From 383ca53bc8994f923c660080483ec3d7ec066cad Mon Sep 17 00:00:00 2001 From: Tom Lijding Date: Fri, 9 May 2025 16:57:08 +0200 Subject: [PATCH 01/16] Update README.md Removed exclamation points --- README.md | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/README.md b/README.md index 10aad8b..cbe6866 100644 --- a/README.md +++ b/README.md @@ -9,7 +9,7 @@ We are able to find a remarkably small neural network solution, able to complete ![allmodels](https://github.com/user-attachments/assets/f38a920e-4939-41fa-851e-0a847b25c71f) -Additionally, we are able to restrict the values of the CS matrix even further, to a discrete set defined by $q \in \{ \pm \pi, \pm \frac{1}{2}\pi, 0\}$ corresponding to a 5-bit limited resolution phased-array antenna, allowing the deployment on low-cost and complexity phased-array antenna setup! The results are shown below. +Additionally, we are able to restrict the values of the CS matrix even further, to a discrete set defined by $q \in \{ \pm \pi, \pm \frac{1}{2}\pi, 0\}$ corresponding to a 5-bit limited resolution phased-array antenna, allowing the deployment on low-cost and complexity phased-array antenna setup. The results are shown below. ![discrete_model_performance_page-0001](https://github.com/user-attachments/assets/09642c33-319e-4c33-bbe3-0b4de7f5ab7e) @@ -19,7 +19,7 @@ Below we show how a signal is reconstructed using the algorithm ## Methodology -We use autoencoder based compressed sensing to reconstruct the chanel from limited measurements, allowing us to find a good approximation of the original channel of size 100 from just 40 measurements! +We use autoencoder based compressed sensing to reconstruct the chanel from limited measurements, allowing us to find a good approximation of the original channel of size 100 from just 40 measurements. A visual representation of the measurement model is given below From 8804199d8854a5c0ec3095796e6636f3069b6bfd Mon Sep 17 00:00:00 2001 From: tomlijding Date: Fri, 21 Nov 2025 14:33:10 +0100 Subject: [PATCH 02/16] Refactored a bit, and added PSOMP and OMP algorithms --- .python-version | 1 + main.py | 6 + pyproject.toml | 13 + src/__pycache__/algorithms.cpython-312.pyc | Bin 0 -> 5293 bytes .../data_generation.cpython-312.pyc | Bin 0 -> 2797 bytes src/__pycache__/utils.cpython-312.pyc | Bin 0 -> 5073 bytes src/__pycache__/visualization.cpython-312.pyc | Bin 0 -> 3416 bytes src/algorithms.py | 123 ++ src/data_generation.py | 59 + src/init.py | 0 src/utils.py | 113 ++ src/visualization.py | 63 + testing_omp.ipynb | 328 +++++ uv.lock | 1286 +++++++++++++++++ 14 files changed, 1992 insertions(+) create mode 100644 .python-version create mode 100644 main.py create mode 100644 pyproject.toml create mode 100644 src/__pycache__/algorithms.cpython-312.pyc create mode 100644 src/__pycache__/data_generation.cpython-312.pyc create mode 100644 src/__pycache__/utils.cpython-312.pyc create mode 100644 src/__pycache__/visualization.cpython-312.pyc create mode 100644 src/algorithms.py create mode 100644 src/data_generation.py create mode 100644 src/init.py create mode 100644 src/utils.py create mode 100644 src/visualization.py create mode 100644 testing_omp.ipynb create mode 100644 uv.lock diff --git a/.python-version b/.python-version new file mode 100644 index 0000000..e4fba21 --- /dev/null +++ b/.python-version @@ -0,0 +1 @@ +3.12 diff --git a/main.py b/main.py new file mode 100644 index 0000000..f3488ba --- /dev/null +++ b/main.py @@ -0,0 +1,6 @@ +def main(): + print("Hello from compression!") + + +if __name__ == "__main__": + main() diff --git a/pyproject.toml b/pyproject.toml new file mode 100644 index 0000000..dfd6358 --- /dev/null +++ b/pyproject.toml @@ -0,0 +1,13 @@ +[project] +name = "compression" +version = "0.1.0" +description = "Add your description here" +readme = "README.md" +requires-python = ">=3.12" +dependencies = [ + "ipykernel>=7.1.0", + "matplotlib>=3.10.7", + "numpy>=2.3.5", + "scipy>=1.16.3", + "torch>=2.9.1", +] diff --git a/src/__pycache__/algorithms.cpython-312.pyc b/src/__pycache__/algorithms.cpython-312.pyc new file mode 100644 index 0000000000000000000000000000000000000000..53e11c130ff4782c5b138dd63d1f0646e9d25d77 GIT binary patch literal 5293 zcmbtYU2Gdw7M|;WJN}9D*R+Io`lArHP)NcGS_-Q)2{f=t8cGW-F44p@PR7_X&Yf{^ ztTAgORUiq zkTm)*;!W?PD`wuto1wSx7NFB*H)!Z6Y~ro&TdvqvQNVtWPRxXwrCDLd41f1iu=^UL zF%e3$rv+gxZAn{IN~yPY8fjJ@g-y3nl_G7^P{dv%Z|ZK>#%cQ^lXj?1V@We>*4s4? zq|K_~3#Oe-X{YAYOm9yx4E~GisY`Gedu!&mfgj%mYrw~Qn`Tde2huLyq`5T58CY(z zt8*`P%WBt;S2dThtI?-BG)JVj4P}QxfxyqanK%E&q&dQ-{Xm*_H(A{GW8MfQ+S4?* zhIsQAmfN*c2~w*(X)pb02v$AR&J^5?zFyu{;z#1mUogtJ~G)~KQ?%fupqJ;W)1 z#ndN4z)#Q^L94`G^EdIfdW@hLK@zd*b`l2`6p>GGQQ{OOUP#U>f=bMA9>g7zF&3g# zHxt)_ps4dY32}_gD+xGnl{kRDIzsaViJ(27RQzBtb!|)gUJ0EJUW7ZM1XVc}6@wFU z2sD;dC3sh0gmMDTBg5<-W89wnGr4Epo5+l1mUrCV{JGq@0$1`EE>+wE znaOQmXMQEOay^+jx82#5ncC^?FCEKD&AD4tG~A%~l2`%8vb6 zN8xZ`u7q^@LULoMyzh9q`#5lTJM&^r%u6|`^hU)ym^JS{!gP3>Rjdp=_kd-(2TD_w zuEFmZWIdd-Wl?r?yZ6x&S9~*T&4#YIcFiyk(%t^dukM4-m=?fv)I53r4EXc^1k7gO zvC*Aco5tL(f$3r^tkyxZLB9u9YmmUSg-;%7))WB0>NfblFx8>g39BZ$nszmTMjIGS zcc}E1>#Y&)H5Y~60>WO+{GLtg04Sc&-)&7G+XhCPR)5kHksf2uMqdSV!&d;M4eQ(N z1WCcq%kVVGXamPhtNjff!o&JIL-%_h^2tTZe3?)>DUU1k(IX z>BU2D0(NQU47%}yaTBnqfNt0{rw;k=!1Z>~5P6;xvA{oZArX(uSpDe?;QR%e1L$mL zIR!9Cme{d+LNE+a2x)^NCt@Ny$WE_9v}K1zo*Eei1lF0Rq;y z4KOxS-G~yb(g&rB37nF^5Tzxxj`Y)yHwa%b2z782)m1hstO!vG#7SKPx(?Y&j2od4 zD~pi4tZ-P=QGZB|Q%r|MMo(=F{Ktu?5UA=un^0Q~Na^gDSD4WasUvSS6Ac045oEJz>jIdj%kP^wk1X7LT?i%Aa*3N2x2j%)<6%mksAA>87OZ?=V?4h6RBo!UeDlby$JZaY@AqdOIGC=UwZ3BCP17y+x_e{pW8XLZfpULfbFAF|M8$tH zYuoX6Q-Tt@WnMRzxOMx7hqAW1iXSbkMT(J)zD?7nf8)UBr8{Tu%xzw&^gUZ~pUP4I z^>-D93vxB%Ym`W5w747u6#uRD;!Oj}2ovrt>tfL(QTWiq-OGZ)r&5LW)M^AD4%8shuFB z%o}Mgdnhq&x+!$fQeM%CK*Mwta8^OUs>GwBT8-T_Y0?8cu_((})dN1Q+N21vLw!Q)xqt(Y0~Il+ z=7;HHgjl&~e2F8L1wrMAb&-q3IATkRG@@ggwWpt{mljl#|_R9N%L`J{;FU~!33 z{Tm(`=D`8R=g%+YmI}+I!`G$vUdoJT%{0J5G|tcDW=f+K_n{4c*?lB4xzpjvpUR!e zzmR*ObhOfOa08V)4reB|-M;)}Zn7|*dj*OdZ+C&uMN4y~#QN)H@3BwuXYYLS&Yj-7 zJ--|H5|y7C`*Q5h3x5s&G5oiSe~N8gyi|ViQhDN1`Ke2l$AJ9xtt)SCU0v7`#PU_~ z>!|ciR4GT5Ep@dLO_i^vb{XbfG;aD2!@O1P-b54h%{ytzya;L(Y`K>~g^ter^SS3s zU8OOqq;0EXaLY2N$G-rY3D}7hYTEd!ei~J<9RgSA5Jl{@e_-ft`kc|3bQgZ_I1`h3 z$QWM07lE37?g~9*2*n8flj-_)aOkt}C*k|d3FN;YM881(T?uug#|lT*ju($VU|^^V F`!APOxz_*y literal 0 HcmV?d00001 diff --git a/src/__pycache__/data_generation.cpython-312.pyc b/src/__pycache__/data_generation.cpython-312.pyc new file mode 100644 index 0000000000000000000000000000000000000000..18fb49856365357153d52897fc1ec9a16377a29d GIT binary patch literal 2797 zcmb7GPi)&%7`GkUapR<=Nj7bx+q`aS8;ur?9bnxbX==BXjiEuufhr@ou@f9(J9~Cm z(>YR*c4!4syHk7MP^3w8+73N(;J^`yOG75LdMgqVT*d)aw5Of;o*g@B$%J@H-uJ!t zz4!fj@B4nwKgVJb3fgK;(*6=C>UT2m8{cGhCV*L@6iT6s)D-PfW-0`fDY7~@#nGOO zpW>B}%H z5d3$d46*G{1v0y@RcV+9`TkaAV4mGSOHtJj%==NbiK{HkL-hMwm9s^Et`POP7IkQc z$uV}fKl7A+()6av+r9p*!#rt5Hcs976ub!A313!7`do`TtiuI*gtoN@TWfr-%?j;X zafD!Zm+jszSzUZ&*gMYss80s99Tr#kQ;&nvs{lNK=oLGf`kauNtbi$20e#YL}7GwB@>! zA+CZwqcmbDGD31CuzCA4b&tz|)*(xqRY#>Szy}j$$UvHLg&Bz19j82VUhMy2qIp2x zvHX7*)cBQ1Ida>B%5{@=6!F347ba^Ht>!qS*mlYL9b2Z>gxUw`|D z^0WAr+KpYF>P{?PY{X9dO|jhI9KDq|ymaZ|rIk0@+ z+C(FMaW1^o)4NcauWa;4^&V+uc;(pI(I16I&%1N%X8*vPxOi>(gT?E=2*wgXim!^R=f@SqEl`vV*6m({tj`3Jow%63J~(nE+rzcG#co^nkR$ zt_5rk73^khe{;uYsX!8IUvn6MXL#NMc;*}q;F?uJ9y~iCfJj#UsuM&uGX)S4kkH5% z0T4Ze^lG;=Ec#UdKm~QT2ce9zJ`L#$NNbqJFezI}EkaU5p2J$n1`z9DpbaQG=yV|s zG`?c<9w_Os9psu`)};V$Tudg){^g<7AQDw;}e`#lB^I`IFT<-%m8eE4A^>{z&3{0ZD+cd}GvuCR7JWqoWYSSAio0Byc0GHr|P|!Csr$HN-x{ zSrwJyUfTrqB!UhJPOWrQoT{KwQC0neld7JotJFlPbkVkzsQOp_sFYq#J@x)+-w_GWk+`h4)N$NjQ7Dyw%Pc;7sjnyXS_5eq@oV9mzGyfrM4A?{Uxc>GpUwI{%C+n0VV~bK@x&d zLQJZQ)-kD`Ne$6@rWtmn1|~H!sVN#JjnJ=|NiESPCbgoJT@zVr*Yu~15k0Oq?&LVT z4i{$wY9 zsVe?f>rapUC3o|n9Wqk7Nt6V+N)qw!|Ly1Zzxd6}8+Is_Oe-X9>WP%G*p1zru?C0G zEkadGPZ_4&ViLpDjX2a>R3BGp>Y8bbplFL~BA%0zDUBq|y=+pVP!daBB{ZwB>OE;| z)DALMNvqcAnMkwkR}@1{5=F6t3TkB%$k!>#m5iEjT4)U#BkG1_hZRLNjFjaVqbSr5 zO%&HkLrCh8Gyt)EBZ(AP7{-bwB+W=#u}L&7O4k7Q6K)wO_oWf*9lBr=Y7SYcWI`W0 zl8R-L#IVevL8X7_5>ct#H8e<)#Dsm2_YEC^!;$-8&6JoX?8?wtni_-CF^5j8x*@yL zkXOT`v7wBmC(J$REcL;pj38rDAm8DhwQVe%n%X)qZCqH_QTXOm%e>UF(7vH?dTQUi zv|*vG-Dz$2aP1pGZw>Z%&UMPO(%NZpUXm9!ZJw3ZO~W{w7s9QD{t4h(7uFsqoSYK> zARVBcB_m?)g$9}9aI5hKEx!xoHfI5K%9vNHREPFglsuQ`OD^KNkQc6tdC@Zpj$cv6 zN{+}=pBFV=6Fw9ly0w<2f!ULpho;Vu(uFO386zAV!I-%2YM9R8n?< zDmy^k!+J1sR;7SAI7+jZ$w|3a25>PRhdq-?4#PR8Mq~uHyemmmGehC{0TB^r9Anik zu~Z_HG@zHM#|t z;T$>AD<|b~ximb*V>%xZY)Kv0P1}E&kTjTJMtrtlr0p7KZ)_ia4Z9|xgN<=pGEy`d zk!(I`^M=hIvPCe+lwc?{mu>>aURT;-Wu*t8UxC&Z_?ZWR6u8ejxj<+#Pz+3li{WX0 zx@+FQv2bW17%KEH1na*?C$q)uDU8)=E%g2`Ebu%um>7L4TX~ol`8;=MleAB z5}4Znt~{3m*j*Pi-U1vrr5ZQ^hHiTfV&E%uxw0;fEqb(Z{)&T^=xwBl4KDEQ5}9^;!c##knz#71)lY++hWlu_e2@O@q$8 zP)E?0;@YziO;#@6#kJScMLf&Je?f^zbSv<-6iXRnb_i$;uDt<2yB7TMsG24Kc7EIz z#&uiFDP2gqZ9ZqBw?gAwKsU3=75$1*-gbHbR3QFx=4l`WZmEL{)lUo*w;??10K31;)_s_UhciqqmcjnufE%L)~mU9*H=FWHM464 zn9o)R@=CYt1{|-+rQ7E9&Hr4vIZFp2ixLg4SuqF zuH}5;)U(h!NHrYaUB)g`6UZna0phjb#Opkt1Fcua>~d7Ch}qs5 z+?n!aAB6dU#}8H0eVz+IYYs+$s4Z&33X{?IB`vE*F|9@lQ zy3kgZ@A&dk-j{>-4dxpx4gM7v{Q|&K!xlb4yt#xXdlOhht-2zoU}ID!7DuaMbTlzh=WaJDR8 zr@g?rL4bZ0csqc}O(qUW4T}eKJ68IfKJL>uHRR1yupTBpmY~=b(iGwn-oP^wq(op#ugA0u4uS%Q`EIBsIpbnsRg@s0#qeHthhsQ+5Mnr zhq6R00XZlT5y+=&bXs4l*_a89|jZIqSF@@@6dRElp!g>(Gq249=CzCxfMfH>L|7pxYa`Rv%=xUL5Uedyf6kT6 zc{%|w;D?U|^m@a`f^mc*qaGMl58*+B#JbpKXFyNYTlEoG*&aov?Z8mQ-<}hMRS};c zAp;)biBprehQlbHU3>{-ot$;Ccew9N@Rdji$^%tgN{U!d{#Wlu^!y;tamb0 z^*iEngbZ_@>f?4l6g`3?I(|N{2KGdEoXhv16DXeS%{aE+LAqLkd$gS5Qa$JdRY~=) zclN@~f2bOELTbPXS0q8GfM_-71dDI=)^LoKR5z|5Im7A2QI7Rs@$DYYF{hjJJwC$D z9vnTnN(8)#IFaJ{gEE4^BR_QiqE6HaR-me?G4sneR9A>q7hWb~+y+!|n&UlqcwKk% z5&u8tBkp+J*!svt?w=EPB8=wrfuBF*)E)%trQVEV>z#84Svt9=M#JBqu}=gw@<%VP zxDQ40W3G?KmSIel%^cAzQzn+YpxI?b*D6RR1tenxJ*xovRbomNy=&|? zMq>nnW~9pPRZQotUyjYet)L!^`kadLN?9keX3H~{iBj#z3}rE^7$sdJWfg&0%_Lm| zx0FTAC>wH*52<4b-Iu(M9?i_UWQ{BxR0FXyHC?uj79hm$(FHzrg%5YB%YKut1=s-# zXKhvs`&Hd#q{Ez$+iTi!QIDa+bt5m~ns6{+c$?523hF2p5X zrfv9Y{N;aOVCc$1B|O24O0Fc_<*Y8}O>jd^V^;<1>0m6R!=66SR8pXR3oGV40wUbo zx`pkOhl-0-TFe#{l9Fj;Pkfjy$E+VvFH{xvm?av4;>*D+z=V(bFj92t(+p*viub7G zmKgN|*S0W~@(>Q8;SUtOjBa4eND9Wv67{QyD7gZaY*r^UfRSBLN{D*w67_?x%$Qfr z6Y8_?WB7y3B4)1uIn+sy`zz%wO_O17q3CQY<3(Zsn0t0?D!GAEuZ~RW zE$M{%7g$Y>hitnaXzXC`8{aPEE@$4ip&Mj~W$0Swx|J&%&^PSN z-RxxM*GR$g#mrq~ARFS5-^pBuhZ^(-qXe0=;SgtTV~e#0J97(;uiTks_Da||m*HK^ z%}BbmM29#9K@gDTZcoFkQ?mDz{Z}Z%W#QEsVPJSWIl7e`U4CyjGSoQQipUSIFHbDr z-wnh*sywW$-fIPhccSr?nfgp);>pzGspiGc-u?95#&|1wemgq06&N zzP}c(OS_@ImE-l}tL49kMs}iSn^W7P*S1El{bgZ${La?+omTW$HStZlzmCRM#rh2p zObo0}tmf8kG~Q}VZI7h4M$(@zY+sn(x-i{J{Gu*>;}`md8<+o-|E&0Fv6ikdtUXx0-{^1NdFFe2FJ-VsX+mWe0 z^PPMRy9iBSCY6BGgL7&2$j^2j^H4hOA*YgAHcCsFy<71K_|Xs(EfY<*+YLana~cSo zWxRfP`ImHy=-M0<5yPmz4KaH#(KuV%yN2BJ=^kIVs-6mXoSC@_zi)$A;IzSQbPZ3# wlyy8i1;1BbQ50VYV_yl$uY~9eVFZvD!s!>nDIosa_apIC^Mh{$0IsV40tF5^&j0`b literal 0 HcmV?d00001 diff --git a/src/algorithms.py b/src/algorithms.py new file mode 100644 index 0000000..0b6e176 --- /dev/null +++ b/src/algorithms.py @@ -0,0 +1,123 @@ +import numpy as np + +def omp(A, y, epsilon, max_iterations=np.inf): + """ + Orthogonal Matching Pursuit (OMP) algorithm for sparse signal recovery. + + Parameters: + D : np.ndarray + The sensing matrix (size: m x n). + y : np.ndarray + The observed vector (size: m x 1). + epsilon: float + The error tolerance for stopping criterion. + max_iterations : int + Maximum number of iterations to perform. + + Returns: + x_hat : np.ndarray + The recovered sparse signal (size: n x 1). + """ + m, n = A.shape + x_hat = np.zeros((n, 1)) + residual = y.copy() + index_set = [] + max_iterations = min(max_iterations, n) + err = np.inf + while err > epsilon and len(index_set) < max_iterations: + # Step 1: Find the index of the atom that best correlates with the residual + correlations = A.T @ residual + correlations[index_set] = 0 + best_index = np.argmax(np.abs(correlations)) + index_set.append(best_index) + + # Step 2: Solve the least squares problem to update the coefficients + A_subset = A[:, index_set] + x_subset, _, _, _ = np.linalg.lstsq(A_subset, y, rcond=None) + + # Step 3: Update the residual + residual = y - A_subset @ x_subset + err = np.linalg.norm(residual) + + # Step 4: Construct the full solution vector + for i, idx in enumerate(index_set): + x_hat[idx] = x_subset[i] + + return x_hat + + +def psomp(A, y, K, sigma2=None): + """ + Paired-Support Orthogonal Matching Pursuit (PSOMP) + Based on Algorithm 1 in Masoumi & Myers (2023). + + Inputs: + A : sensing matrix (M x N) + y : measurement vector (M,) + K : sparsity level of x + sigma2 : noise variance (optional for stopping rule) + + Outputs: + z_hat : estimated augmented sparse vector (2N,) + """ + + M, N = A.shape + + # Build augmented matrix + A_aug = np.hstack([A, np.conjugate(A)]) + + # Initialize + r = y.copy() + Q = [] # support set + z_hat = np.zeros(2*N, dtype=complex) + + max_iter = 2*K + err = np.inf + while len(Q) < max_iter and (sigma2 is None or err > sigma2): + + # --- Step 1: support detection (paired) --- + # Compute both matching terms + match1 = np.abs(np.conjugate(A).T @ r) # |a_j^* r| + match2 = np.abs(A.T @ r) # |a_j^T r| + + # Choose best index from first N entries + j = np.argmax(np.maximum(match1[:N], match2[:N])) + + # Paired support structure + pair = [j, j+N] + Q.extend(pair) + + # --- Step 2: least squares on selected support --- + A_sub = A_aug[:, Q] + z_sub, *_ = np.linalg.lstsq(A_sub, y, rcond=None) + + # assign + for ii, idx in enumerate(Q): + z_hat[idx] = z_sub[ii] + + # --- Step 3: update residual --- + r = y - A_sub @ z_sub + + + return z_hat + +def find_x_xi(z : np.ndarray): + """ + Function to recover the original signal and IQ imbalance parameter from the IQ imbalanced signal. + Parameters: + z : np.ndarray + IQ imbalanced signal (size: 2n x 1). + + Returns: + x : np.ndarray + Recovered original signal (size: n x 1). + xi : float + Estimated IQ imbalance parameter. + """ + z_1,z_2 = np.split(z, 2) + alpha = np.linalg.norm(z_1)**2 + beta = np.linalg.norm(z_2)**2 + gamma = z_1.T @ z_2 + xi_hat = (alpha - beta - 2*gamma + np.sqrt( (alpha - beta)**2 + 4*np.abs(gamma)**2))/(2*(alpha - beta + np.conj(gamma) - gamma)) + x_hat = z_1/xi_hat + return x_hat.reshape(-1,1), xi_hat \ No newline at end of file diff --git a/src/data_generation.py b/src/data_generation.py new file mode 100644 index 0000000..045e80d --- /dev/null +++ b/src/data_generation.py @@ -0,0 +1,59 @@ +import numpy as np +import scipy as sp +from src.utils import Config +import random + +def build_dataset(config: Config): + """ + Function to build a dataset of sparse and dense signals. + Parameters: + config : Config + Configuration object containing parameters for dataset generation. + Returns: + dense_data : np.ndarray + The dense signal dataset (size: vector_size x data_set_size). + sparse_data : np.ndarray + The sparse signal dataset (size: vector_size x data_set_size). + """ + # Fetch configuration parameters + vector_size = config.vector_size + data_set_size = config.dataset_size + max_amplitude = config.max_amplitude + min_sparsity = config.min_sparsity + max_sparsity = config.max_sparsity + + sparse_data = np.zeros((vector_size, data_set_size), dtype=float) # Ensure float type + + # Iterate over the columns of the sparse_data matrix to define the data samples + for i in range(data_set_size): + sparsity = random.randint(min_sparsity, max_sparsity) + indices = random.sample(range(vector_size), sparsity) + amps = np.random.uniform(-max_amplitude, max_amplitude, sparsity) # Use negative and positive values + sparse_data[indices, i] = amps + + # Define the DFT matrix and multiply our sparse_data vectors with it to find dense data + DFT = sp.linalg.dft(vector_size) / np.sqrt(vector_size) + dense_data = DFT @ sparse_data + + return dense_data, sparse_data + +def generate_sparse_vector(sparsity: int, vector_size: int, max_amplitude: int): + """ + Function to generate a single sparse vector. + Parameters: + sparsity : int + The number of non-zero elements in the sparse vector. + vector_size : int + The size of the sparse vector. + max_amplitude : int + The maximum amplitude for the non-zero elements. + + Returns: + x : np.ndarray + The generated sparse vector (size: vector_size x 1). + """ + x = np.zeros((vector_size, 1), dtype=float) # Ensure float type + indices = random.sample(range(vector_size), sparsity) + amps = np.random.uniform(-max_amplitude, max_amplitude, sparsity) # Use negative and positive values + x[indices, 0] = amps + return x \ No newline at end of file diff --git a/src/init.py b/src/init.py new file mode 100644 index 0000000..e69de29 diff --git a/src/utils.py b/src/utils.py new file mode 100644 index 0000000..ae982c0 --- /dev/null +++ b/src/utils.py @@ -0,0 +1,113 @@ +from dataclasses import dataclass +import numpy as np +import scipy as sp + +@dataclass +class Config: + dataset_size: int = 10000 + vector_size: int = 100 + max_amplitude: int = 100 + min_sparsity: int = 7 + max_sparsity: int = 9 + noise_level: float = 0.01 + omp_epsilon: float = 1e-6 + omp_max_iterations: int = 50 + sensing_matrix_rows: int = 50 + alg: str = "omp" # Options: "omp", "psomp", "ml" + model_path: str = "models/sparse_recovery_model.pth" + +def generate_sensing_matrix(m, n): + """ + Function to generate a random sensing matrix. + + Parameters: + m : int + Number of rows (measurements). + n : int + Number of columns (signal dimension). + + Returns: + Phi : np.ndarray + The generated sensing matrix (size: m x n). + """ + #DFT = sp.linalg.dft(n)/np.sqrt(n) + A = np.random.randn(m, n) + Phi = A# @ DFT + Phi = Phi/ np.linalg.norm(Phi, axis=0, keepdims=True) + return Phi + +def apply_iq_imbalance(x,xi): + """ + Function which applies IQ imbalance to a given signal. + Parameters: + x : np.ndarray + Input signal (size: n x 1). + xi : float + IQ imbalance parameter. + + Returns: + y : np.ndarray + Signal after applying IQ imbalance (size: n x 1). + """ + z_1 = xi*x + z_2 = (1 - np.conj(xi))*np.conj(x) + z = np.concatenate([z_1,z_2]) + return z.reshape(-1,1) + +def generate_random_phase_matrix(m :int ,n : int): + """ + Function to generate a random phase matrix. + + Parameters: + m : int + Number of rows. + n: int + Number of columns. + + Returns: + P : np.ndarray + The generated random phase matrix (size: m x n). + """ + + phase_matrix = np.exp(1j *np.random.uniform(-np.pi,np.pi,size=(m,n)))/np.sqrt(n) + + return phase_matrix + +def unitary_dft(n : int): + """ + Function to generate a unitary DFT matrix. + + Parameters: + n : int + Size of the DFT matrix. + + Returns: + DFT : np.ndarray + The generated unitary DFT matrix (size: n x n). + """ + DFT = sp.linalg.dft(n)/np.sqrt(n) + return DFT + +def iq_imbalanced_measurement(A : np.ndarray, x : np.ndarray, xi : complex, noise_level : float = 0.0): + """ + Function to obtain IQ imbalanced measurements of a signal. + + Parameters: + F: np.ndarray + Sensing matrix (random phases)(size: m x n). + x : np.ndarray + Original signal (size: n x 1). + xi : complex + IQ imbalance parameter. + noise_level : float + Standard deviation of the Gaussian noise to be added. + + Returns: + y : np.ndarray + IQ imbalanced measurements (size: m x 1). + """ + y = xi*A@x + (1 - np.conj(xi))*np.conjugate(A)@np.conjugate(x) # IQ imbalanced measurements + if noise_level > 0: + noise = noise_level * (np.random.randn(*y.shape) + 1j * np.random.randn(*y.shape)) + y += noise # Add noise + return y \ No newline at end of file diff --git a/src/visualization.py b/src/visualization.py new file mode 100644 index 0000000..35750e5 --- /dev/null +++ b/src/visualization.py @@ -0,0 +1,63 @@ +from src.data_generation import build_dataset +import numpy as np +import torch +from src.utils import Config +import scipy as sp +import matplotlib.pyplot as plt +from src.algorithms import omp +from src.utils import generate_sensing_matrix + +def visualize_reconstruction(config: Config, model = None): + """ + Function to visualize the reconstruction of a sparse signal using different algorithms. + Parameters: + config : Config + Configuration object containing parameters for the algorithms. + model : torch.nn.Module, optional + Pre-trained model for ML-based reconstruction (default is None). + max_amplitude : int + Maximum amplitude of the sparse signal. + min_sparsity : int + Minimum sparsity level of the sparse signal. + max_sparsity : int + Maximum sparsity level of the sparse signal. + vector_size : int + Size of the sparse signal vector. + """ + vector_size = config.vector_size + # h is the dense signal, x is the sparse signal + h, x = build_dataset(config) + + if Config.alg == "ml": + H = np.concatenate((h.real,h.imag)).T + + H_tensor = torch.tensor(H,dtype=torch.float) + if model is None: + raise ValueError("Model is not loaded.") + H_hat = model(H_tensor) + + h_hat = np.array(H_hat.detach()) + + h_real,h_imag = np.split(h_hat,2,1) + h_hat = h_real + 1j*h_imag + h_hat = h_hat.reshape(-1,1) + DFT = sp.linalg.dft(vector_size)/np.sqrt(vector_size) + iDFT = DFT.conj().T + + x_hat = iDFT@h_hat + + elif Config.alg == "omp": + A = generate_sensing_matrix(config.sensing_matrix_rows,config.vector_size) + DFT = sp.linalg.dft(vector_size)/np.sqrt(vector_size) + # First generate the output + y = A @ h + x_hat = omp(A@DFT,y,config.omp_epsilon,config.omp_max_iterations) + + else: + raise ValueError(f"Algorithm {Config.alg} not recognized.") + + indices = range(len(x_hat)) + plt.vlines(indices,0,x,linewidth=3) + plt.vlines(indices,0,x_hat,colors="orange") + + plt.legend(("x","x_hat")) \ No newline at end of file diff --git a/testing_omp.ipynb b/testing_omp.ipynb new file mode 100644 index 0000000..566a1d6 --- /dev/null +++ b/testing_omp.ipynb @@ -0,0 +1,328 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 52, + "id": "f3283bb6", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAioAAAGdCAYAAAA8F1jjAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjcsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvTLEjVAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAJc1JREFUeJzt3Q9U1FX+//E3yF9B/ogKGoh/cv1vGZZh1rrJkUrbTH9WG7r+C7MwUzupZJqWimlrpsc0PWl/FrP8tlq5abmYpkfS1CytJEtNjgSSKfgnAeHzO/e2M8uQGggDd2aej3Nu8/nHcL1MM6+5n3s/Hy/LsiwBAAAwkHddVwAAAOByCCoAAMBYBBUAAGAsggoAADAWQQUAABiLoAIAAIxFUAEAAMYiqAAAAGP5iIsrKyuTnJwcadCggXh5edV1dQAAQCWo682eOXNGmjVrJt7e3u4bVFRIiYmJqetqAACAq5CdnS3R0dHuG1RUT4rtHxoSElLX1QEAAJVQWFioOxpsn+NuG1Rsp3tUSCGoAADgWv5o2AaDaQEAgLEIKgAAwFgEFQAAYCyXH6MCAEBNTJW9ePGilJaW0pg1pF69euLj41PtS4cQVAAAHq24uFh++uknOX/+fF1Xxe3Ur19fmjZtKn5+flf9HAQVAIDHUhcNPXLkiP72ry48pj5QuXhozfRQqQCYn5+v27dNmzZXvKjblRBUAAAeS32YqrCiruehvv2j5gQGBoqvr6/8+OOPup0DAgKu6nkYTAsA8HhX+20fzm9X/jIAAMBYBBUAAGAsggoAADAWQQUAABiLWT8AAFRw8mxRrbZJRLA/f4PLIKgAqPYbetzM/zhs2/N0Am+8cGkVX9POdnRO3yodn5+fL507d5axY8fKU089pbft2LFDevXqJRs2bJDevXuLu+DUD4BqC/S6IEe79NNFLQNwrsaNG8uKFStk+vTpsnv3bjlz5owMGTJExowZ41YhRaFHBQAAF3TXXXdJcnKyJCUlSbdu3SQoKEjS0tLE3dCjAgCAi3rhhRf0zRTXrFkj6enp4u/vfmNd6FEBAKACNc6qMi6Wlcn3eWekXcBRvX7wQgu5NrKB+NTSlW5/+OEHycnJ0bcBOHr0qB634m4IKgAAXOUsnIulZZIfeEEiAn8LJqFevhIR5C8+9ZwfVIqLi2Xw4MFy//33S9u2beWhhx6S/fv3S5MmTcSdcOoHAAAXNGXKFCkoKJCFCxfKpEmT5E9/+pOMGDFC3A1BBXXv4jmRVV6/FbUMALiiLVu2yIIFC+TNN9+UkJAQffM/tbxt2zZZsmSJW7Uep34AAHAxvXr1kpKSEodtLVq00D0s7oYeFQAAYCyCCur8qqbtp260r6vl2r50NQDAXAQVAABgLIIKAAAwFkEFAAAYi6ACAACMRVABAADGIqgAAABjEVQAAICxCCoAAHiQ6dOny/XXXy+ugqACAACq5OjRo+Ll5SX79u0TZyOoAAAAYxFUAACoSN3JvZLFq1Q9/qrLb8tXUaooPz9foqKiZPbs2fZtO3bsED8/P8nIyKjUc6i7LasbGYaGhsoDDzwgZ86cse/buHGj9OzZU8LCwiQiIkL69esnP/zwg31/y5Yt9WPXrl11z4q6SaKzcPdkAAAqeie40h+iHcutl1+ukgetKh3euHFjWbFihfTv31/69Okjbdu2lSFDhsiYMWOkd+/ef/jzKnSsW7dO1q9fL6dOnZL77rtP5syZI7NmzdL7z507JxMmTJAuXbrI2bNnZdq0aXLvvffqUz3e3t6ya9cuuemmm+Q///mPdOzYUQckl+xRKS0tlalTp+rkFRgYKK1bt5bnnntOLOt/fxC1rBqgadOm+piEhAQ5dOiQM6sFAIDLu+uuuyQ5OVmSkpJk9OjREhQUJGlpaZX62bKyMnnttdekU6dOcuutt+qQU74nZuDAgTJgwAC59tpr9cBbFYr2798v33zzjT0oKaq3RfXsNGzY0DV7VJ5//nlZsmSJvP766zpx7d69W4YPH667mcaOHauPmTt3rixcuFAfowKNCjaJiYm6MQICApxZPQAALu2+s5VqmYulZZKVWyAdA47o9a8vtJS2UaHiU692Rla88MILOmysWbNG9uzZI/7+/pX6OXXKp0GDBvZ11Vlw4sQJ+7rqMFCdCDt37pSff/5ZBxvl2LFj+vfVJqcGFXW+7J577pG+ffvaG+att97SXUa23pQFCxbI008/rY9T3njjDYmMjNRdUuqcGQAAtc4nqHLHeZWJVe+iiE+gXrXqBf32s7UUVH744QfJycnRQULNxOncuXOlfs7X19dhXY0zsYUR5e6775bY2FhZvny5NGvWTO9TAaW4uFhqm1NbskePHror6bvvvtPrX375pWzfvl3uvPNOvX7kyBHJzc3Vp3tsVG9L9+7dJTMz85LPWVRUJIWFhQ4FAABPU1xcLIMHD5b7779fD6t46KGHHHpFrtbJkyclKytLdyKo8S7t27fX41jKs41JUUM8XLpHZfLkyTpItGvXTurVq6f/QWqgjjqfpqiQoqgelPLUum1fRer824wZM5xZbQAAjDdlyhQpKCjQwyeCg4Plww8/lBEjRugBstURHh6ux54sW7ZMnxJSp3vU53l5TZo00eNK1eyg6OhoPVRDdTS4XI/KO++8I+np6bJq1SrZu3evHoeizqepx6uVmpqq/zC2kp2dXaN1hqHU9L1VXr+Vq5jKBwDuZMuWLXrohJpiHBISomfiqOVt27bpsaHVoZ5r9erVesyLOt0zfvx4mTdvnsMxPj4+OiC98sor+tSQbfiGy/WoPPnkkzqF2caaqHNnP/74o+4VGTp0qB4prOTl5enUZqPWL3d5XzVQqLKDheAeTp4tkp6zNsq3/z312n7qRtk+pZ9EBPM6AOCZevXqJSUlJQ7b1DhQ9QW+MpfQV6W8cePG6WKjhmTYZvjYlJ+xq6hTTao4m1N7VM6fP6+TWXnqFJBtwI6a5aPCSvkpUepUkRplHB8f78yqAQAAF+DUHhU1aliNSWnevLmenvzFF1/I/Pnz9Tk02yhjleBmzpwpbdq0sU9PVt1I6iI2AACgatTnrTp7cSnqVI1tnKircGpQWbRokQ4ejz76qB6JrALIww8/rOdm20ycOFFfAW/UqFFy+vRpfcleNTiHa6gAAFB1alBtxdNCNhUnr4inBxV1MRk12EeVy1G9Ks8++6wuAACgemJjY92qCbkpIQDA41UcKApz2pWgAgDwWLYrtKrJH6h5tnateCXcquDuyQAAj6VmooaFhdmv6Fq/fn09JKGy1L1+yi4Wy4X/XlleL1+4UGv3+jG5J0WFFNWuqn1VO18tggoAwKPZrul1NZefLy2zJL/gV/H1+1mv5xd7ife5QKnnXfmw487CwsLs7Xu1CCoAAI+melDURUfVZeEvN1vmck6dK5ax722RD/80Vq+nfLdQ0h/uJeFBv90Lx5P5+vpWqyfFhqACAMB/TwNV9YPV76KX/HSmRAKKf7tuiVr28/eXgACunF1TPPskGgAAMBpBBQAAGIugAgAAjEVQAQAAxiKoAAAAYxFUAACAsQgqAADAWAQVAABgLIIKAAAwFkEFAAAYi6ACAACMRVABAADGIqgAAABjEVQAAICxCCoAAMBYBBUAAGAsggoAADAWQQUAABiLoAIAAIxFUAEAAMYiqAAAAGMRVAAAgLEIKgAAwFgEFQAAYCyCCgAAMBZBBQAAGIugAgAAjEVQAQAAnhtUjh8/LoMHD5aIiAgJDAyUzp07y+7du+37LcuSadOmSdOmTfX+hIQEOXTokLOrBQAAPD2onDp1Sm655Rbx9fWVDRs2yDfffCP/+Mc/JDw83H7M3LlzZeHChbJ06VLZuXOnBAUFSWJioly4cMGZVQMAAC7Ax5lP/vzzz0tMTIysXLnSvq1ly5YOvSkLFiyQp59+Wu655x697Y033pDIyEhZt26dPPDAA86sHgAA8OQelffff1+6desmgwYNkiZNmkjXrl1l+fLl9v1HjhyR3NxcfbrHJjQ0VLp37y6ZmZmXfM6ioiIpLCx0KAAAwD05NagcPnxYlixZIm3atJGPPvpIHnnkERk7dqy8/vrrer8KKYrqQSlPrdv2VZSWlqbDjK2oHhsAAOCenBpUysrK5IYbbpDZs2fr3pRRo0ZJcnKyHo9ytVJTU6WgoMBesrOza7TOAADAQ4KKmsnToUMHh23t27eXY8eO6eWoqCj9mJeX53CMWrftq8jf319CQkIcCgAAcE9ODSpqxk9WVpbDtu+++05iY2PtA2tVIMnIyLDvV2NO1Oyf+Ph4Z1YNAAB4+qyf8ePHS48ePfSpn/vuu0927doly5Yt00Xx8vKScePGycyZM/U4FhVcpk6dKs2aNZP+/fs7s2oAAMDTg8qNN94oa9eu1eNKnn32WR1E1HTkpKQk+zETJ06Uc+fO6fErp0+flp49e8rGjRslICDAmVUDAACeHlSUfv366XI5qldFhRhVAAAAyuNePwAAwFgEFQAAYCyCCgAAMBZBBQAAGIugAgAAjEVQAQAAxiKoAAAAYxFUAACAsQgqAADAWAQVAABgLIIKAAAwFkEFAAAYi6ACAACMRVABAADGIqgAAABjEVQAAICxCCoAAMBYBBUAAGAsggoAADAWQQUAABiLoAIAAIxFUAEAAMYiqAAAAGMRVAAAgLEIKgAAwFgEFQAAYCyCCgAAMBZBBQAAGIugAgAAjEVQAQAAxiKoAAAAYxFUAACAsQgqAADAWAQVAABgrFoLKnPmzBEvLy8ZN26cfduFCxckJSVFIiIiJDg4WAYOHCh5eXm1VSUAAGC4Wgkqn3/+ubzyyivSpUsXh+3jx4+XDz74QNasWSNbt26VnJwcGTBgQG1UCQAAuACnB5WzZ89KUlKSLF++XMLDw+3bCwoK5NVXX5X58+fL7bffLnFxcbJy5UrZsWOHfPbZZ86uFgAAcAFODyrq1E7fvn0lISHBYfuePXukpKTEYXu7du2kefPmkpmZednnKyoqksLCQocCAADck48zn3z16tWyd+9efeqnotzcXPHz85OwsDCH7ZGRkXrf5aSlpcmMGTOcUl8AAOAhPSrZ2dny+OOPS3p6ugQEBNTY86ampurTRraifg8AAHBPTgsq6tTOiRMn5IYbbhAfHx9d1IDZhQsX6mXVc1JcXCynT592+Dk16ycqKuqyz+vv7y8hISEOBQAAuCennfrp3bu37N+/32Hb8OHD9TiUSZMmSUxMjPj6+kpGRoaelqxkZWXJsWPHJD4+3lnVAgAALsRpQaVBgwbSqVMnh21BQUH6mim27SNHjpQJEyZIw4YNdc/IY489pkPKzTff7KxqAQAAF+LUwbR/5MUXXxRvb2/do6Jm8yQmJsrLL79cl1UCAACeGlS2bNnisK4G2S5evFgXAACAirjXDwAAMBZBBQAAGIugAgAAjEVQAQAAxiKoAAAAYxFUAACAsQgqAADAWAQVAABgLIIKAAAwFkEFAAAYi6ACAACMRVABAADGIqgAAABjEVQAAICxCCoAAMBYBBUAAGrRybNF0j71XZFVXrqoZbUNl0ZQAQAAxiKoAAAAYxFUAACAsQgqAADAWAQVAABgLIIKAAAwFkEFAAAYi6ACAACMRVABAADGIqgAAABjEVQAAICxCCoAAMBYBBUAAGAsggoAADAWQQUAasPFcyKrvH4rahlApRBUAACAsQgqAADAWAQVAHCyk2eLpP3UjfZ1tay2AajjoJKWliY33nijNGjQQJo0aSL9+/eXrKwsh2MuXLggKSkpEhERIcHBwTJw4EDJy8tzZrUAAICLcGpQ2bp1qw4hn332mWzatElKSkqkT58+cu7c/waSjR8/Xj744ANZs2aNPj4nJ0cGDBjgzGoBAAAX4ePMJ9+48X9dncprr72me1b27Nkjt912mxQUFMirr74qq1atkttvv10fs3LlSmnfvr0ONzfffLMzqwcAAAxXq2NUVDBRGjZsqB9VYFG9LAkJCfZj2rVrJ82bN5fMzMxLPkdRUZEUFhY6FAAA4J5qLaiUlZXJuHHj5JZbbpFOnTrpbbm5ueLn5ydhYWEOx0ZGRup9lxv3Ehoaai8xMTG1Un8AAODGQUWNVTlw4ICsXr26Ws+Tmpqqe2ZsJTs7u8bqCAAAPGiMis2YMWNk/fr18umnn0p0dLR9e1RUlBQXF8vp06cdelXUrB+171L8/f11AQAA7s+pPSqWZemQsnbtWtm8ebO0bNnSYX9cXJz4+vpKRkaGfZuavnzs2DGJj493ZtUAAICn96io0z1qRs97772nr6ViG3eixpYEBgbqx5EjR8qECRP0ANuQkBB57LHHdEhhxg8AAHBqUFmyZIl+7NWrl8N2NQV52LBhevnFF18Ub29vfaE3NaMnMTFRXn75Zf4yAADAuUFFnfr5IwEBAbJ48WJdAAAAyuNePwAAwFgEFQAAYCyCCgAAMBZBBQAAGIugAgAAjEVQAQAAxiKoAAAAYxFUAACAsQgqAADAWAQVAABgLIIKAAAwFkEFAAAYi6ACAACMRVABAADGIqgAAABjEVQAAICxCCoAAMBYBBUAAGAsggoAADAWQQUAABiLoAIAAIxFUAEAAMYiqAAAAGMRVAAAgLEIKgAAwFgEFQAAYCyCCgAAMBZBBQAAGIugAgAAjEVQAQAAxiKoAAAAYxFUAACAsQgqADzXxXMiq7x+K2oZgHEIKgAAwFhGBJXFixdLixYtJCAgQLp37y67du2q6yoBAAAD1HlQefvtt2XChAnyzDPPyN69e+W6666TxMREOXHiRF1XDQAAeHpQmT9/viQnJ8vw4cOlQ4cOsnTpUqlfv76sWLGirqsGAAA8OagUFxfLnj17JCEh4X8V8vbW65mZmXVZNQAAYACfuvzlP//8s5SWlkpkZKTDdrV+8ODBS/5MUVGRLjaFhYVOrycAAKgbXpZlWXX0uyUnJ0euueYa2bFjh8THx9u3T5w4UbZu3So7d+783c9Mnz5dZsyY8bvtBQUFEhISIm5LTZ18J/i35fvOivgE1XWN4OJOni2SnrPWy7ed/59eb7///2T7lH4SEexf11UDKo3XsetSHQ2hoaF/+Pldp6d+GjVqJPXq1ZO8vDyH7Wo9Kirqkj+Tmpqq/1G2kp2dXUu1BQAAta1Og4qfn5/ExcVJRkaGfVtZWZleL9/DUp6/v79OXuULAABwT3U6RkVRU5OHDh0q3bp1k5tuukkWLFgg586d07OAAACAZ6vzoHL//fdLfn6+TJs2TXJzc+X666+XjRs3/m6ALQAA8Dx1HlSUMWPG6AIAAGBcUEElqFk+D9bZBC0AADzzyrQAAACXQ1ABAADGIqgAAABjEVQAAICxCCoAAMBYBBUAAGAsggoAADAWQQUAABiLoAIAAIxFUAEAAMYiqAAAAGMRVAAAgLEIKgAAwFgEFQAAYCyCCgAAMBZBBQAAGIugAgAAjEVQAQAAxiKoAAAAYxFUAACAsQgqAADAWD51XQEAAKrjVytAWny1nkZ0U/SoAAAAYxFUAACAsQgqAADAWIxRAQC4rIhgfzk6p29dVwNORI8KAAAwFkEFAAAYi6ACAACMRVABAADGIqgAAABjEVQAAICxCCoAAMBYBBUAAOB5QeXo0aMycuRIadmypQQGBkrr1q3lmWeekeLiYofjvvrqK7n11lslICBAYmJiZO7cuc6qEgAAcDFOuzLtwYMHpaysTF555RW59tpr5cCBA5KcnCznzp2TF154QR9TWFgoffr0kYSEBFm6dKns379fRowYIWFhYTJq1ChnVQ0AAHh6ULnjjjt0sWnVqpVkZWXJkiVL7EElPT1d97CsWLFC/Pz8pGPHjrJv3z6ZP38+QQUAANTuGJWCggJp2LChfT0zM1Nuu+02HVJsEhMTdaA5derUJZ+jqKhI98SULwAAwD3VWlD5/vvvZdGiRfLwww/bt+Xm5kpkZKTDcbZ1te9S0tLSJDQ01F7UuBYAAOCeqhxUJk+eLF5eXlcsanxKecePH9engQYNGqTHqVRHamqq7pmxlezs7Go9HwAAcKMxKk888YQMGzbsiseo8Sg2OTk58pe//EV69Oghy5YtczguKipK8vLyHLbZ1tW+S/H399cFAAC4vyoHlcaNG+tSGaonRYWUuLg4WblypXh7O3bgxMfHy5QpU6SkpER8fX31tk2bNknbtm0lPDy8qlUDAABuxmljVFRI6dWrlzRv3lzP8snPz9fjTsqPPXnwwQf1QFp1vZWvv/5a3n77bXnppZdkwoQJzqoWAABwIU6bnqx6RtQAWlWio6Md9lmWpR/VYNiPP/5YUlJSdK9Lo0aNZNq0aUxNBgAAzg0qahzLH41lUbp06SLbtm1zVjUAAIAL414/AADAWAQVAABgLIIKAAAwFkEFAAAYi6ACAACMRVABAADGIqgAAABjEVQAAICxCCoAAMBYBBUAAGAsggoAADAWQQUAABiLoAIAAIxFUAEAAMYiqAAAAGMRVAAAgLEIKgAAwFgEFQAAYCyCCgAAMBZBBQAAGIugAgAAjEVQAQAAxiKoAAAAYxFUAACAsQgqAADAWAQVAABgLIIKAAAwFkEFAAAYi6ACAACMRVABAADGIqgAAABjEVQAAICxCCoAAMBYBBUAAODZQaWoqEiuv/568fLykn379jns++qrr+TWW2+VgIAAiYmJkblz59ZGlQAAgAuolaAyceJEadas2e+2FxYWSp8+fSQ2Nlb27Nkj8+bNk+nTp8uyZctqo1oAAMBwPs7+BRs2bJCPP/5Y3n33Xb1cXnp6uhQXF8uKFSvEz89POnbsqHtc5s+fL6NGjXJ21QAAgCf3qOTl5UlycrK8+eabUr9+/d/tz8zMlNtuu02HFJvExETJysqSU6dOXfY0kuqJKV8AAIB7clpQsSxLhg0bJqNHj5Zu3bpd8pjc3FyJjIx02GZbV/suJS0tTUJDQ+1FjWsBAADuqcpBZfLkyXpQ7JXKwYMHZdGiRXLmzBlJTU2t0Qqr5ysoKLCX7OzsGn1+AADgwmNUnnjiCd1TciWtWrWSzZs361M7/v7+DvtU70pSUpK8/vrrEhUVpU8PlWdbV/suRT1fxecEAADuqcpBpXHjxrr8kYULF8rMmTPt6zk5OXr8ydtvvy3du3fX2+Lj42XKlClSUlIivr6+etumTZukbdu2Eh4eXtWqAQAAN+O0WT/Nmzd3WA8ODtaPrVu3lujoaL384IMPyowZM2TkyJEyadIkOXDggLz00kvy4osvOqtaAADAhTh9evKVqMGwaupySkqKxMXFSaNGjWTatGlMTQYAALUbVFq0aKFnAlXUpUsX2bZtW21VAwAAuBDu9QMAAIxFUAEAAMYiqAAAAGMRVAAAgLEIKgAAwFgEFQAAYCyCCgAAMBZBBQAAGIugAgAAjEVQAQAAxiKoAAAAYxFUAACAsQgqAADAWAQVAABgLIIKAAAwFkEFAAAYi6ACAACMRVABAADGIqgAAABjEVQAAICxCCoAAMBYBBUAAGAsggoAADAWQQUAABiLoAIAAIxFUAEAAMYiqAAAAGMRVAAAgLEIKgAAwFgEFQAAYCyCCuChIoL95dvn7rCvq2W1DQBM4lPXFQBQh3yCRB60+BMAMBY9KgAAwFgEFQAA4JlB5d///rd0795dAgMDJTw8XPr37++w/9ixY9K3b1+pX7++NGnSRJ588km5ePGiM6sEAABciNPGqLz77ruSnJwss2fPlttvv10HkAMHDtj3l5aW6pASFRUlO3bskJ9++kn+/ve/i6+vr/4ZAAAAL8uyanwknQolLVq0kBkzZsjIkSMvecyGDRukX79+kpOTI5GRkXrb0qVLZdKkSZKfny9+fn6V+l2FhYUSGhoqBQUFEhISUqP/DgAA4ByV/fx2yqmfvXv3yvHjx8Xb21u6du0qTZs2lTvvvNOhRyUzM1M6d+5sDylKYmKirvjXX3992ecuKirSx5QvAADAPTklqBw+fFg/Tp8+XZ5++mlZv369HqPSq1cv+eWXX/S+3Nxch5Ci2NbVvstJS0vTCcxWYmJinPFPAAAArhZUJk+eLF5eXlcsBw8elLKyMn38lClTZODAgRIXFycrV67U+9esWVOtCqempupuIlvJzs6u1vMBAAA3GUz7xBNPyLBhw654TKtWrfTAWKVDhw727f7+/nqfmumjqEG0u3btcvjZvLw8+77LUc+jCgAAcH9VCiqNGzfW5Y+oHhQVJrKysqRnz556W0lJiRw9elRiY2P1enx8vMyaNUtOnDihpyYrmzZt0gNqygccAADguZwyPVmFjdGjR8szzzyjx5CocDJv3jy9b9CgQfqxT58+OpAMGTJE5s6dq8elqPEsKSkp9JgAAADnXkdFBRMfHx8dRH799Vd94bfNmzfrQbVKvXr19CDbRx55RPeuBAUFydChQ+XZZ591VpUAAICLccp1VGoT11EBAMD11Ol1VAAAAGoCQQUAAHjeGJXaYjtzxRVqAQBwHbbP7T8ageLyQeXMmTP6kSvUAgDgmp/jaqyK2w6mVVfBVTc2bNCggb7ybU2nPRWA1NVvueGhc9HWtYe2pq3dEa9r12trFT9USGnWrJm+N6Db9qiof1x0dLRTf4f6QxBUagdtXXtoa9raHfG6dq22vlJPig2DaQEAgLEIKgAAwFgElStQ9ytStwHgJojOR1vXHtqatnZHvK7dt61dfjAtAABwX/SoAAAAYxFUAACAsQgqAADAWAQVAABgLILKZSxevFhatGghAQEB0r17d9m1a1ft/mXcUFpamtx44436KsJNmjSR/v37S1ZWlsMxFy5ckJSUFImIiJDg4GAZOHCg5OXl1Vmd3cWcOXP0lZvHjRtn30Zb15zjx4/L4MGD9es2MDBQOnfuLLt377bvV3MWpk2bJk2bNtX7ExIS5NChQzVYA89QWloqU6dOlZYtW+p2bN26tTz33HMO94qhra/Op59+Knfffbe+Sqx6r1i3bp3D/sq06y+//CJJSUn6InBhYWEycuRIOXv27FXWyPGXo4LVq1dbfn5+1ooVK6yvv/7aSk5OtsLCwqy8vDzaqhoSExOtlStXWgcOHLD27dtn3XXXXVbz5s2ts2fP2o8ZPXq0FRMTY2VkZFi7d++2br75ZqtHjx60ezXs2rXLatGihdWlSxfr8ccfp61r2C+//GLFxsZaw4YNs3bu3GkdPnzY+uijj6zvv//efsycOXOs0NBQa926ddaXX35p/fWvf7Vatmxp/frrrzVdHbc2a9YsKyIiwlq/fr115MgRa82aNVZwcLD10ksv2Y+hra/Ohx9+aE2ZMsX617/+pVKftXbtWof9lWnXO+64w7ruuuuszz77zNq2bZt17bXXWn/729+s6iKoXMJNN91kpaSk2NdLS0utZs2aWWlpadVucPzPiRMn9P8QW7du1eunT5+2fH199ZuPzbfffquPyczMpOmuwpkzZ6w2bdpYmzZtsv785z/bgwptXXMmTZpk9ezZ87L7y8rKrKioKGvevHn2bar9/f39rbfeeqsGa+L++vbta40YMcJh24ABA6ykpCS9TFvXjIpBpTLt+s033+if+/zzz+3HbNiwwfLy8rKOHz9erfpw6qeC4uJi2bNnj+7WKn8/IbWemZlZ/S4s2BUUFOjHhg0b6kfV7iUlJQ5t365dO2nevDltf5XUabS+ffs6tCltXbPef/996datmwwaNEif0uzatassX77cvv/IkSOSm5vr8DdQ9zdRp5R5T6maHj16SEZGhnz33Xd6/csvv5Tt27fLnXfeSVs7UWVew+pRne5R/y/YqOPV5+fOnTur9ftd/qaENe3nn3/W50EjIyMdtqv1gwcP1lm93I2667UaL3HLLbdIp06d9Db1P4Kfn59+sVdse7UPVbN69WrZu3evfP7557/bR1vXnMOHD8uSJUtkwoQJ8tRTT+n2Hjt2rH4tDx061P7avdR7Cq/rqpk8ebK+c6/6AlOvXj39Xj1r1iw9LkKhrZ2jMu2qHlVQL8/Hx0d/Ea3u65yggjr7pn/gwAH9bQg1T91+/fHHH5dNmzbpAeFwbuhW3yJnz56t11WPinptL126VAcV1Jx33nlH0tPTZdWqVdKxY0fZt2+f/sKjBoDS1u6LUz8VNGrUSCf1ijNN1HpUVFRt/m3c1pgxY2T9+vXyySefSHR0tH27al916u306dMOx9P2VadOo504cUJuuOEG/a1Gla1bt8rChQv1svomRFvXDDULokOHDg7b2rdvL8eOHdPLtvcN3lOq78knn9S9Kg888ICeWTVkyBAZP368nlFIWztPZV7D6lG955R38eJFPROoup+dBJUKVHdtXFycPg9a/huTWo+Pj69WY3s6NUZLhZS1a9fK5s2b9RTD8lS7+/r6OrS9mr6s3vBp+6rp3bu37N+/X3/jtBX1rV91kduWaeuaoU5fVpxmr8ZQxMbG6mX1Oldv1OVf1+r0hTpvz+u6as6fP6/HPJSnvliq92ja2nkq8xpWj+pLpvqSZKPe59XfRo1lqZZqDcV14+nJajTza6+9pkcyjxo1Sk9Pzs3NreuqubRHHnlET2/bsmWL9dNPP9nL+fPnHaYnqynLmzdv1tOT4+PjdUH1lZ/1Q1vX7PRvHx8fPXX20KFDVnp6ulW/fn3rn//8p8PUTvUe8t5771lfffWVdc899zA9+SoMHTrUuuaaa+zTk9VU2kaNGlkTJ06krWtghuAXX3yhi4oG8+fP18s//vhjpV/Danpy165d9TT97du36xmHTE92okWLFukPTHU9FTVdWc0LR/WoF/+lirq2io160T/66KNWeHi4frO/9957dZhBzQcV2rrmfPDBB1anTp30F5x27dpZy5Ytc9ivpndOnTrVioyM1Mf07t3bysrKqsEaeIbCwkL9GlbvzQEBAVarVq30tT+Kiorsx9DWV+eTTz655PuzCoeVbdeTJ0/qYKKubRMSEmINHz5cB6Dq8lL/qV6fDAAAgHMwRgUAABiLoAIAAIxFUAEAAMYiqAAAAGMRVAAAgLEIKgAAwFgEFQAAYCyCCgAAMBZBBQAAGIugAgAAjEVQAQAAxiKoAAAAMdX/B3Dkb4AAJ40dAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAioAAAGdCAYAAAA8F1jjAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjcsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvTLEjVAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAJWhJREFUeJzt3Qt4FNXdx/F/IDeSkAQCJFASBKFyEdQGL0GkIJRo8YJSb1i5yANesBWwXFLkooih0KJIKdRWLn2EIr4VVB5FYkCUGkDQiCAgKkIeMEFBEhIkATLvcw7NmoUEctnJnpn9fp5nzM7OZDmencz+9sw5Z4Isy7IEAADAQPX8XQAAAIDKEFQAAICxCCoAAMBYBBUAAGAsggoAADAWQQUAABiLoAIAAIxFUAEAAMYKFocrLS2VQ4cOScOGDSUoKMjfxQEAAFWg5ps9fvy4tGjRQurVq+feoKJCSmJior+LAQAAaiAnJ0datmzp3qCiWlLK/kejo6P9XRwAAFAFBQUFuqGh7HPctUGl7HKPCikEFQAAnOVi3TboTAsAAIxFUAEAAMYiqAAAAGM5vo8KAAC1HSZ7+vRpOXPmDBXpQ/Xr15fg4OBaTx1CUAEABKySkhL59ttv5cSJE/4uiitFRERI8+bNJTQ0tMavQVABAAQkNWHovn379Dd/NemY+jBl4lDftVKpEPjdd9/pOm7Xrt0FJ3W7EIIKACAgqQ9SFVbUXB7qmz98q0GDBhISEiL79+/XdR0eHl6j16EzLQAgoNX0mz7qpm55dwAAgLEIKgAAwFgEFQAAHKZnz54yatQoCQQEFQAAYCxG/QAAcI4jhcV1WidxUWG8B5UgqFTmdJHIiqizj+8uFAmOrHRXAIC7JD/zbp3+e9/M6Fft3yktLZVx48bJP//5Tz0HzMMPPyxTp04Vt+HSDwAADrRkyRKJjIyUzZs3y8yZM+Xpp5+WjIwMcRuCSiVNfh0mrfGsq8d13QwIAMCFdOnSRaZMmaJnfR00aJB07dpVMjMzxW0IKgAAODSolKfuqXP48GFxG/qoAABwjm1P9jG+TkJCQrzW1X2KVL8VtyGoAABwDkbhmINLPwAAwFgEFQAAYCwu/QAA4DDvvffeec+tWrVK3IgWFQAAYCyCCgAAMBZBBQAAGIugAgAAjEVQAQAAgRlU5s+fr6f4jY6O1ktKSoq8/fbbnu0nT56UkSNHSlxcnERFRcmAAQMkLy/PziIBAAAHsTWotGzZUmbMmCHbtm2TrVu3yo033ii333677Ny5U28fPXq0vPnmm/Lqq6/Khg0b5NChQ3LnnXfaWSQAAOAgts6jcuutt3qtT58+XbeybNq0SYeYl156SZYtW6YDjLJo0SLp0KGD3n7dddfZWTQAAOAAddZH5cyZM7J8+XIpKirSl4BUK8upU6ekT5+fbvzUvn17SUpKkqysrEpfp7i4WAoKCrwWAADgTrYHlc8++0z3PwkLC5OHH35YVq5cKR07dpTc3FwJDQ2V2NhYr/3j4+P1tsqkp6dLTEyMZ0lMTLT7fwEAAKP07NlTRo0aVaPfVXdZdtIstrYHlcsuu0yys7Nl8+bN8sgjj8jgwYPl888/r/HrpaWlSX5+vmfJycnxaXmBGjtdJLIs6OyiHgOm45hFDQ0ZMkT69+8vrrjXj2o1adu2rX6cnJwsH330kcyZM0fuueceKSkpkWPHjnm1qqhRPwkJCZW+nmqZUQsAAHC/Op9HpbS0VPczUaElJCREMjMzPdv27NkjBw4c0H1YAADwa2tTXS41/DwdN26cNG7cWH/Bnzp1apV/9/vvv5c77rhDIiIipF27dvLGG2949SkdNmyYtG7dWho0aKCvjKgGhjLq31myZIm8/vrr+jKSWiq6SaIjWlTUZZqbb75Zd5A9fvy4HuGj/mfeeecd3b9EVcSYMWN0Jat5Vn73u9/pkMKIHwCAX62Iqtt/b6BV7V9ZsmSJ/gxVXSvUIBR1Oeb666+XX/3qVxf93aeeekpmzpwps2bNkrlz58r9998v+/fv15/HKgCpkblq6hA1z9mHH34oI0aMkObNm8vdd98tf/jDH2TXrl16MIsarauo33Nki8rhw4dl0KBBOo317t1bX/ZRIaWsEp977jm55ZZb9ERvPXr00Inwtddes7NIgC2OFBZLh0lrPOvqsXoOMBXHrPN16dJFpkyZoltE1Gdt165dva5SXIgKNffdd5/umvHss89KYWGhbNmyRW9TVztUkFGvp1pVVIgZOnSorFixQm9XA2RUS4vqhqE+t9Wiunk4skVFzZNyIeHh4TJv3jy9AABgjLsLxQlBpTzV4qEaCKr7u5GRkfqqRvnfVZ/LCxcu1N0xfvzxR92n9MorrxR/sL0zLQAAjhMcKaYLCQnxWld9RdRlm9r+rprzTF3e+ctf/qK7YzRs2FBfIlKXmPyBoAIAADz++9//Srdu3eTRRx/1PPfVV1+dN6JXdbqtC9w9GQAAeKg+L+r+fKpP6RdffCGTJk3SfUzLu+SSS2T79u16tK4aQaRmmrcLQQUAAHg89NBD+gbBar6za6+9Vo4cOeLVuqIMHz5cD5RRHW6bNm2qW2HswqUfIJCo+RrKhl2qzoIOuA7vWNQ1bPReBfOWVHVafMs6fyi0mny1jBrNo4Ydlw09Ln8LmzIqnKxdu1bqAi0qAADAWAQVIEAwbwZ1DfdbunSpnuekoqVTp07iRFz6AQDAJW677Tbdr6QqQ5KdgqACAIBLNGzYUC9uwqUfAEBAq6hzKcypW4IKACAglV0KOXHihL+L4lon/le3tbnsxKUfAEBAql+/vsTGxnrucRMREaGnkodvWlJUSFF1q+pY1XVNEVQAAAFL3flXqerN/FA9KqSU1XFNEVQAAAFLtaCouw43a9bM1mngA1FISEitWlLKEFQAAAFPfaD64kMVvkdnWqdP0b0s6OyiHgMAnItzeoUIKg7FLKMA4B6c0ytHUAEAAMYiqAAAAGMRVAAAgLEIKgAAwFgEFQAAYCyCCgAAMBZBBQAAGIugAgAAjEVQAQAAxiKoAAAAYxFUAACAsQgqAADAWAQVAABgLIIKAAAwFkEFAAAYi6ACAACMRVABAADGIqgAAABjEVQAAICxCCoAAMBYBBUAAGAsggoAADAWQQUAAARmUElPT5err75aGjZsKM2aNZP+/fvLnj17vPY5efKkjBw5UuLi4iQqKkoGDBggeXl5dhYLAAA4hK1BZcOGDTqEbNq0STIyMuTUqVPSt29fKSoq8uwzevRoefPNN+XVV1/V+x86dEjuvPNOO4sFAAAcItjOF1+zZo3X+uLFi3XLyrZt26RHjx6Sn58vL730kixbtkxuvPFGvc+iRYukQ4cOOtxcd911dhYPAAAYrk77qKhgojRu3Fj/VIFFtbL06dPHs0/79u0lKSlJsrKyKnyN4uJiKSgo8FoAAIA71VlQKS0tlVGjRsn1118vl19+uX4uNzdXQkNDJTY21mvf+Ph4va2yfi8xMTGeJTExsU7KDwAAXBxUVF+VHTt2yPLly2v1OmlpabplpmzJycnxWRkB1NDpIpFlQWcX9dgpnFpuIIDY2kelzGOPPSarV6+W999/X1q2bOl5PiEhQUpKSuTYsWNerSpq1I/aVpGwsDC9AAAA97O1RcWyLB1SVq5cKevWrZPWrVt7bU9OTpaQkBDJzMz0PKeGLx84cEBSUlLsLBoAAAj0oKIu97z88st6VI+aS0X1O1HLjz/+qLerPibDhg2TMWPGyPr163Xn2qFDh+qQwogfwBmOFBZLh0k/jfBTj9VzpnNquYFAY+uln/nz5+ufPXv29HpeDUEeMmSIfvzcc89JvXr19ERvakRPamqq/O1vf7OzWAAAwCGC7b70czHh4eEyb948vQAAAJTHvX4AAICxCCoAAMBYBBUAAGAsggoAADAWQQUAABiLoAIAAIxFUAEAAMYiqAAAAGMRVAAAgLEIKgAAwFgEFQAAYCyCCgAAMBZBBQAAGIugAgAAjEVQAQAAxiKoAAAAYxFUAACAsQgqAADAWAQVAABgLIIKAAAwFkEFAAAYi6ACAACMRVABAADGIqgAAABjEVQAAICxCCoAAMBYBBUAAGAsggoAADAWQQUAABiLoAIAAIxFUAEAAMYiqAAAAGMRVAAAgLEIKrDX6SKRZUFnF/UYAPyBc5FjEVQAAICxgv1dAAC1d6SwWJKfedfruW1P9pG4qDCq11C8Z0DV0KICW0/EHSat8ayrx+o52KNB0En5psstelGPYT7es7rBucjZaFGB4/BNFHAf/q5RGVpU4Eh8EwXch79rVISgAgAAAjOovP/++3LrrbdKixYtJCgoSFatWuW13bIsmTx5sjRv3lwaNGggffr0kb1799pZJAAA4CC2BpWioiK54oorZN68eRVunzlzprzwwguyYMEC2bx5s0RGRkpqaqqcPElHQAAAYHNn2ptvvlkvFVGtKc8//7w8+eSTcvvtt+vn/vWvf0l8fLxuebn33nt5fwCnT7C1Iurs47sLRYIjzSoPYwkAR/BbH5V9+/ZJbm6uvtxTJiYmRq699lrJysqq9PeKi4uloKDAawFglh+KSowaml7R8FRVRgDm81tQUSFFUS0o5an1sm0VSU9P14GmbElMTLS9rAAAwD8cN+onLS1N8vPzPUtOTo6/iwQAANwWVBISEvTPvLw8r+fVetm2ioSFhUl0dLTXAgAA3MlvQaV169Y6kGRmZnqeU/1N1OiflJQUfxULAAAEyqifwsJC+fLLL7060GZnZ0vjxo0lKSlJRo0aJc8884y0a9dOB5dJkybpOVf69+9vZ7EAAIBD2BpUtm7dKr169fKsjxkzRv8cPHiwLF68WMaNG6fnWhkxYoQcO3ZMunfvLmvWrJHw8HA7iwUAABzC1qDSs2dPPV9KZdRstU8//bReYDjT5sQAgLrAuc/vHDfqBwAABA6CCmo0WdaRY0dFlgWdXdQ3DgBwOnUuK3deq/Dc58eJCwMVQQUAABiLoIIa6f6n9Z7HfMsA4HTcZsFcBBUAAGAsggpg+re8tP94rpurx1wjDxy8/wBBBQAAGIwWFQAAYCyCCgAACMyZad0k+Zl3vda3PdlH4qLC/FYeAADs7B9lyuceLSoAAMBYBBUAAGAsgkoVNQg6Kd90uUUv6jEAAG7WwJDPPfqo4KLXJd8d3YNaAgD6K/oFLSoAjL4xXI33AeAKBBX4v7mPDx38T1XuVssdbeHPc4gpl0MCCUEFAAAYi6ACAACMRWfaAFdR59kGQX4rDgA4yg9FJcZMjOZWBBXo66y7Ov9G10SHz/6vzoNS9+lrZFfnn/okbJx4i9cfOWEKCExVCQFVOYe4+RwaCLj0A0egAxsQmPjbB0EFAAAYi6ACAACMRVABqoK5XhCoOPbhZwQVAABgLIIKcBHMhIpAxbEPEzA82cXODttb7TVsrq6H7bm7OTz87OO7C/lTshE3yaxDHNe24FxcOwQVuAKTLgHOwvxIqCou/cA16nK+he5/Wu95rCaYUkGpSuiYWG3Mo1FDNTjWanxc1xDvLaqCoFLX+KAKWFzvB8ca6sTpurubdF0gqAAAAGMRVAAAgLEIKgAAwFgElTpEHwUAAJ8z1UNQAQAAxiKoAAAAYxFUAACAsQgqAADAWAQVu7ls4h0AgAOddu5nkRH3+pk3b57MmjVLcnNz5YorrpC5c+fKNddcI+64EdUa2dX5/OmpgUBTl/dj4j4ygPffXvfpaz2fRer2CE66Qa3fW1ReeeUVGTNmjEyZMkU+/vhjHVRSU1Pl8OHD/i4aAAff24X7yADu4PegMnv2bBk+fLgMHTpUOnbsKAsWLJCIiAhZuHChv4sGAAACOaiUlJTItm3bpE+fPj8VqF49vZ6VleXPogEAgEDvo/L999/LmTNnJD4+3ut5tb579+4Kf6e4uFgvZQoKCmwvJwAA8BPLjw4ePGipInz44Ydez48dO9a65pprKvydKVOm6N85d8nPz7fq0vfHT1rtJ/yfZS0VvajH566rfaryOq3Gr/Zazn2dvbkFF33tispTk318WR/+LGNFr1NRPdakru2sj7p8r51QR3X5OpW9Vk3qyM5jvybnnrr+u6pJHdX03/dlPfrifFjX7/Xe3ILzPkMu9v9R03OPr6nP7ap8fvu1RaVJkyZSv359ycvL83perSckJFT4O2lpabrzbfkWlcTERNvLCriN6vG/K33A/7K+yK7/jZZB9akRFBL1Uz0C8B2/BpXQ0FBJTk6WzMxM6d+/v36utLRUrz/22GMV/k5YWJhe3PRh8c2MfucMaV7ttU+jyFDZNe0mkRVn1/XjYPfUAQCgki8T0346928c3+u8aS7U50P5zxA38vs8Kqp1ZPDgwdK1a1c9d8rzzz8vRUVFehQQygmOFBl49hsbACAAz/2Fgdni6fegcs8998h3330nkydP1hO+XXnllbJmzZrzOtgCAIDA4/egoqjLPJVd6gEAAIHL7xO+AQAAVIagAgAAjEVQAQAAxjKijwrsmRMDAGAeztfVQ4sKAAAwFkEFAAAYi6ACAACMRVABAADGIqgAAABjEVQAAICxCCoAAMBYBBUAAGAsJnxDwEyodCRAb5EOmGDjxFtEopiQEtVHiwoAADAWQQUAABiLoAIAAIxFUAEAAMaiMy1gmB+tcLlk+2p/FwMOOkYaBJ30a3kAOxFUAIM0igyVb2b083cxYPiItvLHiBrN1n06wRbuxaUfAABgLIIKAAAwFkEFAAAYiz4qDphRNdDQmRQA54fzxQXo5wNBBUZ3FAQAzg+BjUs/AADAWLSoAHY10U67SWTF2XX9ODjMNXXt5stzbpyjxO3HI9yNFhXgnHlM9En8f9RjdZIHUC7wlPv7UH8zgJ1oUQHO+6uIFBlomfM6gNHHdXHtXxO4AIIKArbH/EZm9KwRN8+ey6yvPmyZDMDRKbAHl34AAICxCCoAAMBYBBUAAGAsgoqPer9vHN/LV+8JAAB1qpHBIx7pTOur3u+F9HyHOZg3wyy8H3CEYDNHKtKiAgAAjEWLCuBWhn47Cli8H0CN0KICAACMRYsK4DB29ndgUjz/TWZGPxagYrSoAAAAYxFUAABA4AWV6dOnS7du3SQiIkJiY2Mr3OfAgQPSr18/vU+zZs1k7Nixcvr0abuKBAAAHMa2PiolJSVy1113SUpKirz00kvnbT9z5owOKQkJCfLhhx/Kt99+K4MGDZKQkBB59tln7SoWAABwENuCylNPPaV/Ll68uMLta9eulc8//1zeffddiY+PlyuvvFKmTZsm48ePl6lTp0poaKhdRQOcj6Gu7sT7CpjTRyUrK0s6d+6sQ0qZ1NRUKSgokJ07d1b6e8XFxXqf8gsAAHAnvwWV3Nxcr5CilK2rbZVJT0+XmJgYz5KYmGh7WQEAgAOCyoQJEyQoKOiCy+7du+0rrYikpaVJfn6+Z8nJybH13wMAAA7po/LEE0/IkCFDLrhPmzZtqvRaqhPtli1bvJ7Ly8vzbKtMWFiYXgAAgPtVK6g0bdpUL76gRgOpIcyHDx/WQ5OVjIwMiY6Olo4dO/rk3wAuhJlAgdrj7wiOHfWj5kg5evSo/qmGImdnZ+vn27ZtK1FRUdK3b18dSB544AGZOXOm7pfy5JNPysiRI2kxAQAA9gaVyZMny5IlSzzrV111lf65fv166dmzp9SvX19Wr14tjzzyiG5diYyMlMGDB8vTTz9tV5GA8zEcFKg9/o7gxKCi5k+pbA6VMq1atZK33nrLriIAAACH414/AADAWAQVAABgLIIKAAAwFkEFAAAYi6ACAACMRVABAADGIqgAAABjEVQAAEDgTfgGVHhPkPQBImLp9V1UEQAf4zzjPrSoAAAAYxFUAACAsQgqAADAWAQVAABgLIIKAAAwFkEFAAAYi6ACAACMRVABAADGIqgAAABjEVQAAICxCCoAAMBYBBUAAGAsggoAADAWQQUAABiLoAIAAIxFUAEAAMYiqAAAAGMRVAAAgLEIKgAAwFgEFQAAYCyCCgAAMBZBBYBfxEWFya5pN3nW1WP1nL9eB4CZCCoAAMBYBBX4BN9qATgJ5yznCPZ3AQAEsOBIkYGWOa8DwDgEFfjwaOLDAoCDcM5yBC79AAAAYxFUAACAsQgqAADAWAQVAABgLIIKAAAIvKDyzTffyLBhw6R169bSoEEDufTSS2XKlClSUlLitd/27dvlhhtukPDwcElMTJSZM2faVSQAAOAwtg1P3r17t5SWlsrf//53adu2rezYsUOGDx8uRUVF8uc//1nvU1BQIH379pU+ffrIggUL5LPPPpMHH3xQYmNjZcSIEXYVDQAABHpQuemmm/RSpk2bNrJnzx6ZP3++J6gsXbpUt7AsXLhQQkNDpVOnTpKdnS2zZ88mqAAAgLrto5Kfny+NGzf2rGdlZUmPHj10SCmTmpqqA80PP/xQ4WsUFxfrlpjyCwAAcKc6CypffvmlzJ07Vx566CHPc7m5uRIfH++1X9m62laR9PR0iYmJ8SyqXwsAAHCnageVCRMmSFBQ0AUX1T+lvIMHD+rLQHfddZfup1IbaWlpumWmbMnJyanV6wEAABf1UXniiSdkyJAhF9xH9Ucpc+jQIenVq5d069ZNXnzxRa/9EhISJC8vz+u5snW1rSJhYWF6AQAA7lftoNK0aVO9VIVqSVEhJTk5WRYtWiT16nk34KSkpMjEiRPl1KlTEhISop/LyMiQyy67TBo1alTdogEAAJexrY+KCik9e/aUpKQkPcrnu+++0/1Oyvc9GThwoO5Iq+Zb2blzp7zyyisyZ84cGTNmjF3FAgAADmLb8GTVMqI60KqlZcuWXtssy9I/VWfYtWvXysiRI3WrS5MmTWTy5MkMTQYAAPYGFdWP5WJ9WZQuXbrIBx98YFcxAACAg3GvHwAAYCyCCgAAMBZBBQAAGIugAgAAjEVQAQAAxiKoAAAAYxFUAACAsQgqAADAWAQVAABgLIKKj8RFhcmuaTd51tVj9RwAACaJc9jnFUEFAAAE3r1+AlJwpMjAszdcBFzzzSt9gLqVqF7fJYEl0P//4WLBzvm8okUFAAAYi6ACAACMRVABAADGoo8K4Cf0fwDHEXBxtKgAAABjEVQAAICxCCoAAMBYBBUAAGAsggoAADAWQQUAABiLoAIAAIxFUAEAAMYiqAAAAGMRVAAAgLEIKgAAwFgEFQAAYCyCCgAAMBZBBQAAGIugAgAAjEVQAQAAxiKoAAAAYxFUAACAsQgqAADAWAQVAABgLIIKAAAwFkEFAAAYi6ACAACMRVABAACBGVRuu+02SUpKkvDwcGnevLk88MADcujQIa99tm/fLjfccIPeJzExUWbOnGlnkQAAgIPYGlR69eolK1askD179sh//vMf+eqrr+Q3v/mNZ3tBQYH07dtXWrVqJdu2bZNZs2bJ1KlT5cUXX7SzWAAAwCGC7Xzx0aNHex6rMDJhwgTp37+/nDp1SkJCQmTp0qVSUlIiCxculNDQUOnUqZNkZ2fL7NmzZcSIEXYWDQAAOECd9VE5evSoDibdunXTIUXJysqSHj166JBSJjU1VbfA/PDDDxW+TnFxsW6JKb8AAAB3sj2ojB8/XiIjIyUuLk4OHDggr7/+umdbbm6uxMfHe+1ftq62VSQ9PV1iYmI8i+rXAgAA3KnaQUVdvgkKCrrgsnv3bs/+Y8eOlU8++UTWrl0r9evXl0GDBollWTUucFpamuTn53uWnJycGr8WAABwWR+VJ554QoYMGXLBfdq0aeN53KRJE738/Oc/lw4dOugWkE2bNklKSookJCRIXl6e1++WrattFQkLC9MLAABwv2oHlaZNm+qlJkpLSz39TBQVViZOnOjpXKtkZGTIZZddJo0aNarRvwEAANzDtj4qmzdvlr/+9a96FM/+/ftl3bp1ct9998mll16qA4oycOBA3ZF22LBhsnPnTnnllVdkzpw5MmbMGLuKBQAAHMS2oBIRESGvvfaa9O7dW7eQqDDSpUsX2bBhg+fSjeoMq/qu7Nu3T5KTk/VlpcmTJzM0GQAA2DuPSufOnXUrysWo8PLBBx/YVQwAAOBg3OsHAAAYi6ACAACMFWTVZlITA6iZaVVfFzWnSnR0tL+LY77TRSIros4+vrtQJDjS3yUCAHfhPOvTz29aVAAAgLEIKgAAwFgEFQAAEHjDk2Eo1SdloKO7JQGA2TjP+hQtKgAAwFgEFQAAYCyCCgAAMBZBBQAAGIugAgAAjEVQAQAAxiKoAAAAYxFUAACAsQgqAADAWAQVAABgLIIKAAAwFkEFAAAYi6ACAACMRVABAADGIqgAAABjBYvDWZalfxYUFPi7KAAAoIrKPrfLPsddG1SOHz+ufyYmJvq7KAAAoAaf4zExMZVuD7IuFmUMV1paKocOHZKGDRtKUFCQz9OeCkA5OTkSHR3t09cGde0vHNfUtRtxXDuvrlX8UCGlRYsWUq9ePfe2qKj/uZYtW9r6b6g3gqBSN6jrukNdU9duxHHtrLq+UEtKGTrTAgAAYxFUAACAsQgqFxAWFiZTpkzRP2Ev6rruUNfUtRtxXLu3rh3fmRYAALgXLSoAAMBYBBUAAGAsggoAADAWQQUAABiLoFKJefPmySWXXCLh4eFy7bXXypYtW+r2nXGh9PR0ufrqq/Usws2aNZP+/fvLnj17vPY5efKkjBw5UuLi4iQqKkoGDBggeXl5fiuzW8yYMUPP3Dxq1CjPc9S17xw8eFB++9vf6uO2QYMG0rlzZ9m6datnuxqzMHnyZGnevLne3qdPH9m7d68PSxAYzpw5I5MmTZLWrVvrerz00ktl2rRpXveKoa5r5v3335dbb71VzxKrzhWrVq3y2l6Vej169Kjcf//9ehK42NhYGTZsmBQWFtawRN7/OM6xfPlyKzQ01Fq4cKG1c+dOa/jw4VZsbKyVl5dHXdVCamqqtWjRImvHjh1Wdna29etf/9pKSkqyCgsLPfs8/PDDVmJiopWZmWlt3brVuu6666xu3bpR77WwZcsW65JLLrG6dOliPf7449S1jx09etRq1aqVNWTIEGvz5s3W119/bb3zzjvWl19+6dlnxowZVkxMjLVq1Srr008/tW677TardevW1o8//ujr4rja9OnTrbi4OGv16tXWvn37rFdffdWKioqy5syZ49mHuq6Zt956y5o4caL12muvqdRnrVy50mt7Ver1pptusq644gpr06ZN1gcffGC1bdvWuu+++6zaIqhU4JprrrFGjhzpWT9z5ozVokULKz09vdYVjp8cPnxY/0Fs2LBBrx87dswKCQnRJ58yu3bt0vtkZWVRdTVw/Phxq127dlZGRob1y1/+0hNUqGvfGT9+vNW9e/dKt5eWlloJCQnWrFmzPM+p+g8LC7P+/e9/+7Ak7tevXz/rwQcf9HruzjvvtO6//379mLr2jXODSlXq9fPPP9e/99FHH3n2efvtt62goCDr4MGDtSoPl37OUVJSItu2bdPNWuXvJ6TWs7Kyat+EBY/8/Hz9s3HjxvqnqvdTp0551X379u0lKSmJuq8hdRmtX79+XnVKXfvWG2+8IV27dpW77rpLX9K86qqr5B//+Idn+759+yQ3N9frPVD3N1GXlDmnVE+3bt0kMzNTvvjiC73+6aefysaNG+Xmm2+mrm1UlWNY/VSXe9TfQhm1v/r83Lx5c63+fcfflNDXvv/+e30dND4+3ut5tb57926/lctt1F2vVX+J66+/Xi6//HL9nPpDCA0N1Qf7uXWvtqF6li9fLh9//LF89NFH522jrn3n66+/lvnz58uYMWPkj3/8o67v3//+9/pYHjx4sOfYreicwnFdPRMmTNB37lVfYOrXr6/P1dOnT9f9IhTq2h5VqVf1UwX18oKDg/UX0doe5wQV+O2b/o4dO/S3Ifieuv36448/LhkZGbpDOOwN3epb5LPPPqvXVYuKOrYXLFiggwp8Z8WKFbJ06VJZtmyZdOrUSbKzs/UXHtUBlLp2Ly79nKNJkyY6qZ870kStJyQk1OV741qPPfaYrF69WtavXy8tW7b0PK/qV116O3bsmNf+1H31qctohw8fll/84hf6W41aNmzYIC+88IJ+rL4JUde+oUZBdOzY0eu5Dh06yIEDB/TjsvMG55TaGzt2rG5Vuffee/XIqgceeEBGjx6tRxRS1/apyjGsfqpzTnmnT5/WI4Fq+9lJUDmHaq5NTk7W10HLf2NS6ykpKbWq7ECn+mipkLJy5UpZt26dHmJYnqr3kJAQr7pXw5fVCZ+6r57evXvLZ599pr9xli3qW79qIi97TF37hrp8ee4we9WHolWrVvqxOs7Vibr8ca0uX6jr9hzX1XPixAnd56E89cVSnaOpa/tU5RhWP9WXTPUlqYw6z6v3RvVlqZVadcV18fBk1Zt58eLFuifziBEj9PDk3NxcfxfN0R555BE9vO29996zvv32W89y4sQJr+HJasjyunXr9PDklJQUvaD2yo/6oa59O/w7ODhYD53du3evtXTpUisiIsJ6+eWXvYZ2qnPI66+/bm3fvt26/fbbGZ5cA4MHD7Z+9rOfeYYnq6G0TZo0scaNG0dd+2CE4CeffKIXFQ1mz56tH+/fv7/Kx7AannzVVVfpYfobN27UIw4ZnmyjuXPn6g9MNZ+KGq6sxoWjdtTBX9Gi5lYpow76Rx991GrUqJE+2d9xxx06zMD3QYW69p0333zTuvzyy/UXnPbt21svvvii13Y1vHPSpElWfHy83qd3797Wnj17fFiCwFBQUKCPYXVuDg8Pt9q0aaPn/iguLvbsQ13XzPr16ys8P6twWNV6PXLkiA4mam6b6Ohoa+jQoToA1VaQ+k/t2mQAAADsQR8VAABgLIIKAAAwFkEFAAAYi6ACAACMRVABAADGIqgAAABjEVQAAICxCCoAAMBYBBUAAGAsggoAADAWQQUAABiLoAIAAMRU/w9eY+4nIPdarQAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "from