
-
+
+
+ Which of these is the most concise result of integrating both sides with respect to x?
+
+ \displaystyle \int(uv')\,dx=uv-\int(vu')\,dx
+ \displaystyle \int(u)\,dv=uv-\int(v)\,du
+ \displaystyle \int(uv')\,dx=uv-\int(vu')\,dx+C
+ \displaystyle \int(u)\,dv=uv-\int(v)\,du+C
+
+
+
+
+
+ B: \displaystyle \int(u)\,dv=uv-\int(v)\,du
+
+
@@ -84,51 +142,100 @@
Consider \displaystyle \int xe^{x}\,dx. Suppose we decided to let u=x.
- Compute \dfrac{du}{dx}=\unknown, and rewrite it as du=\unknown\,dx.
+
+
+ Compute \dfrac{du}{dx}=\unknown, and rewrite it as du=\unknown\,dx.
+
+
+
+
+ \dfrac{du}{dx} = 1, so du = 1\, dx.
+
+
- What is the best candidate for dv?
-
- dv=x\,dx
- dv=e^x
- dv=x
- dv=e^x\,dx
-
+
+
+ What is the best candidate for dv?
+
+ dv=x\,dx
+ dv=e^x
+ dv=x
+ dv=e^x\,dx
+
+
+
+
+
+ D: dv=e^x\,dx
+
+
- Given that dv=e^x\,dx, find v=\unknown.
+
+
+ Given that dv=e^x\,dx, find v=\unknown.
+
+
+
+
+ v = e^x
+
+
- Show why \displaystyle \int xe^{x}\,dx may now be rewritten as \displaystyle xe^x-\int e^x\,dx.
+
+
+ Show why \displaystyle \int xe^{x}\,dx may now be rewritten as \displaystyle xe^x-\int e^x\,dx.
+
+
+
+
+ Since u = x, du = dx, dv = e^x\, dx, and v = e^x, the formula for integration by parts gives us
+ \int xe^x\, dx = xe^x-\int e^x\, dx
+
+
- Solve \displaystyle \int e^x\,dx, and then give the most general antiderivative of \displaystyle \int xe^{x}\,dx.
+
+
+ Solve \displaystyle \int e^x\,dx, and then give the most general antiderivative of \displaystyle \int xe^{x}\,dx.
+
+
+
+
+ \displaystyle \int e^x\, dx = e^x so that \displaystyle \int xe^x\, dx = xe^x - e^x + C
+
+
+
- Here is how one might write out the explanation of how to find \displaystyle \int xe^{x}\,dx from start to finish:
+
+ Here is how one might write out the explanation of how to find \displaystyle \int xe^{x}\,dx from start to finish:
-\displaystyle \int xe^{x}\,dx
+ \displaystyle \int xe^{x}\,dx
-& u=x & dv = e^x\,dx
+ & u=x & dv = e^x\,dx
-& du=1\cdot\,dx & v=e^x
+ & du=1\cdot\,dx & v=e^x
-\displaystyle \int xe^x \,dx &= xe^x-\int e^x \,dx
+ \displaystyle \int xe^x \,dx &= xe^x-\int e^x \,dx
-&= xe^{x}-e^x+C
+ &= xe^{x}-e^x+C
+
Which step of the previous example do you think was the most important?
@@ -148,29 +255,74 @@
+
+
+ A: Choosing u=x and dv = e^x\, dx
+
+
+
- Consider the integral \displaystyle \int x^9\ln(x) \,dx. Suppose we proceed using integration by parts. We choose u=\ln(x) and dv=x^9\,dx.
+
+ Consider the integral \displaystyle \int x^9\ln(x) \,dx. Suppose we proceed using integration by parts. We choose u=\ln(x) and dv=x^9\,dx.
+
- What is du?
+
+
+ What is du?
+
+
+
+
+
+
+ >
- What is v?
+
+
+ What is v?
+
+
+
+
+
+
+ >
- What do you get when plugging these pieces into integration by parts?
+
+
+ What do you get when plugging these pieces into integration by parts?
+
+
+
+
+
+
+ >
- Does the new integral \displaystyle \int v\,du seem easier or harder to compute than the original integral \displaystyle \int x^9\ln(x) \,dx?
-
- The original integral is easier to compute.
- The new integral is easier to compute.
- Neither integral seems harder than the other one.
-
+
+
+ Does the new integral \displaystyle \int v\,du seem easier or harder to compute than the original integral \displaystyle \int x^9\ln(x) \,dx?
+
+ The original integral is easier to compute.
+ The new integral is easier to compute.
+ Neither integral seems harder than the other one.
+
+
+
+
+
+ B: The new integral is easier to compute.
+
+
+
Consider the integral \displaystyle \int x^9\ln(x) \,dx once more. Suppose we still proceed using integration by parts. However, this time we choose u=x^9 and dv=\ln(x)\,dx. Do you prefer this choice or the choice we made in ?
@@ -180,10 +332,16 @@
We do not have a strong preference, since these choices are of the same difficulty.
+
+
+ A: We prefer the substitution choice of u=\ln(x) and dv=x^9\,dx.
+
+
+
- Consider the integral \int x\cos(x)\,dx. Suppose we proceed using integration by parts. Which of the following candidates for u and dv would best allow you to evaluate this integral?
