From 54132c070bb14e1a6ae25276a79d32bcbb59c8e9 Mon Sep 17 00:00:00 2001 From: sebapersson Date: Wed, 17 Dec 2025 09:19:10 +0000 Subject: [PATCH] Clarify interpretation of noise distributions --- doc/v2/documentation_data_format.rst | 16 +++++++++++----- 1 file changed, 11 insertions(+), 5 deletions(-) diff --git a/doc/v2/documentation_data_format.rst b/doc/v2/documentation_data_format.rst index 0365154d..85378d7b 100644 --- a/doc/v2/documentation_data_format.rst +++ b/doc/v2/documentation_data_format.rst @@ -748,7 +748,7 @@ Noise distributions Denote by :math:`m` the measured value, :math:`y:=\text{observableFormula}` the simulated value -(the location parameter of the noise distribution), +(the median of the noise distribution), and :math:`\sigma` the scale parameter of the noise distribution as given via the ``noiseFormula`` field (the standard deviation of a normal, or the scale parameter of a Laplace model). @@ -761,25 +761,31 @@ Then we have the following effective noise distributions: * - Type - ``noiseDistribution`` - Probability density function (PDF) - * - Gaussian distribution + * - | Gaussian distribution + | (i.e., :math:`m` is normally distributed as :math:`m \sim \mathcal{N}(y, \sigma)`) - ``normal`` - .. math:: \pi(m|y,\sigma) = \frac{1}{\sqrt{2\pi}\sigma}\exp\left(-\frac{(m-y)^2}{2\sigma^2}\right) * - | Log-normal distribution - | (i.e., :math:`\log(m)` is normally distributed) + | (i.e., :math:`\log(m)` is normally distributed as :math:`\log(m) \sim \mathcal{N}(\log(y), \sigma)`) - ``log-normal`` - .. math:: \pi(m|y,\sigma) = \frac{1}{\sqrt{2\pi}\sigma m}\exp\left(-\frac{(\log m - \log y)^2}{2\sigma^2}\right) * - Laplace distribution - - ``laplace`` + - | ``laplace`` + | (i.e., :math:`m` is Laplace distributed as :math:`m \sim \mathcal{L}(y, \sigma)`) - .. math:: \pi(m|y,\sigma) = \frac{1}{2\sigma}\exp\left(-\frac{|m-y|}{\sigma}\right) * - | Log-Laplace distribution - | (i.e., :math:`\log(m)` is Laplace distributed) + | (i.e., :math:`\log(m)` is Laplace distributed as :math:`\log(m) \sim \mathcal{L}(\log(y), \sigma)`) - ``log-laplace`` - .. math:: \pi(m|y,\sigma) = \frac{1}{2\sigma m}\exp\left(-\frac{|\log m - \log y|}{\sigma}\right) +Note that, for all continuous distributions, the simulated value is modeled +as the median of the noise distribution; i.e., measurements are assumed to +be equally likely to lie above or below the model output. + The distributions above are for a single data point. For a collection :math:`D=\{m_i\}_i` of data points and corresponding simulations :math:`Y=\{y_i\}_i`