src.data_generation import build_dataset\n", + "from src.utils import Config, generate_sensing_matrix\n", + "import numpy as np\n", + "import scipy as sp\n", + "from src.algorithms import omp\n", + "from src.visualization import visualize_reconstruction\n", + "import matplotlib.pyplot as plt\n", + "\n", + "max_amplitude = 100\n", + "min_sparsity = 7\n", + "max_sparsity = 9\n", + "vector_size = 100\n", + "data_set_size = 10000\n", + "\n", + "config = Config(dataset_size = 1,\n", + " vector_size= 100, \n", + " max_amplitude= 100,\n", + " min_sparsity= 5,\n", + " max_sparsity= 10,\n", + " noise_level= 1,\n", + " omp_epsilon= 1,\n", + " omp_max_iterations= 10,\n", + " sensing_matrix_rows= 50,\n", + " alg= \"omp\", # Options: \"omp\", \"psomp\", \"ml\"\n", + " model_path= \"models/sparse_recovery_model.pth\"\n", + ")\n", + "\n", + "#visualize_reconstruction(config)\n", + "\n", + "\n", + "h, x = build_dataset(config)\n", + "Phi = generate_sensing_matrix(config.sensing_matrix_rows,config.vector_size)\n", + "# First generate the output\n", + "y = Phi @ x\n", + "y = y + config.noise_level * np.random.randn(*y.shape)\n", + "x_hat = omp(Phi,y,config.omp_epsilon,config.omp_max_iterations)\n", + "DFT = sp.linalg.dft(config.vector_size)/np.sqrt(config.vector_size)\n", + "h_hat = DFT @ x_hat\n", + "indices = range(len(x_hat))\n", + "plt.vlines(indices,0,x,linewidth=3)\n", + "plt.vlines(indices,0,x_hat,colors=\"orange\")\n", + "\n", + "plt.legend((\"x\",\"x_hat\"))\n", + "plt.show()\n", + "\n", + "plt.vlines(indices,0,h,linewidth=3)\n", + "plt.vlines(indices,0,h_hat,colors=\"orange\")\n", + "\n", + "plt.legend((\"h\",\"h_hat\"))\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "29236568", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(50,)\n", + "(50,)\n" + ] + } + ], + "source": [ + "-" + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "id": "9c9e7364", + "metadata": {}, + "outputs": [ + { + "ename": "NameError", + "evalue": "name 'A' is not defined", + "output_type": "error", + "traceback": [ + "\u001b[31m---------------------------------------------------------------------------\u001b[39m", + "\u001b[31mNameError\u001b[39m Traceback (most recent call last)", + "\u001b[36mCell\u001b[39m\u001b[36m \u001b[39m\u001b[32mIn[33]\u001b[39m\u001b[32m, line 3\u001b[39m\n\u001b[32m 1\u001b[39m h, x = build_dataset(config)\n\u001b[32m----> \u001b[39m\u001b[32m3\u001b[39m y = \u001b[43mA\u001b[49m @ h\n\u001b[32m 5\u001b[39m x_hat = omp(A\u001b[38;5;129m@DFT\u001b[39m,y,config.omp_epsilon,config.omp_max_iterations)\n\u001b[32m 6\u001b[39m indices = \u001b[38;5;28mrange\u001b[39m(\u001b[38;5;28mlen\u001b[39m(x_hat))\n", + "\u001b[31mNameError\u001b[39m: name 'A' is not defined" + ] + } + ], + "source": [ + "h, x = build_dataset(config)\n", + "\n", + "y = A @ h\n", + "\n", + "x_hat = omp(A@DFT,y,config.omp_epsilon,config.omp_max_iterations)\n", + "indices = range(len(x_hat))\n", + "plt.vlines(indices,0,x,linewidth=3)\n", + "plt.vlines(indices,0,x_hat,colors=\"orange\")\n", + "\n", + "plt.legend((\"x\",\"x_hat\"))" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "1e87febe", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(100,)\n" + ] + } + ], + "source": [ + "from src.utils import apply_iq_imbalance\n", + "from src.algorithms import psomp, find_x_xi\n", + "import numpy as np\n", + "xi = 0.71 + 0.1j\n", + "x = np.random.randn(100)\n", + "print(np.shape(x))\n", + "z = apply_iq_imbalance(x,xi)\n", + "z_1 = z[0:50]\n", + "z_1_hat = xi*x\n", + "x_hat, xi_hat = find_x_xi(z)" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "b2722ecc", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "True xi: (0.71+0.1j), Estimated xi: [[0.71+0.1j]]\n", + "Reconstruction error: 1.53043456469481e-15\n", + "[-1.38777878e-17-4.79149453e-18j -8.67361738e-19-1.49734204e-19j\n", + " 5.55111512e-17+9.58298905e-18j -5.55111512e-17-1.43744836e-17j\n", + " -1.11022302e-16-3.83319562e-17j -1.73472348e-18-2.99468408e-19j\n", + " 4.44089210e-16+3.83319562e-17j 5.55111512e-17+2.87489672e-17j\n", + " 2.22044605e-16+5.74979343e-17j 5.55111512e-17+1.91659781e-17j\n", + " 0.00000000e+00+1.14995869e-16j 5.55111512e-17+1.91659781e-17j\n", + " -1.11022302e-16-2.87489672e-17j 2.22044605e-16+3.83319562e-17j\n", + " 0.00000000e+00-2.87489672e-17j -2.22044605e-16-3.83319562e-17j\n", + " -5.55111512e-17-9.58298905e-18j -2.22044605e-16-7.66639124e-17j\n", + " 2.77555756e-17+9.58298905e-18j 0.00000000e+00+4.79149453e-18j\n", + " -2.22044605e-16-7.66639124e-17j 1.73472348e-18+4.49202612e-19j\n", + " 1.11022302e-16+2.87489672e-17j 0.00000000e+00-3.83319562e-17j\n", + " 0.00000000e+00-1.43744836e-17j 1.11022302e-16+3.83319562e-17j\n", + " 6.93889390e-18+2.39574726e-18j 5.55111512e-17+1.91659781e-17j\n", + " -2.22044605e-16-3.83319562e-17j -1.38777878e-17-2.39574726e-18j\n", + " 1.11022302e-16+3.83319562e-17j 2.22044605e-16+5.74979343e-17j\n", + " -1.11022302e-16-3.83319562e-17j 5.55111512e-17+1.91659781e-17j\n", + " -5.55111512e-17-1.91659781e-17j -2.22044605e-16-3.83319562e-17j\n", + " 0.00000000e+00+7.66639124e-17j 1.11022302e-16+3.83319562e-17j\n", + " 0.00000000e+00-2.87489672e-17j 4.44089210e-16+7.66639124e-17j\n", + " -2.22044605e-16-3.83319562e-17j -2.77555756e-17-1.43744836e-17j\n", + " -2.22044605e-16-3.83319562e-17j 0.00000000e+00-5.74979343e-17j\n", + " 0.00000000e+00-1.91659781e-17j 5.55111512e-17+1.43744836e-17j\n", + " -1.11022302e-16-3.83319562e-17j 2.77555756e-17+9.58298905e-18j\n", + " 2.22044605e-16+3.83319562e-17j 2.22044605e-16+5.74979343e-17j\n", + " -2.22044605e-16-7.66639124e-17j 1.11022302e-16+1.91659781e-17j\n", + " 0.00000000e+00+1.43744836e-17j 1.11022302e-16+3.83319562e-17j\n", + " -1.11022302e-16-2.87489672e-17j -2.77555756e-17-4.79149453e-18j\n", + " 6.93889390e-18+2.39574726e-18j 5.55111512e-17+1.91659781e-17j\n", + " -5.55111512e-17-1.43744836e-17j 1.11022302e-16+2.87489672e-17j\n", + " 4.44089210e-16+7.66639124e-17j -2.22044605e-16-7.66639124e-17j\n", + " 1.11022302e-16+2.87489672e-17j 2.22044605e-16+7.66639124e-17j\n", + " -2.22044605e-16-5.74979343e-17j -2.22044605e-16-7.66639124e-17j\n", + " -2.22044605e-16-1.14995869e-16j 1.11022302e-16+1.91659781e-17j\n", + " -1.11022302e-16-1.91659781e-17j -5.55111512e-17-9.58298905e-18j\n", + " -1.11022302e-16-1.91659781e-17j 2.22044605e-16+3.83319562e-17j\n", + " -1.11022302e-16-3.83319562e-17j 1.11022302e-16+3.83319562e-17j\n", + " 5.55111512e-17+1.91659781e-17j 1.38777878e-17+4.79149453e-18j\n", + " 1.11022302e-16+1.91659781e-17j -1.11022302e-16-2.87489672e-17j\n", + " 1.11022302e-16+1.91659781e-17j -1.11022302e-16-3.83319562e-17j\n", + " 2.22044605e-16+5.74979343e-17j 0.00000000e+00+3.83319562e-17j\n", + " -1.73472348e-18-8.98405224e-19j -5.55111512e-17-9.58298905e-18j\n", + " 1.11022302e-16+1.91659781e-17j 1.11022302e-16+2.87489672e-17j\n", + " 2.22044605e-16+3.83319562e-17j 0.00000000e+00-5.74979343e-17j\n", + " -1.11022302e-16-1.91659781e-17j 2.22044605e-16+3.83319562e-17j\n", + " -1.11022302e-16-2.87489672e-17j 2.22044605e-16+5.74979343e-17j\n", + " 0.00000000e+00-1.91659781e-17j -3.46944695e-18-5.98936816e-19j\n", + " 5.55111512e-17+9.58298905e-18j 2.22044605e-16+7.66639124e-17j\n", + " 1.11022302e-16+2.87489672e-17j 1.11022302e-16+3.83319562e-17j\n", + " 2.77555756e-17+7.18724179e-18j 5.55111512e-17+9.58298905e-18j]\n" + ] + } + ], + "source": [ + "\n", + "print(f\"True xi: {xi}, Estimated xi: {xi_hat}\")\n", + "print(f\"Reconstruction error: {np.linalg.norm(x - x_hat)}\")\n", + "print(x - x_hat)" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "id": "0e04931a", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "True xi: (0.71+0.1j), Estimated xi: (0.7131396726543044+0.0976769944537351j)\n", + "Reconstruction error: 21.65740789525703\n", + "(100, 1)\n", + "(100, 1)\n" + ] + }, + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 15, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAioAAAGdCAYAAAA8F1jjAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjcsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvTLEjVAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAJLxJREFUeJzt3QtY1FX+x/EvyE1FIUEuLohoFw21TI28VLa6atrFsqvaYhpupVZim5J5yzV4slqrx8VuaM+mq/lftXLLFjFNn7xFS2opq6ZmKWqWIJqA8vs/5/TMLIOg3H5wZni/nuc487vMcDiMM585v3N+Py/LsiwBAAAwkHd9VwAAAKAiBBUAAGAsggoAADAWQQUAABiLoAIAAIxFUAEAAMYiqAAAAGMRVAAAgLF8xM2VlJTI4cOHpVmzZuLl5VXf1QEAAJWgzjd76tQpadWqlXh7e3tuUFEhJTo6ur6rAQAAquHQoUMSFRXluUFF9aQ4ftHmzZvXd3UAAEAl5Ofn644Gx+d4rQeVzz//XObMmSNZWVly5MgRWbFihQwZMsSlS2f69Ony1ltvycmTJ6VXr16SlpYmV1xxhXOfn3/+WcaPHy8fffSR7vYZOnSovPrqqxIYGFjpejgO96iQQlABAMC9XGrYRrUH054+fVquueYamTdvXrnbX3zxRXnttddk/vz5smXLFmnatKkMGDBAzp4969xn+PDh8s0330hGRoasWrVKh58xY8ZUt0oAAMDDeNXG1ZNVGirdo6KeUg2OmThxojz99NN6XV5enoSHh8vChQvlgQcekF27dsnVV18t27Ztk27duul9Vq9eLYMGDZIffvhBP76yXUdBQUH6+elRAQDAPVT289uW6cn79++X3Nxc6devn3Odqkx8fLxs2rRJL6vb4OBgZ0hR1P7qEJDqgalIYWGh/uVKFwAA4JlsGUyrQoqielBKU8uObeo2LCzMtTI+PtKiRQvnPuVJSUmRmTNn2lFtAEADpY4EnDt3Ts6fP1/fVfEYjRo10p/rNT11iNvN+klOTpakpKQLRg0DAFAdRUVFelLImTNnaMBa1qRJE4mMjBQ/Pz+zgkpERIS+PXr0qK6gg1q+9tprnfscO3bM5XEqzaqZQI7Hl8ff318XAABq46ShariC+vavxkaqD1ROHlo7PVQqAB4/fly3r5rxe7GTutV5UImNjdVhIzMz0xlMVM+HGnvy2GOP6eUePXroactqenPXrl31urVr1+oXjRrLAgCA3dSHqfrcUT3z6ts/ak/jxo3F19dXDh48qNs5ICCgboNKQUGB7N2717msElN2drYeY9K6dWt56qmn5C9/+YtOUSq4TJ06VadVx8ygDh06yMCBAyUxMVFPYS4uLpZx48bpGUGVnfEDAEBtqO63fdjfrtUOKl9++aXccsstzmXHuJGEhAQ9BfmZZ57R51pR50VRPSe9e/fW049LJ6pFixbpcNK3b1/nCd/UuVcAAABq7Twq9YnzqAAAqkudhFQdEVA9/9U9NIHqtW+9nkcFAACgNhBUAACAsdzuPCoAANjtREFhnTZySCCn3agIQQVAnbzpd/3LGpd1Wc/1480Zxir7erXbgdTBVdr/+PHj0qlTJ3niiSfk2Wef1eu++OIL6dOnj3zyySd6koqn4NAPgDrR2OusHOh8my7qPoDqa9mypaSnp8uMGTP0LNxTp07JQw895JxJ60noUQEAwA0NGjRIn4ts+PDh+gK/TZs21dfD8zT0qAAA4KZeeuklffmZZcuW6XOTeeIlZuhRAQCgDDWGyh3s27dPDh8+rC8DcODAAT1uxdMQVAAAcMNZOEVFRTJixAi5//775aqrrpJHHnlEduzYIWFhYeJJOPQDAIAbmjJlij6rq7r0zKRJk+TKK6+UUaNGiachqAAA4GbWrVsnc+fOlb///e/69PPqennq/oYNGyQtLU08CYd+AABwM3369JHi4mKXdW3atNE9LJ6GHhUAAGAsggoAADAWQQUAABiLoAIAAIxFUAEAAMYiqAAAAGMRVAAAgLEIKgAAwFgEFQAAYCyCCgAADciMGTPk2muvFXdBUAEAAFVy4MAB8fLykuzsbLEbQQUAABiLoAIAQFnnTtdtqaLjx49LRESEvPDCC851X3zxhfj5+UlmZmalnkNdbVldyDAoKEgeeOABOXXqlHPb6tWrpXfv3hIcHCwhISFy2223yb59+5zbY2Nj9W2XLl10z4q6SKJduHoyAABlvR9Yt20yzKrS7i1btpT09HQZMmSI9O/fX6666ip56KGHZNy4cdK3b99LPl6FjpUrV8qqVavkl19+kfvuu09SU1Nl9uzZevvp06clKSlJOnfuLAUFBTJt2jS566679KEeb29v2bp1q1x//fWyZs0aiYuL0wHJLgQVAADc0KBBgyQxMVGGDx8u3bp1k6ZNm0pKSkqlHltSUiILFy6UZs2a6WUVclRPjCOoDB061GV/FYpUOPr222+lY8eO+r6ieltUz46dCCoAAJR1X4FbtMlLL72kg8OyZcskKytL/P39K/U4dcjHEVKUyMhIOXbsmHN5z549uhdly5Yt8tNPP+lgo3z//ff659UlggoAABd8OjZ1izbZt2+fHD58WAcJNROnU6dOlXqcr6+vy7IaZ+III8rtt98uMTEx8tZbb0mrVq30NhVQioqKpK4RVAAAcENFRUUyYsQIuf/++/UYlUceeUR27NghYWFhNXreEydOSE5Ojg4pN954o163ceNGl30cY1LOnz8vdiOoAADghqZMmSJ5eXny2muvSWBgoHz88ccyatQoPUC2Ji677DI99uTNN9/Uh4TU4Z7Jkye77KPCUOPGjfXsoKioKAkICNCzh+zA9GQAANzMunXrZO7cuXqKcfPmzfVMHHV/w4YNkpaWVqPnVs+1ZMkSPeZFHe6ZMGGCzJkzx2UfHx8fHZDeeOMNfWjozjvvFLt4WZZVtTlRhsnPz9cpTqVK9ccCYJ4TBYXSe/Yq2dXpHr3cYcf/ycYpt0lIYOUG/gF2OXv2rOzfv1+fF0T1CqDu2reyn9/0qAAAAGMRVAAA8CBxcXF6zEp5ZdGiReJubB1Mq+ZpHzx48IL1jz/+uMybN0+fcnf9+vUu2/70pz/J/Pnz7awWAAAe6+OPP5bi4uJyt4WHh4u7sTWobNu2zWXq0s6dO+UPf/iD3Hvvvc516qx6zz//vHO5SZMmdlYJAACPFhMTI57E1qDiOMWug7qOQLt27eTmm292CSZ2n34XAICLcfN5JR7drt51eWKa9957T8/xVmfAc1DHy0JDQ/UUqOTkZDlz5sxFn6ewsFCPFC5dAACoDscZWi/12YPqcbRr2TPhGnnCN3WVxpMnT8rIkSOd64YNG6a7qNQc7O3bt8ukSZP02fCWL19e4fOoCy7NnDmzjmoNAPBkjRo1kuDgYOd1blQvf+kv06h+T4oKKapdVfuqdjY+qLzzzjty66236lDiMGbMGOd9dX0CdQY8dXlqde0CdYioPKrXRV162kH1qERHR9tcewCAp3IMPyh9UT7UDhVSajq8o06Cipr5s2bNmov2lCjx8fH6du/evRUGFXVlyMpeHRIAgEtRPSjqi7I6LXxFs2VQdepwT016Uuo0qCxYsEC/AAYPHnzR/bKzs/WtesEAAFCX1IdqbXywonbZHlTUpaFVUElISNDXBnBQh3cWL14sgwYN0hc/UmNU1PUEbrrpJuncubPd1QIAAG7A9qCiDvmoKy+q2T5lLxGttqmLKp0+fVqPMxk6dKg899xzdlcJAAC4CduDSv/+/cudR62CSdmz0gIAAJTGtX4AAICxCCoAAMBYBBUAAGAsggoAADAWQQUAABiLoAIAAIxFUAEAAMYiqAAAAGMRVAAAgLEIKgAAwFgEFQAAYCyCCgAAMBZBBQAAGIugAgAAjEVQAQAAxiKoAAAAYxFUAACAsQgqAADAWAQVAABgLIIKAAAwFkEFAAAYy6e+KwAAAMxyoqBQuv5ljcu6rOf6SUigf53XhR4VAABgLIIKAAAwFkEFAAAYi6ACAACMRVABAADGIqgAAABjEVQAAMAFGnudlQOdb9NF3a8vBBUAAGAsggoAADAWQQUAABiLoAIAAIxFUAEAAMYiqAAAgIYZVGbMmCFeXl4upX379s7tZ8+elbFjx0pISIgEBgbK0KFD5ejRo3ZWCQAAuBHbe1Ti4uLkyJEjzrJx40bntgkTJshHH30ky5Ytk/Xr18vhw4fl7rvvtrtKAADATfjY/gN8fCQiIuKC9Xl5efLOO+/I4sWL5fe//71et2DBAunQoYNs3rxZbrjhBrurBgAAGnqPyp49e6RVq1bStm1bGT58uHz//fd6fVZWlhQXF0u/fv2c+6rDQq1bt5ZNmzZV+HyFhYWSn5/vUgAAgGeyNajEx8fLwoULZfXq1ZKWlib79++XG2+8UU6dOiW5ubni5+cnwcHBLo8JDw/X2yqSkpIiQUFBzhIdHW3nrwAAADz10M+tt97qvN+5c2cdXGJiYuT999+Xxo0bV+s5k5OTJSkpybmselQIKwAAeKY6nZ6sek+uvPJK2bt3rx63UlRUJCdPnnTZR836KW9Mi4O/v780b97cpQAAAM9Up0GloKBA9u3bJ5GRkdK1a1fx9fWVzMxM5/acnBw9hqVHjx51WS0AANAQD/08/fTTcvvtt+vDPWrq8fTp06VRo0by4IMP6vElo0eP1odxWrRooXtGxo8fr0MKM34AAIDtQeWHH37QoeTEiRPSsmVL6d27t556rO4rf/3rX8Xb21uf6E3N5hkwYID87W9/4y8DAADsDypLliy56PaAgACZN2+eLgAAAGVxrR8AAGAsggoAADAWQQUAABiLoAIAAIxFUAEAAMYiqAAAAGMRVAAAgLEIKgAAwFgEFQAAYCyCCgAAMBZBBQAAGIugAgAAjEVQAQAAxiKoAAAAYxFUAACAsQgqAADAWAQVAABgLIIKAAAwFkEFAAAYi6ACAACMRVABAADGIqgAAABjEVQAAICxCCoAAMBYBBUAAGAsggoAADAWQQWAZzp3WmSx129F3QfglggqAADAWAQVAABgLIIKAI9zoqBQOkxd7VxW99U6AO6HoAIAAIxFUAEAAMYiqAAAAGMRVAAAgLEIKgAAoGEGlZSUFOnevbs0a9ZMwsLCZMiQIZKTk+OyT58+fcTLy8ulPProo3ZWCwAAuAlbg8r69etl7NixsnnzZsnIyJDi4mLp37+/nD7tepbIxMREOXLkiLO8+OKLdlYLAAC4CR87n3z16v+dx0BZuHCh7lnJysqSm266ybm+SZMmEhERYWdVAACAG6rTMSp5eXn6tkWLFi7rFy1aJKGhodKxY0dJTk6WM2fOVPgchYWFkp+f71IAAIBnsrVHpbSSkhJ56qmnpFevXjqQOAwbNkxiYmKkVatWsn37dpk0aZIex7J8+fIKx73MnDmzrqoNAAAaQlBRY1V27twpGzdudFk/ZswY5/1OnTpJZGSk9O3bV/bt2yft2rW74HlUj0tSUpJzWfWoREdH21x7AADgsUFl3LhxsmrVKvn8888lKirqovvGx8fr271795YbVPz9/XUBAACez9agYlmWjB8/XlasWCHr1q2T2NjYSz4mOztb36qeFQAA0LD52H24Z/HixfLBBx/oc6nk5ubq9UFBQdK4cWN9eEdtHzRokISEhOgxKhMmTNAzgjp37mxn1QAAQEMPKmlpac6TupW2YMECGTlypPj5+cmaNWtk7ty5+twqaqzJ0KFD5bnnnrOzWgAAwE3YfujnYlQwUSeFAwAAKA/X+gEAAMYiqAAAAGMRVAAAgLEIKgAAwFgEFQAAYCyCCgAAMBZBBQAAGIugAgAAjEVQAQAAxiKoAAAAYxFUAACAsQgqAADAWAQVAABgLIIKAAAwFkEFAAAYi6ACAACMRVABAADGIqgAAABjEVQAAICxCCoAAMBYBBUAAGAsggoAADAWQQUAABiLoAIAAIxFUAEAAMYiqAAAAGMRVAAAgLEIKgAAwFgEFaCsc6dFFnv9VtR9AEC9IagAAABjEVQAAICxCCoAAMBYBBUAAGAsggoAADAWQQUAABjLiKAyb948adOmjQQEBEh8fLxs3bq1vqsEAAAMUO9BZenSpZKUlCTTp0+Xr776Sq655hoZMGCAHDt2rL6rBgAAGnpQeeWVVyQxMVEefvhhufrqq2X+/PnSpEkTSU9Pr++qAQCAhhxUioqKJCsrS/r16/e/Cnl76+VNmzaV+5jCwkLJz893KUC5OMMsALg9n/r84T/99JOcP39ewsPDXdar5d27d5f7mJSUFJk5c6b9H3DvB/52/74CEZ+mtfK0JwoKpffsVbKr0z16ucOO/5ONU26TkEB/qTM2/W71/rPKo37eMKvuHldHynsdKfX6urrE3z/kvgLZlTJURH5r1102/2j1u9flz7NLrb5n1Pf/x+r+blWstxHvs7Wlsr/7udr/25r0f6jeD/1UVXJysuTl5TnLoUOH6rtKAADUPseXpmFWvQfLBtujEhoaKo0aNZKjR4+6rFfLERER5T7G399fFwAA4PnqtUfFz89PunbtKpmZmc51JSUlerlHjx71WTUAANDQe1QUNTU5ISFBunXrJtdff73MnTtXTp8+rWcBwc0ZPtYDAGC+eg8q999/vxw/flymTZsmubm5cu2118rq1asvGGALAAAannoPKsq4ceN0QR2glwMA4EaMCCoAPBChGEBDnJ4MAAAaDnpUym0VBoECgBF4P27wCCoAALgzH8/+cs2hHwAAYCyCCgAAMBaHfgCgIfDwwwPwXPSoAAAAYxFUAACAsQgqAADAWAQVAABgLIIKAAAwFkEFAAAYi6ACAACMRVABAADGIqgAAABjEVQAAICxCCoAAMBYBBUAAGAsggoAADAWQQUAABiLoAIAAIxFUAEAAMYiqAAAAGMRVAAAgLEIKgAAwFgEFQAAYCyCCgAAMBZBBQAAGIugAgAAjEVQAQAAxiKoAAAAYxFUAACAsQgqAADAWAQVAADQsILKgQMHZPTo0RIbGyuNGzeWdu3ayfTp06WoqMhlHy8vrwvK5s2b7agSAABwQz52POnu3bulpKRE3njjDbn88stl586dkpiYKKdPn5aXXnrJZd81a9ZIXFycczkkJMSOKgEAADdkS1AZOHCgLg5t27aVnJwcSUtLuyCoqGASERFhRzUAAICbq7MxKnl5edKiRYsL1t9xxx0SFhYmvXv3lg8//LCuqgMAABpqj0pZe/fulddff92lNyUwMFBefvll6dWrl3h7e8s///lPGTJkiKxcuVKHl4oUFhbq4pCfn297/QEAgBv0qEyePLncAbClixqfUtqPP/6oDwPde++9epyKQ2hoqCQlJUl8fLx0795dUlNTZcSIETJnzpyL1iElJUWCgoKcJTo6uqq/MwAA8MQelYkTJ8rIkSMvuo8aj+Jw+PBhueWWW6Rnz57y5ptvXvL5VWjJyMi46D7Jyck64JTuUSGsAADgmaoUVFq2bKlLZaieFBVSunbtKgsWLNCHdy4lOztbIiMjL7qPv7+/LgAAwPPZMkZFhZQ+ffpITEyMHpdy/Phx5zbHDJ93331X/Pz8pEuXLnp5+fLlkp6eLm+//bYdVQIAAG7IlqCiDt+oAbSqREVFuWyzLMt5f9asWXLw4EHx8fGR9u3by9KlS+Wee+6xo0oAAMAN2RJU1DiWS41lSUhI0AUAAKAiXOsHAAAYi6ACAACMRVABAADGIqgAAABjEVQAAICxCCoAAMBYBBUAAGAsggoAADAWQQUAABiLoAIAAIxFUAEAAMYiqAAAAGMRVAAAgLEIKgAAwFgEFQBAnQsJ9JddswY6l9V9tQ4oi6ACAACM5VPfFWhofrUCpM32VfVdDQCofz5NRYZZ9V0LGI4eFQAAYCyCCgAAMBZBBQAAGIugAgAAjMVg2jqkpt4dSB1clz8SAAC3Ro8KAAAwFkEFAAAYi6ACAACMRVABAADGIqgAAABjEVQAAICxCCoAAMBYBBUAAGAsggoAADAWQQUAABiLoAIAAIxFUAEAAMYiqAAAgIYXVNq0aSNeXl4uJTU11WWf7du3y4033igBAQESHR0tL774ol3VATzar1aAtNm+Shd1HwA8hY+dT/78889LYmKic7lZs2bO+/n5+dK/f3/p16+fzJ8/X3bs2CGjRo2S4OBgGTNmjJ3VAgAAbsLWoKKCSURERLnbFi1aJEVFRZKeni5+fn4SFxcn2dnZ8sorrxBUAACA/WNU1KGekJAQ6dKli8yZM0fOnTvn3LZp0ya56aabdEhxGDBggOTk5Mgvv/xiZ7UAj5P1XD85kDrYWUIC/eu7SgBgdo/KE088Idddd520aNFCvvjiC0lOTpYjR47oHhMlNzdXYmNjXR4THh7u3HbZZZeV+7yFhYW6lD6EBAAAPFOVelQmT558wQDZsmX37t1636SkJOnTp4907txZHn30UXn55Zfl9ddfdwkZ1ZGSkiJBQUHOogbhAgAAz1SlHpWJEyfKyJEjL7pP27Zty10fHx+vD/0cOHBArrrqKj125ejRoy77OJYrGteiqJ4ZFYJK96gQVgB4InUIb9esgSLv/7as7/twWA8NS5WCSsuWLXWpDjVQ1tvbW8LCwvRyjx49ZMqUKVJcXCy+vr56XUZGhg4xFR32Ufz9/XUBgAbBp6nIMKu+awF41mBaNVB27ty58vXXX8t3332nZ/hMmDBBRowY4Qwhw4YN0wNpR48eLd98840sXbpUXn31VZfeEgAA0LDZMphW9XgsWbJEZsyYocekqEGzKqiUDiFqfMm///1vGTt2rHTt2lVCQ0Nl2rRpTE0GAAD2BhU122fz5s2X3E8NtN2wYYMdVQAAAB6Aa/0AAABjEVQAAICxCCoAAMBYBBUAAGAsggoAADAWQQUAABiLoAIAAIxFUAEAAMYiqAAAAGMRVAAAgLEIKgAAwFgEFQAAYCyCCgAAMBZBBQAAGIugAgAAjEVQAQAAxiKoAAAAYxFUAACAsQgqAADAWAQVAABgLIIKAAAwFkEFAAAYi6ACAACMRVABAADGIqgAAABjEVQAAICxCCoAAMBYBBUAAGAsggoAADAWQQUAABiLoAIAAIxFUAEAAMYiqAAAAGMRVAAAgLEIKgAAwFgEFQAA0LCCyrp168TLy6vcsm3bNr3PgQMHyt2+efNmO6oEAADckI8dT9qzZ085cuSIy7qpU6dKZmamdOvWzWX9mjVrJC4uzrkcEhJiR5UAAIAbsiWo+Pn5SUREhHO5uLhYPvjgAxk/frzuNSlNBZPS+wIAANTpGJUPP/xQTpw4IQ8//PAF2+644w4JCwuT3r176/0upbCwUPLz810KAADwTHUSVN555x0ZMGCAREVFOdcFBgbKyy+/LMuWLZN//etfOqgMGTLkkmElJSVFgoKCnCU6OroOfgMAAGB8UJk8eXKFg2QdZffu3S6P+eGHH+TTTz+V0aNHu6wPDQ2VpKQkiY+Pl+7du0tqaqqMGDFC5syZc9E6JCcnS15enrMcOnSoKr8CAADw1DEqEydOlJEjR150n7Zt27osL1iwQI9DUYd4LkWFloyMjIvu4+/vrwsAAPB8VQoqLVu21KWyLMvSQeWPf/yj+Pr6XnL/7OxsiYyMrEqVAACAB7Nl1o/D2rVrZf/+/fLII49csO3dd9/Vs4O6dOmil5cvXy7p6eny9ttv21klAADgRnzsHkSrzqnSvn37crfPmjVLDh48KD4+PnqfpUuXyj333GNnlQAAgBuxNagsXry4wm0JCQm6AAAAVIRr/QAAAGMRVAAAgLEIKgAAoGGOUQFgj1+tAGmzfRXNC8Dj0aMCAACMRVABAADGIqgAAABjEVQAAICxCCoAAMBYBBUAAGAsggoAADAW51EB3ExIoL8cSB1c39UAjMV5hjwLPSoAAMBYBBUAAGAsggoAADAWQQUAABiLwbQAAI/BYHPPQ48KAAAwFkEFAAAYi6ACAACMRVABAADGIqgAAABjEVQAAICxCCoAAMBYBBUAAGAsggoAADAWQQUAABiLoAIAAIxFUAEAAMYiqAAAAGMRVAAAgLEIKgAAwFg+4uYsy9K3+fn59V0VAABQSY7PbcfnuMcGlVOnTunb6Ojo+q4KAACoxud4UFBQhdu9rEtFGcOVlJTI4cOHpVmzZuLl5VWrSU+Fn0OHDknz5s1r7XlBW9c3Xtu0tSfide1+ba3ihwoprVq1Em9vb8/tUVG/XFRUlG3Pr/4IBJW6QVvXLdqbtvZEvK7dq60v1pPiwGBaAABgLIIKAAAwFkGlAv7+/jJ9+nR9C3vR1nWL9qatPRGva89ta7cfTAsAADwXPSoAAMBYBBUAAGAsggoAADAWQQUAABiLoFKBefPmSZs2bSQgIEDi4+Nl69atdfuX8UApKSnSvXt3fRbhsLAwGTJkiOTk5Ljsc/bsWRk7dqyEhIRIYGCgDB06VI4ePVpvdfYUqamp+szNTz31lHMdbV17fvzxRxkxYoR+3TZu3Fg6deokX375pXO7mrMwbdo0iYyM1Nv79esne/bsqcUaNAznz5+XqVOnSmxsrG7Hdu3ayaxZs1yuFUNbV8/nn38ut99+uz5LrHqvWLlypcv2yrTrzz//LMOHD9cngQsODpbRo0dLQUFBNWvk+sNRxpIlSyw/Pz8rPT3d+uabb6zExEQrODjYOnr0KG1VAwMGDLAWLFhg7dy508rOzrYGDRpktW7d2iooKHDu8+ijj1rR0dFWZmam9eWXX1o33HCD1bNnT9q9BrZu3Wq1adPG6ty5s/Xkk0/S1rXs559/tmJiYqyRI0daW7Zssb777jvr008/tfbu3evcJzU11QoKCrJWrlxpff3119Ydd9xhxcbGWr/++mttV8ejzZ492woJCbFWrVpl7d+/31q2bJkVGBhovfrqq859aOvq+fjjj60pU6ZYy5cvV6nPWrFihcv2yrTrwIEDrWuuucbavHmztWHDBuvyyy+3HnzwQaumCCrluP76662xY8c6l8+fP2+1atXKSklJqXGD43+OHTum/0OsX79eL588edLy9fXVbz4Ou3bt0vts2rSJpquGU6dOWVdccYWVkZFh3Xzzzc6gQlvXnkmTJlm9e/eucHtJSYkVERFhzZkzx7lOtb+/v7/1j3/8oxZr4vkGDx5sjRo1ymXd3XffbQ0fPlzfp61rR9mgUpl2/fbbb/Xjtm3b5tznk08+sby8vKwff/yxRvXh0E8ZRUVFkpWVpbu1Sl9PSC1v2rSp5l1YcMrLy9O3LVq00Leq3YuLi13avn379tK6dWvavprUYbTBgwe7tCltXbs+/PBD6datm9x77736kGaXLl3krbfecm7fv3+/5ObmuvwN1PVN1CFl3lOqpmfPnpKZmSn//e9/9fLXX38tGzdulFtvvZW2tlFlXsPqVh3uUf8XHNT+6vNzy5YtNfr5bn9Rwtr2008/6eOg4eHhLuvV8u7du+utXp5GXfVajZfo1auXdOzYUa9T/xH8/Pz0i71s26ttqJolS5bIV199Jdu2bbtgG21de7777jtJS0uTpKQkefbZZ3V7P/HEE/q1nJCQ4Hztlveewuu6aiZPnqyv3Ku+wDRq1Ei/V8+ePVuPi1Boa3tUpl3VrQrqpfn4+OgvojV9nRNUUG/f9Hfu3Km/DaH2qcuvP/nkk5KRkaEHhMPe0K2+Rb7wwgt6WfWoqNf2/PnzdVBB7Xn//fdl0aJFsnjxYomLi5Ps7Gz9hUcNAKWtPReHfsoIDQ3VSb3sTBO1HBERUZd/G481btw4WbVqlXz22WcSFRXlXK/aVx16O3nypMv+tH3VqcNox44dk+uuu05/q1Fl/fr18tprr+n76psQbV071CyIq6++2mVdhw4d5Pvvv9f3He8bvKfU3J///Gfdq/LAAw/omVUPPfSQTJgwQc8opK3tU5nXsLpV7zmlnTt3Ts8EqulnJ0GlDNVd27VrV30ctPQ3JrXco0ePGjV2Q6fGaKmQsmLFClm7dq2eYliaandfX1+XtlfTl9UbPm1fNX379pUdO3bob5yOor71qy5yx33aunaow5dlp9mrMRQxMTH6vnqdqzfq0q9rdfhCHbfndV01Z86c0WMeSlNfLNV7NG1tn8q8htWt+pKpviQ5qPd59bdRY1lqpEZDcT14erIazbxw4UI9knnMmDF6enJubm59V82tPfbYY3p627p166wjR444y5kzZ1ymJ6spy2vXrtXTk3v06KELaq70rB/aunanf/v4+Oips3v27LEWLVpkNWnSxHrvvfdcpnaq95APPvjA2r59u3XnnXcyPbkaEhISrN/97nfO6clqKm1oaKj1zDPP0Na1MEPwP//5jy4qGrzyyiv6/sGDByv9GlbTk7t06aKn6W/cuFHPOGR6so1ef/11/YGpzqeipiureeGoGfXiL6+oc6s4qBf9448/bl122WX6zf6uu+7SYQa1H1Ro69rz0UcfWR07dtRfcNq3b2+9+eabLtvV9M6pU6da4eHhep++fftaOTk5tViDhiE/P1+/htV7c0BAgNW2bVt97o/CwkLnPrR19Xz22Wflvj+rcFjZdj1x4oQOJurcNs2bN7cefvhhHYBqykv9U7M+GQAAAHswRgUAABiLoAIAAIxFUAEAAMYiqAAAAGMRVAAAgLEIKgAAwFgEFQAAYCyCCgAAMBZBBQAAGIugAgAAjEVQAQAAxiKoAAAAMdX/A+uK82pEzfN9AAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "from src.algorithms import psomp, find_x_xi\n", + "from src.utils import apply_iq_imbalance, iq_imbalanced_measurement, generate_random_phase_matrix, unitary_dft\n", + "from src.data_generation import generate_sparse_vector\n", + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "\n", + "xi = 0.71 + 0.1j\n", + "n = 100\n", + "m = 50\n", + "s = 10\n", + "amp = 100\n", + "x = generate_sparse_vector(s,n,amp)\n", + "F = generate_random_phase_matrix(m,n)\n", + "U = unitary_dft(n)\n", + "A = F @ U\n", + "y = iq_imbalanced_measurement(A,x, xi,1)\n", + "z_hat = psomp(A,y,2*s)\n", + "x_hat, xi_hat = find_x_xi(z_hat)\n", + "print(f\"True xi: {xi}, Estimated xi: {xi_hat}\")\n", + "print(f\"Reconstruction error: {np.linalg.norm(x - x_hat)}\")\n", + "print(x.shape)\n", + "print(x_hat.shape)\n", + "\n", + "indices = range(len(x_hat))\n", + "plt.vlines(indices,0,x,linewidth=3)\n", + "plt.vlines(indices,0,x_hat,colors=\"orange\")\n", + "\n", + "plt.legend((\"x\",\"x_hat\"))" + ] + }, + { + "cell_type": "markdown", + "id": "e2e17fd1", + "metadata": {}, + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "compression", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.12.3" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/uv.lock b/uv.lock new file mode 100644 index 0000000..95d9991 --- /dev/null +++ b/uv.lock @@ -0,0 +1,1286 @@ +version = 1 +revision = 3 +requires-python = ">=3.12" + +[[package]] +name = "appnope" +version = "0.1.4" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/35/5d/752690df9ef5b76e169e68d6a129fa6d08a7100ca7f754c89495db3c6019/appnope-0.1.4.tar.gz", hash = "sha256:1de3860566df9caf38f01f86f65e0e13e379af54f9e4bee1e66b48f2efffd1ee", size = 4170, upload-time = "2024-02-06T09:43:11.258Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/81/29/5ecc3a15d5a33e31b26c11426c45c501e439cb865d0bff96315d86443b78/appnope-0.1.4-py2.py3-none-any.whl", hash = "sha256:502575ee11cd7a28c0205f379b525beefebab9d161b7c964670864014ed7213c", size = 4321, upload-time = "2024-02-06T09:43:09.663Z" }, +] + +[[package]] +name = "asttokens" +version = "3.0.1" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/be/a5/8e3f9b6771b0b408517c82d97aed8f2036509bc247d46114925e32fe33f0/asttokens-3.0.1.tar.gz", hash = "sha256:71a4ee5de0bde6a31d64f6b13f2293ac190344478f081c3d1bccfcf5eacb0cb7", size = 62308, upload-time = "2025-11-15T16:43:48.578Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/d2/39/e7eaf1799466a4aef85b6a4fe7bd175ad2b1c6345066aa33f1f58d4b18d0/asttokens-3.0.1-py3-none-any.whl", hash = "sha256:15a3ebc0f43c2d0a50eeafea25e19046c68398e487b9f1f5b517f7c0f40f976a", size = 27047, upload-time = "2025-11-15T16:43:16.109Z" }, +] + +[[package]] +name = "cffi" +version = "2.0.0" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "pycparser", marker = "implementation_name != 'PyPy'" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/eb/56/b1ba7935a17738ae8453301356628e8147c79dbb825bcbc73dc7401f9846/cffi-2.0.0.tar.gz", hash = "sha256:44d1b5909021139fe36001ae048dbdde8214afa20200eda0f64c068cac5d5529", size = 523588, upload-time = "2025-09-08T23:24:04.541Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/ea/47/4f61023ea636104d4f16ab488e268b93008c3d0bb76893b1b31db1f96802/cffi-2.0.0-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:6d02d6655b0e54f54c4ef0b94eb6be0607b70853c45ce98bd278dc7de718be5d", size = 185271, upload-time = "2025-09-08T23:22:44.795Z" }, + { url = "https://files.pythonhosted.org/packages/df/a2/781b623f57358e360d62cdd7a8c681f074a71d445418a776eef0aadb4ab4/cffi-2.0.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:8eca2a813c1cb7ad4fb74d368c2ffbbb4789d377ee5bb8df98373c2cc0dee76c", size = 181048, upload-time = "2025-09-08T23:22:45.938Z" }, + { url = "https://files.pythonhosted.org/packages/ff/df/a4f0fbd47331ceeba3d37c2e51e9dfc9722498becbeec2bd8bc856c9538a/cffi-2.0.0-cp312-cp312-manylinux1_i686.manylinux2014_i686.manylinux_2_17_i686.manylinux_2_5_i686.whl", hash = "sha256:21d1152871b019407d8ac3985f6775c079416c282e431a4da6afe7aefd2bccbe", size = 212529, upload-time = "2025-09-08T23:22:47.349Z" }, + { url = "https://files.pythonhosted.org/packages/d5/72/12b5f8d3865bf0f87cf1404d8c374e7487dcf097a1c91c436e72e6badd83/cffi-2.0.0-cp312-cp312-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:b21e08af67b8a103c71a250401c78d5e0893beff75e28c53c98f4de42f774062", size = 220097, upload-time = "2025-09-08T23:22:48.677Z" }, + { url = "https://files.pythonhosted.org/packages/c2/95/7a135d52a50dfa7c882ab0ac17e8dc11cec9d55d2c18dda414c051c5e69e/cffi-2.0.0-cp312-cp312-manylinux2014_ppc64le.manylinux_2_17_ppc64le.whl", hash = "sha256:1e3a615586f05fc4065a8b22b8152f0c1b00cdbc60596d187c2a74f9e3036e4e", size = 207983, upload-time = "2025-09-08T23:22:50.06Z" }, + { url = "https://files.pythonhosted.org/packages/3a/c8/15cb9ada8895957ea171c62dc78ff3e99159ee7adb13c0123c001a2546c1/cffi-2.0.0-cp312-cp312-manylinux2014_s390x.manylinux_2_17_s390x.whl", hash = "sha256:81afed14892743bbe14dacb9e36d9e0e504cd204e0b165062c488942b9718037", size = 206519, upload-time = "2025-09-08T23:22:51.364Z" }, + { url = "https://files.pythonhosted.org/packages/78/2d/7fa73dfa841b5ac06c7b8855cfc18622132e365f5b81d02230333ff26e9e/cffi-2.0.0-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:3e17ed538242334bf70832644a32a7aae3d83b57567f9fd60a26257e992b79ba", size = 219572, upload-time = "2025-09-08T23:22:52.902Z" }, + { url = "https://files.pythonhosted.org/packages/07/e0/267e57e387b4ca276b90f0434ff88b2c2241ad72b16d31836adddfd6031b/cffi-2.0.0-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:3925dd22fa2b7699ed2617149842d2e6adde22b262fcbfada50e3d195e4b3a94", size = 222963, upload-time = "2025-09-08T23:22:54.518Z" }, + { url = "https://files.pythonhosted.org/packages/b6/75/1f2747525e06f53efbd878f4d03bac5b859cbc11c633d0fb81432d98a795/cffi-2.0.0-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:2c8f814d84194c9ea681642fd164267891702542f028a15fc97d4674b6206187", size = 221361, upload-time = "2025-09-08T23:22:55.867Z" }, + { url = "https://files.pythonhosted.org/packages/7b/2b/2b6435f76bfeb6bbf055596976da087377ede68df465419d192acf00c437/cffi-2.0.0-cp312-cp312-win32.whl", hash = "sha256:da902562c3e9c550df360bfa53c035b2f241fed6d9aef119048073680ace4a18", size = 172932, upload-time = "2025-09-08T23:22:57.188Z" }, + { url = "https://files.pythonhosted.org/packages/f8/ed/13bd4418627013bec4ed6e54283b1959cf6db888048c7cf4b4c3b5b36002/cffi-2.0.0-cp312-cp312-win_amd64.whl", hash = "sha256:da68248800ad6320861f129cd9c1bf96ca849a2771a59e0344e88681905916f5", size = 183557, upload-time = "2025-09-08T23:22:58.351Z" }, + { url = "https://files.pythonhosted.org/packages/95/31/9f7f93ad2f8eff1dbc1c3656d7ca5bfd8fb52c9d786b4dcf19b2d02217fa/cffi-2.0.0-cp312-cp312-win_arm64.whl", hash = "sha256:4671d9dd5ec934cb9a73e7ee9676f9362aba54f7f34910956b84d727b0d73fb6", size = 177762, upload-time = "2025-09-08T23:22:59.668Z" }, + { url = "https://files.pythonhosted.org/packages/4b/8d/a0a47a0c9e413a658623d014e91e74a50cdd2c423f7ccfd44086ef767f90/cffi-2.0.0-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:00bdf7acc5f795150faa6957054fbbca2439db2f775ce831222b66f192f03beb", size = 185230, upload-time = "2025-09-08T23:23:00.879Z" }, + { url = "https://files.pythonhosted.org/packages/4a/d2/a6c0296814556c68ee32009d9c2ad4f85f2707cdecfd7727951ec228005d/cffi-2.0.0-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:45d5e886156860dc35862657e1494b9bae8dfa63bf56796f2fb56e1679fc0bca", size = 181043, upload-time = "2025-09-08T23:23:02.231Z" }, + { url = "https://files.pythonhosted.org/packages/b0/1e/d22cc63332bd59b06481ceaac49d6c507598642e2230f201649058a7e704/cffi-2.0.0-cp313-cp313-manylinux1_i686.manylinux2014_i686.manylinux_2_17_i686.manylinux_2_5_i686.whl", hash = "sha256:07b271772c100085dd28b74fa0cd81c8fb1a3ba18b21e03d7c27f3436a10606b", size = 212446, upload-time = "2025-09-08T23:23:03.472Z" }, + { url = "https://files.pythonhosted.org/packages/a9/f5/a2c23eb03b61a0b8747f211eb716446c826ad66818ddc7810cc2cc19b3f2/cffi-2.0.0-cp313-cp313-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:d48a880098c96020b02d5a1f7d9251308510ce8858940e6fa99ece33f610838b", size = 220101, upload-time = "2025-09-08T23:23:04.792Z" }, + { url = "https://files.pythonhosted.org/packages/f2/7f/e6647792fc5850d634695bc0e6ab4111ae88e89981d35ac269956605feba/cffi-2.0.0-cp313-cp313-manylinux2014_ppc64le.manylinux_2_17_ppc64le.whl", hash = "sha256:f93fd8e5c8c0a4aa1f424d6173f14a892044054871c771f8566e4008eaa359d2", size = 207948, upload-time = "2025-09-08T23:23:06.127Z" }, + { url = "https://files.pythonhosted.org/packages/cb/1e/a5a1bd6f1fb30f22573f76533de12a00bf274abcdc55c8edab639078abb6/cffi-2.0.0-cp313-cp313-manylinux2014_s390x.manylinux_2_17_s390x.whl", hash = "sha256:dd4f05f54a52fb558f1ba9f528228066954fee3ebe629fc1660d874d040ae5a3", size = 206422, upload-time = "2025-09-08T23:23:07.753Z" }, + { url = "https://files.pythonhosted.org/packages/98/df/0a1755e750013a2081e863e7cd37e0cdd02664372c754e5560099eb7aa44/cffi-2.0.0-cp313-cp313-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:c8d3b5532fc71b7a77c09192b4a5a200ea992702734a2e9279a37f2478236f26", size = 219499, upload-time = "2025-09-08T23:23:09.648Z" }, + { url = "https://files.pythonhosted.org/packages/50/e1/a969e687fcf9ea58e6e2a928ad5e2dd88cc12f6f0ab477e9971f2309b57c/cffi-2.0.0-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:d9b29c1f0ae438d5ee9acb31cadee00a58c46cc9c0b2f9038c6b0b3470877a8c", size = 222928, upload-time = "2025-09-08T23:23:10.928Z" }, + { url = "https://files.pythonhosted.org/packages/36/54/0362578dd2c9e557a28ac77698ed67323ed5b9775ca9d3fe73fe191bb5d8/cffi-2.0.0-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:6d50360be4546678fc1b79ffe7a66265e28667840010348dd69a314145807a1b", size = 221302, upload-time = "2025-09-08T23:23:12.42Z" }, + { url = "https://files.pythonhosted.org/packages/eb/6d/bf9bda840d5f1dfdbf0feca87fbdb64a918a69bca42cfa0ba7b137c48cb8/cffi-2.0.0-cp313-cp313-win32.whl", hash = "sha256:74a03b9698e198d47562765773b4a8309919089150a0bb17d829ad7b44b60d27", size = 172909, upload-time = "2025-09-08T23:23:14.32Z" }, + { url = "https://files.pythonhosted.org/packages/37/18/6519e1ee6f5a1e579e04b9ddb6f1676c17368a7aba48299c3759bbc3c8b3/cffi-2.0.0-cp313-cp313-win_amd64.whl", hash = "sha256:19f705ada2530c1167abacb171925dd886168931e0a7b78f5bffcae5c6b5be75", size = 183402, upload-time = "2025-09-08T23:23:15.535Z" }, + { url = "https://files.pythonhosted.org/packages/cb/0e/02ceeec9a7d6ee63bb596121c2c8e9b3a9e150936f4fbef6ca1943e6137c/cffi-2.0.0-cp313-cp313-win_arm64.whl", hash = "sha256:256f80b80ca3853f90c21b23ee78cd008713787b1b1e93eae9f3d6a7134abd91", size = 177780, upload-time = "2025-09-08T23:23:16.761Z" }, + { url = "https://files.pythonhosted.org/packages/92/c4/3ce07396253a83250ee98564f8d7e9789fab8e58858f35d07a9a2c78de9f/cffi-2.0.0-cp314-cp314-macosx_10_13_x86_64.whl", hash = "sha256:fc33c5141b55ed366cfaad382df24fe7dcbc686de5be719b207bb248e3053dc5", size = 185320, upload-time = "2025-09-08T23:23:18.087Z" }, + { url = "https://files.pythonhosted.org/packages/59/dd/27e9fa567a23931c838c6b02d0764611c62290062a6d4e8ff7863daf9730/cffi-2.0.0-cp314-cp314-macosx_11_0_arm64.whl", hash = "sha256:c654de545946e0db659b3400168c9ad31b5d29593291482c43e3564effbcee13", size = 181487, upload-time = "2025-09-08T23:23:19.622Z" }, + { url = "https://files.pythonhosted.org/packages/d6/43/0e822876f87ea8a4ef95442c3d766a06a51fc5298823f884ef87aaad168c/cffi-2.0.0-cp314-cp314-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:24b6f81f1983e6df8db3adc38562c83f7d4a0c36162885ec7f7b77c7dcbec97b", size = 220049, upload-time = "2025-09-08T23:23:20.853Z" }, + { url = "https://files.pythonhosted.org/packages/b4/89/76799151d9c2d2d1ead63c2429da9ea9d7aac304603de0c6e8764e6e8e70/cffi-2.0.0-cp314-cp314-manylinux2014_ppc64le.manylinux_2_17_ppc64le.whl", hash = "sha256:12873ca6cb9b0f0d3a0da705d6086fe911591737a59f28b7936bdfed27c0d47c", size = 207793, upload-time = "2025-09-08T23:23:22.08Z" }, + { url = "https://files.pythonhosted.org/packages/bb/dd/3465b14bb9e24ee24cb88c9e3730f6de63111fffe513492bf8c808a3547e/cffi-2.0.0-cp314-cp314-manylinux2014_s390x.manylinux_2_17_s390x.whl", hash = "sha256:d9b97165e8aed9272a6bb17c01e3cc5871a594a446ebedc996e2397a1c1ea8ef", size = 206300, upload-time = "2025-09-08T23:23:23.314Z" }, + { url = "https://files.pythonhosted.org/packages/47/d9/d83e293854571c877a92da46fdec39158f8d7e68da75bf73581225d28e90/cffi-2.0.0-cp314-cp314-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:afb8db5439b81cf9c9d0c80404b60c3cc9c3add93e114dcae767f1477cb53775", size = 219244, upload-time = "2025-09-08T23:23:24.541Z" }, + { url = "https://files.pythonhosted.org/packages/2b/0f/1f177e3683aead2bb00f7679a16451d302c436b5cbf2505f0ea8146ef59e/cffi-2.0.0-cp314-cp314-musllinux_1_2_aarch64.whl", hash = "sha256:737fe7d37e1a1bffe70bd5754ea763a62a066dc5913ca57e957824b72a85e205", size = 222828, upload-time = "2025-09-08T23:23:26.143Z" }, + { url = "https://files.pythonhosted.org/packages/c6/0f/cafacebd4b040e3119dcb32fed8bdef8dfe94da653155f9d0b9dc660166e/cffi-2.0.0-cp314-cp314-musllinux_1_2_x86_64.whl", hash = "sha256:38100abb9d1b1435bc4cc340bb4489635dc2f0da7456590877030c9b3d40b0c1", size = 220926, upload-time = "2025-09-08T23:23:27.873Z" }, + { url = "https://files.pythonhosted.org/packages/3e/aa/df335faa45b395396fcbc03de2dfcab242cd61a9900e914fe682a59170b1/cffi-2.0.0-cp314-cp314-win32.whl", hash = "sha256:087067fa8953339c723661eda6b54bc98c5625757ea62e95eb4898ad5e776e9f", size = 175328, upload-time = "2025-09-08T23:23:44.61Z" }, + { url = "https://files.pythonhosted.org/packages/bb/92/882c2d30831744296ce713f0feb4c1cd30f346ef747b530b5318715cc367/cffi-2.0.0-cp314-cp314-win_amd64.whl", hash = "sha256:203a48d1fb583fc7d78a4c6655692963b860a417c0528492a6bc21f1aaefab25", size = 185650, upload-time = "2025-09-08T23:23:45.848Z" }, + { url = "https://files.pythonhosted.org/packages/9f/2c/98ece204b9d35a7366b5b2c6539c350313ca13932143e79dc133ba757104/cffi-2.0.0-cp314-cp314-win_arm64.whl", hash = "sha256:dbd5c7a25a7cb98f5ca55d258b103a2054f859a46ae11aaf23134f9cc0d356ad", size = 180687, upload-time = "2025-09-08T23:23:47.105Z" }, + { url = "https://files.pythonhosted.org/packages/3e/61/c768e4d548bfa607abcda77423448df8c471f25dbe64fb2ef6d555eae006/cffi-2.0.0-cp314-cp314t-macosx_10_13_x86_64.whl", hash = "sha256:9a67fc9e8eb39039280526379fb3a70023d77caec1852002b4da7e8b270c4dd9", size = 188773, upload-time = "2025-09-08T23:23:29.347Z" }, + { url = "https://files.pythonhosted.org/packages/2c/ea/5f76bce7cf6fcd0ab1a1058b5af899bfbef198bea4d5686da88471ea0336/cffi-2.0.0-cp314-cp314t-macosx_11_0_arm64.whl", hash = "sha256:7a66c7204d8869299919db4d5069a82f1561581af12b11b3c9f48c584eb8743d", size = 185013, upload-time = "2025-09-08T23:23:30.63Z" }, + { url = "https://files.pythonhosted.org/packages/be/b4/c56878d0d1755cf9caa54ba71e5d049479c52f9e4afc230f06822162ab2f/cffi-2.0.0-cp314-cp314t-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:7cc09976e8b56f8cebd752f7113ad07752461f48a58cbba644139015ac24954c", size = 221593, upload-time = "2025-09-08T23:23:31.91Z" }, + { url = "https://files.pythonhosted.org/packages/e0/0d/eb704606dfe8033e7128df5e90fee946bbcb64a04fcdaa97321309004000/cffi-2.0.0-cp314-cp314t-manylinux2014_ppc64le.manylinux_2_17_ppc64le.whl", hash = "sha256:92b68146a71df78564e4ef48af17551a5ddd142e5190cdf2c5624d0c3ff5b2e8", size = 209354, upload-time = "2025-09-08T23:23:33.214Z" }, + { url = "https://files.pythonhosted.org/packages/d8/19/3c435d727b368ca475fb8742ab97c9cb13a0de600ce86f62eab7fa3eea60/cffi-2.0.0-cp314-cp314t-manylinux2014_s390x.manylinux_2_17_s390x.whl", hash = "sha256:b1e74d11748e7e98e2f426ab176d4ed720a64412b6a15054378afdb71e0f37dc", size = 208480, upload-time = "2025-09-08T23:23:34.495Z" }, + { url = "https://files.pythonhosted.org/packages/d0/44/681604464ed9541673e486521497406fadcc15b5217c3e326b061696899a/cffi-2.0.0-cp314-cp314t-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:28a3a209b96630bca57cce802da70c266eb08c6e97e5afd61a75611ee6c64592", size = 221584, upload-time = "2025-09-08T23:23:36.096Z" }, + { url = "https://files.pythonhosted.org/packages/25/8e/342a504ff018a2825d395d44d63a767dd8ebc927ebda557fecdaca3ac33a/cffi-2.0.0-cp314-cp314t-musllinux_1_2_aarch64.whl", hash = "sha256:7553fb2090d71822f02c629afe6042c299edf91ba1bf94951165613553984512", size = 224443, upload-time = "2025-09-08T23:23:37.328Z" }, + { url = "https://files.pythonhosted.org/packages/e1/5e/b666bacbbc60fbf415ba9988324a132c9a7a0448a9a8f125074671c0f2c3/cffi-2.0.0-cp314-cp314t-musllinux_1_2_x86_64.whl", hash = "sha256:6c6c373cfc5c83a975506110d17457138c8c63016b563cc9ed6e056a82f13ce4", size = 223437, upload-time = "2025-09-08T23:23:38.945Z" }, + { url = "https://files.pythonhosted.org/packages/a0/1d/ec1a60bd1a10daa292d3cd6bb0b359a81607154fb8165f3ec95fe003b85c/cffi-2.0.0-cp314-cp314t-win32.whl", hash = "sha256:1fc9ea04857caf665289b7a75923f2c6ed559b8298a1b8c49e59f7dd95c8481e", size = 180487, upload-time = "2025-09-08T23:23:40.423Z" }, + { url = "https://files.pythonhosted.org/packages/bf/41/4c1168c74fac325c0c8156f04b6749c8b6a8f405bbf91413ba088359f60d/cffi-2.0.0-cp314-cp314t-win_amd64.whl", hash = "sha256:d68b6cef7827e8641e8ef16f4494edda8b36104d79773a334beaa1e3521430f6", size = 191726, upload-time = "2025-09-08T23:23:41.742Z" }, + { url = "https://files.pythonhosted.org/packages/ae/3a/dbeec9d1ee0844c679f6bb5d6ad4e9f198b1224f4e7a32825f47f6192b0c/cffi-2.0.0-cp314-cp314t-win_arm64.whl", hash = "sha256:0a1527a803f0a659de1af2e1fd700213caba79377e27e4693648c2923da066f9", size = 184195, upload-time = "2025-09-08T23:23:43.004Z" }, +] + +[[package]] +name = "colorama" +version = "0.4.6" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/d8/53/6f443c9a4a8358a93a6792e2acffb9d9d5cb0a5cfd8802644b7b1c9a02e4/colorama-0.4.6.tar.gz", hash = "sha256:08695f5cb7ed6e0531a20572697297273c47b8cae5a63ffc6d6ed5c201be6e44", size = 27697, upload-time = "2022-10-25T02:36:22.414Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/d1/d6/3965ed04c63042e047cb6a3e6ed1a63a35087b6a609aa3a15ed8ac56c221/colorama-0.4.6-py2.py3-none-any.whl", hash = "sha256:4f1d9991f5acc0ca119f9d443620b77f9d6b33703e51011c16baf57afb285fc6", size = 25335, upload-time = "2022-10-25T02:36:20.889Z" }, +] + +[[package]] +name = "comm" +version = "0.2.3" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/4c/13/7d740c5849255756bc17888787313b61fd38a0a8304fc4f073dfc46122aa/comm-0.2.3.tar.gz", hash = "sha256:2dc8048c10962d55d7ad693be1e7045d891b7ce8d999c97963a5e3e99c055971", size = 6319, upload-time = "2025-07-25T14:02:04.452Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/60/97/891a0971e1e4a8c5d2b20bbe0e524dc04548d2307fee33cdeba148fd4fc7/comm-0.2.3-py3-none-any.whl", hash = "sha256:c615d91d75f7f04f095b30d1c1711babd43bdc6419c1be9886a85f2f4e489417", size = 7294, upload-time = "2025-07-25T14:02:02.896Z" }, +] + +[[package]] +name = "compression" +version = "0.1.0" +source = { virtual = "." } +dependencies = [ + { name = "ipykernel" }, + { name = "matplotlib" }, + { name = "numpy" }, + { name = "scipy" }, + { name = "torch" }, +] + +[package.metadata] +requires-dist = [ + { name = "ipykernel", specifier = ">=7.1.0" }, + { name = "matplotlib", specifier = ">=3.10.7" }, + { name = "numpy", specifier = ">=2.3.5" }, + { name = "scipy", specifier = ">=1.16.3" }, + { name = "torch", specifier = ">=2.9.1" }, +] + +[[package]] +name = "contourpy" +version = "1.3.3" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "numpy" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/58/01/1253e6698a07380cd31a736d248a3f2a50a7c88779a1813da27503cadc2a/contourpy-1.3.3.tar.gz", hash = "sha256:083e12155b210502d0bca491432bb04d56dc3432f95a979b429f2848c3dbe880", size = 13466174, upload-time = "2025-07-26T12:03:12.549Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/be/45/adfee365d9ea3d853550b2e735f9d66366701c65db7855cd07621732ccfc/contourpy-1.3.3-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:b08a32ea2f8e42cf1d4be3169a98dd4be32bafe4f22b6c4cb4ba810fa9e5d2cb", size = 293419, upload-time = "2025-07-26T12:01:21.16Z" }, + { url = "https://files.pythonhosted.org/packages/53/3e/405b59cfa13021a56bba395a6b3aca8cec012b45bf177b0eaf7a202cde2c/contourpy-1.3.3-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:556dba8fb6f5d8742f2923fe9457dbdd51e1049c4a43fd3986a0b14a1d815fc6", size = 273979, upload-time = "2025-07-26T12:01:22.448Z" }, + { url = "https://files.pythonhosted.org/packages/d4/1c/a12359b9b2ca3a845e8f7f9ac08bdf776114eb931392fcad91743e2ea17b/contourpy-1.3.3-cp312-cp312-manylinux_2_26_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:92d9abc807cf7d0e047b95ca5d957cf4792fcd04e920ca70d48add15c1a90ea7", size = 332653, upload-time = "2025-07-26T12:01:24.155Z" }, + { url = "https://files.pythonhosted.org/packages/63/12/897aeebfb475b7748ea67b61e045accdfcf0d971f8a588b67108ed7f5512/contourpy-1.3.3-cp312-cp312-manylinux_2_26_ppc64le.manylinux_2_28_ppc64le.whl", hash = "sha256:b2e8faa0ed68cb29af51edd8e24798bb661eac3bd9f65420c1887b6ca89987c8", size = 379536, upload-time = "2025-07-26T12:01:25.91Z" }, + { url = "https://files.pythonhosted.org/packages/43/8a/a8c584b82deb248930ce069e71576fc09bd7174bbd35183b7943fb1064fd/contourpy-1.3.3-cp312-cp312-manylinux_2_26_s390x.manylinux_2_28_s390x.whl", hash = "sha256:626d60935cf668e70a5ce6ff184fd713e9683fb458898e4249b63be9e28286ea", size = 384397, upload-time = "2025-07-26T12:01:27.152Z" }, + { url = "https://files.pythonhosted.org/packages/cc/8f/ec6289987824b29529d0dfda0d74a07cec60e54b9c92f3c9da4c0ac732de/contourpy-1.3.3-cp312-cp312-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:4d00e655fcef08aba35ec9610536bfe90267d7ab5ba944f7032549c55a146da1", size = 362601, upload-time = "2025-07-26T12:01:28.808Z" }, + { url = "https://files.pythonhosted.org/packages/05/0a/a3fe3be3ee2dceb3e615ebb4df97ae6f3828aa915d3e10549ce016302bd1/contourpy-1.3.3-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:451e71b5a7d597379ef572de31eeb909a87246974d960049a9848c3bc6c41bf7", size = 1331288, upload-time = "2025-07-26T12:01:31.198Z" }, + { url = "https://files.pythonhosted.org/packages/33/1d/acad9bd4e97f13f3e2b18a3977fe1b4a37ecf3d38d815333980c6c72e963/contourpy-1.3.3-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:459c1f020cd59fcfe6650180678a9993932d80d44ccde1fa1868977438f0b411", size = 1403386, upload-time = "2025-07-26T12:01:33.947Z" }, + { url = "https://files.pythonhosted.org/packages/cf/8f/5847f44a7fddf859704217a99a23a4f6417b10e5ab1256a179264561540e/contourpy-1.3.3-cp312-cp312-win32.whl", hash = "sha256:023b44101dfe49d7d53932be418477dba359649246075c996866106da069af69", size = 185018, upload-time = "2025-07-26T12:01:35.64Z" }, + { url = "https://files.pythonhosted.org/packages/19/e8/6026ed58a64563186a9ee3f29f41261fd1828f527dd93d33b60feca63352/contourpy-1.3.3-cp312-cp312-win_amd64.whl", hash = "sha256:8153b8bfc11e1e4d75bcb0bff1db232f9e10b274e0929de9d608027e0d34ff8b", size = 226567, upload-time = "2025-07-26T12:01:36.804Z" }, + { url = "https://files.pythonhosted.org/packages/d1/e2/f05240d2c39a1ed228d8328a78b6f44cd695f7ef47beb3e684cf93604f86/contourpy-1.3.3-cp312-cp312-win_arm64.whl", hash = "sha256:07ce5ed73ecdc4a03ffe3e1b3e3c1166db35ae7584be76f65dbbe28a7791b0cc", size = 193655, upload-time = "2025-07-26T12:01:37.999Z" }, + { url = "https://files.pythonhosted.org/packages/68/35/0167aad910bbdb9599272bd96d01a9ec6852f36b9455cf2ca67bd4cc2d23/contourpy-1.3.3-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:177fb367556747a686509d6fef71d221a4b198a3905fe824430e5ea0fda54eb5", size = 293257, upload-time = "2025-07-26T12:01:39.367Z" }, + { url = "https://files.pythonhosted.org/packages/96/e4/7adcd9c8362745b2210728f209bfbcf7d91ba868a2c5f40d8b58f54c509b/contourpy-1.3.3-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:d002b6f00d73d69333dac9d0b8d5e84d9724ff9ef044fd63c5986e62b7c9e1b1", size = 274034, upload-time = "2025-07-26T12:01:40.645Z" }, + { url = "https://files.pythonhosted.org/packages/73/23/90e31ceeed1de63058a02cb04b12f2de4b40e3bef5e082a7c18d9c8ae281/contourpy-1.3.3-cp313-cp313-manylinux_2_26_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:348ac1f5d4f1d66d3322420f01d42e43122f43616e0f194fc1c9f5d830c5b286", size = 334672, upload-time = "2025-07-26T12:01:41.942Z" }, + { url = "https://files.pythonhosted.org/packages/ed/93/b43d8acbe67392e659e1d984700e79eb67e2acb2bd7f62012b583a7f1b55/contourpy-1.3.3-cp313-cp313-manylinux_2_26_ppc64le.manylinux_2_28_ppc64le.whl", hash = "sha256:655456777ff65c2c548b7c454af9c6f33f16c8884f11083244b5819cc214f1b5", size = 381234, upload-time = "2025-07-26T12:01:43.499Z" }, + { url = "https://files.pythonhosted.org/packages/46/3b/bec82a3ea06f66711520f75a40c8fc0b113b2a75edb36aa633eb11c4f50f/contourpy-1.3.3-cp313-cp313-manylinux_2_26_s390x.manylinux_2_28_s390x.whl", hash = "sha256:644a6853d15b2512d67881586bd03f462c7ab755db95f16f14d7e238f2852c67", size = 385169, upload-time = "2025-07-26T12:01:45.219Z" }, + { url = "https://files.pythonhosted.org/packages/4b/32/e0f13a1c5b0f8572d0ec6ae2f6c677b7991fafd95da523159c19eff0696a/contourpy-1.3.3-cp313-cp313-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:4debd64f124ca62069f313a9cb86656ff087786016d76927ae2cf37846b006c9", size = 362859, upload-time = "2025-07-26T12:01:46.519Z" }, + { url = "https://files.pythonhosted.org/packages/33/71/e2a7945b7de4e58af42d708a219f3b2f4cff7386e6b6ab0a0fa0033c49a9/contourpy-1.3.3-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:a15459b0f4615b00bbd1e91f1b9e19b7e63aea7483d03d804186f278c0af2659", size = 1332062, upload-time = "2025-07-26T12:01:48.964Z" }, + { url = "https://files.pythonhosted.org/packages/12/fc/4e87ac754220ccc0e807284f88e943d6d43b43843614f0a8afa469801db0/contourpy-1.3.3-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:ca0fdcd73925568ca027e0b17ab07aad764be4706d0a925b89227e447d9737b7", size = 1403932, upload-time = "2025-07-26T12:01:51.979Z" }, + { url = "https://files.pythonhosted.org/packages/a6/2e/adc197a37443f934594112222ac1aa7dc9a98faf9c3842884df9a9d8751d/contourpy-1.3.3-cp313-cp313-win32.whl", hash = "sha256:b20c7c9a3bf701366556e1b1984ed2d0cedf999903c51311417cf5f591d8c78d", size = 185024, upload-time = "2025-07-26T12:01:53.245Z" }, + { url = "https://files.pythonhosted.org/packages/18/0b/0098c214843213759692cc638fce7de5c289200a830e5035d1791d7a2338/contourpy-1.3.3-cp313-cp313-win_amd64.whl", hash = "sha256:1cadd8b8969f060ba45ed7c1b714fe69185812ab43bd6b86a9123fe8f99c3263", size = 226578, upload-time = "2025-07-26T12:01:54.422Z" }, + { url = "https://files.pythonhosted.org/packages/8a/9a/2f6024a0c5995243cd63afdeb3651c984f0d2bc727fd98066d40e141ad73/contourpy-1.3.3-cp313-cp313-win_arm64.whl", hash = "sha256:fd914713266421b7536de2bfa8181aa8c699432b6763a0ea64195ebe28bff6a9", size = 193524, upload-time = "2025-07-26T12:01:55.73Z" }, + { url = "https://files.pythonhosted.org/packages/c0/b3/f8a1a86bd3298513f500e5b1f5fd92b69896449f6cab6a146a5d52715479/contourpy-1.3.3-cp313-cp313t-macosx_10_13_x86_64.whl", hash = "sha256:88df9880d507169449d434c293467418b9f6cbe82edd19284aa0409e7fdb933d", size = 306730, upload-time = "2025-07-26T12:01:57.051Z" }, + { url = "https://files.pythonhosted.org/packages/3f/11/4780db94ae62fc0c2053909b65dc3246bd7cecfc4f8a20d957ad43aa4ad8/contourpy-1.3.3-cp313-cp313t-macosx_11_0_arm64.whl", hash = "sha256:d06bb1f751ba5d417047db62bca3c8fde202b8c11fb50742ab3ab962c81e8216", size = 287897, upload-time = "2025-07-26T12:01:58.663Z" }, + { url = "https://files.pythonhosted.org/packages/ae/15/e59f5f3ffdd6f3d4daa3e47114c53daabcb18574a26c21f03dc9e4e42ff0/contourpy-1.3.3-cp313-cp313t-manylinux_2_26_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:e4e6b05a45525357e382909a4c1600444e2a45b4795163d3b22669285591c1ae", size = 326751, upload-time = "2025-07-26T12:02:00.343Z" }, + { url = "https://files.pythonhosted.org/packages/0f/81/03b45cfad088e4770b1dcf72ea78d3802d04200009fb364d18a493857210/contourpy-1.3.3-cp313-cp313t-manylinux_2_26_ppc64le.manylinux_2_28_ppc64le.whl", hash = "sha256:ab3074b48c4e2cf1a960e6bbeb7f04566bf36b1861d5c9d4d8ac04b82e38ba20", size = 375486, upload-time = "2025-07-26T12:02:02.128Z" }, + { url = "https://files.pythonhosted.org/packages/0c/ba/49923366492ffbdd4486e970d421b289a670ae8cf539c1ea9a09822b371a/contourpy-1.3.3-cp313-cp313t-manylinux_2_26_s390x.manylinux_2_28_s390x.whl", hash = "sha256:6c3d53c796f8647d6deb1abe867daeb66dcc8a97e8455efa729516b997b8ed99", size = 388106, upload-time = "2025-07-26T12:02:03.615Z" }, + { url = "https://files.pythonhosted.org/packages/9f/52/5b00ea89525f8f143651f9f03a0df371d3cbd2fccd21ca9b768c7a6500c2/contourpy-1.3.3-cp313-cp313t-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:50ed930df7289ff2a8d7afeb9603f8289e5704755c7e5c3bbd929c90c817164b", size = 352548, upload-time = "2025-07-26T12:02:05.165Z" }, + { url = "https://files.pythonhosted.org/packages/32/1d/a209ec1a3a3452d490f6b14dd92e72280c99ae3d1e73da74f8277d4ee08f/contourpy-1.3.3-cp313-cp313t-musllinux_1_2_aarch64.whl", hash = "sha256:4feffb6537d64b84877da813a5c30f1422ea5739566abf0bd18065ac040e120a", size = 1322297, upload-time = "2025-07-26T12:02:07.379Z" }, + { url = "https://files.pythonhosted.org/packages/bc/9e/46f0e8ebdd884ca0e8877e46a3f4e633f6c9c8c4f3f6e72be3fe075994aa/contourpy-1.3.3-cp313-cp313t-musllinux_1_2_x86_64.whl", hash = "sha256:2b7e9480ffe2b0cd2e787e4df64270e3a0440d9db8dc823312e2c940c167df7e", size = 1391023, upload-time = "2025-07-26T12:02:10.171Z" }, + { url = "https://files.pythonhosted.org/packages/b9/70/f308384a3ae9cd2209e0849f33c913f658d3326900d0ff5d378d6a1422d2/contourpy-1.3.3-cp313-cp313t-win32.whl", hash = "sha256:283edd842a01e3dcd435b1c5116798d661378d83d36d337b8dde1d16a5fc9ba3", size = 196157, upload-time = "2025-07-26T12:02:11.488Z" }, + { url = "https://files.pythonhosted.org/packages/b2/dd/880f890a6663b84d9e34a6f88cded89d78f0091e0045a284427cb6b18521/contourpy-1.3.3-cp313-cp313t-win_amd64.whl", hash = "sha256:87acf5963fc2b34825e5b6b048f40e3635dd547f590b04d2ab317c2619ef7ae8", size = 240570, upload-time = "2025-07-26T12:02:12.754Z" }, + { url = "https://files.pythonhosted.org/packages/80/99/2adc7d8ffead633234817ef8e9a87115c8a11927a94478f6bb3d3f4d4f7d/contourpy-1.3.3-cp313-cp313t-win_arm64.whl", hash = "sha256:3c30273eb2a55024ff31ba7d052dde990d7d8e5450f4bbb6e913558b3d6c2301", size = 199713, upload-time = "2025-07-26T12:02:14.4Z" }, + { url = "https://files.pythonhosted.org/packages/72/8b/4546f3ab60f78c514ffb7d01a0bd743f90de36f0019d1be84d0a708a580a/contourpy-1.3.3-cp314-cp314-macosx_10_13_x86_64.whl", hash = "sha256:fde6c716d51c04b1c25d0b90364d0be954624a0ee9d60e23e850e8d48353d07a", size = 292189, upload-time = "2025-07-26T12:02:16.095Z" }, + { url = "https://files.pythonhosted.org/packages/fd/e1/3542a9cb596cadd76fcef413f19c79216e002623158befe6daa03dbfa88c/contourpy-1.3.3-cp314-cp314-macosx_11_0_arm64.whl", hash = "sha256:cbedb772ed74ff5be440fa8eee9bd49f64f6e3fc09436d9c7d8f1c287b121d77", size = 273251, upload-time = "2025-07-26T12:02:17.524Z" }, + { url = "https://files.pythonhosted.org/packages/b1/71/f93e1e9471d189f79d0ce2497007731c1e6bf9ef6d1d61b911430c3db4e5/contourpy-1.3.3-cp314-cp314-manylinux_2_26_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:22e9b1bd7a9b1d652cd77388465dc358dafcd2e217d35552424aa4f996f524f5", size = 335810, upload-time = "2025-07-26T12:02:18.9Z" }, + { url = "https://files.pythonhosted.org/packages/91/f9/e35f4c1c93f9275d4e38681a80506b5510e9327350c51f8d4a5a724d178c/contourpy-1.3.3-cp314-cp314-manylinux_2_26_ppc64le.manylinux_2_28_ppc64le.whl", hash = "sha256:a22738912262aa3e254e4f3cb079a95a67132fc5a063890e224393596902f5a4", size = 382871, upload-time = "2025-07-26T12:02:20.418Z" }, + { url = "https://files.pythonhosted.org/packages/b5/71/47b512f936f66a0a900d81c396a7e60d73419868fba959c61efed7a8ab46/contourpy-1.3.3-cp314-cp314-manylinux_2_26_s390x.manylinux_2_28_s390x.whl", hash = "sha256:afe5a512f31ee6bd7d0dda52ec9864c984ca3d66664444f2d72e0dc4eb832e36", size = 386264, upload-time = "2025-07-26T12:02:21.916Z" }, + { url = "https://files.pythonhosted.org/packages/04/5f/9ff93450ba96b09c7c2b3f81c94de31c89f92292f1380261bd7195bea4ea/contourpy-1.3.3-cp314-cp314-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:f64836de09927cba6f79dcd00fdd7d5329f3fccc633468507079c829ca4db4e3", size = 363819, upload-time = "2025-07-26T12:02:23.759Z" }, + { url = "https://files.pythonhosted.org/packages/3e/a6/0b185d4cc480ee494945cde102cb0149ae830b5fa17bf855b95f2e70ad13/contourpy-1.3.3-cp314-cp314-musllinux_1_2_aarch64.whl", hash = "sha256:1fd43c3be4c8e5fd6e4f2baeae35ae18176cf2e5cced681cca908addf1cdd53b", size = 1333650, upload-time = "2025-07-26T12:02:26.181Z" }, + { url = "https://files.pythonhosted.org/packages/43/d7/afdc95580ca56f30fbcd3060250f66cedbde69b4547028863abd8aa3b47e/contourpy-1.3.3-cp314-cp314-musllinux_1_2_x86_64.whl", hash = "sha256:6afc576f7b33cf00996e5c1102dc2a8f7cc89e39c0b55df93a0b78c1bd992b36", size = 1404833, upload-time = "2025-07-26T12:02:28.782Z" }, + { url = "https://files.pythonhosted.org/packages/e2/e2/366af18a6d386f41132a48f033cbd2102e9b0cf6345d35ff0826cd984566/contourpy-1.3.3-cp314-cp314-win32.whl", hash = "sha256:66c8a43a4f7b8df8b71ee1840e4211a3c8d93b214b213f590e18a1beca458f7d", size = 189692, upload-time = "2025-07-26T12:02:30.128Z" }, + { url = "https://files.pythonhosted.org/packages/7d/c2/57f54b03d0f22d4044b8afb9ca0e184f8b1afd57b4f735c2fa70883dc601/contourpy-1.3.3-cp314-cp314-win_amd64.whl", hash = "sha256:cf9022ef053f2694e31d630feaacb21ea24224be1c3ad0520b13d844274614fd", size = 232424, upload-time = "2025-07-26T12:02:31.395Z" }, + { url = "https://files.pythonhosted.org/packages/18/79/a9416650df9b525737ab521aa181ccc42d56016d2123ddcb7b58e926a42c/contourpy-1.3.3-cp314-cp314-win_arm64.whl", hash = "sha256:95b181891b4c71de4bb404c6621e7e2390745f887f2a026b2d99e92c17892339", size = 198300, upload-time = "2025-07-26T12:02:32.956Z" }, + { url = "https://files.pythonhosted.org/packages/1f/42/38c159a7d0f2b7b9c04c64ab317042bb6952b713ba875c1681529a2932fe/contourpy-1.3.3-cp314-cp314t-macosx_10_13_x86_64.whl", hash = "sha256:33c82d0138c0a062380332c861387650c82e4cf1747aaa6938b9b6516762e772", size = 306769, upload-time = "2025-07-26T12:02:34.2Z" }, + { url = "https://files.pythonhosted.org/packages/c3/6c/26a8205f24bca10974e77460de68d3d7c63e282e23782f1239f226fcae6f/contourpy-1.3.3-cp314-cp314t-macosx_11_0_arm64.whl", hash = "sha256:ea37e7b45949df430fe649e5de8351c423430046a2af20b1c1961cae3afcda77", size = 287892, upload-time = "2025-07-26T12:02:35.807Z" }, + { url = "https://files.pythonhosted.org/packages/66/06/8a475c8ab718ebfd7925661747dbb3c3ee9c82ac834ccb3570be49d129f4/contourpy-1.3.3-cp314-cp314t-manylinux_2_26_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:d304906ecc71672e9c89e87c4675dc5c2645e1f4269a5063b99b0bb29f232d13", size = 326748, upload-time = "2025-07-26T12:02:37.193Z" }, + { url = "https://files.pythonhosted.org/packages/b4/a3/c5ca9f010a44c223f098fccd8b158bb1cb287378a31ac141f04730dc49be/contourpy-1.3.3-cp314-cp314t-manylinux_2_26_ppc64le.manylinux_2_28_ppc64le.whl", hash = "sha256:ca658cd1a680a5c9ea96dc61cdbae1e85c8f25849843aa799dfd3cb370ad4fbe", size = 375554, upload-time = "2025-07-26T12:02:38.894Z" }, + { url = "https://files.pythonhosted.org/packages/80/5b/68bd33ae63fac658a4145088c1e894405e07584a316738710b636c6d0333/contourpy-1.3.3-cp314-cp314t-manylinux_2_26_s390x.manylinux_2_28_s390x.whl", hash = "sha256:ab2fd90904c503739a75b7c8c5c01160130ba67944a7b77bbf36ef8054576e7f", size = 388118, upload-time = "2025-07-26T12:02:40.642Z" }, + { url = "https://files.pythonhosted.org/packages/40/52/4c285a6435940ae25d7410a6c36bda5145839bc3f0beb20c707cda18b9d2/contourpy-1.3.3-cp314-cp314t-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:b7301b89040075c30e5768810bc96a8e8d78085b47d8be6e4c3f5a0b4ed478a0", size = 352555, upload-time = "2025-07-26T12:02:42.25Z" }, + { url = "https://files.pythonhosted.org/packages/24/ee/3e81e1dd174f5c7fefe50e85d0892de05ca4e26ef1c9a59c2a57e43b865a/contourpy-1.3.3-cp314-cp314t-musllinux_1_2_aarch64.whl", hash = "sha256:2a2a8b627d5cc6b7c41a4beff6c5ad5eb848c88255fda4a8745f7e901b32d8e4", size = 1322295, upload-time = "2025-07-26T12:02:44.668Z" }, + { url = "https://files.pythonhosted.org/packages/3c/b2/6d913d4d04e14379de429057cd169e5e00f6c2af3bb13e1710bcbdb5da12/contourpy-1.3.3-cp314-cp314t-musllinux_1_2_x86_64.whl", hash = "sha256:fd6ec6be509c787f1caf6b247f0b1ca598bef13f4ddeaa126b7658215529ba0f", size = 1391027, upload-time = "2025-07-26T12:02:47.09Z" }, + { url = "https://files.pythonhosted.org/packages/93/8a/68a4ec5c55a2971213d29a9374913f7e9f18581945a7a31d1a39b5d2dfe5/contourpy-1.3.3-cp314-cp314t-win32.whl", hash = "sha256:e74a9a0f5e3fff48fb5a7f2fd2b9b70a3fe014a67522f79b7cca4c0c7e43c9ae", size = 202428, upload-time = "2025-07-26T12:02:48.691Z" }, + { url = "https://files.pythonhosted.org/packages/fa/96/fd9f641ffedc4fa3ace923af73b9d07e869496c9cc7a459103e6e978992f/contourpy-1.3.3-cp314-cp314t-win_amd64.whl", hash = "sha256:13b68d6a62db8eafaebb8039218921399baf6e47bf85006fd8529f2a08ef33fc", size = 250331, upload-time = "2025-07-26T12:02:50.137Z" }, + { url = "https://files.pythonhosted.org/packages/ae/8c/469afb6465b853afff216f9528ffda78a915ff880ed58813ba4faf4ba0b6/contourpy-1.3.3-cp314-cp314t-win_arm64.whl", hash = "sha256:b7448cb5a725bb1e35ce88771b86fba35ef418952474492cf7c764059933ff8b", size = 203831, upload-time = "2025-07-26T12:02:51.449Z" }, +] + +[[package]] +name = "cycler" +version = "0.12.1" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/a9/95/a3dbbb5028f35eafb79008e7522a75244477d2838f38cbb722248dabc2a8/cycler-0.12.1.tar.gz", hash = "sha256:88bb128f02ba341da8ef447245a9e138fae777f6a23943da4540077d3601eb1c", size = 7615, upload-time = "2023-10-07T05:32:18.335Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/e7/05/c19819d5e3d95294a6f5947fb9b9629efb316b96de511b418c53d245aae6/cycler-0.12.1-py3-none-any.whl", hash = "sha256:85cef7cff222d8644161529808465972e51340599459b8ac3ccbac5a854e0d30", size = 8321, upload-time = "2023-10-07T05:32:16.783Z" }, +] + +[[package]] +name = "debugpy" +version = "1.8.17" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/15/ad/71e708ff4ca377c4230530d6a7aa7992592648c122a2cd2b321cf8b35a76/debugpy-1.8.17.tar.gz", hash = "sha256:fd723b47a8c08892b1a16b2c6239a8b96637c62a59b94bb5dab4bac592a58a8e", size = 1644129, upload-time = "2025-09-17T16:33:20.633Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/08/2b/9d8e65beb2751876c82e1aceb32f328c43ec872711fa80257c7674f45650/debugpy-1.8.17-cp312-cp312-macosx_15_0_universal2.whl", hash = "sha256:f14467edef672195c6f6b8e27ce5005313cb5d03c9239059bc7182b60c176e2d", size = 2549522, upload-time = "2025-09-17T16:33:38.466Z" }, + { url = "https://files.pythonhosted.org/packages/b4/78/eb0d77f02971c05fca0eb7465b18058ba84bd957062f5eec82f941ac792a/debugpy-1.8.17-cp312-cp312-manylinux_2_34_x86_64.whl", hash = "sha256:24693179ef9dfa20dca8605905a42b392be56d410c333af82f1c5dff807a64cc", size = 4309417, upload-time = "2025-09-17T16:33:41.299Z" }, + { url = "https://files.pythonhosted.org/packages/37/42/c40f1d8cc1fed1e75ea54298a382395b8b937d923fcf41ab0797a554f555/debugpy-1.8.17-cp312-cp312-win32.whl", hash = "sha256:6a4e9dacf2cbb60d2514ff7b04b4534b0139facbf2abdffe0639ddb6088e59cf", size = 5277130, upload-time = "2025-09-17T16:33:43.554Z" }, + { url = "https://files.pythonhosted.org/packages/72/22/84263b205baad32b81b36eac076de0cdbe09fe2d0637f5b32243dc7c925b/debugpy-1.8.17-cp312-cp312-win_amd64.whl", hash = "sha256:e8f8f61c518952fb15f74a302e068b48d9c4691768ade433e4adeea961993464", size = 5319053, upload-time = "2025-09-17T16:33:53.033Z" }, + { url = "https://files.pythonhosted.org/packages/50/76/597e5cb97d026274ba297af8d89138dfd9e695767ba0e0895edb20963f40/debugpy-1.8.17-cp313-cp313-macosx_15_0_universal2.whl", hash = "sha256:857c1dd5d70042502aef1c6d1c2801211f3ea7e56f75e9c335f434afb403e464", size = 2538386, upload-time = "2025-09-17T16:33:54.594Z" }, + { url = "https://files.pythonhosted.org/packages/5f/60/ce5c34fcdfec493701f9d1532dba95b21b2f6394147234dce21160bd923f/debugpy-1.8.17-cp313-cp313-manylinux_2_34_x86_64.whl", hash = "sha256:3bea3b0b12f3946e098cce9b43c3c46e317b567f79570c3f43f0b96d00788088", size = 4292100, upload-time = "2025-09-17T16:33:56.353Z" }, + { url = "https://files.pythonhosted.org/packages/e8/95/7873cf2146577ef71d2a20bf553f12df865922a6f87b9e8ee1df04f01785/debugpy-1.8.17-cp313-cp313-win32.whl", hash = "sha256:e34ee844c2f17b18556b5bbe59e1e2ff4e86a00282d2a46edab73fd7f18f4a83", size = 5277002, upload-time = "2025-09-17T16:33:58.231Z" }, + { url = "https://files.pythonhosted.org/packages/46/11/18c79a1cee5ff539a94ec4aa290c1c069a5580fd5cfd2fb2e282f8e905da/debugpy-1.8.17-cp313-cp313-win_amd64.whl", hash = "sha256:6c5cd6f009ad4fca8e33e5238210dc1e5f42db07d4b6ab21ac7ffa904a196420", size = 5319047, upload-time = "2025-09-17T16:34:00.586Z" }, + { url = "https://files.pythonhosted.org/packages/de/45/115d55b2a9da6de812696064ceb505c31e952c5d89c4ed1d9bb983deec34/debugpy-1.8.17-cp314-cp314-macosx_15_0_universal2.whl", hash = "sha256:045290c010bcd2d82bc97aa2daf6837443cd52f6328592698809b4549babcee1", size = 2536899, upload-time = "2025-09-17T16:34:02.657Z" }, + { url = "https://files.pythonhosted.org/packages/5a/73/2aa00c7f1f06e997ef57dc9b23d61a92120bec1437a012afb6d176585197/debugpy-1.8.17-cp314-cp314-manylinux_2_34_x86_64.whl", hash = "sha256:b69b6bd9dba6a03632534cdf67c760625760a215ae289f7489a452af1031fe1f", size = 4268254, upload-time = "2025-09-17T16:34:04.486Z" }, + { url = "https://files.pythonhosted.org/packages/86/b5/ed3e65c63c68a6634e3ba04bd10255c8e46ec16ebed7d1c79e4816d8a760/debugpy-1.8.17-cp314-cp314-win32.whl", hash = "sha256:5c59b74aa5630f3a5194467100c3b3d1c77898f9ab27e3f7dc5d40fc2f122670", size = 5277203, upload-time = "2025-09-17T16:34:06.65Z" }, + { url = "https://files.pythonhosted.org/packages/b0/26/394276b71c7538445f29e792f589ab7379ae70fd26ff5577dfde71158e96/debugpy-1.8.17-cp314-cp314-win_amd64.whl", hash = "sha256:893cba7bb0f55161de4365584b025f7064e1f88913551bcd23be3260b231429c", size = 5318493, upload-time = "2025-09-17T16:34:08.483Z" }, + { url = "https://files.pythonhosted.org/packages/b0/d0/89247ec250369fc76db477720a26b2fce7ba079ff1380e4ab4529d2fe233/debugpy-1.8.17-py2.py3-none-any.whl", hash = "sha256:60c7dca6571efe660ccb7a9508d73ca14b8796c4ed484c2002abba714226cfef", size = 5283210, upload-time = "2025-09-17T16:34:25.835Z" }, +] + +[[package]] +name = "decorator" +version = "5.2.1" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/43/fa/6d96a0978d19e17b68d634497769987b16c8f4cd0a7a05048bec693caa6b/decorator-5.2.1.tar.gz", hash = "sha256:65f266143752f734b0a7cc83c46f4618af75b8c5911b00ccb61d0ac9b6da0360", size = 56711, upload-time = "2025-02-24T04:41:34.073Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/4e/8c/f3147f5c4b73e7550fe5f9352eaa956ae838d5c51eb58e7a25b9f3e2643b/decorator-5.2.1-py3-none-any.whl", hash = "sha256:d316bb415a2d9e2d2b3abcc4084c6502fc09240e292cd76a76afc106a1c8e04a", size = 9190, upload-time = "2025-02-24T04:41:32.565Z" }, +] + +[[package]] +name = "executing" +version = "2.2.1" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/cc/28/c14e053b6762b1044f34a13aab6859bbf40456d37d23aa286ac24cfd9a5d/executing-2.2.1.tar.gz", hash = "sha256:3632cc370565f6648cc328b32435bd120a1e4ebb20c77e3fdde9a13cd1e533c4", size = 1129488, upload-time = "2025-09-01T09:48:10.866Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/c1/ea/53f2148663b321f21b5a606bd5f191517cf40b7072c0497d3c92c4a13b1e/executing-2.2.1-py2.py3-none-any.whl", hash = "sha256:760643d3452b4d777d295bb167ccc74c64a81df23fb5e08eff250c425a4b2017", size = 28317, upload-time = "2025-09-01T09:48:08.5Z" }, +] + +[[package]] +name = "filelock" +version = "3.20.0" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/58/46/0028a82567109b5ef6e4d2a1f04a583fb513e6cf9527fcdd09afd817deeb/filelock-3.20.0.tar.gz", hash = "sha256:711e943b4ec6be42e1d4e6690b48dc175c822967466bb31c0c293f34334c13f4", size = 18922, upload-time = "2025-10-08T18:03:50.056Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/76/91/7216b27286936c16f5b4d0c530087e4a54eead683e6b0b73dd0c64844af6/filelock-3.20.0-py3-none-any.whl", hash = "sha256:339b4732ffda5cd79b13f4e2711a31b0365ce445d95d243bb996273d072546a2", size = 16054, upload-time = "2025-10-08T18:03:48.35Z" }, +] + +[[package]] +name = "fonttools" +version = "4.60.1" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/4b/42/97a13e47a1e51a5a7142475bbcf5107fe3a68fc34aef331c897d5fb98ad0/fonttools-4.60.1.tar.gz", hash = "sha256:ef00af0439ebfee806b25f24c8f92109157ff3fac5731dc7867957812e87b8d9", size = 3559823, upload-time = "2025-09-29T21:13:27.129Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/e3/f7/a10b101b7a6f8836a5adb47f2791f2075d044a6ca123f35985c42edc82d8/fonttools-4.60.1-cp312-cp312-macosx_10_13_universal2.whl", hash = "sha256:7b0c6d57ab00dae9529f3faf187f2254ea0aa1e04215cf2f1a8ec277c96661bc", size = 2832953, upload-time = "2025-09-29T21:11:39.616Z" }, + { url = "https://files.pythonhosted.org/packages/ed/fe/7bd094b59c926acf2304d2151354ddbeb74b94812f3dc943c231db09cb41/fonttools-4.60.1-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:839565cbf14645952d933853e8ade66a463684ed6ed6c9345d0faf1f0e868877", size = 2352706, upload-time = "2025-09-29T21:11:41.826Z" }, + { url = "https://files.pythonhosted.org/packages/c0/ca/4bb48a26ed95a1e7eba175535fe5805887682140ee0a0d10a88e1de84208/fonttools-4.60.1-cp312-cp312-manylinux1_x86_64.manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_5_x86_64.whl", hash = "sha256:8177ec9676ea6e1793c8a084a90b65a9f778771998eb919d05db6d4b1c0b114c", size = 4923716, upload-time = "2025-09-29T21:11:43.893Z" }, + { url = "https://files.pythonhosted.org/packages/b8/9f/2cb82999f686c1d1ddf06f6ae1a9117a880adbec113611cc9d22b2fdd465/fonttools-4.60.1-cp312-cp312-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:996a4d1834524adbb423385d5a629b868ef9d774670856c63c9a0408a3063401", size = 4968175, upload-time = "2025-09-29T21:11:46.439Z" }, + { url = "https://files.pythonhosted.org/packages/18/79/be569699e37d166b78e6218f2cde8c550204f2505038cdd83b42edc469b9/fonttools-4.60.1-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:a46b2f450bc79e06ef3b6394f0c68660529ed51692606ad7f953fc2e448bc903", size = 4911031, upload-time = "2025-09-29T21:11:48.977Z" }, + { url = "https://files.pythonhosted.org/packages/cc/9f/89411cc116effaec5260ad519162f64f9c150e5522a27cbb05eb62d0c05b/fonttools-4.60.1-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:6ec722ee589e89a89f5b7574f5c45604030aa6ae24cb2c751e2707193b466fed", size = 5062966, upload-time = "2025-09-29T21:11:54.344Z" }, + { url = "https://files.pythonhosted.org/packages/62/a1/f888221934b5731d46cb9991c7a71f30cb1f97c0ef5fcf37f8da8fce6c8e/fonttools-4.60.1-cp312-cp312-win32.whl", hash = "sha256:b2cf105cee600d2de04ca3cfa1f74f1127f8455b71dbad02b9da6ec266e116d6", size = 2218750, upload-time = "2025-09-29T21:11:56.601Z" }, + { url = "https://files.pythonhosted.org/packages/88/8f/a55b5550cd33cd1028601df41acd057d4be20efa5c958f417b0c0613924d/fonttools-4.60.1-cp312-cp312-win_amd64.whl", hash = "sha256:992775c9fbe2cf794786fa0ffca7f09f564ba3499b8fe9f2f80bd7197db60383", size = 2267026, upload-time = "2025-09-29T21:11:58.852Z" }, + { url = "https://files.pythonhosted.org/packages/7c/5b/cdd2c612277b7ac7ec8c0c9bc41812c43dc7b2d5f2b0897e15fdf5a1f915/fonttools-4.60.1-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:6f68576bb4bbf6060c7ab047b1574a1ebe5c50a17de62830079967b211059ebb", size = 2825777, upload-time = "2025-09-29T21:12:01.22Z" }, + { url = "https://files.pythonhosted.org/packages/d6/8a/de9cc0540f542963ba5e8f3a1f6ad48fa211badc3177783b9d5cadf79b5d/fonttools-4.60.1-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:eedacb5c5d22b7097482fa834bda0dafa3d914a4e829ec83cdea2a01f8c813c4", size = 2348080, upload-time = "2025-09-29T21:12:03.785Z" }, + { url = "https://files.pythonhosted.org/packages/2d/8b/371ab3cec97ee3fe1126b3406b7abd60c8fec8975fd79a3c75cdea0c3d83/fonttools-4.60.1-cp313-cp313-manylinux1_x86_64.manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_5_x86_64.whl", hash = "sha256:b33a7884fabd72bdf5f910d0cf46be50dce86a0362a65cfc746a4168c67eb96c", size = 4903082, upload-time = "2025-09-29T21:12:06.382Z" }, + { url = "https://files.pythonhosted.org/packages/04/05/06b1455e4bc653fcb2117ac3ef5fa3a8a14919b93c60742d04440605d058/fonttools-4.60.1-cp313-cp313-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:2409d5fb7b55fd70f715e6d34e7a6e4f7511b8ad29a49d6df225ee76da76dd77", size = 4960125, upload-time = "2025-09-29T21:12:09.314Z" }, + { url = "https://files.pythonhosted.org/packages/8e/37/f3b840fcb2666f6cb97038793606bdd83488dca2d0b0fc542ccc20afa668/fonttools-4.60.1-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:c8651e0d4b3bdeda6602b85fdc2abbefc1b41e573ecb37b6779c4ca50753a199", size = 4901454, upload-time = "2025-09-29T21:12:11.931Z" }, + { url = "https://files.pythonhosted.org/packages/fd/9e/eb76f77e82f8d4a46420aadff12cec6237751b0fb9ef1de373186dcffb5f/fonttools-4.60.1-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:145daa14bf24824b677b9357c5e44fd8895c2a8f53596e1b9ea3496081dc692c", size = 5044495, upload-time = "2025-09-29T21:12:15.241Z" }, + { url = "https://files.pythonhosted.org/packages/f8/b3/cede8f8235d42ff7ae891bae8d619d02c8ac9fd0cfc450c5927a6200c70d/fonttools-4.60.1-cp313-cp313-win32.whl", hash = "sha256:2299df884c11162617a66b7c316957d74a18e3758c0274762d2cc87df7bc0272", size = 2217028, upload-time = "2025-09-29T21:12:17.96Z" }, + { url = "https://files.pythonhosted.org/packages/75/4d/b022c1577807ce8b31ffe055306ec13a866f2337ecee96e75b24b9b753ea/fonttools-4.60.1-cp313-cp313-win_amd64.whl", hash = "sha256:a3db56f153bd4c5c2b619ab02c5db5192e222150ce5a1bc10f16164714bc39ac", size = 2266200, upload-time = "2025-09-29T21:12:20.14Z" }, + { url = "https://files.pythonhosted.org/packages/9a/83/752ca11c1aa9a899b793a130f2e466b79ea0cf7279c8d79c178fc954a07b/fonttools-4.60.1-cp314-cp314-macosx_10_13_universal2.whl", hash = "sha256:a884aef09d45ba1206712c7dbda5829562d3fea7726935d3289d343232ecb0d3", size = 2822830, upload-time = "2025-09-29T21:12:24.406Z" }, + { url = "https://files.pythonhosted.org/packages/57/17/bbeab391100331950a96ce55cfbbff27d781c1b85ebafb4167eae50d9fe3/fonttools-4.60.1-cp314-cp314-macosx_10_13_x86_64.whl", hash = "sha256:8a44788d9d91df72d1a5eac49b31aeb887a5f4aab761b4cffc4196c74907ea85", size = 2345524, upload-time = "2025-09-29T21:12:26.819Z" }, + { url = "https://files.pythonhosted.org/packages/3d/2e/d4831caa96d85a84dd0da1d9f90d81cec081f551e0ea216df684092c6c97/fonttools-4.60.1-cp314-cp314-manylinux1_x86_64.manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_5_x86_64.whl", hash = "sha256:e852d9dda9f93ad3651ae1e3bb770eac544ec93c3807888798eccddf84596537", size = 4843490, upload-time = "2025-09-29T21:12:29.123Z" }, + { url = "https://files.pythonhosted.org/packages/49/13/5e2ea7c7a101b6fc3941be65307ef8df92cbbfa6ec4804032baf1893b434/fonttools-4.60.1-cp314-cp314-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:154cb6ee417e417bf5f7c42fe25858c9140c26f647c7347c06f0cc2d47eff003", size = 4944184, upload-time = "2025-09-29T21:12:31.414Z" }, + { url = "https://files.pythonhosted.org/packages/0c/2b/cf9603551c525b73fc47c52ee0b82a891579a93d9651ed694e4e2cd08bb8/fonttools-4.60.1-cp314-cp314-musllinux_1_2_aarch64.whl", hash = "sha256:5664fd1a9ea7f244487ac8f10340c4e37664675e8667d6fee420766e0fb3cf08", size = 4890218, upload-time = "2025-09-29T21:12:33.936Z" }, + { url = "https://files.pythonhosted.org/packages/fd/2f/933d2352422e25f2376aae74f79eaa882a50fb3bfef3c0d4f50501267101/fonttools-4.60.1-cp314-cp314-musllinux_1_2_x86_64.whl", hash = "sha256:583b7f8e3c49486e4d489ad1deacfb8d5be54a8ef34d6df824f6a171f8511d99", size = 4999324, upload-time = "2025-09-29T21:12:36.637Z" }, + { url = "https://files.pythonhosted.org/packages/38/99/234594c0391221f66216bc2c886923513b3399a148defaccf81dc3be6560/fonttools-4.60.1-cp314-cp314-win32.whl", hash = "sha256:66929e2ea2810c6533a5184f938502cfdaea4bc3efb7130d8cc02e1c1b4108d6", size = 2220861, upload-time = "2025-09-29T21:12:39.108Z" }, + { url = "https://files.pythonhosted.org/packages/3e/1d/edb5b23726dde50fc4068e1493e4fc7658eeefcaf75d4c5ffce067d07ae5/fonttools-4.60.1-cp314-cp314-win_amd64.whl", hash = "sha256:f3d5be054c461d6a2268831f04091dc82753176f6ea06dc6047a5e168265a987", size = 2270934, upload-time = "2025-09-29T21:12:41.339Z" }, + { url = "https://files.pythonhosted.org/packages/fb/da/1392aaa2170adc7071fe7f9cfd181a5684a7afcde605aebddf1fb4d76df5/fonttools-4.60.1-cp314-cp314t-macosx_10_13_universal2.whl", hash = "sha256:b6379e7546ba4ae4b18f8ae2b9bc5960936007a1c0e30b342f662577e8bc3299", size = 2894340, upload-time = "2025-09-29T21:12:43.774Z" }, + { url = "https://files.pythonhosted.org/packages/bf/a7/3b9f16e010d536ce567058b931a20b590d8f3177b2eda09edd92e392375d/fonttools-4.60.1-cp314-cp314t-macosx_10_13_x86_64.whl", hash = "sha256:9d0ced62b59e0430b3690dbc5373df1c2aa7585e9a8ce38eff87f0fd993c5b01", size = 2375073, upload-time = "2025-09-29T21:12:46.437Z" }, + { url = "https://files.pythonhosted.org/packages/9b/b5/e9bcf51980f98e59bb5bb7c382a63c6f6cac0eec5f67de6d8f2322382065/fonttools-4.60.1-cp314-cp314t-manylinux1_x86_64.manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_5_x86_64.whl", hash = "sha256:875cb7764708b3132637f6c5fb385b16eeba0f7ac9fa45a69d35e09b47045801", size = 4849758, upload-time = "2025-09-29T21:12:48.694Z" }, + { url = "https://files.pythonhosted.org/packages/e3/dc/1d2cf7d1cba82264b2f8385db3f5960e3d8ce756b4dc65b700d2c496f7e9/fonttools-4.60.1-cp314-cp314t-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:a184b2ea57b13680ab6d5fbde99ccef152c95c06746cb7718c583abd8f945ccc", size = 5085598, upload-time = "2025-09-29T21:12:51.081Z" }, + { url = "https://files.pythonhosted.org/packages/5d/4d/279e28ba87fb20e0c69baf72b60bbf1c4d873af1476806a7b5f2b7fac1ff/fonttools-4.60.1-cp314-cp314t-musllinux_1_2_aarch64.whl", hash = "sha256:026290e4ec76583881763fac284aca67365e0be9f13a7fb137257096114cb3bc", size = 4957603, upload-time = "2025-09-29T21:12:53.423Z" }, + { url = "https://files.pythonhosted.org/packages/78/d4/ff19976305e0c05aa3340c805475abb00224c954d3c65e82c0a69633d55d/fonttools-4.60.1-cp314-cp314t-musllinux_1_2_x86_64.whl", hash = "sha256:f0e8817c7d1a0c2eedebf57ef9a9896f3ea23324769a9a2061a80fe8852705ed", size = 4974184, upload-time = "2025-09-29T21:12:55.962Z" }, + { url = "https://files.pythonhosted.org/packages/63/22/8553ff6166f5cd21cfaa115aaacaa0dc73b91c079a8cfd54a482cbc0f4f5/fonttools-4.60.1-cp314-cp314t-win32.whl", hash = "sha256:1410155d0e764a4615774e5c2c6fc516259fe3eca5882f034eb9bfdbee056259", size = 2282241, upload-time = "2025-09-29T21:12:58.179Z" }, + { url = "https://files.pythonhosted.org/packages/8a/cb/fa7b4d148e11d5a72761a22e595344133e83a9507a4c231df972e657579b/fonttools-4.60.1-cp314-cp314t-win_amd64.whl", hash = "sha256:022beaea4b73a70295b688f817ddc24ed3e3418b5036ffcd5658141184ef0d0c", size = 2345760, upload-time = "2025-09-29T21:13:00.375Z" }, + { url = "https://files.pythonhosted.org/packages/c7/93/0dd45cd283c32dea1545151d8c3637b4b8c53cdb3a625aeb2885b184d74d/fonttools-4.60.1-py3-none-any.whl", hash = "sha256:906306ac7afe2156fcf0042173d6ebbb05416af70f6b370967b47f8f00103bbb", size = 1143175, upload-time = "2025-09-29T21:13:24.134Z" }, +] + +[[package]] +name = "fsspec" +version = "2025.10.0" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/24/7f/2747c0d332b9acfa75dc84447a066fdf812b5a6b8d30472b74d309bfe8cb/fsspec-2025.10.0.tar.gz", hash = "sha256:b6789427626f068f9a83ca4e8a3cc050850b6c0f71f99ddb4f542b8266a26a59", size = 309285, upload-time = "2025-10-30T14:58:44.036Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/eb/02/a6b21098b1d5d6249b7c5ab69dde30108a71e4e819d4a9778f1de1d5b70d/fsspec-2025.10.0-py3-none-any.whl", hash = "sha256:7c7712353ae7d875407f97715f0e1ffcc21e33d5b24556cb1e090ae9409ec61d", size = 200966, upload-time = "2025-10-30T14:58:42.53Z" }, +] + +[[package]] +name = "ipykernel" +version = "7.1.0" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "appnope", marker = "sys_platform == 'darwin'" }, + { name = "comm" }, + { name = "debugpy" }, + { name = "ipython" }, + { name = "jupyter-client" }, + { name = "jupyter-core" }, + { name = "matplotlib-inline" }, + { name = "nest-asyncio" }, + { name = "packaging" }, + { name = "psutil" }, + { name = "pyzmq" }, + { name = "tornado" }, + { name = "traitlets" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/b9/a4/4948be6eb88628505b83a1f2f40d90254cab66abf2043b3c40fa07dfce0f/ipykernel-7.1.0.tar.gz", hash = "sha256:58a3fc88533d5930c3546dc7eac66c6d288acde4f801e2001e65edc5dc9cf0db", size = 174579, upload-time = "2025-10-27T09:46:39.471Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/a3/17/20c2552266728ceba271967b87919664ecc0e33efca29c3efc6baf88c5f9/ipykernel-7.1.0-py3-none-any.whl", hash = "sha256:763b5ec6c5b7776f6a8d7ce09b267693b4e5ce75cb50ae696aaefb3c85e1ea4c", size = 117968, upload-time = "2025-10-27T09:46:37.805Z" }, +] + +[[package]] +name = "ipython" +version = "9.7.0" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "colorama", marker = "sys_platform == 'win32'" }, + { name = "decorator" }, + { name = "ipython-pygments-lexers" }, + { name = "jedi" }, + { name = "matplotlib-inline" }, + { name = "pexpect", marker = "sys_platform != 'emscripten' and sys_platform != 'win32'" }, + { name = "prompt-toolkit" }, + { name = "pygments" }, + { name = "stack-data" }, + { name = "traitlets" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/29/e6/48c74d54039241a456add616464ea28c6ebf782e4110d419411b83dae06f/ipython-9.7.0.tar.gz", hash = "sha256:5f6de88c905a566c6a9d6c400a8fed54a638e1f7543d17aae2551133216b1e4e", size = 4422115, upload-time = "2025-11-05T12:18:54.646Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/05/aa/62893d6a591d337aa59dcc4c6f6c842f1fe20cd72c8c5c1f980255243252/ipython-9.7.0-py3-none-any.whl", hash = "sha256:bce8ac85eb9521adc94e1845b4c03d88365fd6ac2f4908ec4ed1eb1b0a065f9f", size = 618911, upload-time = "2025-11-05T12:18:52.484Z" }, +] + +[[package]] +name = "ipython-pygments-lexers" +version = "1.1.1" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "pygments" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/ef/4c/5dd1d8af08107f88c7f741ead7a40854b8ac24ddf9ae850afbcf698aa552/ipython_pygments_lexers-1.1.1.tar.gz", hash = "sha256:09c0138009e56b6854f9535736f4171d855c8c08a563a0dcd8022f78355c7e81", size = 8393, upload-time = "2025-01-17T11:24:34.505Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/d9/33/1f075bf72b0b747cb3288d011319aaf64083cf2efef8354174e3ed4540e2/ipython_pygments_lexers-1.1.1-py3-none-any.whl", hash = "sha256:a9462224a505ade19a605f71f8fa63c2048833ce50abc86768a0d81d876dc81c", size = 8074, upload-time = "2025-01-17T11:24:33.271Z" }, +] + +[[package]] +name = "jedi" +version = "0.19.2" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "parso" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/72/3a/79a912fbd4d8dd6fbb02bf69afd3bb72cf0c729bb3063c6f4498603db17a/jedi-0.19.2.tar.gz", hash = "sha256:4770dc3de41bde3966b02eb84fbcf557fb33cce26ad23da12c742fb50ecb11f0", size = 1231287, upload-time = "2024-11-11T01:41:42.873Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/c0/5a/9cac0c82afec3d09ccd97c8b6502d48f165f9124db81b4bcb90b4af974ee/jedi-0.19.2-py2.py3-none-any.whl", hash = "sha256:a8ef22bde8490f57fe5c7681a3c83cb58874daf72b4784de3cce5b6ef6edb5b9", size = 1572278, upload-time = "2024-11-11T01:41:40.175Z" }, +] + +[[package]] +name = "jinja2" +version = "3.1.6" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "markupsafe" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/df/bf/f7da0350254c0ed7c72f3e33cef02e048281fec7ecec5f032d4aac52226b/jinja2-3.1.6.tar.gz", hash = "sha256:0137fb05990d35f1275a587e9aee6d56da821fc83491a0fb838183be43f66d6d", size = 245115, upload-time = "2025-03-05T20:05:02.478Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/62/a1/3d680cbfd5f4b8f15abc1d571870c5fc3e594bb582bc3b64ea099db13e56/jinja2-3.1.6-py3-none-any.whl", hash = "sha256:85ece4451f492d0c13c5dd7c13a64681a86afae63a5f347908daf103ce6d2f67", size = 134899, upload-time = "2025-03-05T20:05:00.369Z" }, +] + +[[package]] +name = "jupyter-client" +version = "8.6.3" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "jupyter-core" }, + { name = "python-dateutil" }, + { name = "pyzmq" }, + { name = "tornado" }, + { name = "traitlets" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/71/22/bf9f12fdaeae18019a468b68952a60fe6dbab5d67cd2a103cac7659b41ca/jupyter_client-8.6.3.tar.gz", hash = "sha256:35b3a0947c4a6e9d589eb97d7d4cd5e90f910ee73101611f01283732bd6d9419", size = 342019, upload-time = "2024-09-17T10:44:17.613Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/11/85/b0394e0b6fcccd2c1eeefc230978a6f8cb0c5df1e4cd3e7625735a0d7d1e/jupyter_client-8.6.3-py3-none-any.whl", hash = "sha256:e8a19cc986cc45905ac3362915f410f3af85424b4c0905e94fa5f2cb08e8f23f", size = 106105, upload-time = "2024-09-17T10:44:15.218Z" }, +] + +[[package]] +name = "jupyter-core" +version = "5.9.1" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "platformdirs" }, + { name = "traitlets" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/02/49/9d1284d0dc65e2c757b74c6687b6d319b02f822ad039e5c512df9194d9dd/jupyter_core-5.9.1.tar.gz", hash = "sha256:4d09aaff303b9566c3ce657f580bd089ff5c91f5f89cf7d8846c3cdf465b5508", size = 89814, upload-time = "2025-10-16T19:19:18.444Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/e7/e7/80988e32bf6f73919a113473a604f5a8f09094de312b9d52b79c2df7612b/jupyter_core-5.9.1-py3-none-any.whl", hash = "sha256:ebf87fdc6073d142e114c72c9e29a9d7ca03fad818c5d300ce2adc1fb0743407", size = 29032, upload-time = "2025-10-16T19:19:16.783Z" }, +] + +[[package]] +name = "kiwisolver" +version = "1.4.9" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/5c/3c/85844f1b0feb11ee581ac23fe5fce65cd049a200c1446708cc1b7f922875/kiwisolver-1.4.9.tar.gz", hash = "sha256:c3b22c26c6fd6811b0ae8363b95ca8ce4ea3c202d3d0975b2914310ceb1bcc4d", size = 97564, upload-time = "2025-08-10T21:27:49.279Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/86/c9/13573a747838aeb1c76e3267620daa054f4152444d1f3d1a2324b78255b5/kiwisolver-1.4.9-cp312-cp312-macosx_10_13_universal2.whl", hash = "sha256:ac5a486ac389dddcc5bef4f365b6ae3ffff2c433324fb38dd35e3fab7c957999", size = 123686, upload-time = "2025-08-10T21:26:10.034Z" }, + { url = "https://files.pythonhosted.org/packages/51/ea/2ecf727927f103ffd1739271ca19c424d0e65ea473fbaeea1c014aea93f6/kiwisolver-1.4.9-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:f2ba92255faa7309d06fe44c3a4a97efe1c8d640c2a79a5ef728b685762a6fd2", size = 66460, upload-time = "2025-08-10T21:26:11.083Z" }, + { url = "https://files.pythonhosted.org/packages/5b/5a/51f5464373ce2aeb5194508298a508b6f21d3867f499556263c64c621914/kiwisolver-1.4.9-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:4a2899935e724dd1074cb568ce7ac0dce28b2cd6ab539c8e001a8578eb106d14", size = 64952, upload-time = "2025-08-10T21:26:12.058Z" }, + { url = "https://files.pythonhosted.org/packages/70/90/6d240beb0f24b74371762873e9b7f499f1e02166a2d9c5801f4dbf8fa12e/kiwisolver-1.4.9-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:f6008a4919fdbc0b0097089f67a1eb55d950ed7e90ce2cc3e640abadd2757a04", size = 1474756, upload-time = "2025-08-10T21:26:13.096Z" }, + { url = "https://files.pythonhosted.org/packages/12/42/f36816eaf465220f683fb711efdd1bbf7a7005a2473d0e4ed421389bd26c/kiwisolver-1.4.9-cp312-cp312-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:67bb8b474b4181770f926f7b7d2f8c0248cbcb78b660fdd41a47054b28d2a752", size = 1276404, upload-time = "2025-08-10T21:26:14.457Z" }, + { url = "https://files.pythonhosted.org/packages/2e/64/bc2de94800adc830c476dce44e9b40fd0809cddeef1fde9fcf0f73da301f/kiwisolver-1.4.9-cp312-cp312-manylinux_2_24_ppc64le.manylinux_2_28_ppc64le.whl", hash = "sha256:2327a4a30d3ee07d2fbe2e7933e8a37c591663b96ce42a00bc67461a87d7df77", size = 1294410, upload-time = "2025-08-10T21:26:15.73Z" }, + { url = "https://files.pythonhosted.org/packages/5f/42/2dc82330a70aa8e55b6d395b11018045e58d0bb00834502bf11509f79091/kiwisolver-1.4.9-cp312-cp312-manylinux_2_24_s390x.manylinux_2_28_s390x.whl", hash = "sha256:7a08b491ec91b1d5053ac177afe5290adacf1f0f6307d771ccac5de30592d198", size = 1343631, upload-time = "2025-08-10T21:26:17.045Z" }, + { url = "https://files.pythonhosted.org/packages/22/fd/f4c67a6ed1aab149ec5a8a401c323cee7a1cbe364381bb6c9c0d564e0e20/kiwisolver-1.4.9-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:d8fc5c867c22b828001b6a38d2eaeb88160bf5783c6cb4a5e440efc981ce286d", size = 2224963, upload-time = "2025-08-10T21:26:18.737Z" }, + { url = "https://files.pythonhosted.org/packages/45/aa/76720bd4cb3713314677d9ec94dcc21ced3f1baf4830adde5bb9b2430a5f/kiwisolver-1.4.9-cp312-cp312-musllinux_1_2_ppc64le.whl", hash = "sha256:3b3115b2581ea35bb6d1f24a4c90af37e5d9b49dcff267eeed14c3893c5b86ab", size = 2321295, upload-time = "2025-08-10T21:26:20.11Z" }, + { url = "https://files.pythonhosted.org/packages/80/19/d3ec0d9ab711242f56ae0dc2fc5d70e298bb4a1f9dfab44c027668c673a1/kiwisolver-1.4.9-cp312-cp312-musllinux_1_2_s390x.whl", hash = "sha256:858e4c22fb075920b96a291928cb7dea5644e94c0ee4fcd5af7e865655e4ccf2", size = 2487987, upload-time = "2025-08-10T21:26:21.49Z" }, + { url = "https://files.pythonhosted.org/packages/39/e9/61e4813b2c97e86b6fdbd4dd824bf72d28bcd8d4849b8084a357bc0dd64d/kiwisolver-1.4.9-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:ed0fecd28cc62c54b262e3736f8bb2512d8dcfdc2bcf08be5f47f96bf405b145", size = 2291817, upload-time = "2025-08-10T21:26:22.812Z" }, + { url = "https://files.pythonhosted.org/packages/a0/41/85d82b0291db7504da3c2defe35c9a8a5c9803a730f297bd823d11d5fb77/kiwisolver-1.4.9-cp312-cp312-win_amd64.whl", hash = "sha256:f68208a520c3d86ea51acf688a3e3002615a7f0238002cccc17affecc86a8a54", size = 73895, upload-time = "2025-08-10T21:26:24.37Z" }, + { url = "https://files.pythonhosted.org/packages/e2/92/5f3068cf15ee5cb624a0c7596e67e2a0bb2adee33f71c379054a491d07da/kiwisolver-1.4.9-cp312-cp312-win_arm64.whl", hash = "sha256:2c1a4f57df73965f3f14df20b80ee29e6a7930a57d2d9e8491a25f676e197c60", size = 64992, upload-time = "2025-08-10T21:26:25.732Z" }, + { url = "https://files.pythonhosted.org/packages/31/c1/c2686cda909742ab66c7388e9a1a8521a59eb89f8bcfbee28fc980d07e24/kiwisolver-1.4.9-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:a5d0432ccf1c7ab14f9949eec60c5d1f924f17c037e9f8b33352fa05799359b8", size = 123681, upload-time = "2025-08-10T21:26:26.725Z" }, + { url = "https://files.pythonhosted.org/packages/ca/f0/f44f50c9f5b1a1860261092e3bc91ecdc9acda848a8b8c6abfda4a24dd5c/kiwisolver-1.4.9-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:efb3a45b35622bb6c16dbfab491a8f5a391fe0e9d45ef32f4df85658232ca0e2", size = 66464, upload-time = "2025-08-10T21:26:27.733Z" }, + { url = "https://files.pythonhosted.org/packages/2d/7a/9d90a151f558e29c3936b8a47ac770235f436f2120aca41a6d5f3d62ae8d/kiwisolver-1.4.9-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:1a12cf6398e8a0a001a059747a1cbf24705e18fe413bc22de7b3d15c67cffe3f", size = 64961, upload-time = "2025-08-10T21:26:28.729Z" }, + { url = "https://files.pythonhosted.org/packages/e9/e9/f218a2cb3a9ffbe324ca29a9e399fa2d2866d7f348ec3a88df87fc248fc5/kiwisolver-1.4.9-cp313-cp313-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:b67e6efbf68e077dd71d1a6b37e43e1a99d0bff1a3d51867d45ee8908b931098", size = 1474607, upload-time = "2025-08-10T21:26:29.798Z" }, + { url = "https://files.pythonhosted.org/packages/d9/28/aac26d4c882f14de59041636292bc838db8961373825df23b8eeb807e198/kiwisolver-1.4.9-cp313-cp313-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:5656aa670507437af0207645273ccdfee4f14bacd7f7c67a4306d0dcaeaf6eed", size = 1276546, upload-time = "2025-08-10T21:26:31.401Z" }, + { url = "https://files.pythonhosted.org/packages/8b/ad/8bfc1c93d4cc565e5069162f610ba2f48ff39b7de4b5b8d93f69f30c4bed/kiwisolver-1.4.9-cp313-cp313-manylinux_2_24_ppc64le.manylinux_2_28_ppc64le.whl", hash = "sha256:bfc08add558155345129c7803b3671cf195e6a56e7a12f3dde7c57d9b417f525", size = 1294482, upload-time = "2025-08-10T21:26:32.721Z" }, + { url = "https://files.pythonhosted.org/packages/da/f1/6aca55ff798901d8ce403206d00e033191f63d82dd708a186e0ed2067e9c/kiwisolver-1.4.9-cp313-cp313-manylinux_2_24_s390x.manylinux_2_28_s390x.whl", hash = "sha256:40092754720b174e6ccf9e845d0d8c7d8e12c3d71e7fc35f55f3813e96376f78", size = 1343720, upload-time = "2025-08-10T21:26:34.032Z" }, + { url = "https://files.pythonhosted.org/packages/d1/91/eed031876c595c81d90d0f6fc681ece250e14bf6998c3d7c419466b523b7/kiwisolver-1.4.9-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:497d05f29a1300d14e02e6441cf0f5ee81c1ff5a304b0d9fb77423974684e08b", size = 2224907, upload-time = "2025-08-10T21:26:35.824Z" }, + { url = "https://files.pythonhosted.org/packages/e9/ec/4d1925f2e49617b9cca9c34bfa11adefad49d00db038e692a559454dfb2e/kiwisolver-1.4.9-cp313-cp313-musllinux_1_2_ppc64le.whl", hash = "sha256:bdd1a81a1860476eb41ac4bc1e07b3f07259e6d55bbf739b79c8aaedcf512799", size = 2321334, upload-time = "2025-08-10T21:26:37.534Z" }, + { url = "https://files.pythonhosted.org/packages/43/cb/450cd4499356f68802750c6ddc18647b8ea01ffa28f50d20598e0befe6e9/kiwisolver-1.4.9-cp313-cp313-musllinux_1_2_s390x.whl", hash = "sha256:e6b93f13371d341afee3be9f7c5964e3fe61d5fa30f6a30eb49856935dfe4fc3", size = 2488313, upload-time = "2025-08-10T21:26:39.191Z" }, + { url = "https://files.pythonhosted.org/packages/71/67/fc76242bd99f885651128a5d4fa6083e5524694b7c88b489b1b55fdc491d/kiwisolver-1.4.9-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:d75aa530ccfaa593da12834b86a0724f58bff12706659baa9227c2ccaa06264c", size = 2291970, upload-time = "2025-08-10T21:26:40.828Z" }, + { url = "https://files.pythonhosted.org/packages/75/bd/f1a5d894000941739f2ae1b65a32892349423ad49c2e6d0771d0bad3fae4/kiwisolver-1.4.9-cp313-cp313-win_amd64.whl", hash = "sha256:dd0a578400839256df88c16abddf9ba14813ec5f21362e1fe65022e00c883d4d", size = 73894, upload-time = "2025-08-10T21:26:42.33Z" }, + { url = "https://files.pythonhosted.org/packages/95/38/dce480814d25b99a391abbddadc78f7c117c6da34be68ca8b02d5848b424/kiwisolver-1.4.9-cp313-cp313-win_arm64.whl", hash = "sha256:d4188e73af84ca82468f09cadc5ac4db578109e52acb4518d8154698d3a87ca2", size = 64995, upload-time = "2025-08-10T21:26:43.889Z" }, + { url = "https://files.pythonhosted.org/packages/e2/37/7d218ce5d92dadc5ebdd9070d903e0c7cf7edfe03f179433ac4d13ce659c/kiwisolver-1.4.9-cp313-cp313t-macosx_10_13_universal2.whl", hash = "sha256:5a0f2724dfd4e3b3ac5a82436a8e6fd16baa7d507117e4279b660fe8ca38a3a1", size = 126510, upload-time = "2025-08-10T21:26:44.915Z" }, + { url = "https://files.pythonhosted.org/packages/23/b0/e85a2b48233daef4b648fb657ebbb6f8367696a2d9548a00b4ee0eb67803/kiwisolver-1.4.9-cp313-cp313t-macosx_10_13_x86_64.whl", hash = "sha256:1b11d6a633e4ed84fc0ddafd4ebfd8ea49b3f25082c04ad12b8315c11d504dc1", size = 67903, upload-time = "2025-08-10T21:26:45.934Z" }, + { url = "https://files.pythonhosted.org/packages/44/98/f2425bc0113ad7de24da6bb4dae1343476e95e1d738be7c04d31a5d037fd/kiwisolver-1.4.9-cp313-cp313t-macosx_11_0_arm64.whl", hash = "sha256:61874cdb0a36016354853593cffc38e56fc9ca5aa97d2c05d3dcf6922cd55a11", size = 66402, upload-time = "2025-08-10T21:26:47.101Z" }, + { url = "https://files.pythonhosted.org/packages/98/d8/594657886df9f34c4177cc353cc28ca7e6e5eb562d37ccc233bff43bbe2a/kiwisolver-1.4.9-cp313-cp313t-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:60c439763a969a6af93b4881db0eed8fadf93ee98e18cbc35bc8da868d0c4f0c", size = 1582135, upload-time = "2025-08-10T21:26:48.665Z" }, + { url = "https://files.pythonhosted.org/packages/5c/c6/38a115b7170f8b306fc929e166340c24958347308ea3012c2b44e7e295db/kiwisolver-1.4.9-cp313-cp313t-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:92a2f997387a1b79a75e7803aa7ded2cfbe2823852ccf1ba3bcf613b62ae3197", size = 1389409, upload-time = "2025-08-10T21:26:50.335Z" }, + { url = "https://files.pythonhosted.org/packages/bf/3b/e04883dace81f24a568bcee6eb3001da4ba05114afa622ec9b6fafdc1f5e/kiwisolver-1.4.9-cp313-cp313t-manylinux_2_24_ppc64le.manylinux_2_28_ppc64le.whl", hash = "sha256:a31d512c812daea6d8b3be3b2bfcbeb091dbb09177706569bcfc6240dcf8b41c", size = 1401763, upload-time = "2025-08-10T21:26:51.867Z" }, + { url = "https://files.pythonhosted.org/packages/9f/80/20ace48e33408947af49d7d15c341eaee69e4e0304aab4b7660e234d6288/kiwisolver-1.4.9-cp313-cp313t-manylinux_2_24_s390x.manylinux_2_28_s390x.whl", hash = "sha256:52a15b0f35dad39862d376df10c5230155243a2c1a436e39eb55623ccbd68185", size = 1453643, upload-time = "2025-08-10T21:26:53.592Z" }, + { url = "https://files.pythonhosted.org/packages/64/31/6ce4380a4cd1f515bdda976a1e90e547ccd47b67a1546d63884463c92ca9/kiwisolver-1.4.9-cp313-cp313t-musllinux_1_2_aarch64.whl", hash = "sha256:a30fd6fdef1430fd9e1ba7b3398b5ee4e2887783917a687d86ba69985fb08748", size = 2330818, upload-time = "2025-08-10T21:26:55.051Z" }, + { url = "https://files.pythonhosted.org/packages/fa/e9/3f3fcba3bcc7432c795b82646306e822f3fd74df0ee81f0fa067a1f95668/kiwisolver-1.4.9-cp313-cp313t-musllinux_1_2_ppc64le.whl", hash = "sha256:cc9617b46837c6468197b5945e196ee9ca43057bb7d9d1ae688101e4e1dddf64", size = 2419963, upload-time = "2025-08-10T21:26:56.421Z" }, + { url = "https://files.pythonhosted.org/packages/99/43/7320c50e4133575c66e9f7dadead35ab22d7c012a3b09bb35647792b2a6d/kiwisolver-1.4.9-cp313-cp313t-musllinux_1_2_s390x.whl", hash = "sha256:0ab74e19f6a2b027ea4f845a78827969af45ce790e6cb3e1ebab71bdf9f215ff", size = 2594639, upload-time = "2025-08-10T21:26:57.882Z" }, + { url = "https://files.pythonhosted.org/packages/65/d6/17ae4a270d4a987ef8a385b906d2bdfc9fce502d6dc0d3aea865b47f548c/kiwisolver-1.4.9-cp313-cp313t-musllinux_1_2_x86_64.whl", hash = "sha256:dba5ee5d3981160c28d5490f0d1b7ed730c22470ff7f6cc26cfcfaacb9896a07", size = 2391741, upload-time = "2025-08-10T21:26:59.237Z" }, + { url = "https://files.pythonhosted.org/packages/2a/8f/8f6f491d595a9e5912971f3f863d81baddccc8a4d0c3749d6a0dd9ffc9df/kiwisolver-1.4.9-cp313-cp313t-win_arm64.whl", hash = "sha256:0749fd8f4218ad2e851e11cc4dc05c7cbc0cbc4267bdfdb31782e65aace4ee9c", size = 68646, upload-time = "2025-08-10T21:27:00.52Z" }, + { url = "https://files.pythonhosted.org/packages/6b/32/6cc0fbc9c54d06c2969faa9c1d29f5751a2e51809dd55c69055e62d9b426/kiwisolver-1.4.9-cp314-cp314-macosx_10_13_universal2.whl", hash = "sha256:9928fe1eb816d11ae170885a74d074f57af3a0d65777ca47e9aeb854a1fba386", size = 123806, upload-time = "2025-08-10T21:27:01.537Z" }, + { url = "https://files.pythonhosted.org/packages/b2/dd/2bfb1d4a4823d92e8cbb420fe024b8d2167f72079b3bb941207c42570bdf/kiwisolver-1.4.9-cp314-cp314-macosx_10_13_x86_64.whl", hash = "sha256:d0005b053977e7b43388ddec89fa567f43d4f6d5c2c0affe57de5ebf290dc552", size = 66605, upload-time = "2025-08-10T21:27:03.335Z" }, + { url = "https://files.pythonhosted.org/packages/f7/69/00aafdb4e4509c2ca6064646cba9cd4b37933898f426756adb2cb92ebbed/kiwisolver-1.4.9-cp314-cp314-macosx_11_0_arm64.whl", hash = "sha256:2635d352d67458b66fd0667c14cb1d4145e9560d503219034a18a87e971ce4f3", size = 64925, upload-time = "2025-08-10T21:27:04.339Z" }, + { url = "https://files.pythonhosted.org/packages/43/dc/51acc6791aa14e5cb6d8a2e28cefb0dc2886d8862795449d021334c0df20/kiwisolver-1.4.9-cp314-cp314-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:767c23ad1c58c9e827b649a9ab7809fd5fd9db266a9cf02b0e926ddc2c680d58", size = 1472414, upload-time = "2025-08-10T21:27:05.437Z" }, + { url = "https://files.pythonhosted.org/packages/3d/bb/93fa64a81db304ac8a246f834d5094fae4b13baf53c839d6bb6e81177129/kiwisolver-1.4.9-cp314-cp314-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:72d0eb9fba308b8311685c2268cf7d0a0639a6cd027d8128659f72bdd8a024b4", size = 1281272, upload-time = "2025-08-10T21:27:07.063Z" }, + { url = "https://files.pythonhosted.org/packages/70/e6/6df102916960fb8d05069d4bd92d6d9a8202d5a3e2444494e7cd50f65b7a/kiwisolver-1.4.9-cp314-cp314-manylinux_2_24_ppc64le.manylinux_2_28_ppc64le.whl", hash = "sha256:f68e4f3eeca8fb22cc3d731f9715a13b652795ef657a13df1ad0c7dc0e9731df", size = 1298578, upload-time = "2025-08-10T21:27:08.452Z" }, + { url = "https://files.pythonhosted.org/packages/7c/47/e142aaa612f5343736b087864dbaebc53ea8831453fb47e7521fa8658f30/kiwisolver-1.4.9-cp314-cp314-manylinux_2_24_s390x.manylinux_2_28_s390x.whl", hash = "sha256:d84cd4061ae292d8ac367b2c3fa3aad11cb8625a95d135fe93f286f914f3f5a6", size = 1345607, upload-time = "2025-08-10T21:27:10.125Z" }, + { url = "https://files.pythonhosted.org/packages/54/89/d641a746194a0f4d1a3670fb900d0dbaa786fb98341056814bc3f058fa52/kiwisolver-1.4.9-cp314-cp314-musllinux_1_2_aarch64.whl", hash = "sha256:a60ea74330b91bd22a29638940d115df9dc00af5035a9a2a6ad9399ffb4ceca5", size = 2230150, upload-time = "2025-08-10T21:27:11.484Z" }, + { url = "https://files.pythonhosted.org/packages/aa/6b/5ee1207198febdf16ac11f78c5ae40861b809cbe0e6d2a8d5b0b3044b199/kiwisolver-1.4.9-cp314-cp314-musllinux_1_2_ppc64le.whl", hash = "sha256:ce6a3a4e106cf35c2d9c4fa17c05ce0b180db622736845d4315519397a77beaf", size = 2325979, upload-time = "2025-08-10T21:27:12.917Z" }, + { url = "https://files.pythonhosted.org/packages/fc/ff/b269eefd90f4ae14dcc74973d5a0f6d28d3b9bb1afd8c0340513afe6b39a/kiwisolver-1.4.9-cp314-cp314-musllinux_1_2_s390x.whl", hash = "sha256:77937e5e2a38a7b48eef0585114fe7930346993a88060d0bf886086d2aa49ef5", size = 2491456, upload-time = "2025-08-10T21:27:14.353Z" }, + { url = "https://files.pythonhosted.org/packages/fc/d4/10303190bd4d30de547534601e259a4fbf014eed94aae3e5521129215086/kiwisolver-1.4.9-cp314-cp314-musllinux_1_2_x86_64.whl", hash = "sha256:24c175051354f4a28c5d6a31c93906dc653e2bf234e8a4bbfb964892078898ce", size = 2294621, upload-time = "2025-08-10T21:27:15.808Z" }, + { url = "https://files.pythonhosted.org/packages/28/e0/a9a90416fce5c0be25742729c2ea52105d62eda6c4be4d803c2a7be1fa50/kiwisolver-1.4.9-cp314-cp314-win_amd64.whl", hash = "sha256:0763515d4df10edf6d06a3c19734e2566368980d21ebec439f33f9eb936c07b7", size = 75417, upload-time = "2025-08-10T21:27:17.436Z" }, + { url = "https://files.pythonhosted.org/packages/1f/10/6949958215b7a9a264299a7db195564e87900f709db9245e4ebdd3c70779/kiwisolver-1.4.9-cp314-cp314-win_arm64.whl", hash = "sha256:0e4e2bf29574a6a7b7f6cb5fa69293b9f96c928949ac4a53ba3f525dffb87f9c", size = 66582, upload-time = "2025-08-10T21:27:18.436Z" }, + { url = "https://files.pythonhosted.org/packages/ec/79/60e53067903d3bc5469b369fe0dfc6b3482e2133e85dae9daa9527535991/kiwisolver-1.4.9-cp314-cp314t-macosx_10_13_universal2.whl", hash = "sha256:d976bbb382b202f71c67f77b0ac11244021cfa3f7dfd9e562eefcea2df711548", size = 126514, upload-time = "2025-08-10T21:27:19.465Z" }, + { url = "https://files.pythonhosted.org/packages/25/d1/4843d3e8d46b072c12a38c97c57fab4608d36e13fe47d47ee96b4d61ba6f/kiwisolver-1.4.9-cp314-cp314t-macosx_10_13_x86_64.whl", hash = "sha256:2489e4e5d7ef9a1c300a5e0196e43d9c739f066ef23270607d45aba368b91f2d", size = 67905, upload-time = "2025-08-10T21:27:20.51Z" }, + { url = "https://files.pythonhosted.org/packages/8c/ae/29ffcbd239aea8b93108de1278271ae764dfc0d803a5693914975f200596/kiwisolver-1.4.9-cp314-cp314t-macosx_11_0_arm64.whl", hash = "sha256:e2ea9f7ab7fbf18fffb1b5434ce7c69a07582f7acc7717720f1d69f3e806f90c", size = 66399, upload-time = "2025-08-10T21:27:21.496Z" }, + { url = "https://files.pythonhosted.org/packages/a1/ae/d7ba902aa604152c2ceba5d352d7b62106bedbccc8e95c3934d94472bfa3/kiwisolver-1.4.9-cp314-cp314t-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:b34e51affded8faee0dfdb705416153819d8ea9250bbbf7ea1b249bdeb5f1122", size = 1582197, upload-time = "2025-08-10T21:27:22.604Z" }, + { url = "https://files.pythonhosted.org/packages/f2/41/27c70d427eddb8bc7e4f16420a20fefc6f480312122a59a959fdfe0445ad/kiwisolver-1.4.9-cp314-cp314t-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:d8aacd3d4b33b772542b2e01beb50187536967b514b00003bdda7589722d2a64", size = 1390125, upload-time = "2025-08-10T21:27:24.036Z" }, + { url = "https://files.pythonhosted.org/packages/41/42/b3799a12bafc76d962ad69083f8b43b12bf4fe78b097b12e105d75c9b8f1/kiwisolver-1.4.9-cp314-cp314t-manylinux_2_24_ppc64le.manylinux_2_28_ppc64le.whl", hash = "sha256:7cf974dd4e35fa315563ac99d6287a1024e4dc2077b8a7d7cd3d2fb65d283134", size = 1402612, upload-time = "2025-08-10T21:27:25.773Z" }, + { url = "https://files.pythonhosted.org/packages/d2/b5/a210ea073ea1cfaca1bb5c55a62307d8252f531beb364e18aa1e0888b5a0/kiwisolver-1.4.9-cp314-cp314t-manylinux_2_24_s390x.manylinux_2_28_s390x.whl", hash = "sha256:85bd218b5ecfbee8c8a82e121802dcb519a86044c9c3b2e4aef02fa05c6da370", size = 1453990, upload-time = "2025-08-10T21:27:27.089Z" }, + { url = "https://files.pythonhosted.org/packages/5f/ce/a829eb8c033e977d7ea03ed32fb3c1781b4fa0433fbadfff29e39c676f32/kiwisolver-1.4.9-cp314-cp314t-musllinux_1_2_aarch64.whl", hash = "sha256:0856e241c2d3df4efef7c04a1e46b1936b6120c9bcf36dd216e3acd84bc4fb21", size = 2331601, upload-time = "2025-08-10T21:27:29.343Z" }, + { url = "https://files.pythonhosted.org/packages/e0/4b/b5e97eb142eb9cd0072dacfcdcd31b1c66dc7352b0f7c7255d339c0edf00/kiwisolver-1.4.9-cp314-cp314t-musllinux_1_2_ppc64le.whl", hash = "sha256:9af39d6551f97d31a4deebeac6f45b156f9755ddc59c07b402c148f5dbb6482a", size = 2422041, upload-time = "2025-08-10T21:27:30.754Z" }, + { url = "https://files.pythonhosted.org/packages/40/be/8eb4cd53e1b85ba4edc3a9321666f12b83113a178845593307a3e7891f44/kiwisolver-1.4.9-cp314-cp314t-musllinux_1_2_s390x.whl", hash = "sha256:bb4ae2b57fc1d8cbd1cf7b1d9913803681ffa903e7488012be5b76dedf49297f", size = 2594897, upload-time = "2025-08-10T21:27:32.803Z" }, + { url = "https://files.pythonhosted.org/packages/99/dd/841e9a66c4715477ea0abc78da039832fbb09dac5c35c58dc4c41a407b8a/kiwisolver-1.4.9-cp314-cp314t-musllinux_1_2_x86_64.whl", hash = "sha256:aedff62918805fb62d43a4aa2ecd4482c380dc76cd31bd7c8878588a61bd0369", size = 2391835, upload-time = "2025-08-10T21:27:34.23Z" }, + { url = "https://files.pythonhosted.org/packages/0c/28/4b2e5c47a0da96896fdfdb006340ade064afa1e63675d01ea5ac222b6d52/kiwisolver-1.4.9-cp314-cp314t-win_amd64.whl", hash = "sha256:1fa333e8b2ce4d9660f2cda9c0e1b6bafcfb2457a9d259faa82289e73ec24891", size = 79988, upload-time = "2025-08-10T21:27:35.587Z" }, + { url = "https://files.pythonhosted.org/packages/80/be/3578e8afd18c88cdf9cb4cffde75a96d2be38c5a903f1ed0ceec061bd09e/kiwisolver-1.4.9-cp314-cp314t-win_arm64.whl", hash = "sha256:4a48a2ce79d65d363597ef7b567ce3d14d68783d2b2263d98db3d9477805ba32", size = 70260, upload-time = "2025-08-10T21:27:36.606Z" }, +] + +[[package]] +name = "markupsafe" +version = "3.0.3" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/7e/99/7690b6d4034fffd95959cbe0c02de8deb3098cc577c67bb6a24fe5d7caa7/markupsafe-3.0.3.tar.gz", hash = "sha256:722695808f4b6457b320fdc131280796bdceb04ab50fe1795cd540799ebe1698", size = 80313, upload-time = "2025-09-27T18:37:40.426Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/5a/72/147da192e38635ada20e0a2e1a51cf8823d2119ce8883f7053879c2199b5/markupsafe-3.0.3-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:d53197da72cc091b024dd97249dfc7794d6a56530370992a5e1a08983ad9230e", size = 11615, upload-time = "2025-09-27T18:36:30.854Z" }, + { url = "https://files.pythonhosted.org/packages/9a/81/7e4e08678a1f98521201c3079f77db69fb552acd56067661f8c2f534a718/markupsafe-3.0.3-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:1872df69a4de6aead3491198eaf13810b565bdbeec3ae2dc8780f14458ec73ce", size = 12020, upload-time = "2025-09-27T18:36:31.971Z" }, + { url = "https://files.pythonhosted.org/packages/1e/2c/799f4742efc39633a1b54a92eec4082e4f815314869865d876824c257c1e/markupsafe-3.0.3-cp312-cp312-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:3a7e8ae81ae39e62a41ec302f972ba6ae23a5c5396c8e60113e9066ef893da0d", size = 24332, upload-time = "2025-09-27T18:36:32.813Z" }, + { url = "https://files.pythonhosted.org/packages/3c/2e/8d0c2ab90a8c1d9a24f0399058ab8519a3279d1bd4289511d74e909f060e/markupsafe-3.0.3-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:d6dd0be5b5b189d31db7cda48b91d7e0a9795f31430b7f271219ab30f1d3ac9d", size = 22947, upload-time = "2025-09-27T18:36:33.86Z" }, + { url = "https://files.pythonhosted.org/packages/2c/54/887f3092a85238093a0b2154bd629c89444f395618842e8b0c41783898ea/markupsafe-3.0.3-cp312-cp312-manylinux_2_31_riscv64.manylinux_2_39_riscv64.whl", hash = "sha256:94c6f0bb423f739146aec64595853541634bde58b2135f27f61c1ffd1cd4d16a", size = 21962, upload-time = "2025-09-27T18:36:35.099Z" }, + { url = "https://files.pythonhosted.org/packages/c9/2f/336b8c7b6f4a4d95e91119dc8521402461b74a485558d8f238a68312f11c/markupsafe-3.0.3-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:be8813b57049a7dc738189df53d69395eba14fb99345e0a5994914a3864c8a4b", size = 23760, upload-time = "2025-09-27T18:36:36.001Z" }, + { url = "https://files.pythonhosted.org/packages/32/43/67935f2b7e4982ffb50a4d169b724d74b62a3964bc1a9a527f5ac4f1ee2b/markupsafe-3.0.3-cp312-cp312-musllinux_1_2_riscv64.whl", hash = "sha256:83891d0e9fb81a825d9a6d61e3f07550ca70a076484292a70fde82c4b807286f", size = 21529, upload-time = "2025-09-27T18:36:36.906Z" }, + { url = "https://files.pythonhosted.org/packages/89/e0/4486f11e51bbba8b0c041098859e869e304d1c261e59244baa3d295d47b7/markupsafe-3.0.3-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:77f0643abe7495da77fb436f50f8dab76dbc6e5fd25d39589a0f1fe6548bfa2b", size = 23015, upload-time = "2025-09-27T18:36:37.868Z" }, + { url = "https://files.pythonhosted.org/packages/2f/e1/78ee7a023dac597a5825441ebd17170785a9dab23de95d2c7508ade94e0e/markupsafe-3.0.3-cp312-cp312-win32.whl", hash = "sha256:d88b440e37a16e651bda4c7c2b930eb586fd15ca7406cb39e211fcff3bf3017d", size = 14540, upload-time = "2025-09-27T18:36:38.761Z" }, + { url = "https://files.pythonhosted.org/packages/aa/5b/bec5aa9bbbb2c946ca2733ef9c4ca91c91b6a24580193e891b5f7dbe8e1e/markupsafe-3.0.3-cp312-cp312-win_amd64.whl", hash = "sha256:26a5784ded40c9e318cfc2bdb30fe164bdb8665ded9cd64d500a34fb42067b1c", size = 15105, upload-time = "2025-09-27T18:36:39.701Z" }, + { url = "https://files.pythonhosted.org/packages/e5/f1/216fc1bbfd74011693a4fd837e7026152e89c4bcf3e77b6692fba9923123/markupsafe-3.0.3-cp312-cp312-win_arm64.whl", hash = "sha256:35add3b638a5d900e807944a078b51922212fb3dedb01633a8defc4b01a3c85f", size = 13906, upload-time = "2025-09-27T18:36:40.689Z" }, + { url = "https://files.pythonhosted.org/packages/38/2f/907b9c7bbba283e68f20259574b13d005c121a0fa4c175f9bed27c4597ff/markupsafe-3.0.3-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:e1cf1972137e83c5d4c136c43ced9ac51d0e124706ee1c8aa8532c1287fa8795", size = 11622, upload-time = "2025-09-27T18:36:41.777Z" }, + { url = "https://files.pythonhosted.org/packages/9c/d9/5f7756922cdd676869eca1c4e3c0cd0df60ed30199ffd775e319089cb3ed/markupsafe-3.0.3-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:116bb52f642a37c115f517494ea5feb03889e04df47eeff5b130b1808ce7c219", size = 12029, upload-time = "2025-09-27T18:36:43.257Z" }, + { url = "https://files.pythonhosted.org/packages/00/07/575a68c754943058c78f30db02ee03a64b3c638586fba6a6dd56830b30a3/markupsafe-3.0.3-cp313-cp313-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:133a43e73a802c5562be9bbcd03d090aa5a1fe899db609c29e8c8d815c5f6de6", size = 24374, upload-time = "2025-09-27T18:36:44.508Z" }, + { url = "https://files.pythonhosted.org/packages/a9/21/9b05698b46f218fc0e118e1f8168395c65c8a2c750ae2bab54fc4bd4e0e8/markupsafe-3.0.3-cp313-cp313-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:ccfcd093f13f0f0b7fdd0f198b90053bf7b2f02a3927a30e63f3ccc9df56b676", size = 22980, upload-time = "2025-09-27T18:36:45.385Z" }, + { url = "https://files.pythonhosted.org/packages/7f/71/544260864f893f18b6827315b988c146b559391e6e7e8f7252839b1b846a/markupsafe-3.0.3-cp313-cp313-manylinux_2_31_riscv64.manylinux_2_39_riscv64.whl", hash = "sha256:509fa21c6deb7a7a273d629cf5ec029bc209d1a51178615ddf718f5918992ab9", size = 21990, upload-time = "2025-09-27T18:36:46.916Z" }, + { url = "https://files.pythonhosted.org/packages/c2/28/b50fc2f74d1ad761af2f5dcce7492648b983d00a65b8c0e0cb457c82ebbe/markupsafe-3.0.3-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:a4afe79fb3de0b7097d81da19090f4df4f8d3a2b3adaa8764138aac2e44f3af1", size = 23784, upload-time = "2025-09-27T18:36:47.884Z" }, + { url = "https://files.pythonhosted.org/packages/ed/76/104b2aa106a208da8b17a2fb72e033a5a9d7073c68f7e508b94916ed47a9/markupsafe-3.0.3-cp313-cp313-musllinux_1_2_riscv64.whl", hash = "sha256:795e7751525cae078558e679d646ae45574b47ed6e7771863fcc079a6171a0fc", size = 21588, upload-time = "2025-09-27T18:36:48.82Z" }, + { url = "https://files.pythonhosted.org/packages/b5/99/16a5eb2d140087ebd97180d95249b00a03aa87e29cc224056274f2e45fd6/markupsafe-3.0.3-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:8485f406a96febb5140bfeca44a73e3ce5116b2501ac54fe953e488fb1d03b12", size = 23041, upload-time = "2025-09-27T18:36:49.797Z" }, + { url = "https://files.pythonhosted.org/packages/19/bc/e7140ed90c5d61d77cea142eed9f9c303f4c4806f60a1044c13e3f1471d0/markupsafe-3.0.3-cp313-cp313-win32.whl", hash = "sha256:bdd37121970bfd8be76c5fb069c7751683bdf373db1ed6c010162b2a130248ed", size = 14543, upload-time = "2025-09-27T18:36:51.584Z" }, + { url = "https://files.pythonhosted.org/packages/05/73/c4abe620b841b6b791f2edc248f556900667a5a1cf023a6646967ae98335/markupsafe-3.0.3-cp313-cp313-win_amd64.whl", hash = "sha256:9a1abfdc021a164803f4d485104931fb8f8c1efd55bc6b748d2f5774e78b62c5", size = 15113, upload-time = "2025-09-27T18:36:52.537Z" }, + { url = "https://files.pythonhosted.org/packages/f0/3a/fa34a0f7cfef23cf9500d68cb7c32dd64ffd58a12b09225fb03dd37d5b80/markupsafe-3.0.3-cp313-cp313-win_arm64.whl", hash = "sha256:7e68f88e5b8799aa49c85cd116c932a1ac15caaa3f5db09087854d218359e485", size = 13911, upload-time = "2025-09-27T18:36:53.513Z" }, + { url = "https://files.pythonhosted.org/packages/e4/d7/e05cd7efe43a88a17a37b3ae96e79a19e846f3f456fe79c57ca61356ef01/markupsafe-3.0.3-cp313-cp313t-macosx_10_13_x86_64.whl", hash = "sha256:218551f6df4868a8d527e3062d0fb968682fe92054e89978594c28e642c43a73", size = 11658, upload-time = "2025-09-27T18:36:54.819Z" }, + { url = "https://files.pythonhosted.org/packages/99/9e/e412117548182ce2148bdeacdda3bb494260c0b0184360fe0d56389b523b/markupsafe-3.0.3-cp313-cp313t-macosx_11_0_arm64.whl", hash = "sha256:3524b778fe5cfb3452a09d31e7b5adefeea8c5be1d43c4f810ba09f2ceb29d37", size = 12066, upload-time = "2025-09-27T18:36:55.714Z" }, + { url = "https://files.pythonhosted.org/packages/bc/e6/fa0ffcda717ef64a5108eaa7b4f5ed28d56122c9a6d70ab8b72f9f715c80/markupsafe-3.0.3-cp313-cp313t-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:4e885a3d1efa2eadc93c894a21770e4bc67899e3543680313b09f139e149ab19", size = 25639, upload-time = "2025-09-27T18:36:56.908Z" }, + { url = "https://files.pythonhosted.org/packages/96/ec/2102e881fe9d25fc16cb4b25d5f5cde50970967ffa5dddafdb771237062d/markupsafe-3.0.3-cp313-cp313t-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:8709b08f4a89aa7586de0aadc8da56180242ee0ada3999749b183aa23df95025", size = 23569, upload-time = "2025-09-27T18:36:57.913Z" }, + { url = "https://files.pythonhosted.org/packages/4b/30/6f2fce1f1f205fc9323255b216ca8a235b15860c34b6798f810f05828e32/markupsafe-3.0.3-cp313-cp313t-manylinux_2_31_riscv64.manylinux_2_39_riscv64.whl", hash = "sha256:b8512a91625c9b3da6f127803b166b629725e68af71f8184ae7e7d54686a56d6", size = 23284, upload-time = "2025-09-27T18:36:58.833Z" }, + { url = "https://files.pythonhosted.org/packages/58/47/4a0ccea4ab9f5dcb6f79c0236d954acb382202721e704223a8aafa38b5c8/markupsafe-3.0.3-cp313-cp313t-musllinux_1_2_aarch64.whl", hash = "sha256:9b79b7a16f7fedff2495d684f2b59b0457c3b493778c9eed31111be64d58279f", size = 24801, upload-time = "2025-09-27T18:36:59.739Z" }, + { url = "https://files.pythonhosted.org/packages/6a/70/3780e9b72180b6fecb83a4814d84c3bf4b4ae4bf0b19c27196104149734c/markupsafe-3.0.3-cp313-cp313t-musllinux_1_2_riscv64.whl", hash = "sha256:12c63dfb4a98206f045aa9563db46507995f7ef6d83b2f68eda65c307c6829eb", size = 22769, upload-time = "2025-09-27T18:37:00.719Z" }, + { url = "https://files.pythonhosted.org/packages/98/c5/c03c7f4125180fc215220c035beac6b9cb684bc7a067c84fc69414d315f5/markupsafe-3.0.3-cp313-cp313t-musllinux_1_2_x86_64.whl", hash = "sha256:8f71bc33915be5186016f675cd83a1e08523649b0e33efdb898db577ef5bb009", size = 23642, upload-time = "2025-09-27T18:37:01.673Z" }, + { url = "https://files.pythonhosted.org/packages/80/d6/2d1b89f6ca4bff1036499b1e29a1d02d282259f3681540e16563f27ebc23/markupsafe-3.0.3-cp313-cp313t-win32.whl", hash = "sha256:69c0b73548bc525c8cb9a251cddf1931d1db4d2258e9599c28c07ef3580ef354", size = 14612, upload-time = "2025-09-27T18:37:02.639Z" }, + { url = "https://files.pythonhosted.org/packages/2b/98/e48a4bfba0a0ffcf9925fe2d69240bfaa19c6f7507b8cd09c70684a53c1e/markupsafe-3.0.3-cp313-cp313t-win_amd64.whl", hash = "sha256:1b4b79e8ebf6b55351f0d91fe80f893b4743f104bff22e90697db1590e47a218", size = 15200, upload-time = "2025-09-27T18:37:03.582Z" }, + { url = "https://files.pythonhosted.org/packages/0e/72/e3cc540f351f316e9ed0f092757459afbc595824ca724cbc5a5d4263713f/markupsafe-3.0.3-cp313-cp313t-win_arm64.whl", hash = "sha256:ad2cf8aa28b8c020ab2fc8287b0f823d0a7d8630784c31e9ee5edea20f406287", size = 13973, upload-time = "2025-09-27T18:37:04.929Z" }, + { url = "https://files.pythonhosted.org/packages/33/8a/8e42d4838cd89b7dde187011e97fe6c3af66d8c044997d2183fbd6d31352/markupsafe-3.0.3-cp314-cp314-macosx_10_13_x86_64.whl", hash = "sha256:eaa9599de571d72e2daf60164784109f19978b327a3910d3e9de8c97b5b70cfe", size = 11619, upload-time = "2025-09-27T18:37:06.342Z" }, + { url = "https://files.pythonhosted.org/packages/b5/64/7660f8a4a8e53c924d0fa05dc3a55c9cee10bbd82b11c5afb27d44b096ce/markupsafe-3.0.3-cp314-cp314-macosx_11_0_arm64.whl", hash = "sha256:c47a551199eb8eb2121d4f0f15ae0f923d31350ab9280078d1e5f12b249e0026", size = 12029, upload-time = "2025-09-27T18:37:07.213Z" }, + { url = "https://files.pythonhosted.org/packages/da/ef/e648bfd021127bef5fa12e1720ffed0c6cbb8310c8d9bea7266337ff06de/markupsafe-3.0.3-cp314-cp314-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:f34c41761022dd093b4b6896d4810782ffbabe30f2d443ff5f083e0cbbb8c737", size = 24408, upload-time = "2025-09-27T18:37:09.572Z" }, + { url = "https://files.pythonhosted.org/packages/41/3c/a36c2450754618e62008bf7435ccb0f88053e07592e6028a34776213d877/markupsafe-3.0.3-cp314-cp314-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:457a69a9577064c05a97c41f4e65148652db078a3a509039e64d3467b9e7ef97", size = 23005, upload-time = "2025-09-27T18:37:10.58Z" }, + { url = "https://files.pythonhosted.org/packages/bc/20/b7fdf89a8456b099837cd1dc21974632a02a999ec9bf7ca3e490aacd98e7/markupsafe-3.0.3-cp314-cp314-manylinux_2_31_riscv64.manylinux_2_39_riscv64.whl", hash = "sha256:e8afc3f2ccfa24215f8cb28dcf43f0113ac3c37c2f0f0806d8c70e4228c5cf4d", size = 22048, upload-time = "2025-09-27T18:37:11.547Z" }, + { url = "https://files.pythonhosted.org/packages/9a/a7/591f592afdc734f47db08a75793a55d7fbcc6902a723ae4cfbab61010cc5/markupsafe-3.0.3-cp314-cp314-musllinux_1_2_aarch64.whl", hash = "sha256:ec15a59cf5af7be74194f7ab02d0f59a62bdcf1a537677ce67a2537c9b87fcda", size = 23821, upload-time = "2025-09-27T18:37:12.48Z" }, + { url = "https://files.pythonhosted.org/packages/7d/33/45b24e4f44195b26521bc6f1a82197118f74df348556594bd2262bda1038/markupsafe-3.0.3-cp314-cp314-musllinux_1_2_riscv64.whl", hash = "sha256:0eb9ff8191e8498cca014656ae6b8d61f39da5f95b488805da4bb029cccbfbaf", size = 21606, upload-time = "2025-09-27T18:37:13.485Z" }, + { url = "https://files.pythonhosted.org/packages/ff/0e/53dfaca23a69fbfbbf17a4b64072090e70717344c52eaaaa9c5ddff1e5f0/markupsafe-3.0.3-cp314-cp314-musllinux_1_2_x86_64.whl", hash = "sha256:2713baf880df847f2bece4230d4d094280f4e67b1e813eec43b4c0e144a34ffe", size = 23043, upload-time = "2025-09-27T18:37:14.408Z" }, + { url = "https://files.pythonhosted.org/packages/46/11/f333a06fc16236d5238bfe74daccbca41459dcd8d1fa952e8fbd5dccfb70/markupsafe-3.0.3-cp314-cp314-win32.whl", hash = "sha256:729586769a26dbceff69f7a7dbbf59ab6572b99d94576a5592625d5b411576b9", size = 14747, upload-time = "2025-09-27T18:37:15.36Z" }, + { url = "https://files.pythonhosted.org/packages/28/52/182836104b33b444e400b14f797212f720cbc9ed6ba34c800639d154e821/markupsafe-3.0.3-cp314-cp314-win_amd64.whl", hash = "sha256:bdc919ead48f234740ad807933cdf545180bfbe9342c2bb451556db2ed958581", size = 15341, upload-time = "2025-09-27T18:37:16.496Z" }, + { url = "https://files.pythonhosted.org/packages/6f/18/acf23e91bd94fd7b3031558b1f013adfa21a8e407a3fdb32745538730382/markupsafe-3.0.3-cp314-cp314-win_arm64.whl", hash = "sha256:5a7d5dc5140555cf21a6fefbdbf8723f06fcd2f63ef108f2854de715e4422cb4", size = 14073, upload-time = "2025-09-27T18:37:17.476Z" }, + { url = "https://files.pythonhosted.org/packages/3c/f0/57689aa4076e1b43b15fdfa646b04653969d50cf30c32a102762be2485da/markupsafe-3.0.3-cp314-cp314t-macosx_10_13_x86_64.whl", hash = "sha256:1353ef0c1b138e1907ae78e2f6c63ff67501122006b0f9abad68fda5f4ffc6ab", size = 11661, upload-time = "2025-09-27T18:37:18.453Z" }, + { url = "https://files.pythonhosted.org/packages/89/c3/2e67a7ca217c6912985ec766c6393b636fb0c2344443ff9d91404dc4c79f/markupsafe-3.0.3-cp314-cp314t-macosx_11_0_arm64.whl", hash = "sha256:1085e7fbddd3be5f89cc898938f42c0b3c711fdcb37d75221de2666af647c175", size = 12069, upload-time = "2025-09-27T18:37:19.332Z" }, + { url = "https://files.pythonhosted.org/packages/f0/00/be561dce4e6ca66b15276e184ce4b8aec61fe83662cce2f7d72bd3249d28/markupsafe-3.0.3-cp314-cp314t-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:1b52b4fb9df4eb9ae465f8d0c228a00624de2334f216f178a995ccdcf82c4634", size = 25670, upload-time = "2025-09-27T18:37:20.245Z" }, + { url = "https://files.pythonhosted.org/packages/50/09/c419f6f5a92e5fadde27efd190eca90f05e1261b10dbd8cbcb39cd8ea1dc/markupsafe-3.0.3-cp314-cp314t-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:fed51ac40f757d41b7c48425901843666a6677e3e8eb0abcff09e4ba6e664f50", size = 23598, upload-time = "2025-09-27T18:37:21.177Z" }, + { url = "https://files.pythonhosted.org/packages/22/44/a0681611106e0b2921b3033fc19bc53323e0b50bc70cffdd19f7d679bb66/markupsafe-3.0.3-cp314-cp314t-manylinux_2_31_riscv64.manylinux_2_39_riscv64.whl", hash = "sha256:f190daf01f13c72eac4efd5c430a8de82489d9cff23c364c3ea822545032993e", size = 23261, upload-time = "2025-09-27T18:37:22.167Z" }, + { url = "https://files.pythonhosted.org/packages/5f/57/1b0b3f100259dc9fffe780cfb60d4be71375510e435efec3d116b6436d43/markupsafe-3.0.3-cp314-cp314t-musllinux_1_2_aarch64.whl", hash = "sha256:e56b7d45a839a697b5eb268c82a71bd8c7f6c94d6fd50c3d577fa39a9f1409f5", size = 24835, upload-time = "2025-09-27T18:37:23.296Z" }, + { url = "https://files.pythonhosted.org/packages/26/6a/4bf6d0c97c4920f1597cc14dd720705eca0bf7c787aebc6bb4d1bead5388/markupsafe-3.0.3-cp314-cp314t-musllinux_1_2_riscv64.whl", hash = "sha256:f3e98bb3798ead92273dc0e5fd0f31ade220f59a266ffd8a4f6065e0a3ce0523", size = 22733, upload-time = "2025-09-27T18:37:24.237Z" }, + { url = "https://files.pythonhosted.org/packages/14/c7/ca723101509b518797fedc2fdf79ba57f886b4aca8a7d31857ba3ee8281f/markupsafe-3.0.3-cp314-cp314t-musllinux_1_2_x86_64.whl", hash = "sha256:5678211cb9333a6468fb8d8be0305520aa073f50d17f089b5b4b477ea6e67fdc", size = 23672, upload-time = "2025-09-27T18:37:25.271Z" }, + { url = "https://files.pythonhosted.org/packages/fb/df/5bd7a48c256faecd1d36edc13133e51397e41b73bb77e1a69deab746ebac/markupsafe-3.0.3-cp314-cp314t-win32.whl", hash = "sha256:915c04ba3851909ce68ccc2b8e2cd691618c4dc4c4232fb7982bca3f41fd8c3d", size = 14819, upload-time = "2025-09-27T18:37:26.285Z" }, + { url = "https://files.pythonhosted.org/packages/1a/8a/0402ba61a2f16038b48b39bccca271134be00c5c9f0f623208399333c448/markupsafe-3.0.3-cp314-cp314t-win_amd64.whl", hash = "sha256:4faffd047e07c38848ce017e8725090413cd80cbc23d86e55c587bf979e579c9", size = 15426, upload-time = "2025-09-27T18:37:27.316Z" }, + { url = "https://files.pythonhosted.org/packages/70/bc/6f1c2f612465f5fa89b95bead1f44dcb607670fd42891d8fdcd5d039f4f4/markupsafe-3.0.3-cp314-cp314t-win_arm64.whl", hash = "sha256:32001d6a8fc98c8cb5c947787c5d08b0a50663d139f1305bac5885d98d9b40fa", size = 14146, upload-time = "2025-09-27T18:37:28.327Z" }, +] + +[[package]] +name = "matplotlib" +version = "3.10.7" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "contourpy" }, + { name = "cycler" }, + { name = "fonttools" }, + { name = "kiwisolver" }, + { name = "numpy" }, + { name = "packaging" }, + { name = "pillow" }, + { name = "pyparsing" }, + { name = "python-dateutil" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/ae/e2/d2d5295be2f44c678ebaf3544ba32d20c1f9ef08c49fe47f496180e1db15/matplotlib-3.10.7.tar.gz", hash = "sha256:a06ba7e2a2ef9131c79c49e63dad355d2d878413a0376c1727c8b9335ff731c7", size = 34804865, upload-time = "2025-10-09T00:28:00.669Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/be/b3/09eb0f7796932826ec20c25b517d568627754f6c6462fca19e12c02f2e12/matplotlib-3.10.7-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:7a0edb7209e21840e8361e91ea84ea676658aa93edd5f8762793dec77a4a6748", size = 8272389, upload-time = "2025-10-09T00:26:42.474Z" }, + { url = "https://files.pythonhosted.org/packages/11/0b/1ae80ddafb8652fd8046cb5c8460ecc8d4afccb89e2c6d6bec61e04e1eaf/matplotlib-3.10.7-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:c380371d3c23e0eadf8ebff114445b9f970aff2010198d498d4ab4c3b41eea4f", size = 8128247, upload-time = "2025-10-09T00:26:44.77Z" }, + { url = "https://files.pythonhosted.org/packages/7d/18/95ae2e242d4a5c98bd6e90e36e128d71cf1c7e39b0874feaed3ef782e789/matplotlib-3.10.7-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:d5f256d49fea31f40f166a5e3131235a5d2f4b7f44520b1cf0baf1ce568ccff0", size = 8696996, upload-time = "2025-10-09T00:26:46.792Z" }, + { url = "https://files.pythonhosted.org/packages/7e/3d/5b559efc800bd05cb2033aa85f7e13af51958136a48327f7c261801ff90a/matplotlib-3.10.7-cp312-cp312-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:11ae579ac83cdf3fb72573bb89f70e0534de05266728740d478f0f818983c695", size = 9530153, upload-time = "2025-10-09T00:26:49.07Z" }, + { url = "https://files.pythonhosted.org/packages/88/57/eab4a719fd110312d3c220595d63a3c85ec2a39723f0f4e7fa7e6e3f74ba/matplotlib-3.10.7-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:4c14b6acd16cddc3569a2d515cfdd81c7a68ac5639b76548cfc1a9e48b20eb65", size = 9593093, upload-time = "2025-10-09T00:26:51.067Z" }, + { url = "https://files.pythonhosted.org/packages/31/3c/80816f027b3a4a28cd2a0a6ef7f89a2db22310e945cd886ec25bfb399221/matplotlib-3.10.7-cp312-cp312-win_amd64.whl", hash = "sha256:0d8c32b7ea6fb80b1aeff5a2ceb3fb9778e2759e899d9beff75584714afcc5ee", size = 8122771, upload-time = "2025-10-09T00:26:53.296Z" }, + { url = "https://files.pythonhosted.org/packages/de/77/ef1fc78bfe99999b2675435cc52120887191c566b25017d78beaabef7f2d/matplotlib-3.10.7-cp312-cp312-win_arm64.whl", hash = "sha256:5f3f6d315dcc176ba7ca6e74c7768fb7e4cf566c49cb143f6bc257b62e634ed8", size = 7992812, upload-time = "2025-10-09T00:26:54.882Z" }, + { url = "https://files.pythonhosted.org/packages/02/9c/207547916a02c78f6bdd83448d9b21afbc42f6379ed887ecf610984f3b4e/matplotlib-3.10.7-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:1d9d3713a237970569156cfb4de7533b7c4eacdd61789726f444f96a0d28f57f", size = 8273212, upload-time = "2025-10-09T00:26:56.752Z" }, + { url = "https://files.pythonhosted.org/packages/bc/d0/b3d3338d467d3fc937f0bb7f256711395cae6f78e22cef0656159950adf0/matplotlib-3.10.7-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:37a1fea41153dd6ee061d21ab69c9cf2cf543160b1b85d89cd3d2e2a7902ca4c", size = 8128713, upload-time = "2025-10-09T00:26:59.001Z" }, + { url = "https://files.pythonhosted.org/packages/22/ff/6425bf5c20d79aa5b959d1ce9e65f599632345391381c9a104133fe0b171/matplotlib-3.10.7-cp313-cp313-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:b3c4ea4948d93c9c29dc01c0c23eef66f2101bf75158c291b88de6525c55c3d1", size = 8698527, upload-time = "2025-10-09T00:27:00.69Z" }, + { url = "https://files.pythonhosted.org/packages/d0/7f/ccdca06f4c2e6c7989270ed7829b8679466682f4cfc0f8c9986241c023b6/matplotlib-3.10.7-cp313-cp313-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:22df30ffaa89f6643206cf13877191c63a50e8f800b038bc39bee9d2d4957632", size = 9529690, upload-time = "2025-10-09T00:27:02.664Z" }, + { url = "https://files.pythonhosted.org/packages/b8/95/b80fc2c1f269f21ff3d193ca697358e24408c33ce2b106a7438a45407b63/matplotlib-3.10.7-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:b69676845a0a66f9da30e87f48be36734d6748024b525ec4710be40194282c84", size = 9593732, upload-time = "2025-10-09T00:27:04.653Z" }, + { url = "https://files.pythonhosted.org/packages/e1/b6/23064a96308b9aeceeffa65e96bcde459a2ea4934d311dee20afde7407a0/matplotlib-3.10.7-cp313-cp313-win_amd64.whl", hash = "sha256:744991e0cc863dd669c8dc9136ca4e6e0082be2070b9d793cbd64bec872a6815", size = 8122727, upload-time = "2025-10-09T00:27:06.814Z" }, + { url = "https://files.pythonhosted.org/packages/b3/a6/2faaf48133b82cf3607759027f82b5c702aa99cdfcefb7f93d6ccf26a424/matplotlib-3.10.7-cp313-cp313-win_arm64.whl", hash = "sha256:fba2974df0bf8ce3c995fa84b79cde38326e0f7b5409e7a3a481c1141340bcf7", size = 7992958, upload-time = "2025-10-09T00:27:08.567Z" }, + { url = "https://files.pythonhosted.org/packages/4a/f0/b018fed0b599bd48d84c08794cb242227fe3341952da102ee9d9682db574/matplotlib-3.10.7-cp313-cp313t-macosx_10_13_x86_64.whl", hash = "sha256:932c55d1fa7af4423422cb6a492a31cbcbdbe68fd1a9a3f545aa5e7a143b5355", size = 8316849, upload-time = "2025-10-09T00:27:10.254Z" }, + { url = "https://files.pythonhosted.org/packages/b0/b7/bb4f23856197659f275e11a2a164e36e65e9b48ea3e93c4ec25b4f163198/matplotlib-3.10.7-cp313-cp313t-macosx_11_0_arm64.whl", hash = "sha256:5e38c2d581d62ee729a6e144c47a71b3f42fb4187508dbbf4fe71d5612c3433b", size = 8178225, upload-time = "2025-10-09T00:27:12.241Z" }, + { url = "https://files.pythonhosted.org/packages/62/56/0600609893ff277e6f3ab3c0cef4eafa6e61006c058e84286c467223d4d5/matplotlib-3.10.7-cp313-cp313t-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:786656bb13c237bbcebcd402f65f44dd61ead60ee3deb045af429d889c8dbc67", size = 8711708, upload-time = "2025-10-09T00:27:13.879Z" }, + { url = "https://files.pythonhosted.org/packages/d8/1a/6bfecb0cafe94d6658f2f1af22c43b76cf7a1c2f0dc34ef84cbb6809617e/matplotlib-3.10.7-cp313-cp313t-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:09d7945a70ea43bf9248f4b6582734c2fe726723204a76eca233f24cffc7ef67", size = 9541409, upload-time = "2025-10-09T00:27:15.684Z" }, + { url = "https://files.pythonhosted.org/packages/08/50/95122a407d7f2e446fd865e2388a232a23f2b81934960ea802f3171518e4/matplotlib-3.10.7-cp313-cp313t-musllinux_1_2_x86_64.whl", hash = "sha256:d0b181e9fa8daf1d9f2d4c547527b167cb8838fc587deabca7b5c01f97199e84", size = 9594054, upload-time = "2025-10-09T00:27:17.547Z" }, + { url = "https://files.pythonhosted.org/packages/13/76/75b194a43b81583478a81e78a07da8d9ca6ddf50dd0a2ccabf258059481d/matplotlib-3.10.7-cp313-cp313t-win_amd64.whl", hash = "sha256:31963603041634ce1a96053047b40961f7a29eb8f9a62e80cc2c0427aa1d22a2", size = 8200100, upload-time = "2025-10-09T00:27:20.039Z" }, + { url = "https://files.pythonhosted.org/packages/f5/9e/6aefebdc9f8235c12bdeeda44cc0383d89c1e41da2c400caf3ee2073a3ce/matplotlib-3.10.7-cp313-cp313t-win_arm64.whl", hash = "sha256:aebed7b50aa6ac698c90f60f854b47e48cd2252b30510e7a1feddaf5a3f72cbf", size = 8042131, upload-time = "2025-10-09T00:27:21.608Z" }, + { url = "https://files.pythonhosted.org/packages/0d/4b/e5bc2c321b6a7e3a75638d937d19ea267c34bd5a90e12bee76c4d7c7a0d9/matplotlib-3.10.7-cp314-cp314-macosx_10_13_x86_64.whl", hash = "sha256:d883460c43e8c6b173fef244a2341f7f7c0e9725c7fe68306e8e44ed9c8fb100", size = 8273787, upload-time = "2025-10-09T00:27:23.27Z" }, + { url = "https://files.pythonhosted.org/packages/86/ad/6efae459c56c2fbc404da154e13e3a6039129f3c942b0152624f1c621f05/matplotlib-3.10.7-cp314-cp314-macosx_11_0_arm64.whl", hash = "sha256:07124afcf7a6504eafcb8ce94091c5898bbdd351519a1beb5c45f7a38c67e77f", size = 8131348, upload-time = "2025-10-09T00:27:24.926Z" }, + { url = "https://files.pythonhosted.org/packages/a6/5a/a4284d2958dee4116359cc05d7e19c057e64ece1b4ac986ab0f2f4d52d5a/matplotlib-3.10.7-cp314-cp314-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:c17398b709a6cce3d9fdb1595c33e356d91c098cd9486cb2cc21ea2ea418e715", size = 9533949, upload-time = "2025-10-09T00:27:26.704Z" }, + { url = "https://files.pythonhosted.org/packages/de/ff/f3781b5057fa3786623ad8976fc9f7b0d02b2f28534751fd5a44240de4cf/matplotlib-3.10.7-cp314-cp314-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:7146d64f561498764561e9cd0ed64fcf582e570fc519e6f521e2d0cfd43365e1", size = 9804247, upload-time = "2025-10-09T00:27:28.514Z" }, + { url = "https://files.pythonhosted.org/packages/47/5a/993a59facb8444efb0e197bf55f545ee449902dcee86a4dfc580c3b61314/matplotlib-3.10.7-cp314-cp314-musllinux_1_2_x86_64.whl", hash = "sha256:90ad854c0a435da3104c01e2c6f0028d7e719b690998a2333d7218db80950722", size = 9595497, upload-time = "2025-10-09T00:27:30.418Z" }, + { url = "https://files.pythonhosted.org/packages/0d/a5/77c95aaa9bb32c345cbb49626ad8eb15550cba2e6d4c88081a6c2ac7b08d/matplotlib-3.10.7-cp314-cp314-win_amd64.whl", hash = "sha256:4645fc5d9d20ffa3a39361fcdbcec731382763b623b72627806bf251b6388866", size = 8252732, upload-time = "2025-10-09T00:27:32.332Z" }, + { url = "https://files.pythonhosted.org/packages/74/04/45d269b4268d222390d7817dae77b159651909669a34ee9fdee336db5883/matplotlib-3.10.7-cp314-cp314-win_arm64.whl", hash = "sha256:9257be2f2a03415f9105c486d304a321168e61ad450f6153d77c69504ad764bb", size = 8124240, upload-time = "2025-10-09T00:27:33.94Z" }, + { url = "https://files.pythonhosted.org/packages/4b/c7/ca01c607bb827158b439208c153d6f14ddb9fb640768f06f7ca3488ae67b/matplotlib-3.10.7-cp314-cp314t-macosx_10_13_x86_64.whl", hash = "sha256:1e4bbad66c177a8fdfa53972e5ef8be72a5f27e6a607cec0d8579abd0f3102b1", size = 8316938, upload-time = "2025-10-09T00:27:35.534Z" }, + { url = "https://files.pythonhosted.org/packages/84/d2/5539e66e9f56d2fdec94bb8436f5e449683b4e199bcc897c44fbe3c99e28/matplotlib-3.10.7-cp314-cp314t-macosx_11_0_arm64.whl", hash = "sha256:d8eb7194b084b12feb19142262165832fc6ee879b945491d1c3d4660748020c4", size = 8178245, upload-time = "2025-10-09T00:27:37.334Z" }, + { url = "https://files.pythonhosted.org/packages/77/b5/e6ca22901fd3e4fe433a82e583436dd872f6c966fca7e63cf806b40356f8/matplotlib-3.10.7-cp314-cp314t-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:b4d41379b05528091f00e1728004f9a8d7191260f3862178b88e8fd770206318", size = 9541411, upload-time = "2025-10-09T00:27:39.387Z" }, + { url = "https://files.pythonhosted.org/packages/9e/99/a4524db57cad8fee54b7237239a8f8360bfcfa3170d37c9e71c090c0f409/matplotlib-3.10.7-cp314-cp314t-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:4a74f79fafb2e177f240579bc83f0b60f82cc47d2f1d260f422a0627207008ca", size = 9803664, upload-time = "2025-10-09T00:27:41.492Z" }, + { url = "https://files.pythonhosted.org/packages/e6/a5/85e2edf76ea0ad4288d174926d9454ea85f3ce5390cc4e6fab196cbf250b/matplotlib-3.10.7-cp314-cp314t-musllinux_1_2_x86_64.whl", hash = "sha256:702590829c30aada1e8cef0568ddbffa77ca747b4d6e36c6d173f66e301f89cc", size = 9594066, upload-time = "2025-10-09T00:27:43.694Z" }, + { url = "https://files.pythonhosted.org/packages/39/69/9684368a314f6d83fe5c5ad2a4121a3a8e03723d2e5c8ea17b66c1bad0e7/matplotlib-3.10.7-cp314-cp314t-win_amd64.whl", hash = "sha256:f79d5de970fc90cd5591f60053aecfce1fcd736e0303d9f0bf86be649fa68fb8", size = 8342832, upload-time = "2025-10-09T00:27:45.543Z" }, + { url = "https://files.pythonhosted.org/packages/04/5f/e22e08da14bc1a0894184640d47819d2338b792732e20d292bf86e5ab785/matplotlib-3.10.7-cp314-cp314t-win_arm64.whl", hash = "sha256:cb783436e47fcf82064baca52ce748af71725d0352e1d31564cbe9c95df92b9c", size = 8172585, upload-time = "2025-10-09T00:27:47.185Z" }, +] + +[[package]] +name = "matplotlib-inline" +version = "0.2.1" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "traitlets" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/c7/74/97e72a36efd4ae2bccb3463284300f8953f199b5ffbc04cbbb0ec78f74b1/matplotlib_inline-0.2.1.tar.gz", hash = "sha256:e1ee949c340d771fc39e241ea75683deb94762c8fa5f2927ec57c83c4dffa9fe", size = 8110, upload-time = "2025-10-23T09:00:22.126Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/af/33/ee4519fa02ed11a94aef9559552f3b17bb863f2ecfe1a35dc7f548cde231/matplotlib_inline-0.2.1-py3-none-any.whl", hash = "sha256:d56ce5156ba6085e00a9d54fead6ed29a9c47e215cd1bba2e976ef39f5710a76", size = 9516, upload-time = "2025-10-23T09:00:20.675Z" }, +] + +[[package]] +name = "mpmath" +version = "1.3.0" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/e0/47/dd32fa426cc72114383ac549964eecb20ecfd886d1e5ccf5340b55b02f57/mpmath-1.3.0.tar.gz", hash = "sha256:7a28eb2a9774d00c7bc92411c19a89209d5da7c4c9a9e227be8330a23a25b91f", size = 508106, upload-time = "2023-03-07T16:47:11.061Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/43/e3/7d92a15f894aa0c9c4b49b8ee9ac9850d6e63b03c9c32c0367a13ae62209/mpmath-1.3.0-py3-none-any.whl", hash = "sha256:a0b2b9fe80bbcd81a6647ff13108738cfb482d481d826cc0e02f5b35e5c88d2c", size = 536198, upload-time = "2023-03-07T16:47:09.197Z" }, +] + +[[package]] +name = "nest-asyncio" +version = "1.6.0" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/83/f8/51569ac65d696c8ecbee95938f89d4abf00f47d58d48f6fbabfe8f0baefe/nest_asyncio-1.6.0.tar.gz", hash = "sha256:6f172d5449aca15afd6c646851f4e31e02c598d553a667e38cafa997cfec55fe", size = 7418, upload-time = "2024-01-21T14:25:19.227Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/a0/c4/c2971a3ba4c6103a3d10c4b0f24f461ddc027f0f09763220cf35ca1401b3/nest_asyncio-1.6.0-py3-none-any.whl", hash = "sha256:87af6efd6b5e897c81050477ef65c62e2b2f35d51703cae01aff2905b1852e1c", size = 5195, upload-time = "2024-01-21T14:25:17.223Z" }, +] + +[[package]] +name = "networkx" +version = "3.5" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/6c/4f/ccdb8ad3a38e583f214547fd2f7ff1fc160c43a75af88e6aec213404b96a/networkx-3.5.tar.gz", hash = "sha256:d4c6f9cf81f52d69230866796b82afbccdec3db7ae4fbd1b65ea750feed50037", size = 2471065, upload-time = "2025-05-29T11:35:07.804Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/eb/8d/776adee7bbf76365fdd7f2552710282c79a4ead5d2a46408c9043a2b70ba/networkx-3.5-py3-none-any.whl", hash = "sha256:0030d386a9a06dee3565298b4a734b68589749a544acbb6c412dc9e2489ec6ec", size = 2034406, upload-time = "2025-05-29T11:35:04.961Z" }, +] + +[[package]] +name = "numpy" +version = "2.3.5" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/76/65/21b3bc86aac7b8f2862db1e808f1ea22b028e30a225a34a5ede9bf8678f2/numpy-2.3.5.tar.gz", hash = "sha256:784db1dcdab56bf0517743e746dfb0f885fc68d948aba86eeec2cba234bdf1c0", size = 20584950, upload-time = "2025-11-16T22:52:42.067Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/44/37/e669fe6cbb2b96c62f6bbedc6a81c0f3b7362f6a59230b23caa673a85721/numpy-2.3.5-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:74ae7b798248fe62021dbf3c914245ad45d1a6b0cb4a29ecb4b31d0bfbc4cc3e", size = 16733873, upload-time = "2025-11-16T22:49:49.84Z" }, + { url = "https://files.pythonhosted.org/packages/c5/65/df0db6c097892c9380851ab9e44b52d4f7ba576b833996e0080181c0c439/numpy-2.3.5-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:ee3888d9ff7c14604052b2ca5535a30216aa0a58e948cdd3eeb8d3415f638769", size = 12259838, upload-time = "2025-11-16T22:49:52.863Z" }, + { url = "https://files.pythonhosted.org/packages/5b/e1/1ee06e70eb2136797abe847d386e7c0e830b67ad1d43f364dd04fa50d338/numpy-2.3.5-cp312-cp312-macosx_14_0_arm64.whl", hash = "sha256:612a95a17655e213502f60cfb9bf9408efdc9eb1d5f50535cc6eb365d11b42b5", size = 5088378, upload-time = "2025-11-16T22:49:55.055Z" }, + { url = "https://files.pythonhosted.org/packages/6d/9c/1ca85fb86708724275103b81ec4cf1ac1d08f465368acfc8da7ab545bdae/numpy-2.3.5-cp312-cp312-macosx_14_0_x86_64.whl", hash = "sha256:3101e5177d114a593d79dd79658650fe28b5a0d8abeb8ce6f437c0e6df5be1a4", size = 6628559, upload-time = "2025-11-16T22:49:57.371Z" }, + { url = "https://files.pythonhosted.org/packages/74/78/fcd41e5a0ce4f3f7b003da85825acddae6d7ecb60cf25194741b036ca7d6/numpy-2.3.5-cp312-cp312-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:8b973c57ff8e184109db042c842423ff4f60446239bd585a5131cc47f06f789d", size = 14250702, upload-time = "2025-11-16T22:49:59.632Z" }, + { url = "https://files.pythonhosted.org/packages/b6/23/2a1b231b8ff672b4c450dac27164a8b2ca7d9b7144f9c02d2396518352eb/numpy-2.3.5-cp312-cp312-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:0d8163f43acde9a73c2a33605353a4f1bc4798745a8b1d73183b28e5b435ae28", size = 16606086, upload-time = "2025-11-16T22:50:02.127Z" }, + { url = "https://files.pythonhosted.org/packages/a0/c5/5ad26fbfbe2012e190cc7d5003e4d874b88bb18861d0829edc140a713021/numpy-2.3.5-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:51c1e14eb1e154ebd80e860722f9e6ed6ec89714ad2db2d3aa33c31d7c12179b", size = 16025985, upload-time = "2025-11-16T22:50:04.536Z" }, + { url = "https://files.pythonhosted.org/packages/d2/fa/dd48e225c46c819288148d9d060b047fd2a6fb1eb37eae25112ee4cb4453/numpy-2.3.5-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:b46b4ec24f7293f23adcd2d146960559aaf8020213de8ad1909dba6c013bf89c", size = 18542976, upload-time = "2025-11-16T22:50:07.557Z" }, + { url = "https://files.pythonhosted.org/packages/05/79/ccbd23a75862d95af03d28b5c6901a1b7da4803181513d52f3b86ed9446e/numpy-2.3.5-cp312-cp312-win32.whl", hash = "sha256:3997b5b3c9a771e157f9aae01dd579ee35ad7109be18db0e85dbdbe1de06e952", size = 6285274, upload-time = "2025-11-16T22:50:10.746Z" }, + { url = "https://files.pythonhosted.org/packages/2d/57/8aeaf160312f7f489dea47ab61e430b5cb051f59a98ae68b7133ce8fa06a/numpy-2.3.5-cp312-cp312-win_amd64.whl", hash = "sha256:86945f2ee6d10cdfd67bcb4069c1662dd711f7e2a4343db5cecec06b87cf31aa", size = 12782922, upload-time = "2025-11-16T22:50:12.811Z" }, + { url = "https://files.pythonhosted.org/packages/78/a6/aae5cc2ca78c45e64b9ef22f089141d661516856cf7c8a54ba434576900d/numpy-2.3.5-cp312-cp312-win_arm64.whl", hash = "sha256:f28620fe26bee16243be2b7b874da327312240a7cdc38b769a697578d2100013", size = 10194667, upload-time = "2025-11-16T22:50:16.16Z" }, + { url = "https://files.pythonhosted.org/packages/db/69/9cde09f36da4b5a505341180a3f2e6fadc352fd4d2b7096ce9778db83f1a/numpy-2.3.5-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:d0f23b44f57077c1ede8c5f26b30f706498b4862d3ff0a7298b8411dd2f043ff", size = 16728251, upload-time = "2025-11-16T22:50:19.013Z" }, + { url = "https://files.pythonhosted.org/packages/79/fb/f505c95ceddd7027347b067689db71ca80bd5ecc926f913f1a23e65cf09b/numpy-2.3.5-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:aa5bc7c5d59d831d9773d1170acac7893ce3a5e130540605770ade83280e7188", size = 12254652, upload-time = "2025-11-16T22:50:21.487Z" }, + { url = "https://files.pythonhosted.org/packages/78/da/8c7738060ca9c31b30e9301ee0cf6c5ffdbf889d9593285a1cead337f9a5/numpy-2.3.5-cp313-cp313-macosx_14_0_arm64.whl", hash = "sha256:ccc933afd4d20aad3c00bcef049cb40049f7f196e0397f1109dba6fed63267b0", size = 5083172, upload-time = "2025-11-16T22:50:24.562Z" }, + { url = "https://files.pythonhosted.org/packages/a4/b4/ee5bb2537fb9430fd2ef30a616c3672b991a4129bb1c7dcc42aa0abbe5d7/numpy-2.3.5-cp313-cp313-macosx_14_0_x86_64.whl", hash = "sha256:afaffc4393205524af9dfa400fa250143a6c3bc646c08c9f5e25a9f4b4d6a903", size = 6622990, upload-time = "2025-11-16T22:50:26.47Z" }, + { url = "https://files.pythonhosted.org/packages/95/03/dc0723a013c7d7c19de5ef29e932c3081df1c14ba582b8b86b5de9db7f0f/numpy-2.3.5-cp313-cp313-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:9c75442b2209b8470d6d5d8b1c25714270686f14c749028d2199c54e29f20b4d", size = 14248902, upload-time = "2025-11-16T22:50:28.861Z" }, + { url = "https://files.pythonhosted.org/packages/f5/10/ca162f45a102738958dcec8023062dad0cbc17d1ab99d68c4e4a6c45fb2b/numpy-2.3.5-cp313-cp313-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:11e06aa0af8c0f05104d56450d6093ee639e15f24ecf62d417329d06e522e017", size = 16597430, upload-time = "2025-11-16T22:50:31.56Z" }, + { url = "https://files.pythonhosted.org/packages/2a/51/c1e29be863588db58175175f057286900b4b3327a1351e706d5e0f8dd679/numpy-2.3.5-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:ed89927b86296067b4f81f108a2271d8926467a8868e554eaf370fc27fa3ccaf", size = 16024551, upload-time = "2025-11-16T22:50:34.242Z" }, + { url = "https://files.pythonhosted.org/packages/83/68/8236589d4dbb87253d28259d04d9b814ec0ecce7cb1c7fed29729f4c3a78/numpy-2.3.5-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:51c55fe3451421f3a6ef9a9c1439e82101c57a2c9eab9feb196a62b1a10b58ce", size = 18533275, upload-time = "2025-11-16T22:50:37.651Z" }, + { url = "https://files.pythonhosted.org/packages/40/56/2932d75b6f13465239e3b7b7e511be27f1b8161ca2510854f0b6e521c395/numpy-2.3.5-cp313-cp313-win32.whl", hash = "sha256:1978155dd49972084bd6ef388d66ab70f0c323ddee6f693d539376498720fb7e", size = 6277637, upload-time = "2025-11-16T22:50:40.11Z" }, + { url = "https://files.pythonhosted.org/packages/0c/88/e2eaa6cffb115b85ed7c7c87775cb8bcf0816816bc98ca8dbfa2ee33fe6e/numpy-2.3.5-cp313-cp313-win_amd64.whl", hash = "sha256:00dc4e846108a382c5869e77c6ed514394bdeb3403461d25a829711041217d5b", size = 12779090, upload-time = "2025-11-16T22:50:42.503Z" }, + { url = "https://files.pythonhosted.org/packages/8f/88/3f41e13a44ebd4034ee17baa384acac29ba6a4fcc2aca95f6f08ca0447d1/numpy-2.3.5-cp313-cp313-win_arm64.whl", hash = "sha256:0472f11f6ec23a74a906a00b48a4dcf3849209696dff7c189714511268d103ae", size = 10194710, upload-time = "2025-11-16T22:50:44.971Z" }, + { url = "https://files.pythonhosted.org/packages/13/cb/71744144e13389d577f867f745b7df2d8489463654a918eea2eeb166dfc9/numpy-2.3.5-cp313-cp313t-macosx_10_13_x86_64.whl", hash = "sha256:414802f3b97f3c1eef41e530aaba3b3c1620649871d8cb38c6eaff034c2e16bd", size = 16827292, upload-time = "2025-11-16T22:50:47.715Z" }, + { url = "https://files.pythonhosted.org/packages/71/80/ba9dc6f2a4398e7f42b708a7fdc841bb638d353be255655498edbf9a15a8/numpy-2.3.5-cp313-cp313t-macosx_11_0_arm64.whl", hash = "sha256:5ee6609ac3604fa7780e30a03e5e241a7956f8e2fcfe547d51e3afa5247ac47f", size = 12378897, upload-time = "2025-11-16T22:50:51.327Z" }, + { url = "https://files.pythonhosted.org/packages/2e/6d/db2151b9f64264bcceccd51741aa39b50150de9b602d98ecfe7e0c4bff39/numpy-2.3.5-cp313-cp313t-macosx_14_0_arm64.whl", hash = "sha256:86d835afea1eaa143012a2d7a3f45a3adce2d7adc8b4961f0b362214d800846a", size = 5207391, upload-time = "2025-11-16T22:50:54.542Z" }, + { url = "https://files.pythonhosted.org/packages/80/ae/429bacace5ccad48a14c4ae5332f6aa8ab9f69524193511d60ccdfdc65fa/numpy-2.3.5-cp313-cp313t-macosx_14_0_x86_64.whl", hash = "sha256:30bc11310e8153ca664b14c5f1b73e94bd0503681fcf136a163de856f3a50139", size = 6721275, upload-time = "2025-11-16T22:50:56.794Z" }, + { url = "https://files.pythonhosted.org/packages/74/5b/1919abf32d8722646a38cd527bc3771eb229a32724ee6ba340ead9b92249/numpy-2.3.5-cp313-cp313t-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:1062fde1dcf469571705945b0f221b73928f34a20c904ffb45db101907c3454e", size = 14306855, upload-time = "2025-11-16T22:50:59.208Z" }, + { url = "https://files.pythonhosted.org/packages/a5/87/6831980559434973bebc30cd9c1f21e541a0f2b0c280d43d3afd909b66d0/numpy-2.3.5-cp313-cp313t-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:ce581db493ea1a96c0556360ede6607496e8bf9b3a8efa66e06477267bc831e9", size = 16657359, upload-time = "2025-11-16T22:51:01.991Z" }, + { url = "https://files.pythonhosted.org/packages/dd/91/c797f544491ee99fd00495f12ebb7802c440c1915811d72ac5b4479a3356/numpy-2.3.5-cp313-cp313t-musllinux_1_2_aarch64.whl", hash = "sha256:cc8920d2ec5fa99875b670bb86ddeb21e295cb07aa331810d9e486e0b969d946", size = 16093374, upload-time = "2025-11-16T22:51:05.291Z" }, + { url = "https://files.pythonhosted.org/packages/74/a6/54da03253afcbe7a72785ec4da9c69fb7a17710141ff9ac5fcb2e32dbe64/numpy-2.3.5-cp313-cp313t-musllinux_1_2_x86_64.whl", hash = "sha256:9ee2197ef8c4f0dfe405d835f3b6a14f5fee7782b5de51ba06fb65fc9b36e9f1", size = 18594587, upload-time = "2025-11-16T22:51:08.585Z" }, + { url = "https://files.pythonhosted.org/packages/80/e9/aff53abbdd41b0ecca94285f325aff42357c6b5abc482a3fcb4994290b18/numpy-2.3.5-cp313-cp313t-win32.whl", hash = "sha256:70b37199913c1bd300ff6e2693316c6f869c7ee16378faf10e4f5e3275b299c3", size = 6405940, upload-time = "2025-11-16T22:51:11.541Z" }, + { url = "https://files.pythonhosted.org/packages/d5/81/50613fec9d4de5480de18d4f8ef59ad7e344d497edbef3cfd80f24f98461/numpy-2.3.5-cp313-cp313t-win_amd64.whl", hash = "sha256:b501b5fa195cc9e24fe102f21ec0a44dffc231d2af79950b451e0d99cea02234", size = 12920341, upload-time = "2025-11-16T22:51:14.312Z" }, + { url = "https://files.pythonhosted.org/packages/bb/ab/08fd63b9a74303947f34f0bd7c5903b9c5532c2d287bead5bdf4c556c486/numpy-2.3.5-cp313-cp313t-win_arm64.whl", hash = "sha256:a80afd79f45f3c4a7d341f13acbe058d1ca8ac017c165d3fa0d3de6bc1a079d7", size = 10262507, upload-time = "2025-11-16T22:51:16.846Z" }, + { url = "https://files.pythonhosted.org/packages/ba/97/1a914559c19e32d6b2e233cf9a6a114e67c856d35b1d6babca571a3e880f/numpy-2.3.5-cp314-cp314-macosx_10_15_x86_64.whl", hash = "sha256:bf06bc2af43fa8d32d30fae16ad965663e966b1a3202ed407b84c989c3221e82", size = 16735706, upload-time = "2025-11-16T22:51:19.558Z" }, + { url = "https://files.pythonhosted.org/packages/57/d4/51233b1c1b13ecd796311216ae417796b88b0616cfd8a33ae4536330748a/numpy-2.3.5-cp314-cp314-macosx_11_0_arm64.whl", hash = "sha256:052e8c42e0c49d2575621c158934920524f6c5da05a1d3b9bab5d8e259e045f0", size = 12264507, upload-time = "2025-11-16T22:51:22.492Z" }, + { url = "https://files.pythonhosted.org/packages/45/98/2fe46c5c2675b8306d0b4a3ec3494273e93e1226a490f766e84298576956/numpy-2.3.5-cp314-cp314-macosx_14_0_arm64.whl", hash = "sha256:1ed1ec893cff7040a02c8aa1c8611b94d395590d553f6b53629a4461dc7f7b63", size = 5093049, upload-time = "2025-11-16T22:51:25.171Z" }, + { url = "https://files.pythonhosted.org/packages/ce/0e/0698378989bb0ac5f1660c81c78ab1fe5476c1a521ca9ee9d0710ce54099/numpy-2.3.5-cp314-cp314-macosx_14_0_x86_64.whl", hash = "sha256:2dcd0808a421a482a080f89859a18beb0b3d1e905b81e617a188bd80422d62e9", size = 6626603, upload-time = "2025-11-16T22:51:27Z" }, + { url = "https://files.pythonhosted.org/packages/5e/a6/9ca0eecc489640615642a6cbc0ca9e10df70df38c4d43f5a928ff18d8827/numpy-2.3.5-cp314-cp314-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:727fd05b57df37dc0bcf1a27767a3d9a78cbbc92822445f32cc3436ba797337b", size = 14262696, upload-time = "2025-11-16T22:51:29.402Z" }, + { url = "https://files.pythonhosted.org/packages/c8/f6/07ec185b90ec9d7217a00eeeed7383b73d7e709dae2a9a021b051542a708/numpy-2.3.5-cp314-cp314-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:fffe29a1ef00883599d1dc2c51aa2e5d80afe49523c261a74933df395c15c520", size = 16597350, upload-time = "2025-11-16T22:51:32.167Z" }, + { url = "https://files.pythonhosted.org/packages/75/37/164071d1dde6a1a84c9b8e5b414fa127981bad47adf3a6b7e23917e52190/numpy-2.3.5-cp314-cp314-musllinux_1_2_aarch64.whl", hash = "sha256:8f7f0e05112916223d3f438f293abf0727e1181b5983f413dfa2fefc4098245c", size = 16040190, upload-time = "2025-11-16T22:51:35.403Z" }, + { url = "https://files.pythonhosted.org/packages/08/3c/f18b82a406b04859eb026d204e4e1773eb41c5be58410f41ffa511d114ae/numpy-2.3.5-cp314-cp314-musllinux_1_2_x86_64.whl", hash = "sha256:2e2eb32ddb9ccb817d620ac1d8dae7c3f641c1e5f55f531a33e8ab97960a75b8", size = 18536749, upload-time = "2025-11-16T22:51:39.698Z" }, + { url = "https://files.pythonhosted.org/packages/40/79/f82f572bf44cf0023a2fe8588768e23e1592585020d638999f15158609e1/numpy-2.3.5-cp314-cp314-win32.whl", hash = "sha256:66f85ce62c70b843bab1fb14a05d5737741e74e28c7b8b5a064de10142fad248", size = 6335432, upload-time = "2025-11-16T22:51:42.476Z" }, + { url = "https://files.pythonhosted.org/packages/a3/2e/235b4d96619931192c91660805e5e49242389742a7a82c27665021db690c/numpy-2.3.5-cp314-cp314-win_amd64.whl", hash = "sha256:e6a0bc88393d65807d751a614207b7129a310ca4fe76a74e5c7da5fa5671417e", size = 12919388, upload-time = "2025-11-16T22:51:45.275Z" }, + { url = "https://files.pythonhosted.org/packages/07/2b/29fd75ce45d22a39c61aad74f3d718e7ab67ccf839ca8b60866054eb15f8/numpy-2.3.5-cp314-cp314-win_arm64.whl", hash = "sha256:aeffcab3d4b43712bb7a60b65f6044d444e75e563ff6180af8f98dd4b905dfd2", size = 10476651, upload-time = "2025-11-16T22:51:47.749Z" }, + { url = "https://files.pythonhosted.org/packages/17/e1/f6a721234ebd4d87084cfa68d081bcba2f5cfe1974f7de4e0e8b9b2a2ba1/numpy-2.3.5-cp314-cp314t-macosx_10_15_x86_64.whl", hash = "sha256:17531366a2e3a9e30762c000f2c43a9aaa05728712e25c11ce1dbe700c53ad41", size = 16834503, upload-time = "2025-11-16T22:51:50.443Z" }, + { url = "https://files.pythonhosted.org/packages/5c/1c/baf7ffdc3af9c356e1c135e57ab7cf8d247931b9554f55c467efe2c69eff/numpy-2.3.5-cp314-cp314t-macosx_11_0_arm64.whl", hash = "sha256:d21644de1b609825ede2f48be98dfde4656aefc713654eeee280e37cadc4e0ad", size = 12381612, upload-time = "2025-11-16T22:51:53.609Z" }, + { url = "https://files.pythonhosted.org/packages/74/91/f7f0295151407ddc9ba34e699013c32c3c91944f9b35fcf9281163dc1468/numpy-2.3.5-cp314-cp314t-macosx_14_0_arm64.whl", hash = "sha256:c804e3a5aba5460c73955c955bdbd5c08c354954e9270a2c1565f62e866bdc39", size = 5210042, upload-time = "2025-11-16T22:51:56.213Z" }, + { url = "https://files.pythonhosted.org/packages/2e/3b/78aebf345104ec50dd50a4d06ddeb46a9ff5261c33bcc58b1c4f12f85ec2/numpy-2.3.5-cp314-cp314t-macosx_14_0_x86_64.whl", hash = "sha256:cc0a57f895b96ec78969c34f682c602bf8da1a0270b09bc65673df2e7638ec20", size = 6724502, upload-time = "2025-11-16T22:51:58.584Z" }, + { url = "https://files.pythonhosted.org/packages/02/c6/7c34b528740512e57ef1b7c8337ab0b4f0bddf34c723b8996c675bc2bc91/numpy-2.3.5-cp314-cp314t-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:900218e456384ea676e24ea6a0417f030a3b07306d29d7ad843957b40a9d8d52", size = 14308962, upload-time = "2025-11-16T22:52:01.698Z" }, + { url = "https://files.pythonhosted.org/packages/80/35/09d433c5262bc32d725bafc619e095b6a6651caf94027a03da624146f655/numpy-2.3.5-cp314-cp314t-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:09a1bea522b25109bf8e6f3027bd810f7c1085c64a0c7ce050c1676ad0ba010b", size = 16655054, upload-time = "2025-11-16T22:52:04.267Z" }, + { url = "https://files.pythonhosted.org/packages/7a/ab/6a7b259703c09a88804fa2430b43d6457b692378f6b74b356155283566ac/numpy-2.3.5-cp314-cp314t-musllinux_1_2_aarch64.whl", hash = "sha256:04822c00b5fd0323c8166d66c701dc31b7fbd252c100acd708c48f763968d6a3", size = 16091613, upload-time = "2025-11-16T22:52:08.651Z" }, + { url = "https://files.pythonhosted.org/packages/c2/88/330da2071e8771e60d1038166ff9d73f29da37b01ec3eb43cb1427464e10/numpy-2.3.5-cp314-cp314t-musllinux_1_2_x86_64.whl", hash = "sha256:d6889ec4ec662a1a37eb4b4fb26b6100841804dac55bd9df579e326cdc146227", size = 18591147, upload-time = "2025-11-16T22:52:11.453Z" }, + { url = "https://files.pythonhosted.org/packages/51/41/851c4b4082402d9ea860c3626db5d5df47164a712cb23b54be028b184c1c/numpy-2.3.5-cp314-cp314t-win32.whl", hash = "sha256:93eebbcf1aafdf7e2ddd44c2923e2672e1010bddc014138b229e49725b4d6be5", size = 6479806, upload-time = "2025-11-16T22:52:14.641Z" }, + { url = "https://files.pythonhosted.org/packages/90/30/d48bde1dfd93332fa557cff1972fbc039e055a52021fbef4c2c4b1eefd17/numpy-2.3.5-cp314-cp314t-win_amd64.whl", hash = "sha256:c8a9958e88b65c3b27e22ca2a076311636850b612d6bbfb76e8d156aacde2aaf", size = 13105760, upload-time = "2025-11-16T22:52:17.975Z" }, + { url = "https://files.pythonhosted.org/packages/2d/fd/4b5eb0b3e888d86aee4d198c23acec7d214baaf17ea93c1adec94c9518b9/numpy-2.3.5-cp314-cp314t-win_arm64.whl", hash = "sha256:6203fdf9f3dc5bdaed7319ad8698e685c7a3be10819f41d32a0723e611733b42", size = 10545459, upload-time = "2025-11-16T22:52:20.55Z" }, +] + +[[package]] +name = "nvidia-cublas-cu12" +version = "12.8.4.1" +source = { registry = "https://pypi.org/simple" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/dc/61/e24b560ab2e2eaeb3c839129175fb330dfcfc29e5203196e5541a4c44682/nvidia_cublas_cu12-12.8.4.1-py3-none-manylinux_2_27_x86_64.whl", hash = "sha256:8ac4e771d5a348c551b2a426eda6193c19aa630236b418086020df5ba9667142", size = 594346921, upload-time = "2025-03-07T01:44:31.254Z" }, +] + +[[package]] +name = "nvidia-cuda-cupti-cu12" +version = "12.8.90" +source = { registry = "https://pypi.org/simple" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/f8/02/2adcaa145158bf1a8295d83591d22e4103dbfd821bcaf6f3f53151ca4ffa/nvidia_cuda_cupti_cu12-12.8.90-py3-none-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:ea0cb07ebda26bb9b29ba82cda34849e73c166c18162d3913575b0c9db9a6182", size = 10248621, upload-time = "2025-03-07T01:40:21.213Z" }, +] + +[[package]] +name = "nvidia-cuda-nvrtc-cu12" +version = "12.8.93" +source = { registry = "https://pypi.org/simple" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/05/6b/32f747947df2da6994e999492ab306a903659555dddc0fbdeb9d71f75e52/nvidia_cuda_nvrtc_cu12-12.8.93-py3-none-manylinux2010_x86_64.manylinux_2_12_x86_64.whl", hash = "sha256:a7756528852ef889772a84c6cd89d41dfa74667e24cca16bb31f8f061e3e9994", size = 88040029, upload-time = "2025-03-07T01:42:13.562Z" }, +] + +[[package]] +name = "nvidia-cuda-runtime-cu12" +version = "12.8.90" +source = { registry = "https://pypi.org/simple" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/0d/9b/a997b638fcd068ad6e4d53b8551a7d30fe8b404d6f1804abf1df69838932/nvidia_cuda_runtime_cu12-12.8.90-py3-none-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:adade8dcbd0edf427b7204d480d6066d33902cab2a4707dcfc48a2d0fd44ab90", size = 954765, upload-time = "2025-03-07T01:40:01.615Z" }, +] + +[[package]] +name = "nvidia-cudnn-cu12" +version = "9.10.2.21" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "nvidia-cublas-cu12" }, +] +wheels = [ + { url = "https://files.pythonhosted.org/packages/ba/51/e123d997aa098c61d029f76663dedbfb9bc8dcf8c60cbd6adbe42f76d049/nvidia_cudnn_cu12-9.10.2.21-py3-none-manylinux_2_27_x86_64.whl", hash = "sha256:949452be657fa16687d0930933f032835951ef0892b37d2d53824d1a84dc97a8", size = 706758467, upload-time = "2025-06-06T21:54:08.597Z" }, +] + +[[package]] +name = "nvidia-cufft-cu12" +version = "11.3.3.83" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "nvidia-nvjitlink-cu12" }, +] +wheels = [ + { url = "https://files.pythonhosted.org/packages/1f/13/ee4e00f30e676b66ae65b4f08cb5bcbb8392c03f54f2d5413ea99a5d1c80/nvidia_cufft_cu12-11.3.3.83-py3-none-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:4d2dd21ec0b88cf61b62e6b43564355e5222e4a3fb394cac0db101f2dd0d4f74", size = 193118695, upload-time = "2025-03-07T01:45:27.821Z" }, +] + +[[package]] +name = "nvidia-cufile-cu12" +version = "1.13.1.3" +source = { registry = "https://pypi.org/simple" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/bb/fe/1bcba1dfbfb8d01be8d93f07bfc502c93fa23afa6fd5ab3fc7c1df71038a/nvidia_cufile_cu12-1.13.1.3-py3-none-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:1d069003be650e131b21c932ec3d8969c1715379251f8d23a1860554b1cb24fc", size = 1197834, upload-time = "2025-03-07T01:45:50.723Z" }, +] + +[[package]] +name = "nvidia-curand-cu12" +version = "10.3.9.90" +source = { registry = "https://pypi.org/simple" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/fb/aa/6584b56dc84ebe9cf93226a5cde4d99080c8e90ab40f0c27bda7a0f29aa1/nvidia_curand_cu12-10.3.9.90-py3-none-manylinux_2_27_x86_64.whl", hash = "sha256:b32331d4f4df5d6eefa0554c565b626c7216f87a06a4f56fab27c3b68a830ec9", size = 63619976, upload-time = "2025-03-07T01:46:23.323Z" }, +] + +[[package]] +name = "nvidia-cusolver-cu12" +version = "11.7.3.90" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "nvidia-cublas-cu12" }, + { name = "nvidia-cusparse-cu12" }, + { name = "nvidia-nvjitlink-cu12" }, +] +wheels = [ + { url = "https://files.pythonhosted.org/packages/85/48/9a13d2975803e8cf2777d5ed57b87a0b6ca2cc795f9a4f59796a910bfb80/nvidia_cusolver_cu12-11.7.3.90-py3-none-manylinux_2_27_x86_64.whl", hash = "sha256:4376c11ad263152bd50ea295c05370360776f8c3427b30991df774f9fb26c450", size = 267506905, upload-time = "2025-03-07T01:47:16.273Z" }, +] + +[[package]] +name = "nvidia-cusparse-cu12" +version = "12.5.8.93" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "nvidia-nvjitlink-cu12" }, +] +wheels = [ + { url = "https://files.pythonhosted.org/packages/c2/f5/e1854cb2f2bcd4280c44736c93550cc300ff4b8c95ebe370d0aa7d2b473d/nvidia_cusparse_cu12-12.5.8.93-py3-none-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:1ec05d76bbbd8b61b06a80e1eaf8cf4959c3d4ce8e711b65ebd0443bb0ebb13b", size = 288216466, upload-time = "2025-03-07T01:48:13.779Z" }, +] + +[[package]] +name = "nvidia-cusparselt-cu12" +version = "0.7.1" +source = { registry = "https://pypi.org/simple" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/56/79/12978b96bd44274fe38b5dde5cfb660b1d114f70a65ef962bcbbed99b549/nvidia_cusparselt_cu12-0.7.1-py3-none-manylinux2014_x86_64.whl", hash = "sha256:f1bb701d6b930d5a7cea44c19ceb973311500847f81b634d802b7b539dc55623", size = 287193691, upload-time = "2025-02-26T00:15:44.104Z" }, +] + +[[package]] +name = "nvidia-nccl-cu12" +version = "2.27.5" +source = { registry = "https://pypi.org/simple" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/6e/89/f7a07dc961b60645dbbf42e80f2bc85ade7feb9a491b11a1e973aa00071f/nvidia_nccl_cu12-2.27.5-py3-none-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:ad730cf15cb5d25fe849c6e6ca9eb5b76db16a80f13f425ac68d8e2e55624457", size = 322348229, upload-time = "2025-06-26T04:11:28.385Z" }, +] + +[[package]] +name = "nvidia-nvjitlink-cu12" +version = "12.8.93" +source = { registry = "https://pypi.org/simple" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/f6/74/86a07f1d0f42998ca31312f998bd3b9a7eff7f52378f4f270c8679c77fb9/nvidia_nvjitlink_cu12-12.8.93-py3-none-manylinux2010_x86_64.manylinux_2_12_x86_64.whl", hash = "sha256:81ff63371a7ebd6e6451970684f916be2eab07321b73c9d244dc2b4da7f73b88", size = 39254836, upload-time = "2025-03-07T01:49:55.661Z" }, +] + +[[package]] +name = "nvidia-nvshmem-cu12" +version = "3.3.20" +source = { registry = "https://pypi.org/simple" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/3b/6c/99acb2f9eb85c29fc6f3a7ac4dccfd992e22666dd08a642b303311326a97/nvidia_nvshmem_cu12-3.3.20-py3-none-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:d00f26d3f9b2e3c3065be895e3059d6479ea5c638a3f38c9fec49b1b9dd7c1e5", size = 124657145, upload-time = "2025-08-04T20:25:19.995Z" }, +] + +[[package]] +name = "nvidia-nvtx-cu12" +version = "12.8.90" +source = { registry = "https://pypi.org/simple" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/a2/eb/86626c1bbc2edb86323022371c39aa48df6fd8b0a1647bc274577f72e90b/nvidia_nvtx_cu12-12.8.90-py3-none-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:5b17e2001cc0d751a5bc2c6ec6d26ad95913324a4adb86788c944f8ce9ba441f", size = 89954, upload-time = "2025-03-07T01:42:44.131Z" }, +] + +[[package]] +name = "packaging" +version = "25.0" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/a1/d4/1fc4078c65507b51b96ca8f8c3ba19e6a61c8253c72794544580a7b6c24d/packaging-25.0.tar.gz", hash = "sha256:d443872c98d677bf60f6a1f2f8c1cb748e8fe762d2bf9d3148b5599295b0fc4f", size = 165727, upload-time = "2025-04-19T11:48:59.673Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/20/12/38679034af332785aac8774540895e234f4d07f7545804097de4b666afd8/packaging-25.0-py3-none-any.whl", hash = "sha256:29572ef2b1f17581046b3a2227d5c611fb25ec70ca1ba8554b24b0e69331a484", size = 66469, upload-time = "2025-04-19T11:48:57.875Z" }, +] + +[[package]] +name = "parso" +version = "0.8.5" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/d4/de/53e0bcf53d13e005bd8c92e7855142494f41171b34c2536b86187474184d/parso-0.8.5.tar.gz", hash = "sha256:034d7354a9a018bdce352f48b2a8a450f05e9d6ee85db84764e9b6bd96dafe5a", size = 401205, upload-time = "2025-08-23T15:15:28.028Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/16/32/f8e3c85d1d5250232a5d3477a2a28cc291968ff175caeadaf3cc19ce0e4a/parso-0.8.5-py2.py3-none-any.whl", hash = "sha256:646204b5ee239c396d040b90f9e272e9a8017c630092bf59980beb62fd033887", size = 106668, upload-time = "2025-08-23T15:15:25.663Z" }, +] + +[[package]] +name = "pexpect" +version = "4.9.0" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "ptyprocess" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/42/92/cc564bf6381ff43ce1f4d06852fc19a2f11d180f23dc32d9588bee2f149d/pexpect-4.9.0.tar.gz", hash = "sha256:ee7d41123f3c9911050ea2c2dac107568dc43b2d3b0c7557a33212c398ead30f", size = 166450, upload-time = "2023-11-25T09:07:26.339Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/9e/c3/059298687310d527a58bb01f3b1965787ee3b40dce76752eda8b44e9a2c5/pexpect-4.9.0-py2.py3-none-any.whl", hash = "sha256:7236d1e080e4936be2dc3e326cec0af72acf9212a7e1d060210e70a47e253523", size = 63772, upload-time = "2023-11-25T06:56:14.81Z" }, +] + +[[package]] +name = "pillow" +version = "12.0.0" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/5a/b0/cace85a1b0c9775a9f8f5d5423c8261c858760e2466c79b2dd184638b056/pillow-12.0.0.tar.gz", hash = "sha256:87d4f8125c9988bfbed67af47dd7a953e2fc7b0cc1e7800ec6d2080d490bb353", size = 47008828, upload-time = "2025-10-15T18:24:14.008Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/2c/90/4fcce2c22caf044e660a198d740e7fbc14395619e3cb1abad12192c0826c/pillow-12.0.0-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:53561a4ddc36facb432fae7a9d8afbfaf94795414f5cdc5fc52f28c1dca90371", size = 5249377, upload-time = "2025-10-15T18:22:05.993Z" }, + { url = "https://files.pythonhosted.org/packages/fd/e0/ed960067543d080691d47d6938ebccbf3976a931c9567ab2fbfab983a5dd/pillow-12.0.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:71db6b4c1653045dacc1585c1b0d184004f0d7e694c7b34ac165ca70c0838082", size = 4650343, upload-time = "2025-10-15T18:22:07.718Z" }, + { url = "https://files.pythonhosted.org/packages/e7/a1/f81fdeddcb99c044bf7d6faa47e12850f13cee0849537a7d27eeab5534d4/pillow-12.0.0-cp312-cp312-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:2fa5f0b6716fc88f11380b88b31fe591a06c6315e955c096c35715788b339e3f", size = 6232981, upload-time = "2025-10-15T18:22:09.287Z" }, + { url = "https://files.pythonhosted.org/packages/88/e1/9098d3ce341a8750b55b0e00c03f1630d6178f38ac191c81c97a3b047b44/pillow-12.0.0-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:82240051c6ca513c616f7f9da06e871f61bfd7805f566275841af15015b8f98d", size = 8041399, upload-time = "2025-10-15T18:22:10.872Z" }, + { url = "https://files.pythonhosted.org/packages/a7/62/a22e8d3b602ae8cc01446d0c57a54e982737f44b6f2e1e019a925143771d/pillow-12.0.0-cp312-cp312-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:55f818bd74fe2f11d4d7cbc65880a843c4075e0ac7226bc1a23261dbea531953", size = 6347740, upload-time = "2025-10-15T18:22:12.769Z" }, + { url = "https://files.pythonhosted.org/packages/4f/87/424511bdcd02c8d7acf9f65caa09f291a519b16bd83c3fb3374b3d4ae951/pillow-12.0.0-cp312-cp312-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:b87843e225e74576437fd5b6a4c2205d422754f84a06942cfaf1dc32243e45a8", size = 7040201, upload-time = "2025-10-15T18:22:14.813Z" }, + { url = "https://files.pythonhosted.org/packages/dc/4d/435c8ac688c54d11755aedfdd9f29c9eeddf68d150fe42d1d3dbd2365149/pillow-12.0.0-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:c607c90ba67533e1b2355b821fef6764d1dd2cbe26b8c1005ae84f7aea25ff79", size = 6462334, upload-time = "2025-10-15T18:22:16.375Z" }, + { url = "https://files.pythonhosted.org/packages/2b/f2/ad34167a8059a59b8ad10bc5c72d4d9b35acc6b7c0877af8ac885b5f2044/pillow-12.0.0-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:21f241bdd5080a15bc86d3466a9f6074a9c2c2b314100dd896ac81ee6db2f1ba", size = 7134162, upload-time = "2025-10-15T18:22:17.996Z" }, + { url = "https://files.pythonhosted.org/packages/0c/b1/a7391df6adacf0a5c2cf6ac1cf1fcc1369e7d439d28f637a847f8803beb3/pillow-12.0.0-cp312-cp312-win32.whl", hash = "sha256:dd333073e0cacdc3089525c7df7d39b211bcdf31fc2824e49d01c6b6187b07d0", size = 6298769, upload-time = "2025-10-15T18:22:19.923Z" }, + { url = "https://files.pythonhosted.org/packages/a2/0b/d87733741526541c909bbf159e338dcace4f982daac6e5a8d6be225ca32d/pillow-12.0.0-cp312-cp312-win_amd64.whl", hash = "sha256:9fe611163f6303d1619bbcb653540a4d60f9e55e622d60a3108be0d5b441017a", size = 7001107, upload-time = "2025-10-15T18:22:21.644Z" }, + { url = "https://files.pythonhosted.org/packages/bc/96/aaa61ce33cc98421fb6088af2a03be4157b1e7e0e87087c888e2370a7f45/pillow-12.0.0-cp312-cp312-win_arm64.whl", hash = "sha256:7dfb439562f234f7d57b1ac6bc8fe7f838a4bd49c79230e0f6a1da93e82f1fad", size = 2436012, upload-time = "2025-10-15T18:22:23.621Z" }, + { url = "https://files.pythonhosted.org/packages/62/f2/de993bb2d21b33a98d031ecf6a978e4b61da207bef02f7b43093774c480d/pillow-12.0.0-cp313-cp313-ios_13_0_arm64_iphoneos.whl", hash = "sha256:0869154a2d0546545cde61d1789a6524319fc1897d9ee31218eae7a60ccc5643", size = 4045493, upload-time = "2025-10-15T18:22:25.758Z" }, + { url = "https://files.pythonhosted.org/packages/0e/b6/bc8d0c4c9f6f111a783d045310945deb769b806d7574764234ffd50bc5ea/pillow-12.0.0-cp313-cp313-ios_13_0_arm64_iphonesimulator.whl", hash = "sha256:a7921c5a6d31b3d756ec980f2f47c0cfdbce0fc48c22a39347a895f41f4a6ea4", size = 4120461, upload-time = "2025-10-15T18:22:27.286Z" }, + { url = "https://files.pythonhosted.org/packages/5d/57/d60d343709366a353dc56adb4ee1e7d8a2cc34e3fbc22905f4167cfec119/pillow-12.0.0-cp313-cp313-ios_13_0_x86_64_iphonesimulator.whl", hash = "sha256:1ee80a59f6ce048ae13cda1abf7fbd2a34ab9ee7d401c46be3ca685d1999a399", size = 3576912, upload-time = "2025-10-15T18:22:28.751Z" }, + { url = "https://files.pythonhosted.org/packages/a4/a4/a0a31467e3f83b94d37568294b01d22b43ae3c5d85f2811769b9c66389dd/pillow-12.0.0-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:c50f36a62a22d350c96e49ad02d0da41dbd17ddc2e29750dbdba4323f85eb4a5", size = 5249132, upload-time = "2025-10-15T18:22:30.641Z" }, + { url = "https://files.pythonhosted.org/packages/83/06/48eab21dd561de2914242711434c0c0eb992ed08ff3f6107a5f44527f5e9/pillow-12.0.0-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:5193fde9a5f23c331ea26d0cf171fbf67e3f247585f50c08b3e205c7aeb4589b", size = 4650099, upload-time = "2025-10-15T18:22:32.73Z" }, + { url = "https://files.pythonhosted.org/packages/fc/bd/69ed99fd46a8dba7c1887156d3572fe4484e3f031405fcc5a92e31c04035/pillow-12.0.0-cp313-cp313-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:bde737cff1a975b70652b62d626f7785e0480918dece11e8fef3c0cf057351c3", size = 6230808, upload-time = "2025-10-15T18:22:34.337Z" }, + { url = "https://files.pythonhosted.org/packages/ea/94/8fad659bcdbf86ed70099cb60ae40be6acca434bbc8c4c0d4ef356d7e0de/pillow-12.0.0-cp313-cp313-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:a6597ff2b61d121172f5844b53f21467f7082f5fb385a9a29c01414463f93b07", size = 8037804, upload-time = "2025-10-15T18:22:36.402Z" }, + { url = "https://files.pythonhosted.org/packages/20/39/c685d05c06deecfd4e2d1950e9a908aa2ca8bc4e6c3b12d93b9cafbd7837/pillow-12.0.0-cp313-cp313-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:0b817e7035ea7f6b942c13aa03bb554fc44fea70838ea21f8eb31c638326584e", size = 6345553, upload-time = "2025-10-15T18:22:38.066Z" }, + { url = "https://files.pythonhosted.org/packages/38/57/755dbd06530a27a5ed74f8cb0a7a44a21722ebf318edbe67ddbd7fb28f88/pillow-12.0.0-cp313-cp313-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:f4f1231b7dec408e8670264ce63e9c71409d9583dd21d32c163e25213ee2a344", size = 7037729, upload-time = "2025-10-15T18:22:39.769Z" }, + { url = "https://files.pythonhosted.org/packages/ca/b6/7e94f4c41d238615674d06ed677c14883103dce1c52e4af16f000338cfd7/pillow-12.0.0-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:6e51b71417049ad6ab14c49608b4a24d8fb3fe605e5dfabfe523b58064dc3d27", size = 6459789, upload-time = "2025-10-15T18:22:41.437Z" }, + { url = "https://files.pythonhosted.org/packages/9c/14/4448bb0b5e0f22dd865290536d20ec8a23b64e2d04280b89139f09a36bb6/pillow-12.0.0-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:d120c38a42c234dc9a8c5de7ceaaf899cf33561956acb4941653f8bdc657aa79", size = 7130917, upload-time = "2025-10-15T18:22:43.152Z" }, + { url = "https://files.pythonhosted.org/packages/dd/ca/16c6926cc1c015845745d5c16c9358e24282f1e588237a4c36d2b30f182f/pillow-12.0.0-cp313-cp313-win32.whl", hash = "sha256:4cc6b3b2efff105c6a1656cfe59da4fdde2cda9af1c5e0b58529b24525d0a098", size = 6302391, upload-time = "2025-10-15T18:22:44.753Z" }, + { url = "https://files.pythonhosted.org/packages/6d/2a/dd43dcfd6dae9b6a49ee28a8eedb98c7d5ff2de94a5d834565164667b97b/pillow-12.0.0-cp313-cp313-win_amd64.whl", hash = "sha256:4cf7fed4b4580601c4345ceb5d4cbf5a980d030fd5ad07c4d2ec589f95f09905", size = 7007477, upload-time = "2025-10-15T18:22:46.838Z" }, + { url = "https://files.pythonhosted.org/packages/77/f0/72ea067f4b5ae5ead653053212af05ce3705807906ba3f3e8f58ddf617e6/pillow-12.0.0-cp313-cp313-win_arm64.whl", hash = "sha256:9f0b04c6b8584c2c193babcccc908b38ed29524b29dd464bc8801bf10d746a3a", size = 2435918, upload-time = "2025-10-15T18:22:48.399Z" }, + { url = "https://files.pythonhosted.org/packages/f5/5e/9046b423735c21f0487ea6cb5b10f89ea8f8dfbe32576fe052b5ba9d4e5b/pillow-12.0.0-cp313-cp313t-macosx_10_13_x86_64.whl", hash = "sha256:7fa22993bac7b77b78cae22bad1e2a987ddf0d9015c63358032f84a53f23cdc3", size = 5251406, upload-time = "2025-10-15T18:22:49.905Z" }, + { url = "https://files.pythonhosted.org/packages/12/66/982ceebcdb13c97270ef7a56c3969635b4ee7cd45227fa707c94719229c5/pillow-12.0.0-cp313-cp313t-macosx_11_0_arm64.whl", hash = "sha256:f135c702ac42262573fe9714dfe99c944b4ba307af5eb507abef1667e2cbbced", size = 4653218, upload-time = "2025-10-15T18:22:51.587Z" }, + { url = "https://files.pythonhosted.org/packages/16/b3/81e625524688c31859450119bf12674619429cab3119eec0e30a7a1029cb/pillow-12.0.0-cp313-cp313t-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:c85de1136429c524e55cfa4e033b4a7940ac5c8ee4d9401cc2d1bf48154bbc7b", size = 6266564, upload-time = "2025-10-15T18:22:53.215Z" }, + { url = "https://files.pythonhosted.org/packages/98/59/dfb38f2a41240d2408096e1a76c671d0a105a4a8471b1871c6902719450c/pillow-12.0.0-cp313-cp313t-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:38df9b4bfd3db902c9c2bd369bcacaf9d935b2fff73709429d95cc41554f7b3d", size = 8069260, upload-time = "2025-10-15T18:22:54.933Z" }, + { url = "https://files.pythonhosted.org/packages/dc/3d/378dbea5cd1874b94c312425ca77b0f47776c78e0df2df751b820c8c1d6c/pillow-12.0.0-cp313-cp313t-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:7d87ef5795da03d742bf49439f9ca4d027cde49c82c5371ba52464aee266699a", size = 6379248, upload-time = "2025-10-15T18:22:56.605Z" }, + { url = "https://files.pythonhosted.org/packages/84/b0/d525ef47d71590f1621510327acec75ae58c721dc071b17d8d652ca494d8/pillow-12.0.0-cp313-cp313t-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:aff9e4d82d082ff9513bdd6acd4f5bd359f5b2c870907d2b0a9c5e10d40c88fe", size = 7066043, upload-time = "2025-10-15T18:22:58.53Z" }, + { url = "https://files.pythonhosted.org/packages/61/2c/aced60e9cf9d0cde341d54bf7932c9ffc33ddb4a1595798b3a5150c7ec4e/pillow-12.0.0-cp313-cp313t-musllinux_1_2_aarch64.whl", hash = "sha256:8d8ca2b210ada074d57fcee40c30446c9562e542fc46aedc19baf758a93532ee", size = 6490915, upload-time = "2025-10-15T18:23:00.582Z" }, + { url = "https://files.pythonhosted.org/packages/ef/26/69dcb9b91f4e59f8f34b2332a4a0a951b44f547c4ed39d3e4dcfcff48f89/pillow-12.0.0-cp313-cp313t-musllinux_1_2_x86_64.whl", hash = "sha256:99a7f72fb6249302aa62245680754862a44179b545ded638cf1fef59befb57ef", size = 7157998, upload-time = "2025-10-15T18:23:02.627Z" }, + { url = "https://files.pythonhosted.org/packages/61/2b/726235842220ca95fa441ddf55dd2382b52ab5b8d9c0596fe6b3f23dafe8/pillow-12.0.0-cp313-cp313t-win32.whl", hash = "sha256:4078242472387600b2ce8d93ade8899c12bf33fa89e55ec89fe126e9d6d5d9e9", size = 6306201, upload-time = "2025-10-15T18:23:04.709Z" }, + { url = "https://files.pythonhosted.org/packages/c0/3d/2afaf4e840b2df71344ababf2f8edd75a705ce500e5dc1e7227808312ae1/pillow-12.0.0-cp313-cp313t-win_amd64.whl", hash = "sha256:2c54c1a783d6d60595d3514f0efe9b37c8808746a66920315bfd34a938d7994b", size = 7013165, upload-time = "2025-10-15T18:23:06.46Z" }, + { url = "https://files.pythonhosted.org/packages/6f/75/3fa09aa5cf6ed04bee3fa575798ddf1ce0bace8edb47249c798077a81f7f/pillow-12.0.0-cp313-cp313t-win_arm64.whl", hash = "sha256:26d9f7d2b604cd23aba3e9faf795787456ac25634d82cd060556998e39c6fa47", size = 2437834, upload-time = "2025-10-15T18:23:08.194Z" }, + { url = "https://files.pythonhosted.org/packages/54/2a/9a8c6ba2c2c07b71bec92cf63e03370ca5e5f5c5b119b742bcc0cde3f9c5/pillow-12.0.0-cp314-cp314-ios_13_0_arm64_iphoneos.whl", hash = "sha256:beeae3f27f62308f1ddbcfb0690bf44b10732f2ef43758f169d5e9303165d3f9", size = 4045531, upload-time = "2025-10-15T18:23:10.121Z" }, + { url = "https://files.pythonhosted.org/packages/84/54/836fdbf1bfb3d66a59f0189ff0b9f5f666cee09c6188309300df04ad71fa/pillow-12.0.0-cp314-cp314-ios_13_0_arm64_iphonesimulator.whl", hash = "sha256:d4827615da15cd59784ce39d3388275ec093ae3ee8d7f0c089b76fa87af756c2", size = 4120554, upload-time = "2025-10-15T18:23:12.14Z" }, + { url = "https://files.pythonhosted.org/packages/0d/cd/16aec9f0da4793e98e6b54778a5fbce4f375c6646fe662e80600b8797379/pillow-12.0.0-cp314-cp314-ios_13_0_x86_64_iphonesimulator.whl", hash = "sha256:3e42edad50b6909089750e65c91aa09aaf1e0a71310d383f11321b27c224ed8a", size = 3576812, upload-time = "2025-10-15T18:23:13.962Z" }, + { url = "https://files.pythonhosted.org/packages/f6/b7/13957fda356dc46339298b351cae0d327704986337c3c69bb54628c88155/pillow-12.0.0-cp314-cp314-macosx_10_15_x86_64.whl", hash = "sha256:e5d8efac84c9afcb40914ab49ba063d94f5dbdf5066db4482c66a992f47a3a3b", size = 5252689, upload-time = "2025-10-15T18:23:15.562Z" }, + { url = "https://files.pythonhosted.org/packages/fc/f5/eae31a306341d8f331f43edb2e9122c7661b975433de5e447939ae61c5da/pillow-12.0.0-cp314-cp314-macosx_11_0_arm64.whl", hash = "sha256:266cd5f2b63ff316d5a1bba46268e603c9caf5606d44f38c2873c380950576ad", size = 4650186, upload-time = "2025-10-15T18:23:17.379Z" }, + { url = "https://files.pythonhosted.org/packages/86/62/2a88339aa40c4c77e79108facbd307d6091e2c0eb5b8d3cf4977cfca2fe6/pillow-12.0.0-cp314-cp314-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:58eea5ebe51504057dd95c5b77d21700b77615ab0243d8152793dc00eb4faf01", size = 6230308, upload-time = "2025-10-15T18:23:18.971Z" }, + { url = "https://files.pythonhosted.org/packages/c7/33/5425a8992bcb32d1cb9fa3dd39a89e613d09a22f2c8083b7bf43c455f760/pillow-12.0.0-cp314-cp314-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:f13711b1a5ba512d647a0e4ba79280d3a9a045aaf7e0cc6fbe96b91d4cdf6b0c", size = 8039222, upload-time = "2025-10-15T18:23:20.909Z" }, + { url = "https://files.pythonhosted.org/packages/d8/61/3f5d3b35c5728f37953d3eec5b5f3e77111949523bd2dd7f31a851e50690/pillow-12.0.0-cp314-cp314-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:6846bd2d116ff42cba6b646edf5bf61d37e5cbd256425fa089fee4ff5c07a99e", size = 6346657, upload-time = "2025-10-15T18:23:23.077Z" }, + { url = "https://files.pythonhosted.org/packages/3a/be/ee90a3d79271227e0f0a33c453531efd6ed14b2e708596ba5dd9be948da3/pillow-12.0.0-cp314-cp314-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:c98fa880d695de164b4135a52fd2e9cd7b7c90a9d8ac5e9e443a24a95ef9248e", size = 7038482, upload-time = "2025-10-15T18:23:25.005Z" }, + { url = "https://files.pythonhosted.org/packages/44/34/a16b6a4d1ad727de390e9bd9f19f5f669e079e5826ec0f329010ddea492f/pillow-12.0.0-cp314-cp314-musllinux_1_2_aarch64.whl", hash = "sha256:fa3ed2a29a9e9d2d488b4da81dcb54720ac3104a20bf0bd273f1e4648aff5af9", size = 6461416, upload-time = "2025-10-15T18:23:27.009Z" }, + { url = "https://files.pythonhosted.org/packages/b6/39/1aa5850d2ade7d7ba9f54e4e4c17077244ff7a2d9e25998c38a29749eb3f/pillow-12.0.0-cp314-cp314-musllinux_1_2_x86_64.whl", hash = "sha256:d034140032870024e6b9892c692fe2968493790dd57208b2c37e3fb35f6df3ab", size = 7131584, upload-time = "2025-10-15T18:23:29.752Z" }, + { url = "https://files.pythonhosted.org/packages/bf/db/4fae862f8fad0167073a7733973bfa955f47e2cac3dc3e3e6257d10fab4a/pillow-12.0.0-cp314-cp314-win32.whl", hash = "sha256:1b1b133e6e16105f524a8dec491e0586d072948ce15c9b914e41cdadd209052b", size = 6400621, upload-time = "2025-10-15T18:23:32.06Z" }, + { url = "https://files.pythonhosted.org/packages/2b/24/b350c31543fb0107ab2599464d7e28e6f856027aadda995022e695313d94/pillow-12.0.0-cp314-cp314-win_amd64.whl", hash = "sha256:8dc232e39d409036af549c86f24aed8273a40ffa459981146829a324e0848b4b", size = 7142916, upload-time = "2025-10-15T18:23:34.71Z" }, + { url = "https://files.pythonhosted.org/packages/0f/9b/0ba5a6fd9351793996ef7487c4fdbde8d3f5f75dbedc093bb598648fddf0/pillow-12.0.0-cp314-cp314-win_arm64.whl", hash = "sha256:d52610d51e265a51518692045e372a4c363056130d922a7351429ac9f27e70b0", size = 2523836, upload-time = "2025-10-15T18:23:36.967Z" }, + { url = "https://files.pythonhosted.org/packages/f5/7a/ceee0840aebc579af529b523d530840338ecf63992395842e54edc805987/pillow-12.0.0-cp314-cp314t-macosx_10_15_x86_64.whl", hash = "sha256:1979f4566bb96c1e50a62d9831e2ea2d1211761e5662afc545fa766f996632f6", size = 5255092, upload-time = "2025-10-15T18:23:38.573Z" }, + { url = "https://files.pythonhosted.org/packages/44/76/20776057b4bfd1aef4eeca992ebde0f53a4dce874f3ae693d0ec90a4f79b/pillow-12.0.0-cp314-cp314t-macosx_11_0_arm64.whl", hash = "sha256:b2e4b27a6e15b04832fe9bf292b94b5ca156016bbc1ea9c2c20098a0320d6cf6", size = 4653158, upload-time = "2025-10-15T18:23:40.238Z" }, + { url = "https://files.pythonhosted.org/packages/82/3f/d9ff92ace07be8836b4e7e87e6a4c7a8318d47c2f1463ffcf121fc57d9cb/pillow-12.0.0-cp314-cp314t-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:fb3096c30df99fd01c7bf8e544f392103d0795b9f98ba71a8054bcbf56b255f1", size = 6267882, upload-time = "2025-10-15T18:23:42.434Z" }, + { url = "https://files.pythonhosted.org/packages/9f/7a/4f7ff87f00d3ad33ba21af78bfcd2f032107710baf8280e3722ceec28cda/pillow-12.0.0-cp314-cp314t-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:7438839e9e053ef79f7112c881cef684013855016f928b168b81ed5835f3e75e", size = 8071001, upload-time = "2025-10-15T18:23:44.29Z" }, + { url = "https://files.pythonhosted.org/packages/75/87/fcea108944a52dad8cca0715ae6247e271eb80459364a98518f1e4f480c1/pillow-12.0.0-cp314-cp314t-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:5d5c411a8eaa2299322b647cd932586b1427367fd3184ffbb8f7a219ea2041ca", size = 6380146, upload-time = "2025-10-15T18:23:46.065Z" }, + { url = "https://files.pythonhosted.org/packages/91/52/0d31b5e571ef5fd111d2978b84603fce26aba1b6092f28e941cb46570745/pillow-12.0.0-cp314-cp314t-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:d7e091d464ac59d2c7ad8e7e08105eaf9dafbc3883fd7265ffccc2baad6ac925", size = 7067344, upload-time = "2025-10-15T18:23:47.898Z" }, + { url = "https://files.pythonhosted.org/packages/7b/f4/2dd3d721f875f928d48e83bb30a434dee75a2531bca839bb996bb0aa5a91/pillow-12.0.0-cp314-cp314t-musllinux_1_2_aarch64.whl", hash = "sha256:792a2c0be4dcc18af9d4a2dfd8a11a17d5e25274a1062b0ec1c2d79c76f3e7f8", size = 6491864, upload-time = "2025-10-15T18:23:49.607Z" }, + { url = "https://files.pythonhosted.org/packages/30/4b/667dfcf3d61fc309ba5a15b141845cece5915e39b99c1ceab0f34bf1d124/pillow-12.0.0-cp314-cp314t-musllinux_1_2_x86_64.whl", hash = "sha256:afbefa430092f71a9593a99ab6a4e7538bc9eabbf7bf94f91510d3503943edc4", size = 7158911, upload-time = "2025-10-15T18:23:51.351Z" }, + { url = "https://files.pythonhosted.org/packages/a2/2f/16cabcc6426c32218ace36bf0d55955e813f2958afddbf1d391849fee9d1/pillow-12.0.0-cp314-cp314t-win32.whl", hash = "sha256:3830c769decf88f1289680a59d4f4c46c72573446352e2befec9a8512104fa52", size = 6408045, upload-time = "2025-10-15T18:23:53.177Z" }, + { url = "https://files.pythonhosted.org/packages/35/73/e29aa0c9c666cf787628d3f0dcf379f4791fba79f4936d02f8b37165bdf8/pillow-12.0.0-cp314-cp314t-win_amd64.whl", hash = "sha256:905b0365b210c73afb0ebe9101a32572152dfd1c144c7e28968a331b9217b94a", size = 7148282, upload-time = "2025-10-15T18:23:55.316Z" }, + { url = "https://files.pythonhosted.org/packages/c1/70/6b41bdcddf541b437bbb9f47f94d2db5d9ddef6c37ccab8c9107743748a4/pillow-12.0.0-cp314-cp314t-win_arm64.whl", hash = "sha256:99353a06902c2e43b43e8ff74ee65a7d90307d82370604746738a1e0661ccca7", size = 2525630, upload-time = "2025-10-15T18:23:57.149Z" }, +] + +[[package]] +name = "platformdirs" +version = "4.5.0" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/61/33/9611380c2bdb1225fdef633e2a9610622310fed35ab11dac9620972ee088/platformdirs-4.5.0.tar.gz", hash = "sha256:70ddccdd7c99fc5942e9fc25636a8b34d04c24b335100223152c2803e4063312", size = 21632, upload-time = "2025-10-08T17:44:48.791Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/73/cb/ac7874b3e5d58441674fb70742e6c374b28b0c7cb988d37d991cde47166c/platformdirs-4.5.0-py3-none-any.whl", hash = "sha256:e578a81bb873cbb89a41fcc904c7ef523cc18284b7e3b3ccf06aca1403b7ebd3", size = 18651, upload-time = "2025-10-08T17:44:47.223Z" }, +] + +[[package]] +name = "prompt-toolkit" +version = "3.0.52" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "wcwidth" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/a1/96/06e01a7b38dce6fe1db213e061a4602dd6032a8a97ef6c1a862537732421/prompt_toolkit-3.0.52.tar.gz", hash = "sha256:28cde192929c8e7321de85de1ddbe736f1375148b02f2e17edd840042b1be855", size = 434198, upload-time = "2025-08-27T15:24:02.057Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/84/03/0d3ce49e2505ae70cf43bc5bb3033955d2fc9f932163e84dc0779cc47f48/prompt_toolkit-3.0.52-py3-none-any.whl", hash = "sha256:9aac639a3bbd33284347de5ad8d68ecc044b91a762dc39b7c21095fcd6a19955", size = 391431, upload-time = "2025-08-27T15:23:59.498Z" }, +] + +[[package]] +name = "psutil" +version = "7.1.3" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/e1/88/bdd0a41e5857d5d703287598cbf08dad90aed56774ea52ae071bae9071b6/psutil-7.1.3.tar.gz", hash = "sha256:6c86281738d77335af7aec228328e944b30930899ea760ecf33a4dba66be5e74", size = 489059, upload-time = "2025-11-02T12:25:54.619Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/bd/93/0c49e776b8734fef56ec9c5c57f923922f2cf0497d62e0f419465f28f3d0/psutil-7.1.3-cp313-cp313t-macosx_10_13_x86_64.whl", hash = "sha256:0005da714eee687b4b8decd3d6cc7c6db36215c9e74e5ad2264b90c3df7d92dc", size = 239751, upload-time = "2025-11-02T12:25:58.161Z" }, + { url = "https://files.pythonhosted.org/packages/6f/8d/b31e39c769e70780f007969815195a55c81a63efebdd4dbe9e7a113adb2f/psutil-7.1.3-cp313-cp313t-macosx_11_0_arm64.whl", hash = "sha256:19644c85dcb987e35eeeaefdc3915d059dac7bd1167cdcdbf27e0ce2df0c08c0", size = 240368, upload-time = "2025-11-02T12:26:00.491Z" }, + { url = "https://files.pythonhosted.org/packages/62/61/23fd4acc3c9eebbf6b6c78bcd89e5d020cfde4acf0a9233e9d4e3fa698b4/psutil-7.1.3-cp313-cp313t-manylinux2010_x86_64.manylinux_2_12_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:95ef04cf2e5ba0ab9eaafc4a11eaae91b44f4ef5541acd2ee91d9108d00d59a7", size = 287134, upload-time = "2025-11-02T12:26:02.613Z" }, + { url = "https://files.pythonhosted.org/packages/30/1c/f921a009ea9ceb51aa355cb0cc118f68d354db36eae18174bab63affb3e6/psutil-7.1.3-cp313-cp313t-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:1068c303be3a72f8e18e412c5b2a8f6d31750fb152f9cb106b54090296c9d251", size = 289904, upload-time = "2025-11-02T12:26:05.207Z" }, + { url = "https://files.pythonhosted.org/packages/a6/82/62d68066e13e46a5116df187d319d1724b3f437ddd0f958756fc052677f4/psutil-7.1.3-cp313-cp313t-win_amd64.whl", hash = "sha256:18349c5c24b06ac5612c0428ec2a0331c26443d259e2a0144a9b24b4395b58fa", size = 249642, upload-time = "2025-11-02T12:26:07.447Z" }, + { url = "https://files.pythonhosted.org/packages/df/ad/c1cd5fe965c14a0392112f68362cfceb5230819dbb5b1888950d18a11d9f/psutil-7.1.3-cp313-cp313t-win_arm64.whl", hash = "sha256:c525ffa774fe4496282fb0b1187725793de3e7c6b29e41562733cae9ada151ee", size = 245518, upload-time = "2025-11-02T12:26:09.719Z" }, + { url = "https://files.pythonhosted.org/packages/2e/bb/6670bded3e3236eb4287c7bcdc167e9fae6e1e9286e437f7111caed2f909/psutil-7.1.3-cp314-cp314t-macosx_10_15_x86_64.whl", hash = "sha256:b403da1df4d6d43973dc004d19cee3b848e998ae3154cc8097d139b77156c353", size = 239843, upload-time = "2025-11-02T12:26:11.968Z" }, + { url = "https://files.pythonhosted.org/packages/b8/66/853d50e75a38c9a7370ddbeefabdd3d3116b9c31ef94dc92c6729bc36bec/psutil-7.1.3-cp314-cp314t-macosx_11_0_arm64.whl", hash = "sha256:ad81425efc5e75da3f39b3e636293360ad8d0b49bed7df824c79764fb4ba9b8b", size = 240369, upload-time = "2025-11-02T12:26:14.358Z" }, + { url = "https://files.pythonhosted.org/packages/41/bd/313aba97cb5bfb26916dc29cf0646cbe4dd6a89ca69e8c6edce654876d39/psutil-7.1.3-cp314-cp314t-manylinux2010_x86_64.manylinux_2_12_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:8f33a3702e167783a9213db10ad29650ebf383946e91bc77f28a5eb083496bc9", size = 288210, upload-time = "2025-11-02T12:26:16.699Z" }, + { url = "https://files.pythonhosted.org/packages/c2/fa/76e3c06e760927a0cfb5705eb38164254de34e9bd86db656d4dbaa228b04/psutil-7.1.3-cp314-cp314t-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:fac9cd332c67f4422504297889da5ab7e05fd11e3c4392140f7370f4208ded1f", size = 291182, upload-time = "2025-11-02T12:26:18.848Z" }, + { url = "https://files.pythonhosted.org/packages/0f/1d/5774a91607035ee5078b8fd747686ebec28a962f178712de100d00b78a32/psutil-7.1.3-cp314-cp314t-win_amd64.whl", hash = "sha256:3792983e23b69843aea49c8f5b8f115572c5ab64c153bada5270086a2123c7e7", size = 250466, upload-time = "2025-11-02T12:26:21.183Z" }, + { url = "https://files.pythonhosted.org/packages/00/ca/e426584bacb43a5cb1ac91fae1937f478cd8fbe5e4ff96574e698a2c77cd/psutil-7.1.3-cp314-cp314t-win_arm64.whl", hash = "sha256:31d77fcedb7529f27bb3a0472bea9334349f9a04160e8e6e5020f22c59893264", size = 245756, upload-time = "2025-11-02T12:26:23.148Z" }, + { url = "https://files.pythonhosted.org/packages/ef/94/46b9154a800253e7ecff5aaacdf8ebf43db99de4a2dfa18575b02548654e/psutil-7.1.3-cp36-abi3-macosx_10_9_x86_64.whl", hash = "sha256:2bdbcd0e58ca14996a42adf3621a6244f1bb2e2e528886959c72cf1e326677ab", size = 238359, upload-time = "2025-11-02T12:26:25.284Z" }, + { url = "https://files.pythonhosted.org/packages/68/3a/9f93cff5c025029a36d9a92fef47220ab4692ee7f2be0fba9f92813d0cb8/psutil-7.1.3-cp36-abi3-macosx_11_0_arm64.whl", hash = "sha256:bc31fa00f1fbc3c3802141eede66f3a2d51d89716a194bf2cd6fc68310a19880", size = 239171, upload-time = "2025-11-02T12:26:27.23Z" }, + { url = "https://files.pythonhosted.org/packages/ce/b1/5f49af514f76431ba4eea935b8ad3725cdeb397e9245ab919dbc1d1dc20f/psutil-7.1.3-cp36-abi3-manylinux2010_x86_64.manylinux_2_12_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:3bb428f9f05c1225a558f53e30ccbad9930b11c3fc206836242de1091d3e7dd3", size = 263261, upload-time = "2025-11-02T12:26:29.48Z" }, + { url = "https://files.pythonhosted.org/packages/e0/95/992c8816a74016eb095e73585d747e0a8ea21a061ed3689474fabb29a395/psutil-7.1.3-cp36-abi3-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:56d974e02ca2c8eb4812c3f76c30e28836fffc311d55d979f1465c1feeb2b68b", size = 264635, upload-time = "2025-11-02T12:26:31.74Z" }, + { url = "https://files.pythonhosted.org/packages/55/4c/c3ed1a622b6ae2fd3c945a366e64eb35247a31e4db16cf5095e269e8eb3c/psutil-7.1.3-cp37-abi3-win_amd64.whl", hash = "sha256:f39c2c19fe824b47484b96f9692932248a54c43799a84282cfe58d05a6449efd", size = 247633, upload-time = "2025-11-02T12:26:33.887Z" }, + { url = "https://files.pythonhosted.org/packages/c9/ad/33b2ccec09bf96c2b2ef3f9a6f66baac8253d7565d8839e024a6b905d45d/psutil-7.1.3-cp37-abi3-win_arm64.whl", hash = "sha256:bd0d69cee829226a761e92f28140bec9a5ee9d5b4fb4b0cc589068dbfff559b1", size = 244608, upload-time = "2025-11-02T12:26:36.136Z" }, +] + +[[package]] +name = "ptyprocess" +version = "0.7.0" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/20/e5/16ff212c1e452235a90aeb09066144d0c5a6a8c0834397e03f5224495c4e/ptyprocess-0.7.0.tar.gz", hash = "sha256:5c5d0a3b48ceee0b48485e0c26037c0acd7d29765ca3fbb5cb3831d347423220", size = 70762, upload-time = "2020-12-28T15:15:30.155Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/22/a6/858897256d0deac81a172289110f31629fc4cee19b6f01283303e18c8db3/ptyprocess-0.7.0-py2.py3-none-any.whl", hash = "sha256:4b41f3967fce3af57cc7e94b888626c18bf37a083e3651ca8feeb66d492fef35", size = 13993, upload-time = "2020-12-28T15:15:28.35Z" }, +] + +[[package]] +name = "pure-eval" +version = "0.2.3" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/cd/05/0a34433a064256a578f1783a10da6df098ceaa4a57bbeaa96a6c0352786b/pure_eval-0.2.3.tar.gz", hash = "sha256:5f4e983f40564c576c7c8635ae88db5956bb2229d7e9237d03b3c0b0190eaf42", size = 19752, upload-time = "2024-07-21T12:58:21.801Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/8e/37/efad0257dc6e593a18957422533ff0f87ede7c9c6ea010a2177d738fb82f/pure_eval-0.2.3-py3-none-any.whl", hash = "sha256:1db8e35b67b3d218d818ae653e27f06c3aa420901fa7b081ca98cbedc874e0d0", size = 11842, upload-time = "2024-07-21T12:58:20.04Z" }, +] + +[[package]] +name = "pycparser" +version = "2.23" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/fe/cf/d2d3b9f5699fb1e4615c8e32ff220203e43b248e1dfcc6736ad9057731ca/pycparser-2.23.tar.gz", hash = "sha256:78816d4f24add8f10a06d6f05b4d424ad9e96cfebf68a4ddc99c65c0720d00c2", size = 173734, upload-time = "2025-09-09T13:23:47.91Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/a0/e3/59cd50310fc9b59512193629e1984c1f95e5c8ae6e5d8c69532ccc65a7fe/pycparser-2.23-py3-none-any.whl", hash = "sha256:e5c6e8d3fbad53479cab09ac03729e0a9faf2bee3db8208a550daf5af81a5934", size = 118140, upload-time = "2025-09-09T13:23:46.651Z" }, +] + +[[package]] +name = "pygments" +version = "2.19.2" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/b0/77/a5b8c569bf593b0140bde72ea885a803b82086995367bf2037de0159d924/pygments-2.19.2.tar.gz", hash = "sha256:636cb2477cec7f8952536970bc533bc43743542f70392ae026374600add5b887", size = 4968631, upload-time = "2025-06-21T13:39:12.283Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/c7/21/705964c7812476f378728bdf590ca4b771ec72385c533964653c68e86bdc/pygments-2.19.2-py3-none-any.whl", hash = "sha256:86540386c03d588bb81d44bc3928634ff26449851e99741617ecb9037ee5ec0b", size = 1225217, upload-time = "2025-06-21T13:39:07.939Z" }, +] + +[[package]] +name = "pyparsing" +version = "3.2.5" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/f2/a5/181488fc2b9d093e3972d2a472855aae8a03f000592dbfce716a512b3359/pyparsing-3.2.5.tar.gz", hash = "sha256:2df8d5b7b2802ef88e8d016a2eb9c7aeaa923529cd251ed0fe4608275d4105b6", size = 1099274, upload-time = "2025-09-21T04:11:06.277Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/10/5e/1aa9a93198c6b64513c9d7752de7422c06402de6600a8767da1524f9570b/pyparsing-3.2.5-py3-none-any.whl", hash = "sha256:e38a4f02064cf41fe6593d328d0512495ad1f3d8a91c4f73fc401b3079a59a5e", size = 113890, upload-time = "2025-09-21T04:11:04.117Z" }, +] + +[[package]] +name = "python-dateutil" +version = "2.9.0.post0" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "six" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/66/c0/0c8b6ad9f17a802ee498c46e004a0eb49bc148f2fd230864601a86dcf6db/python-dateutil-2.9.0.post0.tar.gz", hash = "sha256:37dd54208da7e1cd875388217d5e00ebd4179249f90fb72437e91a35459a0ad3", size = 342432, upload-time = "2024-03-01T18:36:20.211Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/ec/57/56b9bcc3c9c6a792fcbaf139543cee77261f3651ca9da0c93f5c1221264b/python_dateutil-2.9.0.post0-py2.py3-none-any.whl", hash = "sha256:a8b2bc7bffae282281c8140a97d3aa9c14da0b136dfe83f850eea9a5f7470427", size = 229892, upload-time = "2024-03-01T18:36:18.57Z" }, +] + +[[package]] +name = "pyzmq" +version = "27.1.0" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "cffi", marker = "implementation_name == 'pypy'" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/04/0b/3c9baedbdf613ecaa7aa07027780b8867f57b6293b6ee50de316c9f3222b/pyzmq-27.1.0.tar.gz", hash = "sha256:ac0765e3d44455adb6ddbf4417dcce460fc40a05978c08efdf2948072f6db540", size = 281750, upload-time = "2025-09-08T23:10:18.157Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/92/e7/038aab64a946d535901103da16b953c8c9cc9c961dadcbf3609ed6428d23/pyzmq-27.1.0-cp312-abi3-macosx_10_15_universal2.whl", hash = "sha256:452631b640340c928fa343801b0d07eb0c3789a5ffa843f6e1a9cee0ba4eb4fc", size = 1306279, upload-time = "2025-09-08T23:08:03.807Z" }, + { url = "https://files.pythonhosted.org/packages/e8/5e/c3c49fdd0f535ef45eefcc16934648e9e59dace4a37ee88fc53f6cd8e641/pyzmq-27.1.0-cp312-abi3-manylinux2014_i686.manylinux_2_17_i686.whl", hash = "sha256:1c179799b118e554b66da67d88ed66cd37a169f1f23b5d9f0a231b4e8d44a113", size = 895645, upload-time = "2025-09-08T23:08:05.301Z" }, + { url = "https://files.pythonhosted.org/packages/f8/e5/b0b2504cb4e903a74dcf1ebae157f9e20ebb6ea76095f6cfffea28c42ecd/pyzmq-27.1.0-cp312-abi3-manylinux_2_26_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:3837439b7f99e60312f0c926a6ad437b067356dc2bc2ec96eb395fd0fe804233", size = 652574, upload-time = "2025-09-08T23:08:06.828Z" }, + { url = "https://files.pythonhosted.org/packages/f8/9b/c108cdb55560eaf253f0cbdb61b29971e9fb34d9c3499b0e96e4e60ed8a5/pyzmq-27.1.0-cp312-abi3-manylinux_2_26_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:43ad9a73e3da1fab5b0e7e13402f0b2fb934ae1c876c51d0afff0e7c052eca31", size = 840995, upload-time = "2025-09-08T23:08:08.396Z" }, + { url = "https://files.pythonhosted.org/packages/c2/bb/b79798ca177b9eb0825b4c9998c6af8cd2a7f15a6a1a4272c1d1a21d382f/pyzmq-27.1.0-cp312-abi3-musllinux_1_2_aarch64.whl", hash = "sha256:0de3028d69d4cdc475bfe47a6128eb38d8bc0e8f4d69646adfbcd840facbac28", size = 1642070, upload-time = "2025-09-08T23:08:09.989Z" }, + { url = "https://files.pythonhosted.org/packages/9c/80/2df2e7977c4ede24c79ae39dcef3899bfc5f34d1ca7a5b24f182c9b7a9ca/pyzmq-27.1.0-cp312-abi3-musllinux_1_2_i686.whl", hash = "sha256:cf44a7763aea9298c0aa7dbf859f87ed7012de8bda0f3977b6fb1d96745df856", size = 2021121, upload-time = "2025-09-08T23:08:11.907Z" }, + { url = "https://files.pythonhosted.org/packages/46/bd/2d45ad24f5f5ae7e8d01525eb76786fa7557136555cac7d929880519e33a/pyzmq-27.1.0-cp312-abi3-musllinux_1_2_x86_64.whl", hash = "sha256:f30f395a9e6fbca195400ce833c731e7b64c3919aa481af4d88c3759e0cb7496", size = 1878550, upload-time = "2025-09-08T23:08:13.513Z" }, + { url = "https://files.pythonhosted.org/packages/e6/2f/104c0a3c778d7c2ab8190e9db4f62f0b6957b53c9d87db77c284b69f33ea/pyzmq-27.1.0-cp312-abi3-win32.whl", hash = "sha256:250e5436a4ba13885494412b3da5d518cd0d3a278a1ae640e113c073a5f88edd", size = 559184, upload-time = "2025-09-08T23:08:15.163Z" }, + { url = "https://files.pythonhosted.org/packages/fc/7f/a21b20d577e4100c6a41795842028235998a643b1ad406a6d4163ea8f53e/pyzmq-27.1.0-cp312-abi3-win_amd64.whl", hash = "sha256:9ce490cf1d2ca2ad84733aa1d69ce6855372cb5ce9223802450c9b2a7cba0ccf", size = 619480, upload-time = "2025-09-08T23:08:17.192Z" }, + { url = "https://files.pythonhosted.org/packages/78/c2/c012beae5f76b72f007a9e91ee9401cb88c51d0f83c6257a03e785c81cc2/pyzmq-27.1.0-cp312-abi3-win_arm64.whl", hash = "sha256:75a2f36223f0d535a0c919e23615fc85a1e23b71f40c7eb43d7b1dedb4d8f15f", size = 552993, upload-time = "2025-09-08T23:08:18.926Z" }, + { url = "https://files.pythonhosted.org/packages/60/cb/84a13459c51da6cec1b7b1dc1a47e6db6da50b77ad7fd9c145842750a011/pyzmq-27.1.0-cp313-cp313-android_24_arm64_v8a.whl", hash = "sha256:93ad4b0855a664229559e45c8d23797ceac03183c7b6f5b4428152a6b06684a5", size = 1122436, upload-time = "2025-09-08T23:08:20.801Z" }, + { url = "https://files.pythonhosted.org/packages/dc/b6/94414759a69a26c3dd674570a81813c46a078767d931a6c70ad29fc585cb/pyzmq-27.1.0-cp313-cp313-android_24_x86_64.whl", hash = "sha256:fbb4f2400bfda24f12f009cba62ad5734148569ff4949b1b6ec3b519444342e6", size = 1156301, upload-time = "2025-09-08T23:08:22.47Z" }, + { url = "https://files.pythonhosted.org/packages/a5/ad/15906493fd40c316377fd8a8f6b1f93104f97a752667763c9b9c1b71d42d/pyzmq-27.1.0-cp313-cp313t-macosx_10_15_universal2.whl", hash = "sha256:e343d067f7b151cfe4eb3bb796a7752c9d369eed007b91231e817071d2c2fec7", size = 1341197, upload-time = "2025-09-08T23:08:24.286Z" }, + { url = "https://files.pythonhosted.org/packages/14/1d/d343f3ce13db53a54cb8946594e567410b2125394dafcc0268d8dda027e0/pyzmq-27.1.0-cp313-cp313t-manylinux2014_i686.manylinux_2_17_i686.whl", hash = "sha256:08363b2011dec81c354d694bdecaef4770e0ae96b9afea70b3f47b973655cc05", size = 897275, upload-time = "2025-09-08T23:08:26.063Z" }, + { url = "https://files.pythonhosted.org/packages/69/2d/d83dd6d7ca929a2fc67d2c3005415cdf322af7751d773524809f9e585129/pyzmq-27.1.0-cp313-cp313t-manylinux_2_26_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:d54530c8c8b5b8ddb3318f481297441af102517602b569146185fa10b63f4fa9", size = 660469, upload-time = "2025-09-08T23:08:27.623Z" }, + { url = "https://files.pythonhosted.org/packages/3e/cd/9822a7af117f4bc0f1952dbe9ef8358eb50a24928efd5edf54210b850259/pyzmq-27.1.0-cp313-cp313t-manylinux_2_26_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:6f3afa12c392f0a44a2414056d730eebc33ec0926aae92b5ad5cf26ebb6cc128", size = 847961, upload-time = "2025-09-08T23:08:29.672Z" }, + { url = "https://files.pythonhosted.org/packages/9a/12/f003e824a19ed73be15542f172fd0ec4ad0b60cf37436652c93b9df7c585/pyzmq-27.1.0-cp313-cp313t-musllinux_1_2_aarch64.whl", hash = "sha256:c65047adafe573ff023b3187bb93faa583151627bc9c51fc4fb2c561ed689d39", size = 1650282, upload-time = "2025-09-08T23:08:31.349Z" }, + { url = "https://files.pythonhosted.org/packages/d5/4a/e82d788ed58e9a23995cee70dbc20c9aded3d13a92d30d57ec2291f1e8a3/pyzmq-27.1.0-cp313-cp313t-musllinux_1_2_i686.whl", hash = "sha256:90e6e9441c946a8b0a667356f7078d96411391a3b8f80980315455574177ec97", size = 2024468, upload-time = "2025-09-08T23:08:33.543Z" }, + { url = "https://files.pythonhosted.org/packages/d9/94/2da0a60841f757481e402b34bf4c8bf57fa54a5466b965de791b1e6f747d/pyzmq-27.1.0-cp313-cp313t-musllinux_1_2_x86_64.whl", hash = "sha256:add071b2d25f84e8189aaf0882d39a285b42fa3853016ebab234a5e78c7a43db", size = 1885394, upload-time = "2025-09-08T23:08:35.51Z" }, + { url = "https://files.pythonhosted.org/packages/4f/6f/55c10e2e49ad52d080dc24e37adb215e5b0d64990b57598abc2e3f01725b/pyzmq-27.1.0-cp313-cp313t-win32.whl", hash = "sha256:7ccc0700cfdf7bd487bea8d850ec38f204478681ea02a582a8da8171b7f90a1c", size = 574964, upload-time = "2025-09-08T23:08:37.178Z" }, + { url = "https://files.pythonhosted.org/packages/87/4d/2534970ba63dd7c522d8ca80fb92777f362c0f321900667c615e2067cb29/pyzmq-27.1.0-cp313-cp313t-win_amd64.whl", hash = "sha256:8085a9fba668216b9b4323be338ee5437a235fe275b9d1610e422ccc279733e2", size = 641029, upload-time = "2025-09-08T23:08:40.595Z" }, + { url = "https://files.pythonhosted.org/packages/f6/fa/f8aea7a28b0641f31d40dea42d7ef003fded31e184ef47db696bc74cd610/pyzmq-27.1.0-cp313-cp313t-win_arm64.whl", hash = "sha256:6bb54ca21bcfe361e445256c15eedf083f153811c37be87e0514934d6913061e", size = 561541, upload-time = "2025-09-08T23:08:42.668Z" }, + { url = "https://files.pythonhosted.org/packages/87/45/19efbb3000956e82d0331bafca5d9ac19ea2857722fa2caacefb6042f39d/pyzmq-27.1.0-cp314-cp314t-macosx_10_15_universal2.whl", hash = "sha256:ce980af330231615756acd5154f29813d553ea555485ae712c491cd483df6b7a", size = 1341197, upload-time = "2025-09-08T23:08:44.973Z" }, + { url = "https://files.pythonhosted.org/packages/48/43/d72ccdbf0d73d1343936296665826350cb1e825f92f2db9db3e61c2162a2/pyzmq-27.1.0-cp314-cp314t-manylinux2014_i686.manylinux_2_17_i686.whl", hash = "sha256:1779be8c549e54a1c38f805e56d2a2e5c009d26de10921d7d51cfd1c8d4632ea", size = 897175, upload-time = "2025-09-08T23:08:46.601Z" }, + { url = "https://files.pythonhosted.org/packages/2f/2e/a483f73a10b65a9ef0161e817321d39a770b2acf8bcf3004a28d90d14a94/pyzmq-27.1.0-cp314-cp314t-manylinux_2_26_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:7200bb0f03345515df50d99d3db206a0a6bee1955fbb8c453c76f5bf0e08fb96", size = 660427, upload-time = "2025-09-08T23:08:48.187Z" }, + { url = "https://files.pythonhosted.org/packages/f5/d2/5f36552c2d3e5685abe60dfa56f91169f7a2d99bbaf67c5271022ab40863/pyzmq-27.1.0-cp314-cp314t-manylinux_2_26_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:01c0e07d558b06a60773744ea6251f769cd79a41a97d11b8bf4ab8f034b0424d", size = 847929, upload-time = "2025-09-08T23:08:49.76Z" }, + { url = "https://files.pythonhosted.org/packages/c4/2a/404b331f2b7bf3198e9945f75c4c521f0c6a3a23b51f7a4a401b94a13833/pyzmq-27.1.0-cp314-cp314t-musllinux_1_2_aarch64.whl", hash = "sha256:80d834abee71f65253c91540445d37c4c561e293ba6e741b992f20a105d69146", size = 1650193, upload-time = "2025-09-08T23:08:51.7Z" }, + { url = "https://files.pythonhosted.org/packages/1c/0b/f4107e33f62a5acf60e3ded67ed33d79b4ce18de432625ce2fc5093d6388/pyzmq-27.1.0-cp314-cp314t-musllinux_1_2_i686.whl", hash = "sha256:544b4e3b7198dde4a62b8ff6685e9802a9a1ebf47e77478a5eb88eca2a82f2fd", size = 2024388, upload-time = "2025-09-08T23:08:53.393Z" }, + { url = "https://files.pythonhosted.org/packages/0d/01/add31fe76512642fd6e40e3a3bd21f4b47e242c8ba33efb6809e37076d9b/pyzmq-27.1.0-cp314-cp314t-musllinux_1_2_x86_64.whl", hash = "sha256:cedc4c68178e59a4046f97eca31b148ddcf51e88677de1ef4e78cf06c5376c9a", size = 1885316, upload-time = "2025-09-08T23:08:55.702Z" }, + { url = "https://files.pythonhosted.org/packages/c4/59/a5f38970f9bf07cee96128de79590bb354917914a9be11272cfc7ff26af0/pyzmq-27.1.0-cp314-cp314t-win32.whl", hash = "sha256:1f0b2a577fd770aa6f053211a55d1c47901f4d537389a034c690291485e5fe92", size = 587472, upload-time = "2025-09-08T23:08:58.18Z" }, + { url = "https://files.pythonhosted.org/packages/70/d8/78b1bad170f93fcf5e3536e70e8fadac55030002275c9a29e8f5719185de/pyzmq-27.1.0-cp314-cp314t-win_amd64.whl", hash = "sha256:19c9468ae0437f8074af379e986c5d3d7d7bfe033506af442e8c879732bedbe0", size = 661401, upload-time = "2025-09-08T23:08:59.802Z" }, + { url = "https://files.pythonhosted.org/packages/81/d6/4bfbb40c9a0b42fc53c7cf442f6385db70b40f74a783130c5d0a5aa62228/pyzmq-27.1.0-cp314-cp314t-win_arm64.whl", hash = "sha256:dc5dbf68a7857b59473f7df42650c621d7e8923fb03fa74a526890f4d33cc4d7", size = 575170, upload-time = "2025-09-08T23:09:01.418Z" }, +] + +[[package]] +name = "scipy" +version = "1.16.3" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "numpy" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/0a/ca/d8ace4f98322d01abcd52d381134344bf7b431eba7ed8b42bdea5a3c2ac9/scipy-1.16.3.tar.gz", hash = "sha256:01e87659402762f43bd2fee13370553a17ada367d42e7487800bf2916535aecb", size = 30597883, upload-time = "2025-10-28T17:38:54.068Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/40/41/5bf55c3f386b1643812f3a5674edf74b26184378ef0f3e7c7a09a7e2ca7f/scipy-1.16.3-cp312-cp312-macosx_10_14_x86_64.whl", hash = "sha256:81fc5827606858cf71446a5e98715ba0e11f0dbc83d71c7409d05486592a45d6", size = 36659043, upload-time = "2025-10-28T17:32:40.285Z" }, + { url = "https://files.pythonhosted.org/packages/1e/0f/65582071948cfc45d43e9870bf7ca5f0e0684e165d7c9ef4e50d783073eb/scipy-1.16.3-cp312-cp312-macosx_12_0_arm64.whl", hash = "sha256:c97176013d404c7346bf57874eaac5187d969293bf40497140b0a2b2b7482e07", size = 28898986, upload-time = "2025-10-28T17:32:45.325Z" }, + { url = "https://files.pythonhosted.org/packages/96/5e/36bf3f0ac298187d1ceadde9051177d6a4fe4d507e8f59067dc9dd39e650/scipy-1.16.3-cp312-cp312-macosx_14_0_arm64.whl", hash = "sha256:2b71d93c8a9936046866acebc915e2af2e292b883ed6e2cbe5c34beb094b82d9", size = 20889814, upload-time = "2025-10-28T17:32:49.277Z" }, + { url = "https://files.pythonhosted.org/packages/80/35/178d9d0c35394d5d5211bbff7ac4f2986c5488b59506fef9e1de13ea28d3/scipy-1.16.3-cp312-cp312-macosx_14_0_x86_64.whl", hash = "sha256:3d4a07a8e785d80289dfe66b7c27d8634a773020742ec7187b85ccc4b0e7b686", size = 23565795, upload-time = "2025-10-28T17:32:53.337Z" }, + { url = "https://files.pythonhosted.org/packages/fa/46/d1146ff536d034d02f83c8afc3c4bab2eddb634624d6529a8512f3afc9da/scipy-1.16.3-cp312-cp312-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:0553371015692a898e1aa858fed67a3576c34edefa6b7ebdb4e9dde49ce5c203", size = 33349476, upload-time = "2025-10-28T17:32:58.353Z" }, + { url = "https://files.pythonhosted.org/packages/79/2e/415119c9ab3e62249e18c2b082c07aff907a273741b3f8160414b0e9193c/scipy-1.16.3-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:72d1717fd3b5e6ec747327ce9bda32d5463f472c9dce9f54499e81fbd50245a1", size = 35676692, upload-time = "2025-10-28T17:33:03.88Z" }, + { url = "https://files.pythonhosted.org/packages/27/82/df26e44da78bf8d2aeaf7566082260cfa15955a5a6e96e6a29935b64132f/scipy-1.16.3-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:1fb2472e72e24d1530debe6ae078db70fb1605350c88a3d14bc401d6306dbffe", size = 36019345, upload-time = "2025-10-28T17:33:09.773Z" }, + { url = "https://files.pythonhosted.org/packages/82/31/006cbb4b648ba379a95c87262c2855cd0d09453e500937f78b30f02fa1cd/scipy-1.16.3-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:c5192722cffe15f9329a3948c4b1db789fbb1f05c97899187dcf009b283aea70", size = 38678975, upload-time = "2025-10-28T17:33:15.809Z" }, + { url = "https://files.pythonhosted.org/packages/c2/7f/acbd28c97e990b421af7d6d6cd416358c9c293fc958b8529e0bd5d2a2a19/scipy-1.16.3-cp312-cp312-win_amd64.whl", hash = "sha256:56edc65510d1331dae01ef9b658d428e33ed48b4f77b1d51caf479a0253f96dc", size = 38555926, upload-time = "2025-10-28T17:33:21.388Z" }, + { url = "https://files.pythonhosted.org/packages/ce/69/c5c7807fd007dad4f48e0a5f2153038dc96e8725d3345b9ee31b2b7bed46/scipy-1.16.3-cp312-cp312-win_arm64.whl", hash = "sha256:a8a26c78ef223d3e30920ef759e25625a0ecdd0d60e5a8818b7513c3e5384cf2", size = 25463014, upload-time = "2025-10-28T17:33:25.975Z" }, + { url = "https://files.pythonhosted.org/packages/72/f1/57e8327ab1508272029e27eeef34f2302ffc156b69e7e233e906c2a5c379/scipy-1.16.3-cp313-cp313-macosx_10_14_x86_64.whl", hash = "sha256:d2ec56337675e61b312179a1ad124f5f570c00f920cc75e1000025451b88241c", size = 36617856, upload-time = "2025-10-28T17:33:31.375Z" }, + { url = "https://files.pythonhosted.org/packages/44/13/7e63cfba8a7452eb756306aa2fd9b37a29a323b672b964b4fdeded9a3f21/scipy-1.16.3-cp313-cp313-macosx_12_0_arm64.whl", hash = "sha256:16b8bc35a4cc24db80a0ec836a9286d0e31b2503cb2fd7ff7fb0e0374a97081d", size = 28874306, upload-time = "2025-10-28T17:33:36.516Z" }, + { url = "https://files.pythonhosted.org/packages/15/65/3a9400efd0228a176e6ec3454b1fa998fbbb5a8defa1672c3f65706987db/scipy-1.16.3-cp313-cp313-macosx_14_0_arm64.whl", hash = "sha256:5803c5fadd29de0cf27fa08ccbfe7a9e5d741bf63e4ab1085437266f12460ff9", size = 20865371, upload-time = "2025-10-28T17:33:42.094Z" }, + { url = "https://files.pythonhosted.org/packages/33/d7/eda09adf009a9fb81827194d4dd02d2e4bc752cef16737cc4ef065234031/scipy-1.16.3-cp313-cp313-macosx_14_0_x86_64.whl", hash = "sha256:b81c27fc41954319a943d43b20e07c40bdcd3ff7cf013f4fb86286faefe546c4", size = 23524877, upload-time = "2025-10-28T17:33:48.483Z" }, + { url = "https://files.pythonhosted.org/packages/7d/6b/3f911e1ebc364cb81320223a3422aab7d26c9c7973109a9cd0f27c64c6c0/scipy-1.16.3-cp313-cp313-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:0c3b4dd3d9b08dbce0f3440032c52e9e2ab9f96ade2d3943313dfe51a7056959", size = 33342103, upload-time = "2025-10-28T17:33:56.495Z" }, + { url = "https://files.pythonhosted.org/packages/21/f6/4bfb5695d8941e5c570a04d9fcd0d36bce7511b7d78e6e75c8f9791f82d0/scipy-1.16.3-cp313-cp313-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:7dc1360c06535ea6116a2220f760ae572db9f661aba2d88074fe30ec2aa1ff88", size = 35697297, upload-time = "2025-10-28T17:34:04.722Z" }, + { url = "https://files.pythonhosted.org/packages/04/e1/6496dadbc80d8d896ff72511ecfe2316b50313bfc3ebf07a3f580f08bd8c/scipy-1.16.3-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:663b8d66a8748051c3ee9c96465fb417509315b99c71550fda2591d7dd634234", size = 36021756, upload-time = "2025-10-28T17:34:13.482Z" }, + { url = "https://files.pythonhosted.org/packages/fe/bd/a8c7799e0136b987bda3e1b23d155bcb31aec68a4a472554df5f0937eef7/scipy-1.16.3-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:eab43fae33a0c39006a88096cd7b4f4ef545ea0447d250d5ac18202d40b6611d", size = 38696566, upload-time = "2025-10-28T17:34:22.384Z" }, + { url = "https://files.pythonhosted.org/packages/cd/01/1204382461fcbfeb05b6161b594f4007e78b6eba9b375382f79153172b4d/scipy-1.16.3-cp313-cp313-win_amd64.whl", hash = "sha256:062246acacbe9f8210de8e751b16fc37458213f124bef161a5a02c7a39284304", size = 38529877, upload-time = "2025-10-28T17:35:51.076Z" }, + { url = "https://files.pythonhosted.org/packages/7f/14/9d9fbcaa1260a94f4bb5b64ba9213ceb5d03cd88841fe9fd1ffd47a45b73/scipy-1.16.3-cp313-cp313-win_arm64.whl", hash = "sha256:50a3dbf286dbc7d84f176f9a1574c705f277cb6565069f88f60db9eafdbe3ee2", size = 25455366, upload-time = "2025-10-28T17:35:59.014Z" }, + { url = "https://files.pythonhosted.org/packages/e2/a3/9ec205bd49f42d45d77f1730dbad9ccf146244c1647605cf834b3a8c4f36/scipy-1.16.3-cp313-cp313t-macosx_10_14_x86_64.whl", hash = "sha256:fb4b29f4cf8cc5a8d628bc8d8e26d12d7278cd1f219f22698a378c3d67db5e4b", size = 37027931, upload-time = "2025-10-28T17:34:31.451Z" }, + { url = "https://files.pythonhosted.org/packages/25/06/ca9fd1f3a4589cbd825b1447e5db3a8ebb969c1eaf22c8579bd286f51b6d/scipy-1.16.3-cp313-cp313t-macosx_12_0_arm64.whl", hash = "sha256:8d09d72dc92742988b0e7750bddb8060b0c7079606c0d24a8cc8e9c9c11f9079", size = 29400081, upload-time = "2025-10-28T17:34:39.087Z" }, + { url = "https://files.pythonhosted.org/packages/6a/56/933e68210d92657d93fb0e381683bc0e53a965048d7358ff5fbf9e6a1b17/scipy-1.16.3-cp313-cp313t-macosx_14_0_arm64.whl", hash = "sha256:03192a35e661470197556de24e7cb1330d84b35b94ead65c46ad6f16f6b28f2a", size = 21391244, upload-time = "2025-10-28T17:34:45.234Z" }, + { url = "https://files.pythonhosted.org/packages/a8/7e/779845db03dc1418e215726329674b40576879b91814568757ff0014ad65/scipy-1.16.3-cp313-cp313t-macosx_14_0_x86_64.whl", hash = "sha256:57d01cb6f85e34f0946b33caa66e892aae072b64b034183f3d87c4025802a119", size = 23929753, upload-time = "2025-10-28T17:34:51.793Z" }, + { url = "https://files.pythonhosted.org/packages/4c/4b/f756cf8161d5365dcdef9e5f460ab226c068211030a175d2fc7f3f41ca64/scipy-1.16.3-cp313-cp313t-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:96491a6a54e995f00a28a3c3badfff58fd093bf26cd5fb34a2188c8c756a3a2c", size = 33496912, upload-time = "2025-10-28T17:34:59.8Z" }, + { url = "https://files.pythonhosted.org/packages/09/b5/222b1e49a58668f23839ca1542a6322bb095ab8d6590d4f71723869a6c2c/scipy-1.16.3-cp313-cp313t-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:cd13e354df9938598af2be05822c323e97132d5e6306b83a3b4ee6724c6e522e", size = 35802371, upload-time = "2025-10-28T17:35:08.173Z" }, + { url = "https://files.pythonhosted.org/packages/c1/8d/5964ef68bb31829bde27611f8c9deeac13764589fe74a75390242b64ca44/scipy-1.16.3-cp313-cp313t-musllinux_1_2_aarch64.whl", hash = "sha256:63d3cdacb8a824a295191a723ee5e4ea7768ca5ca5f2838532d9f2e2b3ce2135", size = 36190477, upload-time = "2025-10-28T17:35:16.7Z" }, + { url = "https://files.pythonhosted.org/packages/ab/f2/b31d75cb9b5fa4dd39a0a931ee9b33e7f6f36f23be5ef560bf72e0f92f32/scipy-1.16.3-cp313-cp313t-musllinux_1_2_x86_64.whl", hash = "sha256:e7efa2681ea410b10dde31a52b18b0154d66f2485328830e45fdf183af5aefc6", size = 38796678, upload-time = "2025-10-28T17:35:26.354Z" }, + { url = "https://files.pythonhosted.org/packages/b4/1e/b3723d8ff64ab548c38d87055483714fefe6ee20e0189b62352b5e015bb1/scipy-1.16.3-cp313-cp313t-win_amd64.whl", hash = "sha256:2d1ae2cf0c350e7705168ff2429962a89ad90c2d49d1dd300686d8b2a5af22fc", size = 38640178, upload-time = "2025-10-28T17:35:35.304Z" }, + { url = "https://files.pythonhosted.org/packages/8e/f3/d854ff38789aca9b0cc23008d607ced9de4f7ab14fa1ca4329f86b3758ca/scipy-1.16.3-cp313-cp313t-win_arm64.whl", hash = "sha256:0c623a54f7b79dd88ef56da19bc2873afec9673a48f3b85b18e4d402bdd29a5a", size = 25803246, upload-time = "2025-10-28T17:35:42.155Z" }, + { url = "https://files.pythonhosted.org/packages/99/f6/99b10fd70f2d864c1e29a28bbcaa0c6340f9d8518396542d9ea3b4aaae15/scipy-1.16.3-cp314-cp314-macosx_10_14_x86_64.whl", hash = "sha256:875555ce62743e1d54f06cdf22c1e0bc47b91130ac40fe5d783b6dfa114beeb6", size = 36606469, upload-time = "2025-10-28T17:36:08.741Z" }, + { url = "https://files.pythonhosted.org/packages/4d/74/043b54f2319f48ea940dd025779fa28ee360e6b95acb7cd188fad4391c6b/scipy-1.16.3-cp314-cp314-macosx_12_0_arm64.whl", hash = "sha256:bb61878c18a470021fb515a843dc7a76961a8daceaaaa8bad1332f1bf4b54657", size = 28872043, upload-time = "2025-10-28T17:36:16.599Z" }, + { url = "https://files.pythonhosted.org/packages/4d/e1/24b7e50cc1c4ee6ffbcb1f27fe9f4c8b40e7911675f6d2d20955f41c6348/scipy-1.16.3-cp314-cp314-macosx_14_0_arm64.whl", hash = "sha256:f2622206f5559784fa5c4b53a950c3c7c1cf3e84ca1b9c4b6c03f062f289ca26", size = 20862952, upload-time = "2025-10-28T17:36:22.966Z" }, + { url = "https://files.pythonhosted.org/packages/dd/3a/3e8c01a4d742b730df368e063787c6808597ccb38636ed821d10b39ca51b/scipy-1.16.3-cp314-cp314-macosx_14_0_x86_64.whl", hash = "sha256:7f68154688c515cdb541a31ef8eb66d8cd1050605be9dcd74199cbd22ac739bc", size = 23508512, upload-time = "2025-10-28T17:36:29.731Z" }, + { url = "https://files.pythonhosted.org/packages/1f/60/c45a12b98ad591536bfe5330cb3cfe1850d7570259303563b1721564d458/scipy-1.16.3-cp314-cp314-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:8b3c820ddb80029fe9f43d61b81d8b488d3ef8ca010d15122b152db77dc94c22", size = 33413639, upload-time = "2025-10-28T17:36:37.982Z" }, + { url = "https://files.pythonhosted.org/packages/71/bc/35957d88645476307e4839712642896689df442f3e53b0fa016ecf8a3357/scipy-1.16.3-cp314-cp314-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:d3837938ae715fc0fe3c39c0202de3a8853aff22ca66781ddc2ade7554b7e2cc", size = 35704729, upload-time = "2025-10-28T17:36:46.547Z" }, + { url = "https://files.pythonhosted.org/packages/3b/15/89105e659041b1ca11c386e9995aefacd513a78493656e57789f9d9eab61/scipy-1.16.3-cp314-cp314-musllinux_1_2_aarch64.whl", hash = "sha256:aadd23f98f9cb069b3bd64ddc900c4d277778242e961751f77a8cb5c4b946fb0", size = 36086251, upload-time = "2025-10-28T17:36:55.161Z" }, + { url = "https://files.pythonhosted.org/packages/1a/87/c0ea673ac9c6cc50b3da2196d860273bc7389aa69b64efa8493bdd25b093/scipy-1.16.3-cp314-cp314-musllinux_1_2_x86_64.whl", hash = "sha256:b7c5f1bda1354d6a19bc6af73a649f8285ca63ac6b52e64e658a5a11d4d69800", size = 38716681, upload-time = "2025-10-28T17:37:04.1Z" }, + { url = "https://files.pythonhosted.org/packages/91/06/837893227b043fb9b0d13e4bd7586982d8136cb249ffb3492930dab905b8/scipy-1.16.3-cp314-cp314-win_amd64.whl", hash = "sha256:e5d42a9472e7579e473879a1990327830493a7047506d58d73fc429b84c1d49d", size = 39358423, upload-time = "2025-10-28T17:38:20.005Z" }, + { url = "https://files.pythonhosted.org/packages/95/03/28bce0355e4d34a7c034727505a02d19548549e190bedd13a721e35380b7/scipy-1.16.3-cp314-cp314-win_arm64.whl", hash = "sha256:6020470b9d00245926f2d5bb93b119ca0340f0d564eb6fbaad843eaebf9d690f", size = 26135027, upload-time = "2025-10-28T17:38:24.966Z" }, + { url = "https://files.pythonhosted.org/packages/b2/6f/69f1e2b682efe9de8fe9f91040f0cd32f13cfccba690512ba4c582b0bc29/scipy-1.16.3-cp314-cp314t-macosx_10_14_x86_64.whl", hash = "sha256:e1d27cbcb4602680a49d787d90664fa4974063ac9d4134813332a8c53dbe667c", size = 37028379, upload-time = "2025-10-28T17:37:14.061Z" }, + { url = "https://files.pythonhosted.org/packages/7c/2d/e826f31624a5ebbab1cd93d30fd74349914753076ed0593e1d56a98c4fb4/scipy-1.16.3-cp314-cp314t-macosx_12_0_arm64.whl", hash = "sha256:9b9c9c07b6d56a35777a1b4cc8966118fb16cfd8daf6743867d17d36cfad2d40", size = 29400052, upload-time = "2025-10-28T17:37:21.709Z" }, + { url = "https://files.pythonhosted.org/packages/69/27/d24feb80155f41fd1f156bf144e7e049b4e2b9dd06261a242905e3bc7a03/scipy-1.16.3-cp314-cp314t-macosx_14_0_arm64.whl", hash = "sha256:3a4c460301fb2cffb7f88528f30b3127742cff583603aa7dc964a52c463b385d", size = 21391183, upload-time = "2025-10-28T17:37:29.559Z" }, + { url = "https://files.pythonhosted.org/packages/f8/d3/1b229e433074c5738a24277eca520a2319aac7465eea7310ea6ae0e98ae2/scipy-1.16.3-cp314-cp314t-macosx_14_0_x86_64.whl", hash = "sha256:f667a4542cc8917af1db06366d3f78a5c8e83badd56409f94d1eac8d8d9133fa", size = 23930174, upload-time = "2025-10-28T17:37:36.306Z" }, + { url = "https://files.pythonhosted.org/packages/16/9d/d9e148b0ec680c0f042581a2be79a28a7ab66c0c4946697f9e7553ead337/scipy-1.16.3-cp314-cp314t-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:f379b54b77a597aa7ee5e697df0d66903e41b9c85a6dd7946159e356319158e8", size = 33497852, upload-time = "2025-10-28T17:37:42.228Z" }, + { url = "https://files.pythonhosted.org/packages/2f/22/4e5f7561e4f98b7bea63cf3fd7934bff1e3182e9f1626b089a679914d5c8/scipy-1.16.3-cp314-cp314t-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:4aff59800a3b7f786b70bfd6ab551001cb553244988d7d6b8299cb1ea653b353", size = 35798595, upload-time = "2025-10-28T17:37:48.102Z" }, + { url = "https://files.pythonhosted.org/packages/83/42/6644d714c179429fc7196857866f219fef25238319b650bb32dde7bf7a48/scipy-1.16.3-cp314-cp314t-musllinux_1_2_aarch64.whl", hash = "sha256:da7763f55885045036fabcebd80144b757d3db06ab0861415d1c3b7c69042146", size = 36186269, upload-time = "2025-10-28T17:37:53.72Z" }, + { url = "https://files.pythonhosted.org/packages/ac/70/64b4d7ca92f9cf2e6fc6aaa2eecf80bb9b6b985043a9583f32f8177ea122/scipy-1.16.3-cp314-cp314t-musllinux_1_2_x86_64.whl", hash = "sha256:ffa6eea95283b2b8079b821dc11f50a17d0571c92b43e2b5b12764dc5f9b285d", size = 38802779, upload-time = "2025-10-28T17:37:59.393Z" }, + { url = "https://files.pythonhosted.org/packages/61/82/8d0e39f62764cce5ffd5284131e109f07cf8955aef9ab8ed4e3aa5e30539/scipy-1.16.3-cp314-cp314t-win_amd64.whl", hash = "sha256:d9f48cafc7ce94cf9b15c6bffdc443a81a27bf7075cf2dcd5c8b40f85d10c4e7", size = 39471128, upload-time = "2025-10-28T17:38:05.259Z" }, + { url = "https://files.pythonhosted.org/packages/64/47/a494741db7280eae6dc033510c319e34d42dd41b7ac0c7ead39354d1a2b5/scipy-1.16.3-cp314-cp314t-win_arm64.whl", hash = "sha256:21d9d6b197227a12dcbf9633320a4e34c6b0e51c57268df255a0942983bac562", size = 26464127, upload-time = "2025-10-28T17:38:11.34Z" }, +] + +[[package]] +name = "setuptools" +version = "80.9.0" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/18/5d/3bf57dcd21979b887f014ea83c24ae194cfcd12b9e0fda66b957c69d1fca/setuptools-80.9.0.tar.gz", hash = "sha256:f36b47402ecde768dbfafc46e8e4207b4360c654f1f3bb84475f0a28628fb19c", size = 1319958, upload-time = "2025-05-27T00:56:51.443Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/a3/dc/17031897dae0efacfea57dfd3a82fdd2a2aeb58e0ff71b77b87e44edc772/setuptools-80.9.0-py3-none-any.whl", hash = "sha256:062d34222ad13e0cc312a4c02d73f059e86a4acbfbdea8f8f76b28c99f306922", size = 1201486, upload-time = "2025-05-27T00:56:49.664Z" }, +] + +[[package]] +name = "six" +version = "1.17.0" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/94/e7/b2c673351809dca68a0e064b6af791aa332cf192da575fd474ed7d6f16a2/six-1.17.0.tar.gz", hash = "sha256:ff70335d468e7eb6ec65b95b99d3a2836546063f63acc5171de367e834932a81", size = 34031, upload-time = "2024-12-04T17:35:28.174Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/b7/ce/149a00dd41f10bc29e5921b496af8b574d8413afcd5e30dfa0ed46c2cc5e/six-1.17.0-py2.py3-none-any.whl", hash = "sha256:4721f391ed90541fddacab5acf947aa0d3dc7d27b2e1e8eda2be8970586c3274", size = 11050, upload-time = "2024-12-04T17:35:26.475Z" }, +] + +[[package]] +name = "stack-data" +version = "0.6.3" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "asttokens" }, + { name = "executing" }, + { name = "pure-eval" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/28/e3/55dcc2cfbc3ca9c29519eb6884dd1415ecb53b0e934862d3559ddcb7e20b/stack_data-0.6.3.tar.gz", hash = "sha256:836a778de4fec4dcd1dcd89ed8abff8a221f58308462e1c4aa2a3cf30148f0b9", size = 44707, upload-time = "2023-09-30T13:58:05.479Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/f1/7b/ce1eafaf1a76852e2ec9b22edecf1daa58175c090266e9f6c64afcd81d91/stack_data-0.6.3-py3-none-any.whl", hash = "sha256:d5558e0c25a4cb0853cddad3d77da9891a08cb85dd9f9f91b9f8cd66e511e695", size = 24521, upload-time = "2023-09-30T13:58:03.53Z" }, +] + +[[package]] +name = "sympy" +version = "1.14.0" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "mpmath" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/83/d3/803453b36afefb7c2bb238361cd4ae6125a569b4db67cd9e79846ba2d68c/sympy-1.14.0.tar.gz", hash = "sha256:d3d3fe8df1e5a0b42f0e7bdf50541697dbe7d23746e894990c030e2b05e72517", size = 7793921, upload-time = "2025-04-27T18:05:01.611Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/a2/09/77d55d46fd61b4a135c444fc97158ef34a095e5681d0a6c10b75bf356191/sympy-1.14.0-py3-none-any.whl", hash = "sha256:e091cc3e99d2141a0ba2847328f5479b05d94a6635cb96148ccb3f34671bd8f5", size = 6299353, upload-time = "2025-04-27T18:04:59.103Z" }, +] + +[[package]] +name = "torch" +version = "2.9.1" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "filelock" }, + { name = "fsspec" }, + { name = "jinja2" }, + { name = "networkx" }, + { name = "nvidia-cublas-cu12", marker = "platform_machine == 'x86_64' and sys_platform == 'linux'" }, + { name = "nvidia-cuda-cupti-cu12", marker = "platform_machine == 'x86_64' and sys_platform == 'linux'" }, + { name = "nvidia-cuda-nvrtc-cu12", marker = "platform_machine == 'x86_64' and sys_platform == 'linux'" }, + { name = "nvidia-cuda-runtime-cu12", marker = "platform_machine == 'x86_64' and sys_platform == 'linux'" }, + { name = "nvidia-cudnn-cu12", marker = "platform_machine == 'x86_64' and sys_platform == 'linux'" }, + { name = "nvidia-cufft-cu12", marker = "platform_machine == 'x86_64' and sys_platform == 'linux'" }, + { name = "nvidia-cufile-cu12", marker = "platform_machine == 'x86_64' and sys_platform == 'linux'" }, + { name = "nvidia-curand-cu12", marker = "platform_machine == 'x86_64' and sys_platform == 'linux'" }, + { name = "nvidia-cusolver-cu12", marker = "platform_machine == 'x86_64' and sys_platform == 'linux'" }, + { name = "nvidia-cusparse-cu12", marker = "platform_machine == 'x86_64' and sys_platform == 'linux'" }, + { name = "nvidia-cusparselt-cu12", marker = "platform_machine == 'x86_64' and sys_platform == 'linux'" }, + { name = "nvidia-nccl-cu12", marker = "platform_machine == 'x86_64' and sys_platform == 'linux'" }, + { name = "nvidia-nvjitlink-cu12", marker = "platform_machine == 'x86_64' and sys_platform == 'linux'" }, + { name = "nvidia-nvshmem-cu12", marker = "platform_machine == 'x86_64' and sys_platform == 'linux'" }, + { name = "nvidia-nvtx-cu12", marker = "platform_machine == 'x86_64' and sys_platform == 'linux'" }, + { name = "setuptools" }, + { name = "sympy" }, + { name = "triton", marker = "platform_machine == 'x86_64' and sys_platform == 'linux'" }, + { name = "typing-extensions" }, +] +wheels = [ + { url = "https://files.pythonhosted.org/packages/0f/27/07c645c7673e73e53ded71705045d6cb5bae94c4b021b03aa8d03eee90ab/torch-2.9.1-cp312-cp312-manylinux_2_28_aarch64.whl", hash = "sha256:da5f6f4d7f4940a173e5572791af238cb0b9e21b1aab592bd8b26da4c99f1cd6", size = 104126592, upload-time = "2025-11-12T15:20:41.62Z" }, + { url = "https://files.pythonhosted.org/packages/19/17/e377a460603132b00760511299fceba4102bd95db1a0ee788da21298ccff/torch-2.9.1-cp312-cp312-manylinux_2_28_x86_64.whl", hash = "sha256:27331cd902fb4322252657f3902adf1c4f6acad9dcad81d8df3ae14c7c4f07c4", size = 899742281, upload-time = "2025-11-12T15:22:17.602Z" }, + { url = "https://files.pythonhosted.org/packages/b1/1a/64f5769025db846a82567fa5b7d21dba4558a7234ee631712ee4771c436c/torch-2.9.1-cp312-cp312-win_amd64.whl", hash = "sha256:81a285002d7b8cfd3fdf1b98aa8df138d41f1a8334fd9ea37511517cedf43083", size = 110940568, upload-time = "2025-11-12T15:21:18.689Z" }, + { url = "https://files.pythonhosted.org/packages/6e/ab/07739fd776618e5882661d04c43f5b5586323e2f6a2d7d84aac20d8f20bd/torch-2.9.1-cp312-none-macosx_11_0_arm64.whl", hash = "sha256:c0d25d1d8e531b8343bea0ed811d5d528958f1dcbd37e7245bc686273177ad7e", size = 74479191, upload-time = "2025-11-12T15:21:25.816Z" }, + { url = "https://files.pythonhosted.org/packages/20/60/8fc5e828d050bddfab469b3fe78e5ab9a7e53dda9c3bdc6a43d17ce99e63/torch-2.9.1-cp313-cp313-manylinux_2_28_aarch64.whl", hash = "sha256:c29455d2b910b98738131990394da3e50eea8291dfeb4b12de71ecf1fdeb21cb", size = 104135743, upload-time = "2025-11-12T15:21:34.936Z" }, + { url = "https://files.pythonhosted.org/packages/f2/b7/6d3f80e6918213babddb2a37b46dbb14c15b14c5f473e347869a51f40e1f/torch-2.9.1-cp313-cp313-manylinux_2_28_x86_64.whl", hash = "sha256:524de44cd13931208ba2c4bde9ec7741fd4ae6bfd06409a604fc32f6520c2bc9", size = 899749493, upload-time = "2025-11-12T15:24:36.356Z" }, + { url = "https://files.pythonhosted.org/packages/a6/47/c7843d69d6de8938c1cbb1eba426b1d48ddf375f101473d3e31a5fc52b74/torch-2.9.1-cp313-cp313-win_amd64.whl", hash = "sha256:545844cc16b3f91e08ce3b40e9c2d77012dd33a48d505aed34b7740ed627a1b2", size = 110944162, upload-time = "2025-11-12T15:21:53.151Z" }, + { url = "https://files.pythonhosted.org/packages/28/0e/2a37247957e72c12151b33a01e4df651d9d155dd74d8cfcbfad15a79b44a/torch-2.9.1-cp313-cp313t-macosx_11_0_arm64.whl", hash = "sha256:5be4bf7496f1e3ffb1dd44b672adb1ac3f081f204c5ca81eba6442f5f634df8e", size = 74830751, upload-time = "2025-11-12T15:21:43.792Z" }, + { url = "https://files.pythonhosted.org/packages/4b/f7/7a18745edcd7b9ca2381aa03353647bca8aace91683c4975f19ac233809d/torch-2.9.1-cp313-cp313t-manylinux_2_28_aarch64.whl", hash = "sha256:30a3e170a84894f3652434b56d59a64a2c11366b0ed5776fab33c2439396bf9a", size = 104142929, upload-time = "2025-11-12T15:21:48.319Z" }, + { url = "https://files.pythonhosted.org/packages/f4/dd/f1c0d879f2863ef209e18823a988dc7a1bf40470750e3ebe927efdb9407f/torch-2.9.1-cp313-cp313t-manylinux_2_28_x86_64.whl", hash = "sha256:8301a7b431e51764629208d0edaa4f9e4c33e6df0f2f90b90e261d623df6a4e2", size = 899748978, upload-time = "2025-11-12T15:23:04.568Z" }, + { url = "https://files.pythonhosted.org/packages/1f/9f/6986b83a53b4d043e36f3f898b798ab51f7f20fdf1a9b01a2720f445043d/torch-2.9.1-cp313-cp313t-win_amd64.whl", hash = "sha256:2e1c42c0ae92bf803a4b2409fdfed85e30f9027a66887f5e7dcdbc014c7531db", size = 111176995, upload-time = "2025-11-12T15:22:01.618Z" }, + { url = "https://files.pythonhosted.org/packages/40/60/71c698b466dd01e65d0e9514b5405faae200c52a76901baf6906856f17e4/torch-2.9.1-cp313-none-macosx_11_0_arm64.whl", hash = "sha256:2c14b3da5df416cf9cb5efab83aa3056f5b8cd8620b8fde81b4987ecab730587", size = 74480347, upload-time = "2025-11-12T15:21:57.648Z" }, + { url = "https://files.pythonhosted.org/packages/48/50/c4b5112546d0d13cc9eaa1c732b823d676a9f49ae8b6f97772f795874a03/torch-2.9.1-cp314-cp314-macosx_11_0_arm64.whl", hash = "sha256:1edee27a7c9897f4e0b7c14cfc2f3008c571921134522d5b9b5ec4ebbc69041a", size = 74433245, upload-time = "2025-11-12T15:22:39.027Z" }, + { url = "https://files.pythonhosted.org/packages/81/c9/2628f408f0518b3bae49c95f5af3728b6ab498c8624ab1e03a43dd53d650/torch-2.9.1-cp314-cp314-manylinux_2_28_aarch64.whl", hash = "sha256:19d144d6b3e29921f1fc70503e9f2fc572cde6a5115c0c0de2f7ca8b1483e8b6", size = 104134804, upload-time = "2025-11-12T15:22:35.222Z" }, + { url = "https://files.pythonhosted.org/packages/28/fc/5bc91d6d831ae41bf6e9e6da6468f25330522e92347c9156eb3f1cb95956/torch-2.9.1-cp314-cp314-manylinux_2_28_x86_64.whl", hash = "sha256:c432d04376f6d9767a9852ea0def7b47a7bbc8e7af3b16ac9cf9ce02b12851c9", size = 899747132, upload-time = "2025-11-12T15:23:36.068Z" }, + { url = "https://files.pythonhosted.org/packages/63/5d/e8d4e009e52b6b2cf1684bde2a6be157b96fb873732542fb2a9a99e85a83/torch-2.9.1-cp314-cp314-win_amd64.whl", hash = "sha256:d187566a2cdc726fc80138c3cdb260970fab1c27e99f85452721f7759bbd554d", size = 110934845, upload-time = "2025-11-12T15:22:48.367Z" }, + { url = "https://files.pythonhosted.org/packages/bd/b2/2d15a52516b2ea3f414643b8de68fa4cb220d3877ac8b1028c83dc8ca1c4/torch-2.9.1-cp314-cp314t-macosx_11_0_arm64.whl", hash = "sha256:cb10896a1f7fedaddbccc2017ce6ca9ecaaf990f0973bdfcf405439750118d2c", size = 74823558, upload-time = "2025-11-12T15:22:43.392Z" }, + { url = "https://files.pythonhosted.org/packages/86/5c/5b2e5d84f5b9850cd1e71af07524d8cbb74cba19379800f1f9f7c997fc70/torch-2.9.1-cp314-cp314t-manylinux_2_28_aarch64.whl", hash = "sha256:0a2bd769944991c74acf0c4ef23603b9c777fdf7637f115605a4b2d8023110c7", size = 104145788, upload-time = "2025-11-12T15:23:52.109Z" }, + { url = "https://files.pythonhosted.org/packages/a9/8c/3da60787bcf70add986c4ad485993026ac0ca74f2fc21410bc4eb1bb7695/torch-2.9.1-cp314-cp314t-manylinux_2_28_x86_64.whl", hash = "sha256:07c8a9660bc9414c39cac530ac83b1fb1b679d7155824144a40a54f4a47bfa73", size = 899735500, upload-time = "2025-11-12T15:24:08.788Z" }, + { url = "https://files.pythonhosted.org/packages/db/2b/f7818f6ec88758dfd21da46b6cd46af9d1b3433e53ddbb19ad1e0da17f9b/torch-2.9.1-cp314-cp314t-win_amd64.whl", hash = "sha256:c88d3299ddeb2b35dcc31753305612db485ab6f1823e37fb29451c8b2732b87e", size = 111163659, upload-time = "2025-11-12T15:23:20.009Z" }, +] + +[[package]] +name = "tornado" +version = "6.5.2" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/09/ce/1eb500eae19f4648281bb2186927bb062d2438c2e5093d1360391afd2f90/tornado-6.5.2.tar.gz", hash = "sha256:ab53c8f9a0fa351e2c0741284e06c7a45da86afb544133201c5cc8578eb076a0", size = 510821, upload-time = "2025-08-08T18:27:00.78Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/f6/48/6a7529df2c9cc12efd2e8f5dd219516184d703b34c06786809670df5b3bd/tornado-6.5.2-cp39-abi3-macosx_10_9_universal2.whl", hash = "sha256:2436822940d37cde62771cff8774f4f00b3c8024fe482e16ca8387b8a2724db6", size = 442563, upload-time = "2025-08-08T18:26:42.945Z" }, + { url = "https://files.pythonhosted.org/packages/f2/b5/9b575a0ed3e50b00c40b08cbce82eb618229091d09f6d14bce80fc01cb0b/tornado-6.5.2-cp39-abi3-macosx_10_9_x86_64.whl", hash = "sha256:583a52c7aa94ee046854ba81d9ebb6c81ec0fd30386d96f7640c96dad45a03ef", size = 440729, upload-time = "2025-08-08T18:26:44.473Z" }, + { url = "https://files.pythonhosted.org/packages/1b/4e/619174f52b120efcf23633c817fd3fed867c30bff785e2cd5a53a70e483c/tornado-6.5.2-cp39-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b0fe179f28d597deab2842b86ed4060deec7388f1fd9c1b4a41adf8af058907e", size = 444295, upload-time = "2025-08-08T18:26:46.021Z" }, + { url = "https://files.pythonhosted.org/packages/95/fa/87b41709552bbd393c85dd18e4e3499dcd8983f66e7972926db8d96aa065/tornado-6.5.2-cp39-abi3-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:b186e85d1e3536d69583d2298423744740986018e393d0321df7340e71898882", size = 443644, upload-time = "2025-08-08T18:26:47.625Z" }, + { url = "https://files.pythonhosted.org/packages/f9/41/fb15f06e33d7430ca89420283a8762a4e6b8025b800ea51796ab5e6d9559/tornado-6.5.2-cp39-abi3-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e792706668c87709709c18b353da1f7662317b563ff69f00bab83595940c7108", size = 443878, upload-time = "2025-08-08T18:26:50.599Z" }, + { url = "https://files.pythonhosted.org/packages/11/92/fe6d57da897776ad2e01e279170ea8ae726755b045fe5ac73b75357a5a3f/tornado-6.5.2-cp39-abi3-musllinux_1_2_aarch64.whl", hash = "sha256:06ceb1300fd70cb20e43b1ad8aaee0266e69e7ced38fa910ad2e03285009ce7c", size = 444549, upload-time = "2025-08-08T18:26:51.864Z" }, + { url = "https://files.pythonhosted.org/packages/9b/02/c8f4f6c9204526daf3d760f4aa555a7a33ad0e60843eac025ccfd6ff4a93/tornado-6.5.2-cp39-abi3-musllinux_1_2_i686.whl", hash = "sha256:74db443e0f5251be86cbf37929f84d8c20c27a355dd452a5cfa2aada0d001ec4", size = 443973, upload-time = "2025-08-08T18:26:53.625Z" }, + { url = "https://files.pythonhosted.org/packages/ae/2d/f5f5707b655ce2317190183868cd0f6822a1121b4baeae509ceb9590d0bd/tornado-6.5.2-cp39-abi3-musllinux_1_2_x86_64.whl", hash = "sha256:b5e735ab2889d7ed33b32a459cac490eda71a1ba6857b0118de476ab6c366c04", size = 443954, upload-time = "2025-08-08T18:26:55.072Z" }, + { url = "https://files.pythonhosted.org/packages/e8/59/593bd0f40f7355806bf6573b47b8c22f8e1374c9b6fd03114bd6b7a3dcfd/tornado-6.5.2-cp39-abi3-win32.whl", hash = "sha256:c6f29e94d9b37a95013bb669616352ddb82e3bfe8326fccee50583caebc8a5f0", size = 445023, upload-time = "2025-08-08T18:26:56.677Z" }, + { url = "https://files.pythonhosted.org/packages/c7/2a/f609b420c2f564a748a2d80ebfb2ee02a73ca80223af712fca591386cafb/tornado-6.5.2-cp39-abi3-win_amd64.whl", hash = "sha256:e56a5af51cc30dd2cae649429af65ca2f6571da29504a07995175df14c18f35f", size = 445427, upload-time = "2025-08-08T18:26:57.91Z" }, + { url = "https://files.pythonhosted.org/packages/5e/4f/e1f65e8f8c76d73658b33d33b81eed4322fb5085350e4328d5c956f0c8f9/tornado-6.5.2-cp39-abi3-win_arm64.whl", hash = "sha256:d6c33dc3672e3a1f3618eb63b7ef4683a7688e7b9e6e8f0d9aa5726360a004af", size = 444456, upload-time = "2025-08-08T18:26:59.207Z" }, +] + +[[package]] +name = "traitlets" +version = "5.14.3" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/eb/79/72064e6a701c2183016abbbfedaba506d81e30e232a68c9f0d6f6fcd1574/traitlets-5.14.3.tar.gz", hash = "sha256:9ed0579d3502c94b4b3732ac120375cda96f923114522847de4b3bb98b96b6b7", size = 161621, upload-time = "2024-04-19T11:11:49.746Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/00/c0/8f5d070730d7836adc9c9b6408dec68c6ced86b304a9b26a14df072a6e8c/traitlets-5.14.3-py3-none-any.whl", hash = "sha256:b74e89e397b1ed28cc831db7aea759ba6640cb3de13090ca145426688ff1ac4f", size = 85359, upload-time = "2024-04-19T11:11:46.763Z" }, +] + +[[package]] +name = "triton" +version = "3.5.1" +source = { registry = "https://pypi.org/simple" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/f2/50/9a8358d3ef58162c0a415d173cfb45b67de60176e1024f71fbc4d24c0b6d/triton-3.5.1-cp312-cp312-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:d2c6b915a03888ab931a9fd3e55ba36785e1fe70cbea0b40c6ef93b20fc85232", size = 170470207, upload-time = "2025-11-11T17:41:00.253Z" }, + { url = "https://files.pythonhosted.org/packages/27/46/8c3bbb5b0a19313f50edcaa363b599e5a1a5ac9683ead82b9b80fe497c8d/triton-3.5.1-cp313-cp313-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:f3f4346b6ebbd4fad18773f5ba839114f4826037c9f2f34e0148894cd5dd3dba", size = 170470410, upload-time = "2025-11-11T17:41:06.319Z" }, + { url = "https://files.pythonhosted.org/packages/37/92/e97fcc6b2c27cdb87ce5ee063d77f8f26f19f06916aa680464c8104ef0f6/triton-3.5.1-cp313-cp313t-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:0b4d2c70127fca6a23e247f9348b8adde979d2e7a20391bfbabaac6aebc7e6a8", size = 170579924, upload-time = "2025-11-11T17:41:12.455Z" }, + { url = "https://files.pythonhosted.org/packages/a4/e6/c595c35e5c50c4bc56a7bac96493dad321e9e29b953b526bbbe20f9911d0/triton-3.5.1-cp314-cp314-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:d0637b1efb1db599a8e9dc960d53ab6e4637db7d4ab6630a0974705d77b14b60", size = 170480488, upload-time = "2025-11-11T17:41:18.222Z" }, + { url = "https://files.pythonhosted.org/packages/16/b5/b0d3d8b901b6a04ca38df5e24c27e53afb15b93624d7fd7d658c7cd9352a/triton-3.5.1-cp314-cp314t-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:bac7f7d959ad0f48c0e97d6643a1cc0fd5786fe61cb1f83b537c6b2d54776478", size = 170582192, upload-time = "2025-11-11T17:41:23.963Z" }, +] + +[[package]] +name = "typing-extensions" +version = "4.15.0" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/72/94/1a15dd82efb362ac84269196e94cf00f187f7ed21c242792a923cdb1c61f/typing_extensions-4.15.0.tar.gz", hash = "sha256:0cea48d173cc12fa28ecabc3b837ea3cf6f38c6d1136f85cbaaf598984861466", size = 109391, upload-time = "2025-08-25T13:49:26.313Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/18/67/36e9267722cc04a6b9f15c7f3441c2363321a3ea07da7ae0c0707beb2a9c/typing_extensions-4.15.0-py3-none-any.whl", hash = "sha256:f0fa19c6845758ab08074a0cfa8b7aecb71c999ca73d62883bc25cc018c4e548", size = 44614, upload-time = "2025-08-25T13:49:24.86Z" }, +] + +[[package]] +name = "wcwidth" +version = "0.2.14" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/24/30/6b0809f4510673dc723187aeaf24c7f5459922d01e2f794277a3dfb90345/wcwidth-0.2.14.tar.gz", hash = "sha256:4d478375d31bc5395a3c55c40ccdf3354688364cd61c4f6adacaa9215d0b3605", size = 102293, upload-time = "2025-09-22T16:29:53.023Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/af/b5/123f13c975e9f27ab9c0770f514345bd406d0e8d3b7a0723af9d43f710af/wcwidth-0.2.14-py2.py3-none-any.whl", hash = "sha256:a7bb560c8aee30f9957e5f9895805edd20602f2d7f720186dfd906e82b4982e1", size = 37286, upload-time = "2025-09-22T16:29:51.641Z" }, +] From 55265766b70faa6db8a1518aaed432c008f2f426 Mon Sep 17 00:00:00 2001 From: daan Date: Sat, 22 Nov 2025 14:56:23 +0100 Subject: [PATCH 03/16] major refactoring --- .idea/Compression.iml | 6 +- .idea/misc.xml | 2 +- Images/discrete_model_performance.pdf | Bin 20426 -> 20424 bytes data.py | 38 + main.py | 264 + main_cleaned.ipynb | 25942 ++++-------------------- models.py | 345 + plotting.py | 107 + pretrained_models.py | 167 + test.py | 45 + utils.py | 65 + 11 files changed, 5463 insertions(+), 21518 deletions(-) create mode 100644 data.py create mode 100644 main.py create mode 100644 models.py create mode 100644 plotting.py create mode 100644 pretrained_models.py create mode 100644 test.py create mode 100644 utils.py diff --git a/.idea/Compression.iml b/.idea/Compression.iml index e9ee3d3..bd0c9f6 100644 --- a/.idea/Compression.iml +++ b/.idea/Compression.iml @@ -1,8 +1,10 @@ - - + + + + \ No newline at end of file diff --git a/.idea/misc.xml b/.idea/misc.xml index 3c3fd44..421d9ce 100644 --- a/.idea/misc.xml +++ b/.idea/misc.xml @@ -3,5 +3,5 @@ - + \ No newline at end of file diff --git a/Images/discrete_model_performance.pdf b/Images/discrete_model_performance.pdf index c05e066bb46c8934f0e62b468b5456d192a82ce8..c47cb873bda740c4d371d3c5c4f56589fa9d8fd0 100644 GIT binary patch delta 4491 zcmZWrc{o&!