diff --git a/source/calculus/source/01-LT/05.ptx b/source/calculus/source/01-LT/05.ptx index 2789bb4f0..49998d4ca 100644 --- a/source/calculus/source/01-LT/05.ptx +++ b/source/calculus/source/01-LT/05.ptx @@ -60,6 +60,11 @@

+ +

+ D. As x gets smaller, the function x^3 gets smaller and smaller. +

+
@@ -125,6 +130,11 @@

+ +

+ B. As x tends to -\infty, the function 1/x^3 tends to 0. +

+
@@ -255,6 +265,11 @@ + +

+ C, D and E +

+
@@ -290,6 +305,11 @@

+ +

+ D. The only possible limits are any constant number or \pm \infty.. +

+
@@ -335,6 +355,12 @@

+ +

A. \frac{1}{2}

+ +

D. 2

+

E. -4

+
@@ -385,6 +411,11 @@

+ +

+ C. When the degree of the numerator is less than the degree of the denominator. +

+
@@ -419,6 +450,11 @@

+ +

+ B. When the degree of the numerator is greater than the degree of the denominator. +

+
@@ -428,6 +464,15 @@ Test your rules by creating a rational function whose limit as x \to \infty equals 0 and another whose limit as x \to \infty is infinite. Then check them graphically.

+ + +

+ \displaystyle \lim_{x\to \infty} \dfrac{x^2-x+3}{ 2x^3-3x+5} = 0 +

+

+ \displaystyle \lim_{x\to \infty} \dfrac{2x^3-3x^2+5}{ 5x^2-x+1} is infinite. +

+
@@ -445,6 +490,17 @@ \lim_{x\to-\infty } -\dfrac{6 \, {x^4} + 7 \, {x^3} - 7}{6 \, x - {x^4} + 9} \,\text{ and }\, \lim_{x\to+\infty } -\dfrac{6 \, {x^4} + 7 \, {x^3} - 7}{6 \, x - {x^4} + 9}

+ + + + +

+ + \lim_{x\to-\infty } -\dfrac{6 \, {x^4} + 7 \, {x^3} - 7}{6 \, x - {x^4} + 9} = 6 \,\text{ and }\, \lim_{x\to+\infty } -\dfrac{6 \, {x^4} + 7 \, {x^3} - 7}{6 \, x - {x^4} + 9} = 6 + +

+ +
@@ -454,6 +510,13 @@ \lim_{x\to-\infty } -\dfrac{7 \, {x^4} - 5 \, {x^3} + 8}{3 \, {\left(2 \, {x^5} + 3 \, {x^2} - 3\right)}} \,\text{ and }\, \lim_{x\to+\infty } -\dfrac{7 \, {x^4} - 5 \, {x^3} + 8}{3 \, {\left(2 \, {x^5} + 3 \, {x^2} - 3\right)}}

+ +

+ + \lim_{x\to-\infty } -\dfrac{7 \, {x^4} - 5 \, {x^3} + 8}{3 \, {\left(2 \, {x^5} + 3 \, {x^2} - 3\right)}} = 0 \,\text{ and }\, \lim_{x\to+\infty } -\dfrac{7 \, {x^4} - 5 \, {x^3} + 8}{3 \, {\left(2 \, {x^5} + 3 \, {x^2} - 3\right)}} = 0 + +

+
@@ -463,6 +526,13 @@ \lim_{x\to-\infty } \dfrac{3 \, {x^6} + {x^3} - 8}{7 \, x - 6 \, {x^5} + 7} \,\text{ and }\, \lim_{x\to+\infty } \dfrac{3 \, {x^6} + {x^3} - 8}{7 \, x - 6 \, {x^5} + 7}

+ +

+ + \lim_{x\to-\infty } \dfrac{3 \, {x^6} + {x^3} - 8}{7 \, x - 6 \, {x^5} + 7} = +\infty \,\text{ and }\, \lim_{x\to+\infty } \dfrac{3 \, {x^6} + {x^3} - 8}{7 \, x - 6 \, {x^5} + 7} = -\infty + +

+
@@ -702,6 +827,11 @@ In the long run, what temperature do you expect the coffee to tend to? Write your observation with limit notation.

+ +

+ \lim_{ t \rightarrow \infty}Q(t) = 72 degrees Fahrenheit, where Q(t) is the temperature of coffee at anytime t. +

+
@@ -712,6 +842,11 @@ Which one?

+ +

+ c = 72 +

+
@@ -723,6 +858,11 @@ Use this to find the value of b for the exponential model described in this scenario.

+ +

+ b = 0.9 +

+
@@ -733,6 +873,11 @@ Use the data about the initial temperature to find the value of the parameter a in the model Q(t) = a \, b^t + c.

+ +

+ Q(t) = 100 (0.9)^t + 72 . +

+
@@ -743,6 +888,11 @@ If you go back to drink the cup of coffee 30 minutes after it was left on the counter, what temperature will the coffee have reached?

+ +

+ Q(30) = 76.23 . +

+