+ Consider the integral \displaystyle \int x\cos(x)\,dx. Suppose we proceed using integration by parts. Which of the following candidates for u and dv would best allow you to evaluate this integral?
-
u=\cos(x), dv=x\, dx
@@ -199,17 +357,35 @@
+
+
+ D: u=x, dv=\cos(x)\,dx
+
+
+
Evaluate the integral \displaystyle \int x\cos(x)\,dx using integration by parts.
+
+
+ \displaystyle \int x\cos(x)\, dx = x\sin x + \cos(x) + C
+
+
+
Now use integration by parts to evaluate the integral \displaystyle \int_{\pi/6}^{\pi} x\cos(x)\,dx.
+
+
+ \displaystyle \int_{\pi/6}^{\pi} x\cos(x)\,dx = -\dfrac{\pi}{12} - \sqrt{3}{2}
+
+
+
Consider the integral \displaystyle \int x\arctan(x)\,dx. Suppose we proceed using integration by parts. Which of the following candidates for u and dv would best allow you to evaluate this integral?
@@ -228,7 +404,13 @@
+
+
+ B: u=\arctan(x), dv=x\,dx
+
+
+
Consider the integral \displaystyle \int e^x\cos(x)\,dx. Suppose we proceed using integration by parts. Which of the following candidates for u and dv would best allow you to evaluate this integral?
@@ -247,25 +429,30 @@
+
+
+ Answers vary
+
+
Suppose we started using integration by parts to solve the integral \displaystyle \int e^x\cos(x)\,dx as follows:
-\int e^x\cos(x)\,dx
+ \int e^x\cos(x)\,dx
-& u=\cos(x) & dv = e^x\,dx
+ & u=\cos(x) & dv = e^x\,dx
-& du=-\sin(x) \,dx & v=e^x
+ & du=-\sin(x) \,dx & v=e^x
-\int e^x\cos(x)\,dx &= \cos(x)e^x-\int e^x(-\sin(x) \,dx)
+ \int e^x\cos(x)\,dx &= \cos(x)e^x-\int e^x(-\sin(x) \,dx)
-&= \cos(x)e^x+\int e^x\sin(x) \,dx
+ &= \cos(x)e^x+\int e^x\sin(x) \,dx
We will have to use integration by parts a second time to evaluate the integral \displaystyle \int e^x\sin(x) \,dx. Which of the following candidates for u and dv would best allow you to continue evaluating the original integral \displaystyle \int e^x\cos(x)\,dx?
@@ -284,35 +471,86 @@
+
+
+ B: u=\sin(x), dv=e^x\,dx
+
+
+
Use integration by parts to show that \displaystyle \int_0^{\pi/4} x\sin(2x)\,dx=\dfrac{1}{4}.
+
+
+ Use u = x and dv = \sin (2x)\, dx to get the result.
+
+
+
Consider the integral \displaystyle \int t^5 \sin(t^3)\,dt.
- Use the substitution x=t^3 to rewrite the integral in terms of x.
+
+
+ Use the substitution x=t^3 to rewrite the integral in terms of x.
+
+
+
+
+ \displaystyle \int t^5\sin(t^3)\, dt = \int \dfrac{1}{3}x\sin(x)\, dx
+
+ >
- Use integration by parts to evaluate the integral in terms of x.
+
+
+ Use integration by parts to evaluate the integral in terms of x.
+
+
+
+
+ \displaystyle \int \dfrac{1}{3}x\sin(x) = -\dfrac{1}{3}x\cos(x) + \dfrac{1}{3}\sin(x) + C
+
+ >
- Replace x with t^3 to finish evaluating the original integral.
+
+
+ Replace x with t^3 to finish evaluating the original integral.
+
+
+
+
+ \displaystyle \int t^5\sin(t^3)\, dt = -\dfrac{1}{3}t^3\cos(t^3) + \dfrac{1}{3}\sin(t^3) + C
+
+ >
+
Use integration by parts to show that \displaystyle \int \ln(z)\,dz=z \ln(z) - z + C.
+
+
+ Use u = \ln z and dv = dz to get the result.
+
+
+
Given that that \displaystyle \int \ln(z)\,dz=z \ln(z) - z + C, evaluate \displaystyle \int (\ln(z))^2\,dz.
+
+
+ \displaystyle \int (\ln(x))^2\, dz = z(\ln(z))^2 - 2z\ln(z) + 2z + C
+
+
@@ -323,27 +561,48 @@
-
- Noting that \displaystyle\int (\sin(x))^2\, dx=\int (\sin(x))(\sin(x))dx and letting u=\sin(x), dv=\sin(x)\, dx, what equality does integration by parts yield?
+
+
+ Noting that \displaystyle\int (\sin(x))^2\, dx=\int (\sin(x))(\sin(x))dx and letting u=\sin(x), dv=\sin(x)\, dx, what equality does integration by parts yield?
- \displaystyle\int (\sin(x))^2dx=\sin(x)\cos(x)+\int (\cos(x))^2\, dx.
- \displaystyle\int (\sin(x))^2dx=-\sin(x)\cos(x)+\int (\cos(x))^2\, dx.
- \displaystyle\int (\sin(x))^2dx=\sin(x)\cos(x)-\int (\cos(x))^2\, dx.
- \displaystyle\int (\sin(x))^2dx=-\sin(x)\cos(x)-\int (\cos(x))^2\, dx.
-
+
+