From 27cd819c95538ee41dd57ce1d77779930395f759 Mon Sep 17 00:00:00 2001 From: Francis Gagnon <34136215+franckgaga@users.noreply.github.com> Date: Mon, 5 Jan 2026 11:32:13 -0500 Subject: [PATCH] Enhance README.md with emoji section headers Updated section headers in README.md to include emojis for better visual appeal. --- README.md | 6 +++--- 1 file changed, 3 insertions(+), 3 deletions(-) diff --git a/README.md b/README.md index a8edc0ef6..b4f7167a0 100644 --- a/README.md +++ b/README.md @@ -14,7 +14,7 @@ for the linear systems, [`JuMP.jl`](https://github.com/jump-dev/JuMP.jl) for the optimization and [`DifferentiationInterface.jl`](https://github.com/JuliaDiff/DifferentiationInterface.jl) for the derivatives. -## Installation +## 🛠️ Installation To install the `ModelPredictiveControl` package, run this command in the Julia REPL: @@ -22,7 +22,7 @@ To install the `ModelPredictiveControl` package, run this command in the Julia R using Pkg; Pkg.add("ModelPredictiveControl") ``` -## Getting Started +## 🚀 Getting Started To construct model predictive controllers (MPCs), we must first specify a plant model that is typically extracted from input-output data using [system identification](https://github.com/baggepinnen/ControlSystemIdentification.jl). @@ -71,7 +71,7 @@ plot(res, plotry=true, plotymax=true) See the [manual](https://JuliaControl.github.io/ModelPredictiveControl.jl/stable/manual/linmpc/) for more detailed examples. -## Features +## ✨ Features ### 🎯 Model Predictive Control Features