+kTPkvLxBEl|7v^W<@Gn*|Qr$ku-!DTec%9lr>vIvQ@T*$d+VJGO}ft zrL2+3zWe6=zTWru{btS|=Q`JO-Ouyf&;2adY0IE#&7dikprKPhz~W_TaFCUC{MSm( zzzqWFJ1JOGxF{wlv{ZfyRlRb=n;hRFW z)7&LjuZ*NK8Ke6@_lS!H1uqvfY*5KlJ;eT&GGWrjhFJyqZB>xyMz9o#YMI$-xhb58 zZ}AJLi5C`Pm{Q)KVb^Ph!XP;D-Sje3_2$EGT#}0e{K87&=Hjn#tp&ad2DvwlR*UCb zrPTBVn8r+Rm$jve+ib_)M8$qt45j&O69rJItNx-&iJh2JX0MY$5jygmo*m2Wxw-~D~g>7dW% zpnKPIv}Qq~m@S!Tsx%ZjB#n&Fef2_Of;f2P8a~NDH}zgcq5W#vLj%I9O~53kMB;^s z8xND)mzg(2tV$HV4YKQ2xq17;gD;h1`;knyG%jYp7aL#Px>An$;uxH*|0A6)*PSO* zbE#ZyV$T#Nn&MY+$rrC_K9J_n>trN~nQjssRn**A$?Q{d&@Bf0O1Vkvk@CZ7jz>H0 za<9X%6~A<0I~c=C@6`$MK|c@LZ_hd%QddGX&5+n~U9e~+3%YR*HGj*b%eUa?qSyqH z&zj8I&@n`{_s98H6JAH&3srTsNi%2^Ps@ckxMG{_&nX%lRy%*hIvMG6=l8au|6XPU zBZ-}ELGH@#P$uIH2Lr=!HX&MSH_*>pow;|2f0OZGSOm z>*YnYKI|KMUZ`<@(XjtVW<^h@i(Rvgq`=Si%sPR^T&;W8>($xxRZ`4yN2H{_3uSr5 zs#JuP!IaJ>s8v|!9J4!KVliHXO*qVOOcp<50hgE2#e}#CwwA(&Mse3GfhOygC||kF zX?5-R`=8pzu`DZvwvMk8!mvTh z#W5vkG)3K!^wqn`KE}1f4m3v}ZRvouYEJ0Z*FW|+kG?oz1M18raWJ9@xYa8x0nYrg z@pN%->+vRvWij$I2>z`xxx`F%GY`oayia(*NSE4mjYD^G7Fzm7cef|k3jE zUe_|JfCw$J;`V5RhgC7#@$HiCI0QI?A&nFxEb)>zic7@&YWZUL8FXhLlxh{JAF7C{)v4EPY z#F(8aZdBd|H0!-x(Xo{7ba2c{WndOCqeUb*9@)9)xLB-o^)^4Fq14(FweG%(<>KdR z=bJ1tB`V(GP96)mR@y)}G+D2<(ZH4VvE(fzXneu#2Z@E%!2X^p?d!l;^oh#M-&YMn zY`m50!tRWib^_OMbLZQcvQbs6%VjCvMT>m>PN$Ew9Iqwl_)cI)4@G8novfMN&fgCK z?xC6YBdQuo&8`~(>%p3Wx04j%Tqp877A;%c`#Bl=7g&c*kPh)a4wxzS_b2^&zB=0s z8E8VYnYMh_Ia|?!Z{Juw7gS@mi53mE2%A~zRO7oH9M)$x+}ZYtW>M1oiPX5B&y7HM2d+i#TixnU}w)Ko?prFZ5vEa8?Sm85f`%ZYcH^8wL`pC2sKlDfa(qNFhPmR?Z~5~ zX|7S`)KV^?sk(@omZcI&^R`yWlKFdYo<=gy4u2KP39WGS8k|-x=$a{Qo{YG72`Vw# z97!~7LNj+9xtD)KYJ!L*pP*Xij2?xBTgu;B4f{%}mu%KJ<%b0H*J|TP>xF+`H$;|N zIpgKC^ra6?E0%27l47flb89A}4%O@h#yO;x79Kvdr;E;{Tb}ls!jJ(PzrqL9#FGe) zQsawQYw~H8p$$}(7xK)i`~^)irprn?xHVWGt}@Z`3o4|Y8VRVnv3hVt$FCD#-DE>k zRq8eLm1ZQ^)$5W0e|z#A*`ZMHF!0*zi$-gTe=v*st}@}Ab17kiy9X}ME01t5OySvF zA2HLUfA_ZQR1h1jQPWQSQ;znUoO~i~6ek%{^ea?{-Gp0?w8->25@HT<&el0J!-ACN zOMkr7)QAZ((2?^0Ex;YZWzZ41d3uwMBpan2B%A$cSJP-A{$mWg&Y>`2jpA%M)&clB z2kqFi@wQhYmB?!KVsQfLg1EyQTy0RUo*zdDgTs*weH{r=><{UYL@)RZT0QJncn{VE z{E>%f!WP!wO)KC(3{5c2zS5T4s`WB?fWW%q(?gF(_=E{0$Lqu+dgf#pHP@z|XFa+0 z#FXdyanao1%tS+{P-%Zn;UFNfW@+T#nd3jWNxpH!iykqSjzh%J$ zVQWZQ1p!t9c@a>Zf@0YTIkQ*EfxI;YTay968Mj#1Ax&W6iIhGUM#?%e-h@%a@ajzB^{>8@IZYA9PYhYRvIj`c=Q`YL@%wF7HL7MY67Gd#&}{EG*~a z(O8nP@M9VLoU?7sZ}Flin?vyA!=6kd(P@zh;#w#V(s2z64NvFh81zc+HqRfE92_HW zipPBk5#33r2VCFMzLFtWJ(3l>N?Y6tZt?AyHFhfCH770n-%Z(1m(DK93skSvl--!m z)88pBYSFFXr!R*Ou=ETxQ9cWRb3Mzq%hw`x50U6 zSIJ~3(?GRJ_`SRA*s_vjpM(IOB)=zEnlTvyh8FMiVnAxnQ-xM+GGd42`O#1+R zSmG9Y5g|vf4--=>%KNh*Rd2hXQ{GV>K5`dSPa3Sy_C%;u3%utPedA@_ATcO3&LCp` zBw<85{!wp>;4B0CkCmwXrE2S1-nU!p`pk;9twojOKtKL$n%~NO38Bs^rZSS|rwE{$ z_x){484r?snHPQS+4qTt7u;Mt<7{p;w~M~xI%k`z7^mTrjZ)`~3-4di@>9c>vNw2Q zqwJFgtGGkXvUTf5LhdDq?Y9!PJ2O`s?S77%{-uy$H9Qq}^L8^oq0Yc0yb5}jWYgMV4)TcZ*8TQ9 zM6*?k?edgeeRW+&S7wk$WwtFbPfYc*p_a5&$9e6+g@7QwZyu)t6cqD#q$LEl-0`T*>J;EMLiQYuuHPar&Dq7_;;O|GoRfPF}KR^@)g`%{f0T@7K1CcOl8(M+N1_R&}HgY25pSlm)k%Xw3zz}GPXdoH^QbqvLNE9Vw0FHrE+fXn{1pv4L8uNcSpnqin z5Eu+)X=IuTlw<$}44R5G5{~>6@ZWf3@u=lPpy2;a1_A&Og@9332Ot53{|5f8C=5l7 zgHuAR2^IssNx7Flrkbj{K7s`e!Nu z42S?J$zb3JDiz4XOC>)5qmY%XDgZ}NP9+GSQ2!+UlNTZbF>uO?K@dPw009t$0hDAw z5TQVgLs7Mf?24qEEf59+(IVvjlb`<#4Ga#aQ~`t`|JkMgheM$$dkiW7Fe+aKIE)&H z_|N7*{~QGc3^hYIfS_Vco;S*Vf^Z~t#c&LUN*M$UP8p96M8FYL{Y0bDhQcxG@1Vg0AyK5 delta 4475 zcmZWpc|4SB8$L>9CwrD^ED4!rU#tg>EJb!9ie%qq=RFx^UqZ6))G+CUXa%E`*y6)?_@29(vrMHmf&oeAXPzWp>oi5Mf3fNvw zpRPaNOtsv6p)8tkRP0nlhLnwyWsgvV*(bi`BH~1{S)+-bUrFz)p~KF)s9PABd>;bQ zpk`UALOhsNEa`30)56&wUuFg#6mXLvxc&{Mh?S4R^|Cp?xaA;zup*PeE7Kp%Da1xx;6)`MAH7MKQN#bH%G4N zzr98icpPlM&*}C!B2de&JyqVIsB(d0{F-#O+NnQbp@hh-wK8C)rpqOK z$c)NrwChe~2c~vaI8T9cMYRJ#!GljYJIigYNF?uqCa-FsDAR+s|8{-kRpiw7=gnF_ zPdx|R?SH-r|49xR;l3^o&UL2rT&SC6bE>f7zWh43mejUtyp@ zyRvVFU-hH-dkxF}@92LQn*m?ZfLP(_r*m)$TEq0HO%Jul)_8L_98AkwhD%vF^PDus zR+vYp&3N9E+RwcNHC3}gG+|2>!v|rX&*f${>k8{dN|w?(u81^&;=$#i0UWahBTj|X zL@A7Jr|qrfw-miPdp?{?Oj7FPINo$~H=3SV4iV@3E>6HO2xXMs2&N87-*)LJE0wf4iU+r7IgbjZTRuJc{OJcY zJNs-gK0l_aP(^T6V*BGt=+39(xTYb8i%k@t6uz!WE|(U7^f}U4OAL4NmCphG%gn3% zfS-#i-636G?dCuO5b_2Yva*WE8gNj}WHX5H6P-(18ZFZfyk2rt&awhdLU5c3Ues2n zrQTXfMb?d#Nc8isrKL>l=jhz^9&r5Rce*ApI8JYy#p14Qy;XLt8F_}#|BmhTP32<0 zcJw2YMhOB@!mfq=-U)-pHMPhHt1ji}-37b{ZhrE+{;w3v?{qgOx>_cQ z%a0dl2<^6Ppe0eG#}Zougg4-e3W_lzgnkbbzE&0$Y5sm=lI0IrPRGs7k>zwfY@3Y$ zL6S$+VjVoP0+rTIY-8ziD=3Ff=ovt_uR&wDy1zY(hKW2d%JzMpU0C>PKXRc<^Ne6c zj+7Dbe)rR==?KZTWjkHnb&$s$defu3n;iS(xsyAXGh3$SO2SR}k!9O=&Z*Oq@Y+nD zZa(72(Hzkbi#FbdXqo9Vao7OsmD2*)LM|+}ee#bdim@F4O)9fDtJgZQvpxnI4mSN* zwI3YrbFB@V*!dvZUt(k+BJ5zg-bjPz@~Z{FD=v8P5!QJ}ytF@>J-b~AeV$zG-wu|s z_8P#9&b{kmQ$O&dw$GIC>1btGSQ&L5{lb5vqwK^mEZs`dC~>tMxTsRQ%j>@?dQpGU1*kGSk;%2)$0z&H^xlR{>4F3x zHlZZ0ewB3UL&RS}wC@X3Q;oYrDc0>ti~EJUpLeNGPibhl`C9MXPu8G}ALR0)8$wC; z8oTM_pER#ZfKoCW!rgLX@Zv+&{obN`eJg6br5e|RTKEtq=k~uIr>gTjIixx%>R4&4 zK=Bew>VVW-ojdONZ2P)hNIb#&2@O#Kpvg4pMBRmwR?X>qk9}jLZ+-~geAHUR&AWL+ zB1j0qWfi8(=ij+}1~K?V+uA8fzhe7-j8=tCrJA_`~mcy>2?NdXv=@!}LjBxk(fW z_u9!sh`dKey5aR4PDgcvamS)%ym)Io+mVzq`Pz8<@wm^fiE0)`UJ|*X-KOw)%w11= zT_XNu{j+t&t2`%gY)<$BOSgiT0L>3ywDfq)uG$NDrPlsRx#Y4XEJb#V5MOcRA$TwA zifi7KhR_#0f(d?X9P%fBcpuKNrRpIH!1AZc?wbPz#{|Jhf^4N>zHFwAumOpR-5kC zh_udgjW(HvhV8I)OG>)AJ$Q|C@MnK2Xxn0;-q0uLu+Sh?ACQBacXhe4x4TH^YNm5V zB}AtY4d%NqTA#*fu(jgzVvLq=r)5d<$c>Ksu?gbl){kn};T%9biJQVnWoy?g`&vu_ zib{dXs*Jvgo>Z&AQ3uoskweRe($633g*AXP)Q1T}$38{hv$H5qDaPkX8`2!*n*Fzm zwoT22T1F7XjXkh7Tu(#yQXYSle~ugYrv60h%mPJSKRIzRF2B(2RL!$D^iVQPN_@!3*dTl>dsV zHt*lFdTb6c1np*VR-ZHbzE^Uv^<%?(U7s>XX^^*K?Kf+S@rxinwYtDMS%81(aA!?XLWxMTHfIIG&qZ10NZa6zX7em%X~YURh5G+cM=jT0wi+?$HDzqA65 zcaM68wbLqbcezU^W_i}~sN^dRSsVc%>dK`DN>P{QPQNi+NVv}_?E3xIn}Si+NXxm> zRKW7x$X-#9y_M?yP%`;T^oJ`{!$}Z7`!ab+PuM8eP`@}xi1_+$J&X{N!fh)r=$(7- zx}v~ikL&vT`UAAJ>2F2EC6kA7&um`~OTXD%B35r= z``mP6HwCPt>PPN(PkqJ@i;VIYXU7+yA(_>za65Vq%G=)y z$jPtR%9(6`(x^{;SIVZv)IyzsD(`~fTn}YLdI0;8g(^Nu z*pa$0pCOkg6CJ{`aY}zB6I?a7D>7ySFbtxu*Ot+LH6< z6}z3#JTuc|c5&T^da*6a>XST$Q1?d$JE1md8s7z4I>P4`FNx12&1Us=02}S$S{tz% zzcs%nR5bXJb-mBIl?sx~md>148y*bgyUAm+LfR(!gClVEvLs`!1>ysPvu1J}3fn~u zf(h-!LGMpa(V{Qb;6eL!YZrPIlJmpUeh1yCzjI$+Z-3ZEc5Ua6w6d;(M({CJQu2md zvlUkf_l*qM7qxSu_<{PSV?gs8u|VyT3_P!dh|R+`JT=Or?mM6%9A;w2)eU+fm0=Xv zal7p9b|*{hVRM(YsOK3MkoNMn_Nh@|SCwGVbcK-v+yk}`dyal%JtB2JY735`U1RIcUn9u^q0-{du`B)9=~0%`;m?PU(QsMwo=l>hm?f zV*;jR;^;|M!TnpMM4RG^P#Z_<{_0Il>uTF1<+}9;7PVj5>T;CSGaBad%|15-pS0lx zDO+2iNj)B0$0ML#6QYTbxF7E4EpkBKQInCVsfXSd?3b5_@J# zcEozVyVoM>Yr>L-jL{*#+qE?AEfp3>Iz>;5zC-jyI3Nfp0*Z#h5QubReM10!8uHI| z+UqpOzdoR7EE>y*VIVLV69z>gm@y2J34=jU3>cjV^>3I<94-9Qdt zRsuso7_vbzNGM|lCn$!76=lHWh{*@6Tv730>@&Q zM57SszZ3o^9~1>+whxI${J$6g0)e8DFvjX2Cn8VX?|K_lQyhtX(effy)~(FF(w31`MI2+ZHSz^|@^V4+AjqZlj#$>ahS z&D^~Z7=x{JS0M-_V^=~UX!I}Qzj*r 100: + discrete_autoencoder_model = best_model + print(f"stopped early after {epoch+1} epochs, with a loss of: {lowest_loss}") + break + + print(f"Epoch {epoch+1}, Loss: {lowest_loss:.6f}") + +plt.plot(losses) +plt.show() + +qweights = discrete_autoencoder_model.encoder.q_values +discrete_values = np.array([-np.pi, -0.5*np.pi,0,0.5*np.pi,np.pi]) +mapped_q_weights = mapToDiscreteValues(qweights,discrete_values) + + +mapped_discrete_autoencoder_model = discrete_autoencoder_model +mapped_discrete_autoencoder_model.encoder.q_values = mapped_q_weights + +discrete_model = LearnedAutoencoder(vector_size,encoding_dim,hidden_dims) +# Load the state dictionary +discrete_model.load_state_dict(torch.load("Models/discrete_models/discrete_model.pt")) + +visualizeReconstruction(discrete_model,max_amplitude,min_sparsity,max_sparsity,vector_size) + +discrete_model_losses = [] + +dataloader_val, signal_variance = Generate_Dataloader(max_amplitude, min_sparsity, max_sparsity, vector_size, data_set_size) + +loss_fn = nn.MSELoss() + +# We need to put it in an array for our function to work! +discrete_models = [discrete_model] + +normalized_loss, unnormalized_loss = validateModels(dataloader_val,discrete_models,loss_fn) + +print(f"Normalized loss is:{normalized_loss}, Unnormalized loss is:{unnormalized_loss}") + +# Training just one model for illustration purposes +encoding_dims_list = [30] +SNR_list = [np.inf] +imb_percentage_list = [0] + +discrete_models = trainModelsForDiscreteSet(dataloader,SNR_list,imb_percentage_list,encoding_dims_list,scale_factor=0.01) + +encoding_dims_list = [50, 40, 30, 20, 10, 5, 50, 50, 50, 50,50,50,50,50,50,50,50,50,50] +SNR_list = [np.inf, np.inf, np.inf, np.inf, np.inf, np.inf, 20, 17, 14, 11, 8, 5, 2, np.inf, np.inf,np.inf, np.inf,np.inf, np.inf] +imb_percentage_list = [0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0.04, 0.1, 0.3, 0.6, 1] + +discrete_models = [] + +for iter,__ in enumerate(SNR_list): + abs_noise_ratio = 10**(SNR_list[iter]/10) + variance = signal_variance/abs_noise_ratio + b = 1 - (0.2 * imb_percentage_list[iter]) + d = imb_percentage_list[iter] * np.pi/8 + hidden_dims = np.array([60,80]) + discrete_models.append(LearnedAutoencoderWithIQImbalance(vector_size,encoding_dims_list[iter],hidden_dims,b,d,variance)) + discrete_models[iter].load_state_dict(torch.load( + f'Models/discrete_models/discrete_model_SNR{SNR_list[iter]}_IRR{imb_percentage_list[iter]}_enc{encoding_dims_list[iter]}.pt', weights_only=True)) + +loss_fn = nn.MSELoss() +normalized_losses, unnormalized_losses = validateModels(dataloader_val,discrete_models,loss_fn) +visualizeReconstruction(discrete_models[2]) + +plotting(imb_percentage_list, SNR_list, normalized_losses, encoding_dims_list) +plt.show() + +# Create an array of 100 numbers (0 to 99) +numbers = list(range(100)) +RIC = {} + +# Generate all possible 3-length combinations +for model in discrete_models: + max_RIC = 0 + # Get q-values and create the complex matrix W + qvalues = model.encoder.q_values.data.numpy() + W = np.e ** (1j * qvalues) + DFT = sp.linalg.dft(vector_size) / np.sqrt(vector_size) + W = W @ DFT + # Normalize each column so they have unit norm + col_norms = np.linalg.norm(W, axis=0) + diag_norm_matrix = np.diag(col_norms) + W_normalized = W @ np.linalg.inv(diag_norm_matrix) + + for combo in itertools.combinations(numbers, 3): + # Select the columns specified by the combination + W_cols = W_normalized[:, combo] + mod_mat = W_cols.T.conj() @ W_cols - np.eye(3) + + # Compute eigenvalues of the Gram matrix + eig_vals, _ = np.linalg.eig(mod_mat) + eigenvalues = np.abs(eig_vals) # They should be real and close to 1 + + temp_RIC = np.max(eigenvalues) + + if temp_RIC > max_RIC: + max_RIC = temp_RIC + + RIC[model] = max_RIC + +print(RIC.values()) +models = discrete_models + +mu = {} +for model in discrete_models: + qvalues = model.encoder.q_values.data.numpy() + W = np.e**(1j * qvalues) + DFT = sp.linalg.dft(vector_size)/np.sqrt(vector_size) + A = W@DFT + # Normalize each column so they have unit norm + col_norms = np.linalg.norm(A, axis=0) + diag_norm_matrix = np.diag(col_norms) + A_normalized = A @ np.linalg.inv(diag_norm_matrix) + A_dotprod = np.abs(A_normalized.conj().T@A_normalized) + A_no_diag = A_dotprod - np.diag(np.diag(A_dotprod)) + mu[model] = np.max(A_no_diag) + +print(mu.values()) + +# Generate the data +max_amplitude = 100 +min_sparsity = 7 +max_sparsity = 9 +vector_size = 100 +data_set_size = 10000 + +dataloader, signal_variance = Generate_Dataloader(max_amplitude, min_sparsity, max_sparsity, vector_size, data_set_size) + +# discrete_values = np.array([-np.pi, -0.5*np.pi,0,0.5*np.pi,np.pi]) +scale_factor = 0.01 +vector_size = 100 +encoding_dim = 50 +variance = 0 +hidden_dims = np.array([60,80]) +current_training_model = LearnedAutoencoderWithVarIQImbalance(vector_size,encoding_dim,hidden_dims,variance) +optimizer = torch.optim.Adam(current_training_model.parameters(), lr=1E-3, betas=(0.9,0.999)) +MSEloss_fn = nn.MSELoss() + +# Training loop +losses = [] +lowest_loss = float("inf") +for epoch in range(10000): + for batch in dataloader: + b = np.random.uniform(0.8,1) + d = np.random.uniform(0,np.pi/8) + current_training_model.b = b + current_training_model.d = d + inputs, targets = batch # Unpack the tuple + optimizer.zero_grad() + output = current_training_model(inputs) + # qweights = current_training_model.encoder.q_values + loss = MSEloss_fn(output, targets) # + discreteLossPoly(qweights,scale_factor) + loss.backward() + optimizer.step() + losses.append(loss.item()) + if loss< lowest_loss: + lowest_loss = loss + early_stopping_counter = 0 + best_model = current_training_model + else: + early_stopping_counter += 1 + if early_stopping_counter > 100: + current_training_model = best_model + print(f"Stopped early after {epoch+1} epochs, with loss of {lowest_loss:.6f}") + break + print(f"Epoch {epoch+1}, Loss: {loss.item():.6f}") +torch.save(best_model.state_dict(),f'Models/random_imbalanced_models/random_imbalanced_model.pt') + +vector_size = 100 +encoding_dim = 50 +variance = 0 +hidden_dims = np.array([60,80]) +random_imb_model = LearnedAutoencoderWithVarIQImbalance(vector_size,encoding_dim,hidden_dims,variance) +random_imb_model.load_state_dict(torch.load("Models/random_imbalanced_models/random_imbalanced_model.pt",weights_only=True)) + +loss_fn = nn.MSELoss() + +iq_imbalanced_models = [] +imb_percentage_list = [0, 0.04, 0.1, 0.3, 0.6, 1] +IRR_ratios = [] +for level in imb_percentage_list: + b = 1 - (0.2 * level) + d = level * np.pi / 8 + r = 0.5 * (1 + b * np.exp(1j * d)) + IRR_ratio = (np.abs(r) ** 2) / (np.abs(1 - r) ** 2) + IRR_ratios.append(10 * np.log10(IRR_ratio)) + random_imb_model.b = b + random_imb_model.d = d + iq_imbalanced_models.append(random_imb_model) + print(random_imb_model.b) + print(random_imb_model.d) + +max_amplitude = 100 +min_sparsity = 7 +max_sparsity = 9 +vector_size = 100 +data_set_size = 10000 + +dataloader_val, signal_variance = Generate_Dataloader(max_amplitude, min_sparsity, max_sparsity, vector_size, + data_set_size) + +normalized_losses, unnormalized_losses = validateModels(dataloader_val, iq_imbalanced_models, loss_fn) + +plot_losses(IRR_ratios, normalized_losses) +plt.show() +print(normalized_losses) +print(unnormalized_losses) + + diff --git a/main_cleaned.ipynb b/main_cleaned.ipynb index c5f7c36..66a1082 100644 --- a/main_cleaned.ipynb +++ b/main_cleaned.ipynb @@ -25,14 +25,12 @@ }, { "cell_type": "code", - "execution_count": 2, "metadata": { "ExecuteTime": { - "end_time": "2025-04-10T14:55:59.590607Z", - "start_time": "2025-04-10T14:55:59.586522Z" + "end_time": "2025-10-08T13:10:21.837965Z", + "start_time": "2025-10-08T13:10:21.831391Z" } }, - "outputs": [], "source": [ "import numpy as np\n", "import scipy as sp\n", @@ -41,7 +39,9 @@ "import cmath\n", "import math\n", "plt.rcParams.update(plt.rcParamsDefault)" - ] + ], + "outputs": [], + "execution_count": 14 }, { "cell_type": "markdown", @@ -60,14 +60,12 @@ }, { "cell_type": "code", - "execution_count": 3, "metadata": { "ExecuteTime": { - "end_time": "2025-04-10T14:56:01.295088Z", - "start_time": "2025-04-10T14:56:01.289848Z" + "end_time": "2025-10-08T13:10:23.176190Z", + "start_time": "2025-10-08T13:10:23.172425Z" } }, - "outputs": [], "source": [ "def buildDataSet(max_amplitude, min_sparsity, max_sparsity, vector_size, data_set_size):\n", " sparse_data = np.zeros((vector_size, data_set_size), dtype=float) # Ensure float type\n", @@ -84,7 +82,9 @@ " dense_data = DFT @ sparse_data\n", " \n", " return dense_data, sparse_data\n" - ] + ], + "outputs": [], + "execution_count": 15 }, { "cell_type": "markdown", @@ -95,14 +95,12 @@ }, { "cell_type": "code", - "execution_count": 4, "metadata": { "ExecuteTime": { - "end_time": "2025-04-10T14:56:02.871288Z", - "start_time": "2025-04-10T14:56:02.620210Z" + "end_time": "2025-10-08T13:10:23.767619Z", + "start_time": "2025-10-08T13:10:23.548147Z" } }, - "outputs": [], "source": [ "max_amplitude = 100\n", "min_sparsity = 7\n", @@ -110,7 +108,9 @@ "vector_size = 100\n", "data_set_size = 10000\n", "dense_data, sparse_data = buildDataSet(max_amplitude,min_sparsity,max_sparsity,vector_size,data_set_size)\n" - ] + ], + "outputs": [], + "execution_count": 16 }, { "cell_type": "markdown", @@ -121,21 +121,21 @@ }, { "cell_type": "code", - "execution_count": 5, "metadata": { "ExecuteTime": { - "end_time": "2025-04-10T14:56:06.256272Z", - "start_time": "2025-04-10T14:56:06.244613Z" + "end_time": "2025-10-08T13:10:23.935585Z", + "start_time": "2025-10-08T13:10:23.931796Z" } }, - "outputs": [], "source": [ "DFT = sp.linalg.dft(vector_size)/np.sqrt(vector_size)\n", "iDFT = DFT.conj().T\n", "\n", "# Check if the iDFT of the dense data is in fact sparse, should be nearly all zeros\n", "# print(iDFT@dense_data)\n" - ] + ], + "outputs": [], + "execution_count": 17 }, { "cell_type": "markdown", @@ -148,14 +148,12 @@ }, { "cell_type": "code", - "execution_count": 6, "metadata": { "ExecuteTime": { - "end_time": "2025-04-10T14:56:08.771392Z", - "start_time": "2025-04-10T14:56:08.469206Z" + "end_time": "2025-10-08T13:10:25.096304Z", + "start_time": "2025-10-08T13:10:24.829286Z" } }, - "outputs": [], "source": [ "import torch\n", "import torch.nn as nn\n", @@ -182,7 +180,9 @@ " return dataloader, variance\n", "\n", "dataloader, signal_variance = Generate_Dataloader(max_amplitude,min_sparsity,max_sparsity,vector_size,data_set_size)\n" - ] + ], + "outputs": [], + "execution_count": 18 }, { "cell_type": "markdown", @@ -194,14 +194,12 @@ }, { "cell_type": "code", - "execution_count": 7, "metadata": { "ExecuteTime": { - "end_time": "2025-04-10T14:56:10.913050Z", - "start_time": "2025-04-10T14:56:10.908781Z" + "end_time": "2025-10-08T13:10:25.477791Z", + "start_time": "2025-10-08T13:10:25.473989Z" } }, - "outputs": [], "source": [ "def validateModels(dataloader,models,loss_fn,signal_variance=133):\n", " models_losses = []\n", @@ -219,7 +217,9 @@ " models_losses = np.array(models_losses)\n", " normalized_models_losses = models_losses/signal_variance\n", " return normalized_models_losses,models_losses" - ] + ], + "outputs": [], + "execution_count": 19 }, { "cell_type": "markdown", @@ -231,14 +231,12 @@ }, { "cell_type": "code", - "execution_count": 8, "metadata": { "ExecuteTime": { - "end_time": "2025-04-10T14:56:13.170717Z", - "start_time": "2025-04-10T14:56:13.165728Z" + "end_time": "2025-10-08T13:10:26.524522Z", + "start_time": "2025-10-08T13:10:26.518400Z" } }, - "outputs": [], "source": [ "def visualizeReconstruction(model,max_amplitude=100,min_sparsity=3,max_sparsity=5,vector_size=100):\n", " h, x = buildDataSet(max_amplitude,min_sparsity,max_sparsity,vector_size,1)\n", @@ -264,7 +262,9 @@ " plt.vlines(indices,0,x_hat,colors=\"orange\")\n", "\n", " plt.legend((\"x\",\"x_hat\"))" - ] + ], + "outputs": [], + "execution_count": 20 }, { "cell_type": "markdown", @@ -283,14 +283,12 @@ }, { "cell_type": "code", - "execution_count": 9, "metadata": { "ExecuteTime": { - "end_time": "2025-04-10T14:56:16.028645Z", - "start_time": "2025-04-10T14:56:16.013113Z" + "end_time": "2025-10-08T13:02:48.085823Z", + "start_time": "2025-10-08T13:02:48.061553Z" } }, - "outputs": [], "source": [ "\n", "def complex_xavier_init(tensor_real, tensor_imag, gain=1.0):\n", @@ -424,7 +422,9 @@ " noise_tensor = torch.tensor(noise_np,dtype=torch.float)\n", " y_iq_stack_noisy = yiqstack + noise_tensor\n", " return self.decoder(y_iq_stack_noisy)" - ] + ], + "outputs": [], + "execution_count": 8 }, { "cell_type": "markdown", @@ -447,14 +447,12 @@ }, { "cell_type": "code", - "execution_count": 10, "metadata": { "ExecuteTime": { - "end_time": "2025-04-10T14:56:22.892952Z", - "start_time": "2025-04-10T14:56:22.885554Z" + "end_time": "2025-10-08T13:02:48.114016Z", + "start_time": "2025-10-08T13:02:48.104925Z" } }, - "outputs": [], "source": [ "def trainModels(dataloader,SNR_values,imb_percentages,encoding_dims,epochs,signal_variance = 133,hidden_dims=[60,80]):\n", " # Function takes as inputs:\n", @@ -503,7 +501,9 @@ " models.append(best_model)\n", " losses.append(lowest_loss)\n", " return models, losses" - ] + ], + "outputs": [], + "execution_count": 9 }, { "cell_type": "markdown", @@ -521,121 +521,12 @@ }, { "cell_type": "code", - "execution_count": 35, "metadata": { "ExecuteTime": { - "end_time": "2025-04-04T09:48:05.786194Z", - "start_time": "2025-04-04T09:22:46.106056Z" + "end_time": "2025-10-08T10:06:37.213970Z", + "start_time": "2025-10-08T10:06:16.213151Z" } }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1, Loss: 131.306320\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 2, Loss: 131.316986\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 3, Loss: 121.970863\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 4, Loss: 103.485138\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 5, Loss: 92.332680\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 6, Loss: 82.590286\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 7, Loss: 76.657509\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 8, Loss: 66.977638\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 9, Loss: 64.440948\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 10, Loss: 60.328400\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 11, Loss: 56.491566\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 12, Loss: 51.716141\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 13, Loss: 51.849209\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 14, Loss: 48.215584\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 15, Loss: 48.529255\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 16, Loss: 46.145233\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 17, Loss: 45.439739\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 18, Loss: 43.074261\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 19, Loss: 43.438816\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 20, Loss: 42.949860\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 21, Loss: 42.010075\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 22, Loss: 40.243309\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 23, Loss: 40.305557\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 24, Loss: 39.611012\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 25, Loss: 38.930004\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 26, Loss: 38.598236\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 27, Loss: 37.165283\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 28, Loss: 36.430866\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 29, Loss: 36.238926\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 30, Loss: 35.490204\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 31, Loss: 35.353966\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 32, Loss: 35.385105\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 33, Loss: 35.016766\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 34, Loss: 33.946274\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 35, Loss: 33.415577\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 36, Loss: 32.555813\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 37, Loss: 32.800323\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 38, Loss: 31.675293\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 39, Loss: 32.558811\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 40, Loss: 30.992901\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 41, Loss: 31.618534\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 42, Loss: 31.797300\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 43, Loss: 30.151030\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 44, Loss: 30.342163\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 45, Loss: 30.429998\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 46, Loss: 29.224863\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 47, Loss: 30.190855\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 48, Loss: 29.968897\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 49, Loss: 29.963495\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 50, Loss: 28.843948\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 51, Loss: 29.105162\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 52, Loss: 28.174999\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 53, Loss: 27.980690\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 54, Loss: 28.120319\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 55, Loss: 27.497477\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 56, Loss: 26.309050\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 57, Loss: 26.030621\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 58, Loss: 25.833982\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 59, Loss: 25.793085\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 60, Loss: 25.466925\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 61, Loss: 25.385336\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 62, Loss: 25.418837\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 63, Loss: 24.574705\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 64, Loss: 23.992676\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 65, Loss: 24.482187\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 66, Loss: 23.970650\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 67, Loss: 23.698244\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 68, Loss: 23.457750\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 69, Loss: 23.293745\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 70, Loss: 23.272470\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 71, Loss: 22.217230\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 72, Loss: 22.711334\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 73, Loss: 22.754440\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 74, Loss: 22.132524\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 75, Loss: 22.327036\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 76, Loss: 22.061541\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 77, Loss: 21.785988\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 78, Loss: 21.584150\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 79, Loss: 22.145077\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 80, Loss: 21.515055\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 81, Loss: 21.553345\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 82, Loss: 21.367037\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 83, Loss: 21.157900\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 84, Loss: 21.117870\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 85, Loss: 21.019487\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 86, Loss: 20.955225\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 87, Loss: 20.979706\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 88, Loss: 20.520065\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 89, Loss: 21.029560\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 90, Loss: 19.735785\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 91, Loss: 20.578867\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 92, Loss: 19.916014\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 93, Loss: 19.577795\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 94, Loss: 19.772631\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 95, Loss: 20.081594\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 96, Loss: 20.060457\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 97, Loss: 20.091537\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 98, Loss: 20.142868\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 99, Loss: 20.025991\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 100, Loss: 19.285719\n" - ] - } - ], "source": [ "# We define our signal to noise ratio as ranging from 2 to 20 dB\n", "\n", @@ -654,7 +545,116 @@ "dataloader, signal_var = Generate_Dataloader(max_amplitude,min_sparsity,max_sparsity,vector_size,data_set_size)\n", "\n", "noisy_models, noisy_losses = trainModels(dataloader,SNR_list,imb_percentage_list,encoding_dim_list,epochs,signal_variance=signal_var)" - ] + ], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1, Loss: 133.210083\n", + "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 2, Loss: 128.447128\n", + "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 3, Loss: 120.921356\n", + "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 4, Loss: 107.568443\n", + "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 5, Loss: 93.800636\n", + "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 6, Loss: 80.348854\n", + "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 7, Loss: 72.723625\n", + "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 8, Loss: 66.178024\n", + "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 9, Loss: 61.408901\n", + "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 10, Loss: 57.104164\n", + "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 11, Loss: 54.422577\n", + "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 12, Loss: 51.723354\n", + "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 13, Loss: 49.153591\n", + "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 14, Loss: 48.301189\n", + "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 15, Loss: 46.113331\n", + "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 16, Loss: 45.005936\n", + "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 17, Loss: 44.862629\n", + "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 18, Loss: 41.985149\n", + "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 19, Loss: 40.902916\n", + "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 20, Loss: 41.688915\n", + "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 21, Loss: 41.514370\n", + "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 22, Loss: 40.408150\n", + "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 23, Loss: 38.568733\n", + "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 24, Loss: 38.238949\n", + "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 25, Loss: 37.517586\n", + "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 26, Loss: 36.015724\n", + "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 27, Loss: 35.330883\n", + "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 28, Loss: 34.462894\n", + "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 29, Loss: 33.761147\n", + "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 30, Loss: 34.113926\n", + "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 31, Loss: 32.962189\n", + "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 32, Loss: 33.104778\n", + "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 33, Loss: 32.703594\n", + "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 34, Loss: 33.679119\n", + "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 35, Loss: 31.474871\n", + "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 36, Loss: 30.892611\n", + "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 37, Loss: 30.907261\n", + "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 38, Loss: 31.609024\n", + "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 39, Loss: 31.551933\n", + "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 40, Loss: 30.953159\n", + "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 41, Loss: 30.028933\n", + "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 42, Loss: 30.784430\n", + "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 43, Loss: 30.329571\n", + "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 44, Loss: 30.391029\n", + "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 45, Loss: 29.700994\n", + "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 46, Loss: 28.518080\n", + "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 47, Loss: 28.475313\n", + "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 48, Loss: 28.335205\n", + "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 49, Loss: 27.895615\n", + "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 50, Loss: 28.208202\n", + "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 51, Loss: 27.820953\n", + "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 52, Loss: 27.080416\n", + "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 53, Loss: 26.609718\n", + "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 54, Loss: 27.121515\n", + "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 55, Loss: 26.781673\n", + "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 56, Loss: 26.992847\n", + "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 57, Loss: 25.990065\n", + "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 58, Loss: 25.371162\n", + "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 59, Loss: 26.262718\n", + "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 60, Loss: 26.659555\n", + "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 61, Loss: 25.718760\n", + "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 62, Loss: 25.897175\n", + "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 63, Loss: 26.113146\n", + "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 64, Loss: 25.132212\n", + "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 65, Loss: 24.861322\n", + "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 66, Loss: 24.921181\n", + "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 67, Loss: 25.051741\n", + "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 68, Loss: 23.327768\n", + "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 69, Loss: 23.659443\n", + "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 70, Loss: 23.936220\n", + "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 71, Loss: 23.252649\n", + "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 72, Loss: 23.304155\n", + "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 73, Loss: 23.070730\n", + "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 74, Loss: 22.524891\n", + "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 75, Loss: 22.909683\n", + "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 76, Loss: 22.431620\n", + "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 77, Loss: 22.913210\n", + "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 78, Loss: 22.551895\n", + "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 79, Loss: 22.681999\n", + "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 80, Loss: 22.358763\n", + "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 81, Loss: 21.923429\n", + "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 82, Loss: 21.430967\n", + "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 83, Loss: 21.796061\n", + "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 84, Loss: 21.012667\n", + "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 85, Loss: 20.506945\n", + "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 86, Loss: 21.247000\n", + "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 87, Loss: 20.369230\n", + "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 88, Loss: 20.994043\n", + "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 89, Loss: 20.906147\n", + "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 90, Loss: 20.368275\n", + "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 91, Loss: 19.916241\n", + "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 92, Loss: 19.924105\n", + "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 93, Loss: 20.039471\n", + "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 94, Loss: 19.762545\n", + "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 95, Loss: 20.007944\n", + "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 96, Loss: 19.872986\n", + "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 97, Loss: 19.631516\n", + "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 98, Loss: 19.509823\n", + "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 99, Loss: 19.354645\n", + "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 100, Loss: 18.903727\n" + ] + } + ], + "execution_count": 20 }, { "cell_type": "markdown", @@ -666,18 +666,18 @@ }, { "cell_type": "code", - "execution_count": null, "metadata": { "ExecuteTime": { - "end_time": "2025-04-04T09:52:50.305101Z", - "start_time": "2025-04-04T09:52:50.291521Z" + "end_time": "2025-10-08T10:06:37.229493Z", + "start_time": "2025-10-08T10:06:37.226501Z" } }, - "outputs": [], "source": [ "# for indx, (db, value) in enumerate(SNR.items()):\n", "# torch.save(noisy_models[indx].state_dict(), f\"Models/noisy_models/sparsity_{min_sparsity}-{max_sparsity}/noisy_model_{db}_{min_sparsity}-{max_sparsity}.pt\")" - ] + ], + "outputs": [], + "execution_count": 21 }, { "cell_type": "markdown", @@ -694,121 +694,12 @@ }, { "cell_type": "code", - "execution_count": 11, "metadata": { "ExecuteTime": { - "end_time": "2025-04-10T14:15:04.502533Z", - "start_time": "2025-04-10T14:14:41.036887Z" + "end_time": "2025-10-08T10:06:58.150404Z", + "start_time": "2025-10-08T10:06:37.278226Z" } }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 1, Loss: 134.600922\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 2, Loss: 128.448624\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 3, Loss: 121.059418\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 4, Loss: 107.953758\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 5, Loss: 95.392067\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 6, Loss: 83.599434\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 7, Loss: 75.744804\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 8, Loss: 70.161743\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 9, Loss: 65.769478\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 10, Loss: 59.545551\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 11, Loss: 56.803959\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 12, Loss: 56.118355\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 13, Loss: 54.494640\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 14, Loss: 50.987740\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 15, Loss: 48.700958\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 16, Loss: 47.773327\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 17, Loss: 47.075451\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 18, Loss: 45.328590\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 19, Loss: 44.239880\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 20, Loss: 43.692574\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 21, Loss: 41.069504\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 22, Loss: 40.106972\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 23, Loss: 40.126663\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 24, Loss: 39.507504\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 25, Loss: 39.421902\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 26, Loss: 38.809666\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 27, Loss: 37.699909\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 28, Loss: 36.742474\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 29, Loss: 36.614670\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 30, Loss: 34.927681\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 31, Loss: 35.858231\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 32, Loss: 34.914604\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 33, Loss: 34.442471\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 34, Loss: 33.864948\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 35, Loss: 33.482971\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 36, Loss: 32.873711\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 37, Loss: 33.042793\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 38, Loss: 32.425396\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 39, Loss: 31.975380\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 40, Loss: 32.159096\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 41, Loss: 30.645075\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 42, Loss: 32.224216\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 43, Loss: 30.040447\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 44, Loss: 30.020042\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 45, Loss: 29.968498\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 46, Loss: 29.609560\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 47, Loss: 28.948984\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 48, Loss: 28.965233\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 49, Loss: 28.687361\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 50, Loss: 29.115133\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 51, Loss: 27.455347\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 52, Loss: 27.930023\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 53, Loss: 27.457178\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 54, Loss: 27.031296\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 55, Loss: 26.388500\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 56, Loss: 26.215887\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 57, Loss: 26.803905\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 58, Loss: 25.294617\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 59, Loss: 25.630510\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 60, Loss: 25.674980\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 61, Loss: 24.930338\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 62, Loss: 24.996765\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 63, Loss: 24.761038\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 64, Loss: 23.869770\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 65, Loss: 24.226923\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 66, Loss: 23.821325\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 67, Loss: 23.493290\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 68, Loss: 23.182449\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 69, Loss: 23.204153\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 70, Loss: 23.021654\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 71, Loss: 23.107458\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 72, Loss: 23.069759\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 73, Loss: 23.010647\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 74, Loss: 22.429752\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 75, Loss: 22.645693\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 76, Loss: 21.754040\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 77, Loss: 22.803110\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 78, Loss: 21.892376\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 79, Loss: 21.681305\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 80, Loss: 21.137865\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 81, Loss: 21.632387\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 82, Loss: 21.660580\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 83, Loss: 21.043375\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 84, Loss: 21.069418\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 85, Loss: 21.229023\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 86, Loss: 21.127350\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 87, Loss: 20.809288\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 88, Loss: 20.083923\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 89, Loss: 20.231743\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 90, Loss: 20.699478\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 91, Loss: 19.986530\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 92, Loss: 19.667675\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 93, Loss: 20.392136\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 94, Loss: 20.058832\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 95, Loss: 19.817440\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 96, Loss: 18.659201\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 97, Loss: 19.712215\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 98, Loss: 19.541235\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 99, Loss: 19.206526\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 100, Loss: 18.955383\n" - ] - } - ], "source": [ "# Train full range of IQ imbalances\n", "\n", @@ -826,7 +717,116 @@ "dataloader, signal_var = Generate_Dataloader(max_amplitude,min_sparsity,max_sparsity,vector_size,data_set_size)\n", "\n", "imbalanced_models, imbalanced_losses = trainModels(dataloader,SNR_list,imb_percentage_list,encoding_dim_list,epochs,signal_variance=signal_var)" - ] + ], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 1, Loss: 131.753998\n", + "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 2, Loss: 127.246040\n", + "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 3, Loss: 121.921494\n", + "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 4, Loss: 107.887123\n", + "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 5, Loss: 92.138519\n", + "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 6, Loss: 85.894653\n", + "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 7, Loss: 74.410950\n", + "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 8, Loss: 71.592247\n", + "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 9, Loss: 64.756889\n", + "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 10, Loss: 62.256546\n", + "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 11, Loss: 59.046310\n", + "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 12, Loss: 54.700645\n", + "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 13, Loss: 52.481689\n", + "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 14, Loss: 50.660450\n", + "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 15, Loss: 48.972919\n", + "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 16, Loss: 48.304760\n", + "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 17, Loss: 46.933060\n", + "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 18, Loss: 46.275810\n", + "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 19, Loss: 45.197506\n", + "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 20, Loss: 43.821941\n", + "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 21, Loss: 42.633083\n", + "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 22, Loss: 43.417130\n", + "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 23, Loss: 41.057709\n", + "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 24, Loss: 39.547245\n", + "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 25, Loss: 40.144241\n", + "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 26, Loss: 38.462379\n", + "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 27, Loss: 37.570446\n", + "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 28, Loss: 37.705418\n", + "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 29, Loss: 35.867779\n", + "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 30, Loss: 35.849636\n", + "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 31, Loss: 35.599945\n", + "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 32, Loss: 35.850273\n", + "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 33, Loss: 34.060909\n", + "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 34, Loss: 33.632824\n", + "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 35, Loss: 32.797291\n", + "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 36, Loss: 33.018379\n", + "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 37, Loss: 32.942135\n", + "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 38, Loss: 31.883030\n", + "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 39, Loss: 31.724005\n", + "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 40, Loss: 31.240683\n", + "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 41, Loss: 30.965555\n", + "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 42, Loss: 30.732012\n", + "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 43, Loss: 31.024023\n", + "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 44, Loss: 29.974960\n", + "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 45, Loss: 28.772840\n", + "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 46, Loss: 29.859184\n", + "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 47, Loss: 29.375708\n", + "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 48, Loss: 28.497982\n", + "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 49, Loss: 28.221073\n", + "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 50, Loss: 28.432138\n", + "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 51, Loss: 27.978212\n", + "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 52, Loss: 27.993879\n", + "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 53, Loss: 26.218348\n", + "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 54, Loss: 26.966997\n", + "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 55, Loss: 27.129410\n", + "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 56, Loss: 25.731470\n", + "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 57, Loss: 26.951084\n", + "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 58, Loss: 25.990417\n", + "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 59, Loss: 25.757292\n", + "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 60, Loss: 25.503733\n", + "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 61, Loss: 24.911381\n", + "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 62, Loss: 24.319830\n", + "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 63, Loss: 24.252920\n", + "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 64, Loss: 23.436323\n", + "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 65, Loss: 24.121515\n", + "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 66, Loss: 23.595594\n", + "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 67, Loss: 23.361345\n", + "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 68, Loss: 22.801750\n", + "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 69, Loss: 22.646772\n", + "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 70, Loss: 23.318182\n", + "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 71, Loss: 22.715164\n", + "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 72, Loss: 22.366833\n", + "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 73, Loss: 21.875832\n", + "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 74, Loss: 21.190472\n", + "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 75, Loss: 21.809240\n", + "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 76, Loss: 21.861095\n", + "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 77, Loss: 21.441757\n", + "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 78, Loss: 21.201145\n", + "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 79, Loss: 20.977785\n", + "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 80, Loss: 20.574741\n", + "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 81, Loss: 20.615314\n", + "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 82, Loss: 20.332697\n", + "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 83, Loss: 20.441734\n", + "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 84, Loss: 20.659462\n", + "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 85, Loss: 20.113577\n", + "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 86, Loss: 20.557919\n", + "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 87, Loss: 19.257389\n", + "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 88, Loss: 20.063101\n", + "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 89, Loss: 20.024742\n", + "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 90, Loss: 20.098431\n", + "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 91, Loss: 19.187548\n", + "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 92, Loss: 19.006016\n", + "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 93, Loss: 18.989073\n", + "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 94, Loss: 19.182430\n", + "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 95, Loss: 18.911867\n", + "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 96, Loss: 19.014380\n", + "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 97, Loss: 19.371908\n", + "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 98, Loss: 18.939865\n", + "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 99, Loss: 18.599377\n", + "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 100, Loss: 18.059303\n" + ] + } + ], + "execution_count": 22 }, { "cell_type": "markdown", @@ -837,30 +837,12 @@ }, { "cell_type": "code", - "execution_count": null, "metadata": { "ExecuteTime": { - "end_time": "2025-04-10T14:56:37.782473Z", - "start_time": "2025-04-10T14:56:37.778279Z" + "end_time": "2025-10-08T10:06:58.171586Z", + "start_time": "2025-10-08T10:06:58.165918Z" } }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "{0: np.float64(inf), 0.04: np.float64(41.08929220065852), 0.1: np.float64(33.118820471594574), 0.3: np.float64(23.531709031336195), 0.6: np.float64(17.42758855859956), 1: np.float64(12.849459258668094)}\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "C:\\Users\\tomli\\AppData\\Local\\Temp\\ipykernel_28372\\3041498516.py:7: RuntimeWarning: divide by zero encountered in scalar divide\n", - " IRR_ratio = (np.abs(r)**2)/(np.abs(1-r)**2)\n" - ] - } - ], "source": [ "# Calculate the dB imbalance levels, we store them in the dictionary IRR_ratios such that we can extract it with the corresponding level imbalance\n", "imb_percentage_list = [0, 0.04, 0.1, 0.3, 0.6, 1]\n", @@ -875,7 +857,18 @@ "# Uncomment to save\n", "# for indx, items in enumerate(IRR_ratios):\n", "# torch.save(imbalanced_models[indx].state_dict(), f\"Models/imbalanced_models/sparsity_{min_sparsity}-{max_sparsity}/imbalanced_model_{items:.3f}_{min_sparsity}-{max_sparsity}.pt\")" - ] + ], + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/tmp/ipykernel_14740/4109955618.py:8: RuntimeWarning: divide by zero encountered in scalar divide\n", + " IRR_ratio = (np.abs(r)**2)/(np.abs(1-r)**2)\n" + ] + } + ], + "execution_count": 23 }, { "cell_type": "markdown", @@ -891,121 +884,12 @@ }, { "cell_type": "code", - "execution_count": 12, "metadata": { "ExecuteTime": { - "end_time": "2025-04-10T14:15:28.304274Z", - "start_time": "2025-04-10T14:15:04.895768Z" + "end_time": "2025-10-08T10:07:19.460120Z", + "start_time": "2025-10-08T10:06:58.251679Z" } }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 1, Loss: 136.731033\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 2, Loss: 129.219284\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 3, Loss: 126.585510\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 4, Loss: 114.593697\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 5, Loss: 101.799522\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 6, Loss: 92.503471\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 7, Loss: 88.437019\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 8, Loss: 80.028412\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 9, Loss: 78.121094\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 10, Loss: 74.967369\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 11, Loss: 71.134178\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 12, Loss: 69.941994\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 13, Loss: 68.756126\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 14, Loss: 65.090347\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 15, Loss: 64.676682\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 16, Loss: 64.141808\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 17, Loss: 64.909996\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 18, Loss: 62.630390\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 19, Loss: 62.212696\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 20, Loss: 60.289101\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 21, Loss: 60.649647\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 22, Loss: 58.176071\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 23, Loss: 58.387695\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 24, Loss: 58.635368\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 25, Loss: 58.696030\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 26, Loss: 57.963734\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 27, Loss: 59.310936\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 28, Loss: 56.977165\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 29, Loss: 55.831295\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 30, Loss: 57.623306\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 31, Loss: 55.228924\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 32, Loss: 56.444160\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 33, Loss: 53.059650\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 34, Loss: 51.976665\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 35, Loss: 53.126911\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 36, Loss: 50.576294\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 37, Loss: 52.008476\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 38, Loss: 50.519009\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 39, Loss: 50.247162\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 40, Loss: 48.600750\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 41, Loss: 48.537899\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 42, Loss: 47.986641\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 43, Loss: 45.417419\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 44, Loss: 45.004219\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 45, Loss: 45.513695\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 46, Loss: 44.514339\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 47, Loss: 45.574421\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 48, Loss: 43.374065\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 49, Loss: 43.495296\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 50, Loss: 43.961960\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 51, Loss: 43.511250\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 52, Loss: 41.034660\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 53, Loss: 40.920784\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 54, Loss: 40.816708\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 55, Loss: 40.119488\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 56, Loss: 41.203789\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 57, Loss: 39.606056\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 58, Loss: 39.433636\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 59, Loss: 38.543259\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 60, Loss: 39.427719\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 61, Loss: 37.660610\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 62, Loss: 36.754017\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 63, Loss: 38.706402\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 64, Loss: 34.987431\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 65, Loss: 35.079777\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 66, Loss: 36.255486\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 67, Loss: 34.364746\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 68, Loss: 35.240921\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 69, Loss: 33.981739\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 70, Loss: 33.106415\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 71, Loss: 33.910484\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 72, Loss: 32.317894\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 73, Loss: 32.314308\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 74, Loss: 31.406931\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 75, Loss: 32.162872\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 76, Loss: 31.461760\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 77, Loss: 30.791967\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 78, Loss: 31.284164\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 79, Loss: 30.288275\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 80, Loss: 31.591209\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 81, Loss: 31.704807\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 82, Loss: 30.378067\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 83, Loss: 30.622528\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 84, Loss: 30.215990\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 85, Loss: 29.136629\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 86, Loss: 30.139860\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 87, Loss: 29.080351\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 88, Loss: 29.737564\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 89, Loss: 28.424376\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 90, Loss: 28.252195\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 91, Loss: 27.339781\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 92, Loss: 28.249180\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 93, Loss: 28.618187\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 94, Loss: 26.171535\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 95, Loss: 27.050930\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 96, Loss: 25.984228\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 97, Loss: 24.578526\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 98, Loss: 26.118412\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 99, Loss: 25.062895\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 100, Loss: 25.270475\n" - ] - } - ], "source": [ "# Train full range of IQ imbalances\n", "\n", @@ -1023,7 +907,116 @@ "dataloader, signal_var = Generate_Dataloader(max_amplitude,min_sparsity,max_sparsity,vector_size,data_set_size)\n", "\n", "measurement_models, measurement_losses = trainModels(dataloader,SNR_list,imb_percentage_list,encoding_dim_list,epochs,signal_variance=signal_var)" - ] + ], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 1, Loss: 131.432526\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 2, Loss: 127.384216\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 3, Loss: 124.880737\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 4, Loss: 115.207840\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 5, Loss: 103.657600\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 6, Loss: 92.493629\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 7, Loss: 87.499939\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 8, Loss: 83.772461\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 9, Loss: 78.199371\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 10, Loss: 72.957916\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 11, Loss: 71.294250\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 12, Loss: 69.085732\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 13, Loss: 67.675392\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 14, Loss: 64.669838\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 15, Loss: 64.423744\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 16, Loss: 62.348789\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 17, Loss: 63.347210\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 18, Loss: 61.697571\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 19, Loss: 60.772251\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 20, Loss: 61.778042\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 21, Loss: 60.031490\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 22, Loss: 59.134296\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 23, Loss: 58.330582\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 24, Loss: 57.713055\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 25, Loss: 57.419514\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 26, Loss: 58.013870\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 27, Loss: 57.094196\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 28, Loss: 56.474255\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 29, Loss: 56.057590\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 30, Loss: 54.991390\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 31, Loss: 53.300110\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 32, Loss: 52.864799\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 33, Loss: 52.182575\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 34, Loss: 52.217705\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 35, Loss: 50.459499\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 36, Loss: 49.459660\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 37, Loss: 47.507614\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 38, Loss: 47.798180\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 39, Loss: 48.587029\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 40, Loss: 44.739605\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 41, Loss: 47.614704\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 42, Loss: 45.857029\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 43, Loss: 44.588509\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 44, Loss: 44.282459\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 45, Loss: 43.351261\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 46, Loss: 44.724346\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 47, Loss: 42.091785\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 48, Loss: 42.968231\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 49, Loss: 42.502659\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 50, Loss: 41.418362\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 51, Loss: 40.565044\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 52, Loss: 39.888397\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 53, Loss: 39.085911\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 54, Loss: 38.028591\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 55, Loss: 38.204926\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 56, Loss: 37.017673\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 57, Loss: 36.428772\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 58, Loss: 36.316826\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 59, Loss: 37.242870\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 60, Loss: 35.663246\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 61, Loss: 35.309780\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 62, Loss: 32.293720\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 63, Loss: 34.869492\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 64, Loss: 33.187428\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 65, Loss: 33.321018\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 66, Loss: 33.140255\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 67, Loss: 32.411884\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 68, Loss: 31.340046\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 69, Loss: 31.967215\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 70, Loss: 31.337906\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 71, Loss: 29.937290\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 72, Loss: 29.653416\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 73, Loss: 30.900717\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 74, Loss: 29.845192\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 75, Loss: 31.015215\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 76, Loss: 28.635920\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 77, Loss: 29.758305\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 78, Loss: 29.416950\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 79, Loss: 29.476860\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 80, Loss: 29.362640\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 81, Loss: 30.230373\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 82, Loss: 29.306267\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 83, Loss: 28.022753\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 84, Loss: 28.661030\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 85, Loss: 28.260965\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 86, Loss: 27.380896\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 87, Loss: 27.065025\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 88, Loss: 26.240191\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 89, Loss: 26.894665\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 90, Loss: 27.133003\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 91, Loss: 26.531120\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 92, Loss: 26.413540\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 93, Loss: 25.528027\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 94, Loss: 26.785194\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 95, Loss: 26.172493\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 96, Loss: 25.323433\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 97, Loss: 26.348892\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 98, Loss: 25.338322\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 99, Loss: 26.281540\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 100, Loss: 25.097370\n" + ] + } + ], + "execution_count": 24 }, { "cell_type": "markdown", @@ -1034,18 +1027,18 @@ }, { "cell_type": "code", - "execution_count": 15, "metadata": { "ExecuteTime": { - "end_time": "2025-04-10T14:15:28.314787Z", - "start_time": "2025-04-10T14:15:28.311869Z" + "end_time": "2025-10-08T10:07:19.476314Z", + "start_time": "2025-10-08T10:07:19.473036Z" } }, - "outputs": [], "source": [ "# for indx, encoding_dim in enumerate(encoding_dim_list):\n", "# torch.save(measurement_models[indx].state_dict(), f\"Models/measurement_models/sparsity_{min_sparsity}-{max_sparsity}/measurement_model_{encoding_dim}_{min_sparsity}-{max_sparsity}.pt\")" - ] + ], + "outputs": [], + "execution_count": 25 }, { "cell_type": "markdown", @@ -1065,23 +1058,12 @@ }, { "cell_type": "code", - "execution_count": 12, "metadata": { "ExecuteTime": { - "end_time": "2025-04-10T14:58:50.333267Z", - "start_time": "2025-04-10T14:58:50.165450Z" + "end_time": "2025-10-08T10:07:19.876750Z", + "start_time": "2025-10-08T10:07:19.558644Z" } }, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "C:\\Users\\tomli\\AppData\\Local\\Temp\\ipykernel_1808\\3241679832.py:18: RuntimeWarning: divide by zero encountered in scalar divide\n", - " IRR_ratio = (np.abs(r)**2)/(np.abs(1-r)**2)\n" - ] - } - ], "source": [ "sparsity_ranges = [(3, 5), (5, 7), (7, 9), (10, 30)]\n", "measurement_sizes = [5, 10, 20, 30, 40, 50]\n", @@ -1143,18 +1125,27 @@ " measurement_pretrained_models[(i, encoding_dim)].load_state_dict(torch.load(f\"Models/measurement_models/sparsity_{min_spars}-{max_spars}/measurement_model_{encoding_dim}_{min_spars}-{max_spars}.pt\", weights_only=True))\n", "\n", "\n" - ] + ], + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/tmp/ipykernel_14740/3281787765.py:18: RuntimeWarning: divide by zero encountered in scalar divide\n", + " IRR_ratio = (np.abs(r)**2)/(np.abs(1-r)**2)\n" + ] + } + ], + "execution_count": 26 }, { "cell_type": "code", - "execution_count": 13, "metadata": { "ExecuteTime": { - "end_time": "2025-04-10T14:58:59.761756Z", - "start_time": "2025-04-10T14:58:50.677404Z" + "end_time": "2025-10-08T10:07:33.514803Z", + "start_time": "2025-10-08T10:07:19.885746Z" } }, - "outputs": [], "source": [ "\n", "all_noisy_losses = []\n", @@ -1223,29 +1214,18 @@ " measurement_val_losses = np.array(measurement_val_losses)\n", " normalized_measurement_val_losses = measurement_val_losses/signal_variance\n", " all_measurement_losses.append(normalized_measurement_val_losses)\n" - ] + ], + "outputs": [], + "execution_count": 27 }, { "cell_type": "code", - "execution_count": 14, "metadata": { "ExecuteTime": { - "end_time": "2025-04-10T14:59:00.313922Z", - "start_time": "2025-04-10T14:58:59.772626Z" + "end_time": "2025-10-08T10:07:34.355323Z", + "start_time": "2025-10-08T10:07:33.581797Z" } }, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABbsAAAIoCAYAAABAqjbsAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzs3Xd4VMX6B/Dv2ZrdTSe9AElIQpPehECASAtd4aLUgFgoCoZyQe4NICiCtPsTseAF7CAoCojCpUgLUkRAWqiB9ELqbjZb5/fHskuW3SSbsMkm4f08D4/m7JwzcyabM2feM2eGY4wxEEIIIYQQQgghhBBCCCH1GM/RBSCEEEIIIYQQQgghhBBCnhQFuwkhhBBCCCGEEEIIIYTUexTsJoQQQgghhBBCCCGEEFLvUbCbEEIIIYQQQgghhBBCSL1HwW5CCCGEEEIIIYQQQggh9R4FuwkhhBBCCCGEEEIIIYTUexTsJoQQQgghhBBCCCGEEFLvUbCbEEIIIYQQQgghhBBCSL1HwW5CCCGEEEIIIYQQQggh9R4Fu0md17RpUzRt2tTRxaiTOI5D7969n+gYycnJ4DgOcXFxdilTbdBoNHjnnXcQEREBsVgMjuPw008/ObpYhBBS72zduhUcx2Hr1q01lsfvv/8OjuOwZMmSGsujLrJHG+1I9vpuLFmyBBzH4ffff7dLuWrDrVu38MILL8Df3x88Hg/u7u6OLhIhhBBiQnEAigOQilGwm1QLx3HgOA5NmjRBaWmp1TRNmzYFx3HQarW1XLqaERcXZzrvZcuWlZtu5cqVpnTjx4+vxRLWDmOjWPafQCCAr68vhgwZgv3799d4GdatW4fFixfD398fc+fOxeLFi9G8efMaz5cQ8nQzXvPKc+7cOUyePBmhoaGQSCRwdXVF27Zt8c9//hOZmZlVzs/YjiYnJz9BqUl9Yfx+8fl83Lt3r9x0LVu2NKU9ePBgLZawdhiD42X/SSQSREZGYubMmUhPT6/R/PV6PUaOHIm9e/di8ODBSEhIwIIFC2o0T0JIzaLrKwGqHyCmOIABxQFIfSJwdAFI/Xb//n2sX7++RjsBhw4dqrFjV4dAIMDmzZvxr3/9y2rQY/PmzRAIBA0myF8eNzc3zJ49GwBQWlqKixcv4pdffsEvv/yCDRs2YMaMGTWW9+7du+Hs7Iz//e9/EIlENZYPIYTYgjGGBQsWYNWqVRAIBOjXrx9Gjx4NtVqNxMRErFq1Chs3bsR3332HIUOGOLq4pA4z3j9s2bLF6kj4kydP4tq1a0/FfUZ0dLQpKJGbm4sDBw7go48+wvfff4/Tp08jJCSkRvK9c+cOLl++jFdeeQWfffZZjeRBCKl9dH0lT4riAAYUByD1AY3sJtXm4eEBT09PrFixArm5uTWWT1hYGMLCwmrs+FUVGxuL5ORkq0H4o0eP4saNGxg8eLADSla73N3dsWTJEixZsgTvv/8+fv31V2zevBkAsGDBAiiVyhrLOz09HY0aNaIGjhBSJ7zzzjtYtWoVmjZtigsXLmDfvn1YuXIl1q1bh9OnT2Pnzp3QarV4/vnn8ccffzi6uKQO8/X1RYcOHbBlyxbo9XqLzz///HMIhUL069fPAaWrXb179zbdZ2zYsAFXrlxBTEwMcnJysHz58hrL1zhyPCAgoMbyIITUPrq+kidFcQADigOQ+oCC3aTapFIp/v3vf6OoqAhLly6t0r7bt29Hz5494ebmBolEgtatW+O9996zOiWKtTm7VSoV1q1bh/bt28PDwwNSqRTBwcEYOnQo/ve//wEA8vPzIZVKERYWBsaY1XIMGTIEHMfhzz//tLns48ePh5OTE/773/9afPb5559DLBZjwoQJ5e5fUFCABQsWICIiAk5OTvDw8ED//v1N5X6cWq3GsmXLEBYWBrFYjJCQEPzrX/+CSqUqNw+tVouNGzeiW7ducHV1hVQqRfv27bFhwwarN3f2EhcXB5lMBrlcjitXrpi2X79+HXFxcQgODoZYLIavry/Gjh2LpKQkq8fgOA537tzB+vXr8cwzz0AikaB3796mz+7evYt79+6ZXp96/PtRne9XYWEhZs2ahSZNmkAoFJpGfBg/l8vleOuttxAcHAyJRIJ27dqZ5gczzh0WHh4OJycnhIWF4aOPPrLIS61WY8OGDYiNjUWTJk0gFovh4eGBmJgY/PLLL1br1Jh/SUkJ5s2bh8aNG0MsFqNZs2Z4//33y/1unzlzBmPGjEFgYCDEYjH8/f3Rv39/fP/99xZpT58+jVGjRsHPzw8ikQjBwcF47bXXavxVcUIagrt372L58uUQCoXYvXs3WrVqZZHmhRdewLp166DRaPD6668/cZ7G13CzsrIwZcoU+Pr6QiaToXv37jh+/DgAQC6XIz4+3nTNaNWqFXbu3Fnhcffu3Yvu3btDJpPBw8MDo0aNws2bNy3S3bhxAwsWLECnTp3g7e0NsViMJk2a4JVXXsH9+/dtPo8///wTs2bNQtu2beHp6QknJyeEh4cjPj4eeXl5FunLziF95MgR9O7dGy4uLnB1dUVsbKxZu1NWSUkJVq5ciU6dOsHFxQXOzs5o0aIF3nzzTWRlZVmkXbFiBdq1aweZTAZnZ2c8++yz+O6776weuzptdGWmTp2K+/fvW9wXFBUVYceOHRg2bBh8fHzK3f/cuXN4/vnn4ePjY/rdTJs2rdxr+q1btzB69Gh4eHiYvkd79+6tsIypqamYOXMmQkNDIRaL0ahRIwwbNgxnz56t+gnbSCgU4tVXXwVgaLfK+u6779CnTx94eHjAyckJLVq0wPLly63+Hox/P+np6Zg8eTL8/f3B5/NN36/o6GgAwNKlS033GWVHgVblPq7sfPV//PEHBg0aBA8PD9P0RGU/P3fuHAYOHAh3d3e4u7vjhRdeQEpKCgDg5s2b+Mc//gFvb29IJBL06dMHly5dssivqn+bZfO/cOECBg8eDHd3d0ilUvTq1QsnT560+rvQ6XT45JNP0KNHD9O9VrNmzTB16lSLa4aj7kkJseZJr69Vufalp6fjnXfeQY8ePUz32AEBAXjppZfKba927dqFPn36wM/PD2KxGH5+foiKirLoV1S0plV56yRUdO0zqkqfoHfv3uA4ztQPCgsLg5OTEyIjI7Fp0yZTuo8++gitW7eGRCJBUFAQlixZUu7ffnXy12q1eO+99xAeHg6xWIzg4GDMmzfP7PpvvL4DhqB02Wk4qrKeCMUBykdxAIoD1DmMkGoAwAIDA5larWZhYWFMKBSypKQkszRNmjRhAJhGozHbPn/+fAaAeXt7s2nTprG5c+eyli1bMgCsZ8+eTKVSWRynSZMmZtv+8Y9/MACsdevW7M0332T//Oc/2YQJE1hISAibM2eOKd3kyZMZAHbgwAGLc7h//z7j8XisY8eONp3zpEmTGAD2v//9j40dO5aJxWL24MED0+f5+flMIpGwMWPGsCNHjjAAbNy4cWbHyMvLY82bN2cAWJcuXdg///lP9vLLLzMXFxfGcRz76KOPzNLr9Xo2fPhwBoCFhYWx+Ph4NnPmTObv78+GDh3KALDo6GizfdRqNRswYAADwJo3b85ee+01NmvWLNamTRurZbp79y4DwCZNmmRTPRjTP/47MZZXJpMxAOzs2bOMMcZ+/fVXJpFImFAoZCNHjmTz5s1jL730EhOLxczV1ZX9+eefVut58ODBzM3NjY0dO5bNnz+fLVy4kO3atYstXryYubm5MTc3N7Z48WK2ePFitm7dOtP+1fl++fn5sQ4dOrCQkBD2yiuvsLfeeott2bLF9HlAQADr1q0bi4iIYDNmzGCvvPIKc3Z2Zjwejx08eJANHTqUBQYGsqlTp7IZM2YwX19fBoBt27bNLK+MjAzG4/FYVFQUe/nll9mCBQvYpEmTmLu7OwPAPv30U4s6Nebfo0cPFhISwl599VU2ffp0FhAQwACwhIQEi30+++wzxufzmUgkYqNGjWILFy5kL7/8MmvTpo3F92Xz5s2Mz+czmUzGXnrpJTZv3jw2YsQIxuPxmL+/P7t37155XwVCnjoA2OO3Tv/+978ZADZ69OgK99VoNMzf358BYImJiTblZ2xH7969a1GOtm3bsrCwMNauXTs2a9YsNmHCBCYUCplEImF//fUX69SpEwsPD2fTp09nr7zyiqmdOXXqlNmxtmzZwgCwoUOHMoFAwEaPHs0WLlzIBg0axAAwT09Pdv36dbN9VqxYwdzc3NiIESPYG2+8webMmcMGDBjAOI5jPj4+LCUlxSy9sU1cvHix2fbXXnuN+fj4sNGjR7P4+Hg2a9Ys1qNHDwaARUZGsqKiIqtlfeGFF5hAIGBDhw5lc+fOZbGxsQwA8/LyYtnZ2Wb75OXlsbZt25raxDfffJPNnTuXjRgxgslkMnbkyBFT2vz8fNa+fXsGgHXs2JHNnDmTTZ8+nYWFhTEAbNGiRWbHrk4bXRHjvVVBQQGTSqVs1KhRZp9//PHHDAD79ddfze5Jyvrpp5+YUChkIpGIjR07li1YsIA999xzDADz9/dnt2/fNkt/48YN1qhRIwaADRo0iC1cuJCNHj2a8fl80zkY20OjP//8kzVq1IhxHMcGDhzI5syZwyZNmsTc3NyYSCRiv/zyi1n6xYsXMwBmdV0RY/rHvy+MMbZt2zYGgLVq1cq0bcqUKQwACw4OZi+//DKLj49n3bt3ZwBY7969mVqttqjn1q1bs8aNG7NWrVqxmTNnshkzZrBffvmFLV682FS30dHRpvsMY9mreh9n/O7369ePCYVC1rdvXzZnzhw2YcIElpaWZvo8NjaWOTk5sQEDBrA5c+aw/v37MwAsIiKCXblyhXl4eLAePXqw+Ph4NmrUKMZxHPP29mbFxcVm+VX3b3Pw4MFMIpGYyjd69GjG4/GYWCxmV69eNdtHpVKZvlPBwcFs2rRpbP78+ewf//gH8/T0NPu+VPWelJCaYo/ra1Wvfd999x2TSCQsNjaWTZ8+3XSPLRAImFQqZX/99ZdZ+o0bNzIAzM/Pj73yyium+/fOnTuzTp06maW11j82Ku+aW9G1j7Gq9wmio6MZAPb888+zwMBA9sorr7Dp06czHx8fBoBt3bqVzZw5k3l6erKJEyeyWbNmsdDQUAaAvf/++xblrm7+o0ePZn5+fmzy5Mls1qxZLDw8nAFgEydONKX966+/TPXSpEkT07W97PW9IhQHME9PcQCKA9QHFOwm1WK8YWCMsR07djAAbOTIkWZprAW7T5w4YbpAZmVlmbZrNBpTZ3X58uUWxyl7QS0oKGAcx7GOHTsyrVZrUbbc3FzT/587d87UMX6cMUDx2Wef2XTOZRu5w4cPMwDsP//5j+nzDz/80PR5eY3cK6+8wgCwadOmmW2/fv06c3FxYUKhkN25c8e0/ZtvvmEAWLdu3ZhSqTRtf/Dggelm4fGLlrEhnzVrlln9aLVaU4dw165dpu32bOS2bt3KADCZTMZKSkpYXl4ec3d3Z15eXuzatWtmaS9fvsxkMhlr166d2XZjPQcEBJjVRVnl3eBV9/sFgMXExDC5XG41LwBsyJAhrLS01LT92LFjDABzc3NjnTp1Yvn5+WZ1JBQKLc6ttLTUoqPJmOHmp0WLFszDw4OVlJRYzX/QoEFmn2VlZTE3Nzfm6upq1pG/cuUKEwgEzMPDg12+fNkir/v375v+PykpiQmFQhYeHs7S09PN0h06dIjxeDw2fPhwi2MQ8rSyFuzu06ePzW3JSy+9xACwlStX2pRfRcFuAOy1115jOp3OtP3LL780XZeGDBli1m6cPHmSAWAjRowwO5YxgAyA7dmzx+yz9evXMwCsb9++ZttTU1PNrodG+/btYzwej7322mtm28sLdicnJ1ttxz/55BMGgK1YscJqWfl8Pjt48KDZZwsWLLDagTbW+euvv25WV4wxVlRUZHbtNrY/q1evNkunVCpNAcPz58+btlenja5I2XuriRMnMpFIxHJyckyfd+zYkTVu3JjpdDqrwZji4mLm6enJ+Hw+O3nypNmx33vvPQaAPffcc2bb+/XrxwCw9evXm23/6aefTN+LssFLjUbDwsLCmJOTEzt+/LjZPmlpaSwgIID5+vqa1Ye9gt0ajcYUZJ08eTJj7NF3YtSoUWZ5lj1O2Y4wY4/+fiZMmGAxIIOx8r+vjFX9Ps54LADsk08+KTcvAOzrr782+8x4z+bm5mZx7/Luu+9a/b1V92/TGJgqy/h3+Prrr5ttX7hwIQMMD8gez6u0tNTsgVNV70kJqSlPen2tzrUvKyvL4qEtY4aguVQqZQMGDDDb3r59eyYSicz6MEZly8pY9YPd5V37qtMnMAabH+8H3b59mwmFQubm5saaNm3KUlNTTZ8VFBQwLy8v5uXlZVaGJ8m/Q4cOZoFnuVzOwsLCGI/HszhWVdtlI4oDmKenOADFAeoDCnaTail7w8AYY88++ywDYNb4Wwt2v/zyywwA27Rpk8Uxr1+/zng8HgsJCTHb/vgFraioiAFg3bt3Z3q9vtKydu7cmQmFQpaZmWnaptVqWUBAAHNxcbF6YbOmbCOn1+tZs2bNWJs2bUyft2vXjoWEhDC9Xm+1kVOpVEwikTBnZ2eWl5dncfy3336bAWBLly41bTN26g4fPmyR3tjBK9vI6XQ61qhRI+bv7281gJCfn884jjMbzVDdRq7sE9UFCxaw2NhYxnGcWeNvDJQ8/qTaaPbs2QyA2cXYWM+Pd07LKq+Rq+73C4DF6IrHP398NBxjjIWEhDAA7NChQxaf9enTh/H5fKu/B2tWr17NALCjR49azf/WrVsW+0ycOJEBYH///bdp28yZMxkAtnbt2krzNNb/4yNRjIxPdgsLC206B0IaOmvB7hYtWjDAMBqsMsYRJ2+88YZN+VUU7JZKpRadaK1WywQCQYXXrKZNm5ptM7Yljwe0jcczjmpOTk62qcytW7e2uM5WFDy0Rq/XM1dXV9anTx+rZR0/frzFPnfu3GGA+cPtrKws0+gUhUJRYZ65ubmMz+ezzp07W/38woULDACbO3euaVtV2+jKlL23Mnak1qxZwxgzjEorW4fWgjFfffWV1Q42Y4bRXsbvk/F3mZKSwgCwkJAQq22VMZBQNthtDILPmzfP6jkY2/29e/eatlU32F12ZPXMmTNZREQEAwwj+I3f73bt2jGhUGjW0TTSarWsUaNGFiMiAZQbUGKs/O9rde7jjMdq27ZthXn17NnT4rOjR48yAKxp06YWv5979+4xACwuLs7qca2p6G8zKirKIr1arWYCgcDsDUitVsvc3NyYRCJhaWlpFeZXnXtSQmrKk15fq3Ptq8iQIUOYWCw2C1R16NCBSaVSq9eXx1U32F3eta86fQJjG1FePwgA++9//2vxmfHN67L3FU+S/+MPvxljLCEhgQGWD/HtEeymOADFARijOEB9IAAhdrBmzRp0794dc+bMwR9//GF1dWIA+OuvvwAAffr0sfgsMjISQUFBuHv3LgoKCuDu7m71GC4uLhg6dCj27NmD9u3b44UXXkBUVBS6du0KqVRqkX769OmYPHkyNm/ejIULFwIA9uzZg/T0dEybNg0ymazK58txHKZMmYK3337bNEfbhQsXsGzZsnLPPSkpCUqlElFRUfDw8LD4/LnnnsN7772H8+fPm7adP38ePB4PUVFRFul79+5tse3GjRt48OABwsPDsWzZMqvlkEgkuH79ui2nWaHCwkLTXO18Ph+enp4YOHAgZs6cidjYWADAqVOnABjqxtp8aDdu3ABgmMvr8Xluu3btWuUyVff7JRaL0bZt23KP6+7ujtDQUIvtAQEBuHv3Ljp27Gj1M51Oh8zMTAQGBpq2X7lyBR988AGOHTuGjIwMi/nD0tLSrOZvbZHW4OBgAIb56Y2Mi98NGjSo3PMxMv5+fv/9d5w5c8bi8+zsbOj1ety8edPqORJCYJovr7xrf1nGNNbmDayqiIgIuLi4mG3j8/nw9fWFQqEo95r1+FzHRsZ5ih8/XlRUFG7fvo2//voLTZo0AWA452+++QZbt27FxYsXkZ+fD51OZ9rP1kWDNBoNPv30U2zbtg1Xr15FYWGh2XyS1q6HANCpUyeLbdauh2fPnoVer0evXr2s3h+UdfbsWdM5WGuvNBoNAJi1n1Vto6uiZ8+eiIyMxH//+1/Ex8dj06ZN4PF4mDJlSrn7VNQGCoVCREdH48svvzT9Lo3po6KiwOfzrZ7D0aNHzbYZ243k5GSr9WScr/n69etPvEjX0aNHTfkb55F8/fXX8fbbbyM4OBglJSW4ePEivLy8sH79eqvHEIvFVu95mjZtWuG8vNZU5z7OqLJ7mvLuIwCgXbt2Fr8f42epqalm26v7t2ntb0ooFMLX19fsb+r69esoLCxE165dK13AszbvSQmpiupcX6t77fvll1/wySef4Ny5c8jNzYVWqzXbLzc3F/7+/gCAcePGYc6cOWjVqhVefPFF9OrVCz169IC3t/eTnrJJede+J+kTVHT9quiz1NRU033Fk+Rv6z2BvVAcgOIAAMUB6gMKdhO7ePbZZzFq1Cjs3LkT33//PcaMGWM1XWFhIQDAz8/P6uf+/v64f/8+CgsLyw12A4aFB1auXIlvv/0WCQkJAAAnJyf84x//wOrVq81uCsaMGYM5c+bg888/x4IFC8BxHD799FMAeKKFwuLi4pCQkIDPP/8cgOFCP3ny5HLT23LuZdMZ/9/T0xNCodAivbXjPHjwAIDhhquiRUPlcnm5n9mqSZMmSE5OrjCNsTxlFymxtTzl1VNFqvv98vX1rTBQ5ebmZnW7QCAo93PjZ8YACWBogPr27QutVouYmBgMGzYMrq6u4PF4uHDhAn7++WerC45Uln/ZjmxBQQEAmDWs5TH+fj744IMK09nj+0JIQ+Xv74/r16+bFpKriDEwZY+Oa0XXhYo+e7yjbeTr62t1u/F6WrZtio+Px/r16+Hv748BAwYgMDAQEokEgGERqHv37tl0DmPGjMGuXbsQGhqK4cOHmxbkAoD169eXuwBTRdfcJ70enj17tsJFFsteD6vaRlfVyy+/jPnz5+Pw4cP49ttv0a9fPzRu3Ljc9FW9zzD+t7LffVnGetqxY0eFZbdHu7F48eIKFw7Lz88HYww5OTlVXii9pu4xyqarSn4VfadtvccAqv+3WdE140n/pmrjnpSQqqrq9bU6177/+7//w6xZs+Dh4WE6vlQqBcdx+Omnn3Dx4kWzdi4+Ph5eXl7YuHEj/vOf/2DdunXgOA59+vTBBx98gA4dOjzhWZd/LXqSPoE9rl81lX/Z65c9URyA4gAUB6j7KNhN7Ob999/Hzz//jIULF2LkyJFW0xj/WDMzM60+ocrIyDBLVx6JRIIlS5ZgyZIlSElJwbFjx7B161Z8+eWXSE5ONhuJJJFIEBcXh7Vr1+J///sfIiIicODAAXTr1g1t2rSp7unC398fgwYNwrZt2wDA1KkoT9lzt8baubu5uSEvLw8ajcaiobN2HOO+I0eOxI8//liFs6kZxvJcvHixynVtyyjJ8vKr6verOnlVx/Lly6FUKnHkyBGLJ/IrVqzAzz///MR5GBvvtLQ0NG/evMK0xnooLCyEq6vrE+dNyNMoKioKR44cwcGDBzF16tRy0+l0Ohw5cgSA9ZFOjpaVlWV1u7GtMV4vsrOz8X//939o3bo1EhMTLUaXf/fddzbld+7cOezatQsxMTH49ddfzdo4vV6PVatWVec0zJS9HlbGeH5vvfUW1q5da9Pxq9pGV9WkSZOwaNEiTJo0CQUFBXj55ZcrLU9FeT/eBhr/W9nv3loeP//8M4YNG2bDWdQcY1nat29vdTR1RZ70HsOaiu5ha+M+w15/mxWpzt9UXbknJaSs6l5fbb32abVaLF68GH5+fjh//rwpmGlkHFX5uIkTJ2LixIkoKChAYmIidu3ahc2bN6N///64du2a6WE5j8eDWq22egxjwMua8q5Fju4TODr/qqI4QOUoDmCO4gC1j+foApCGIywsDNOnT8fdu3fx4YcfWk3Tvn17AIbXJR5369YtpKamIiQkpMJR3Y8LDg7GuHHjsH//foSHh+PYsWPIy8szSzNt2jTTiO5NmzZBr9fjtddeszmP8kydOhVFRUUoKiqqMMgBGF6fkUqluHDhgtVXqoxBkLJP7Tt06AC9Xo8TJ05YpLdWh82bN4e7uzv++OMPi9E+jtCtWzcAwPHjx2slv5r4ftnTrVu34OnpafXVs8dfFa8uY53v37/f5rS19fshpCGaPHky+Hw+fvzxR1y9erXcdJs3b0Z6errpVc+6xto1SKfTmdof4/X1zp070Ov16N+/v0UwLTU1FXfu3LEpv1u3bgEAhg8fbtGJO3PmDJRKZZXP4XFdunQBj8fD8ePHUVJSYnNaW1W1ja4qHx8fDBkyBKmpqfDy8sLw4cMrTF9RG6jVak3lNN5nGNOfOHHC6ug3a8epS+2Gs7MzWrVqhStXrljc99WE6tzH1SZ7/W1WxHifeenSJVPgoLK0deWelJCyqnp9req1Lzc3FwUFBejevbtFoFsul1f6gM7d3R2xsbHYtGkT4uLi8ODBA7O8PTw8kJWVZfVv69y5czaVsSxHX9trK38ej2e30d4UB6gYxQEsy0BxgNpFwW5iVwkJCXB3d8e7775r9ZUH41xoy5cvR05Ojmm7TqfD3LlzodfrK32ynpOTY3XOUYVCgeLiYvD5fNNrHUbNmjVDv379sHv3bnz22Wdwd3cvd6qVqhg8eDB++ukn7Nq1C0OHDq0wrUgkwrhx4yCXy01Trxjdvn0b//d//wehUIgJEyaYthtfh1q0aJHZnE55eXlYvny5RR4CgQBvvPEGMjIy8Oabb1oNFmRkZFQYkLGnyZMnw93dHUuXLrU6F5Rer7dLQMDIHt+vmtS0aVPk5eXh0qVLZtv/+9//2tQo2WLatGkQCAR45513rM7JVnZ+z5kzZ0IoFOKtt94yzZtWllqtbtANICH2EBISgrfffhsajQZDhw61en396aefMGvWLADAypUrK50/2hEOHz6MvXv3mm3bsGEDbt++jT59+pjm1WzatCkAywCpXC7HK6+8Uu40KY8zHufxNiA7OxszZsyo3kk8xtvbGy+++CLS09Pxz3/+0zS/upFcLje99urj44Nx48bh3LlzWLZsmdXzuH37Nu7evWv6uaptdHWsWbMGu3btwi+//FLpXOgjRoyAp6cnvvvuO9O8jUbr16/HnTt38Nxzz5le1Q8KCkK/fv1w9+5dbNiwwSz9zz//bLXzNXz4cISFheGjjz7Cvn37rJbj1KlTlT5csJf4+Hio1WpMmTLF6mjG/Pz8Ko/6Lk917uNqk73+NivC5/Mxffp0KJVKTJ8+3WJkqVqtNt1/1bV7UkIeV5Xra1WvfT4+PpBKpTh37pxZn1ij0WDWrFnIzc212P+3336z+neanZ0NwDBlp1HXrl2h1WqxZcsWs7Rbt27FyZMnKzwXaxzdJ6it/Bs1amTTtHO2oDhAxSgOYI7iALWPpjEhduXp6Ym3334b8+fPt/p59+7dMX/+fKxatQqtW7fGqFGjIJPJ8Ouvv+Ly5cuIiorCvHnzKswjLS0N3bp1Q4sWLdChQwcEBwejqKgIe/fuRWZmJmbOnGn1VYxp06bhwIEDyM3NxZtvvmmaw/BJ8Pn8SkcClPX+++/j+PHj2LBhA86ePYs+ffogNzcX33//PYqLi7FhwwaEhISY0r/00kvYvn07du/ejdatW2P48OHQaDTYuXMnOnfujNu3b1vk8e9//xsXL17EJ598gj179qBv374IDAxEdnY2bt68iZMnT+Ldd99Fy5Ytn/j8K9OoUSPs3LkTI0eORLdu3RATE4NWrVqBx+Ph/v37OHXqFB48eGCXxdoA+3y/atLs2bOxf/9+REVF4R//+Afc3Nxw7tw5nDhxwjTn/ZNq2bIlNm7ciNdffx3t2rXDsGHDEB4ejtzcXJw9exZubm6m0QPNmzfH5s2bMWXKFLRq1QoDBw5EREQENBoN7t+/j+PHj8Pb25sWjyKkEkuWLIFCocDatWvRtm1bDBgwAK1atYJGo0FiYqLpAe38+fMrHf3jKMOGDcPIkSMxcuRINGvWDBcvXsS+ffvg6emJjRs3mtL5+fnhxRdfxLZt29CuXTv0798fhYWF+N///gcnJye0a9cOFy5cqDS/zp07o0ePHvjxxx/RvXt3REVFISsrC7/++isiIyMrXfzOVhs2bMDly5exYcMGHDp0CP3794dIJMLdu3exf/9+7N692zTKZsOGDbh58yYSEhLw1VdfISoqCr6+vkhPT8e1a9dw9uxZfPfdd6Z2ujptdFWFhISY3RdUxNnZGZs3b8bo0aMRHR2N0aNHo3Hjxvjzzz9x4MAB+Pn5mdYsMfroo4/w7LPPYvbs2Thw4ADatm2LW7dumTrve/bsMUsvFArx448/YsCAARg8eDC6d++Odu3aQSqVIiUlBWfPnsWdO3eQkZFRKw91pkyZgj///BMbN25EWFgYBgwYgMaNGyMvLw93797FsWPHMHnyZHzyySd2ya+q93G1yV5/m5VZvHgxTp8+jZ9++gkREREYPHgwXFxckJKSggMHDuCDDz5AXFwcgLp1T0rI46pyfa3qtY/H4+HNN9/E+++/j2eeeQbDhw+HWq3GkSNHkJeXhz59+pjux41efPFFODk5ISoqCk2bNgVjDMePH8fZs2fRoUMHPPfcc6a0b775JrZs2YJp06bh0KFDCA4OxsWLF5GYmIghQ4ZYPLyujKP7BLWVf0xMDLZt24bhw4ejffv2EAgE6NWrF3r16lXlY1EcoGIUBzBHcQAHYIRUAwAWGBho9bPS0lLWtGlTBoABYBqNxiLNd999x3r06MGcnZ2ZWCxmLVu2ZMuXL2dKpdIibZMmTViTJk1MP+fn57OlS5eyPn36sICAACYSiZifnx+Ljo5m3377LdPr9VbLpdVqmZeXFwPArly5UuVznjRpEgPA/ve//1Wa9siRIwwAGzdunMVn+fn5bP78+axZs2ZMJBIxNzc39txzz7H9+/dbPZZKpWJLly5lISEhTCQSsSZNmrC3336blZaWMgAsOjraYh+9Xs++/PJL1rdvX+bh4cGEQiELCAhgPXr0YO+++y67f/++Ke3du3cZADZp0iSb6sGYvuzvxJZ9ZsyYwZo1a8bEYjFzcXFhkZGRbPz48WzXrl1maY31fPfu3XKP9/h34nFP8v2qyufR0dGsvMtoeeexZ88e1rVrV+bs7Mzc3NxYv3792NGjR9mWLVsYALZlyxab81+8eDEDwI4cOWLxWWJiInv++eeZt7c3EwqFzN/fnw0YMIDt2LHDIu2lS5fYpEmTWOPGjZlIJGIeHh6sVatW7NVXX2WHDh2ymjchTyNju1aeP/74g02cOJE1adKEicViU3p/f3+b2o7HNWnSxOp1pLxrv3Gfqlyzyl579u7dy7p168akUilzc3Njzz//PEtKSrI4jkKhYG+//TYLCwtjYrGYBQUFsenTp7Pc3FyreRjbxMWLF5ttf/DgAZs2bZqpvkJDQ9nChQuZQqGweh7lXScrqxe5XM6WL1/OnnnmGSaRSJizszNr0aIFmzVrFsvKyjJLq1Kp2IcffsieffZZ5urqykQiEQsODmZ9+/Zl69atY7m5uRbpq9pGl6eie6vHVXRPcubMGTZixAjm5eXFhEIhCw4OZq+//jpLS0uzeqybN2+yF154gbm5uTGpVMq6devG9u7dW2F9Z2VlsX/+85+sVatWTCKRMJlMxpo1a8ZeeOEF9tVXX5nd+1XUVlljTP/496Uie/bsYYMHDza1eb6+vqxz585s0aJF7Nq1a2ZpK/u9lPd9NarKfVxlx6ro88ruz6ydh73+No3Ku55oNBr24Ycfss6dOzOZTMakUilr1qwZe+WVV9jNmzfN0lblnpSQmmKv62tVrn0ajYatWbOGtWjRgjk5OTFfX182fvx4lpycbLWf8PHHH7MRI0awkJAQJpFImIeHB2vXrh1buXIlKyoqsijLyZMnWa9evZhEImEuLi4sNjaWXbx4sdxrri1tUlX6BNXpBzFWcZtgr/zLa7+ysrLYSy+9xHx8fBiPx7O5raE4gHl6igNQHKA+4Bh77J1OQhqo27dvIzw8HFFRUTh27Jiji0MIIaSBKy4uRlRUFK5evYodO3ZgxIgRji4SIYQQQgghhDRoNGc3eWp88MEHYIxh5syZji4KIYSQp4CLiwv27t0Lb29vjBkzBr/99puji0QIIYQQQgghDRqN7CYN2r179/DVV1/h5s2b+Oqrr9CuXTucO3cOPB495yGEEFI7Ll68iF27dkEqlWL27NmVLoRFCCGEEEIIIaR6KNhNGrTff/8dffr0gUwmQ8+ePfHxxx+bVqsnhBBCCCGEEEIIIYQ0HBTsJoQQQgghhBBCCCGEEFLv0VwOhBBCCCGEEEIIIYQQQuo9CnYTQgghhBBCCCGEEEIIqfco2E0IIYQQQgghhBBCCCGk3hM4ugCEEEIIqRv279+P3bt3o6CgAEFBQYiLi0OLFi3KTX/16lV88cUXSE1NhYeHB4YNG4b+/fubpVEoFPjuu+9w5swZKBQK+Pj4YMKECejQoUNNnw4hhBBCCCGEkKfMUx3szs/Ph1arrbX8vL29kZOTU2v51TQ6n7qNzqfuakjnAtD5lEcgEMDDw8MOJaodiYmJ2Lp1K6ZOnYrIyEgcPHgQ7733HtatWwcvLy+L9NnZ2VixYgViYmLwxhtvICkpCZ9//jlcXV3RrVs3AIBWq8Xy5cvh6uqK+Ph4NGrUCA8ePICTk1OVy1fbbba9NLS/j+qiejCgejCgejCgejBwdD3Ut/a6rquv7XV1OPq725BQXdoP1aX9UF3ajz3qsirt9VMd7NZqtdBoNLWSF8dxpjwZY7WSZ02i86nb6HzqroZ0LgCdT0Oyd+9e9O3bFzExMQCAuLg4XLx4EQcOHMDYsWMt0h84cABeXl6Ii4sDAAQFBeH27dvYs2ePKdh9+PBhyOVyLFu2DAKB4ZbD29u7WuWrzTbbXp7m71NZVA8GVA8GVA8GVA8GVA8NT31sr6uDvrv2Q3VpP1SX9kN1aT+OqMunOthNCCGEEMONx507dzBixAiz7W3atEFSUpLVfW7evIk2bdqYbWvXrh2OHDkCrVYLgUCAP//8E+Hh4fjvf/+Lc+fOwdXVFT169MCIESPA41lfNkSj0Zh1kjmOg0QiMf1/fWIsb30rt71RPRhQPRhQPRhQPRhQPRBCCCHE3ijYTQghhDzlioqKoNfr4ebmZrbdzc0NBQUFVvcpKCiwml6n06G4uBgeHh7IyspCTk4OoqKisHDhQmRkZOC///0v9Ho9Ro0aZfW4u3btws6dO00/h4SEYOXKldUeEV4X+Pn5OboIdQLVgwHVgwHVgwHVgwHVAyGEEELshYLdhBBCCAFgfWRdRaPtHv/M+FqacTtjDK6urnjttdfA4/EQGhqK/Px87N69u9xg98iRIzFkyBCLPHJycurdHKAcx8HPzw+ZmZlP9euPVA8GVA8GVA8GVA8GdaEeBAJBvX6gSgghhBBzFOwmhBBCnnKurq7g8XgWo7gLCwstRm8bubu7W6QvKioCn8+Hs7OzKY1AIDCbsiQwMBAFBQWmqU4eJxQKIRQKreZZXwNCjLF6W3Z7onowoHowoHowoHowoHoghBBCiL1QsJsQ0iCpVCqoVCpHF8MqpVIJtVrt6GLYzdN8PmKxGGKxuIZLVPMEAgFCQ0Nx6dIldOnSxbT90qVL6Ny5s9V9wsPD8eeff5ptu3jxIkJDQ01B7MjISJw8eRJ6vd4U8M7IyICHh4fVQDchhBBCCCGk7mGMQS6XP1UPJhtaP9eRbK1LjuPg7Oz8xGt5UE+TENLgKBQKcBwHFxeXOrngkVAobFCr1D+t58MYg1KphEKhgEwmq4WS1awhQ4bgww8/RGhoKCIiInDw4EHk5uaiX79+AIBvv/0WeXl5mDlzJgCgf//+2L9/P7744gvExMTgxo0bOHz4MGbNmmU6Zv/+/fHbb79h69atGDhwIDIzM7Fr1y4MGjTIIedICCGEEEIIqTq5XA6xWAyRSOTootSahtbPdSRb61KtVkMul8PFxeWJ8qNgNyGkwdFqteVOvUCIvXAcB6lUisLCQkcXxS66d++O4uJi/PDDD8jPz0dwcDAWLlxomsc0Pz8fubm5pvQ+Pj5YuHAhvvjiC+zfvx8eHh6YPHkyunXrZkrj5eWFf/3rX/jiiy8wb948eHp6YtCgQRgxYkRtnx4hhBBCCCGkmhhjT1WgmziGSCRCaWnpEx+Hgt2EkAanLo7mJg1XQ/q+DRgwAAMGDLD62YwZMyy2tWzZEitXrqzwmBEREXj33XftUj5CCCGEEEIIIaQivMqTEEIIIYQQQgghhBBCCCF1GwW7CSGEEEIIIYQQQgghhNR7FOwmhJA6YNSoUUhISHBoGWbPno0pU6aYfq4LZbKnxMREBAYGVmmO7a5du2LTpk01WCpCCCGEEEIIIfZWF/qz1Me2VBt9bJqzmxBCiFWbNm2CUCh0dDEIIYQQQgghhJB6j/rYtYOC3YQQQqzy8PBwdBEIIYQQQgghhJAGgfrYtYOmMXkSTA9hyR2Iiy9AWHIHYHpHl4gQYgVjDExVWvv/GKtSOXU6HRYtWoQWLVqgVatWWLlypdkxfvjhBwwaNAgRERFo164dZsyYgdzcXNPnBQUFmDlzJp555hmEhYWhR48e2L59u+nzjIwMvP7662jZsiVatWqFyZMnIyUlpdzyPP6KVdeuXfF///d/iI+PR0REBDp37oyvv/7abJ+q5mF87en3339H//79ERYWhtGjRyM3NxeHDx9GdHQ0IiMjMX36dCiVStN+KpUK//73v9GmTRuEhoZixIgRuHDhgtmxDx06hKioKISFhWHUqFFWy3H27Fk8//zzCAsLQ6dOnfDvf/8bCoWi3PISQgghhBBCyNPMYf1r6mNTH9tGNLK7msTyy3DO2Qu+7tG8NDq+G+TeQ6Bybu3AkhFCLKhV0M/8R61ny9vwPSB2sjn9jh078OKLL2LPnj24dOkS5s+fj6CgIIwbNw4AoNFoMG/ePISFhSE3NxdLlizBW2+9ha+++goA8MEHH+DGjRv4+uuv4enpibt376K0tBQAoFQqMXr0aHTt2hU//PADBAIB/vOf/2DcuHE4ePAgRCKRTWX89NNPMW/ePLzxxhv45ZdfsHDhQkRFRaFp06ZPlMeaNWvw7rvvQiKR4LXXXsPrr78OkUiEjz76CAqFAi+//DI2b96MGTNmAADeffdd7Nu3D+vXr0dQUBA2btyIcePG4cSJE/Dw8EBaWhpeeeUVjB8/HhMnTsSlS5fwzjvvmOV57do1jBs3DvPmzcPq1avx4MED/Otf/8LChQuxZs0am39vhBBCCCHEfoQlt+CSswfF3kOhkTZzdHEIIY9zUP8aeHr62N26dUOzZs2oj11NFOyuBrH8Mlwzv7HYztMVwjXzGxT5jaOANyGkygICArB06VJwHIdmzZrh+vXr2LRpk6khfvHFF01pmzRpgmXLlmHw4MFQKBSQyWRIS0tD69at0bZtWwBAcHCwKf3PP/8MHo+H1atXg+M4AMDatWvRokULnDp1CtHR0TaVsW/fvoiLiwMAzJgxA5s2bcLJkyfRtGnTJ8pj/vz56Ny5MwDgpZdewooVK5CYmIgmTZoAAAYPHozExETMmDEDJSUl+PLLL7Fu3Tr07dsXgOEmpFu3bti2bRumTZuGL7/8Eo0bN7aoz48++siU58cff4wRI0bglVdeAQCEhoZi2bJleOGFF/Duu+/Cycn2myhCCCGEEGIHjMH5wW8QaLLh/OA35EtmAA/vKwkhpKqepI/t7u7usD52YmIimjVrRn3saqJgd1UxPZxz9gIAHm9yOQAMgHPuXqhkLQGOZokhpE4QiQ1PgB2Qb1V06NDB1IABQMeOHfHpp59Cp9OBz+fj8uXLWLNmDa5cuYKCggLo9Yapk9LS0hAREYGJEyfilVdewd9//43o6GgMGDDA1LhdunQJycnJiIiIMMtTpVIhOTnZ5oa4ZcuWpv/nOA7e3t6m17yeJI+yx/X29oZEIjE1wsZtxleokpOTodFoTOcGAEKhEO3atcPNmzcBALdu3bJan2X9/fffSE5Oxq5du0zbGGPQ6/VISUlBeHh4pfVB6gfGGKBW1X7GHAd9qbJar1w2KFQPBlQPBlQPBlQPBk9aDyKxWVtP6j9RyU0IVWkAAKEqDaKSm1DLIirZixBSqxzVv36Yd1U8SR/b3d3dYX3sBw8ePHEeT3Mfm4LdVSRUJptNXfI4DgBfWwihMhkaaWjtFYwQUi6O46r0qlNdVFJSgpdeegnR0dH48MMP0ahRI6SlpWHs2LFQq9UADE+Ez5w5g4MHD+LEiRN48cUXMWnSJCQkJECv16NNmzb48MMPLY7dqFEjm8shEJg3GxzHmW4IniSPx4/7+ArVZfMxdoYf79wyxkzbbOkw6/V6jB8/HlOmTLEoi6+vb6X7k3rEga9apjkk17qH6sGA6sGA6sGA6sHgSeqhqq+zkzqOMbhk//joR3CQ5R2AWhpOo7sJqUMaQv8aoD52Q+5jU7C7ini6IrumI4QQo/Pnz1v8HBISAj6fj1u3biEvLw8LFy5EYGAgAODixYsWx2jUqBHGjBmDMWPGoEuXLli+fDkSEhLwzDPPYM+ePfDy8oKLi0uNlL828gCAkJAQiEQinDlzBiNHjgRgmGvt4sWLptelwsPDsX//frP9Hq/fZ555BklJSQgJCTHbLhQKodFoaqz8hBBCCCHEkqjkptnAMg6MRncTQp4I9bFt09D62BTsriI939Wu6QghxCg9PR1LlizB+PHjcfnyZWzevNm0UnNgYCBEIhG2bNmCCRMmICkpCevXrzfb/4MPPkCbNm0QEREBtVqNgwcPml4Tev755/Hxxx9j8uTJmDdvHvz9/ZGWloZff/0Vr7/+OgICAp64/LWRBwBIpVJMmDABy5cvh7u7OwIDA7Fx40aUlpaa5lybOHEiPvvsM1N9/v333/j+e/NX7aZPn46hQ4fi7bffxtixYyGVSnHr1i2cOHHCYqENUs856FVLjuPg5+eHzMzMp3qaAqoHA6oHA6oHA6oHgyeuhyq+zk7qMMYgyzsABg4cHn0XGADZg/00upsQUi3Ux7ZNQ+tjU7C7ijSSptDx3cDTFVrM2Q0YGmO9wA0aSdNaLhkhpL4bNWoUSktLMWTIEPD5fEyZMgXjx48HYHiavG7dOrz//vvYvHkzWrdujX//+9+YPHmyaX+hUIgVK1YgJSUFTk5O6Nq1KzZu3AgAkEgk+PHHH/Huu+9i6tSpUCgU8PPzQ1RUlN2eENdGHkZvv/02GGN48803oVAo0KZNG3zzzTdwd3cHYLhxMTbEX375Jdq1a4cFCxYgPj7edIyWLVvihx9+wMqVK/H888+DMYYmTZqYnmSThsNRr1pyHAeekwSc2Al4yoNZVA9UD0ZUDwZUDwZUD8So7FzdZXEAhOp0iEquQy1rUfsFI4TUa9THtl1D6mNz7CkeSpCTk1OtYfRi+WW4Zn4DwHyRSmNFFvmNg8q5tdk+HMfB398fGRkZDWL0Bp1P3fa0n09RURFcXevu2xUNbZqMp/18yvu+CYVCeHt727NoT7XqttmO1NCuxdVF9WBA9WBA9WBA9WBQF+qB2mv7qlZ7zRg8Uj+CQJVuNqq7LD1PgtymiwAe3w6lfHJ14bvbUFBd2k9N1mVd72PXhIbWz3WkqtSlPfrXvCqVjgAAVM6tUeQ3Dnq+m9l2xomtBroJIYQQQgghhBBijQ48bWG5gW4A4OmVcMn5id4AIIQQUimaxqSaVM6toZK1hFCZDLH8EqRFp6ETelKgmxBCCCGEEEIIsRUnQH7QDPB0CqsfC5W34PzgN0iKz0EvcIai0YBaLiAhhJD6hILdT4LjQSMNhVbkA0nRGQjVGeBpi6AXPF2vdhBCCCGEEEIIIdWlF7pDL3S3+pnWKRCMJ4Frzi7I8n+HnieF0qNn7RaQEEJIvUHTmNgBEzhDKw4EAIhKbji4NIQQQgghhBBCSMNR6tYFck/DiG6XB/vgVHTOwSUihBBSV1Gw205UskgAgEiR5OCSEEIIIYQQQgghDUuJRzRK3A0jul2yf4RIfsXBJSKEEFIXUbDbTtTSh8HukpsA0zm4NIQQQgghhBBCSAPCcZA3GgSlS0dwYHDL2gZhyW1Hl4oQQkgdQ8FuO9GKA6HnO4PHVBAq7zm6OIQQQgghhBBCSMPCcSj2GQmVrCU4poVbxlcQlKY5ulSEEELqEAp22wvHg0oaAQAQldBUJoQQQgghhBBCiN1xfBT6vgi1JBQ8poJ7+hbw1dmOLhUhhJA6goLddmScykRcct3BJSGEEEIIIYQQQhoonhCF/hOgEQeCp1fAPX0zeJoCR5eKEEJIHUDBbjtSS8PBwINAnQ2eJt/RxSGEPAGdnuHvLAWOJRfh7ywFdHrm6CLVusTERAQGBqKwsNDRRSGEEEIIIcQM4zmhICAOWqE3+NpCuKdvBqeTO7pYhBBSLupj1w4KdtsR40ugcWoMABDTVCaE1Fun7hfjlZ9v418HU7DmZDr+dTAFr/x8G6fuFzu6aLWqU6dO+Ouvv+Dq6goA2L59O1q0aPHEx83Ly8O4cePQoUMHhISEoFOnTli0aBGKiyuuX+ONweP/bt269cRlIoQQQggh9Q/jO6MgYAp0AjcINDlwT98KTq9ydLEIIeW4kKHAjD13cCFD4eiiOAT1sWuHwNEFaGjUskiISpMhUiRB6dbN0cUhhFTRqfvFeP+45SI3D0q0eP94Ghb0DMSzjV0cUDL702g0EAqF5X4uEong4+Nj93x5PB769++P+fPno1GjRrh79y4WLVqEgoICfPTRR5Xuf+zYMbi4PPodNGrUyO5lJIQQQggh9YNe6I6CgCnwSP0MQlUa3DK+RIF/HMAr/z6XEFL7GGP46kIOUovU+OpCDtr6ScFxnKOLZVfUx64baGS3nakeztstUt4G9BoHl4YQAhga1VKtvtJ/JWodPjuXVeGxNp3LQolaZ9PxGLN96pO9e/ciJiYGYWFhaNWqFcaMGYOSkhIAwOzZszFlyhSsXbsWbdq0QWRkJObPnw+1Wm3a/8iRIxgxYgRatGiBVq1aYeLEiUhOTjZ9npKSgsDAQOzevRujRo1CaGgofvzxR6SmpmLSpElo2bIlmjVrhj59+uDQoUMAzF+xSkxMRHx8PIqKikxPe9esWYN169YhOjra4nwGDhyIDz74wOq5uru7Y9KkSWjbti2CgoLQs2dPTJo0CadPn7aprry8vODj42P6x+fzba1mQgghhBDSAOlEPigIiIOeE0GkvAO3rG0A0zm6WIQ0SLb2rx//dzpVjlt5pQCAW3mlOJ0qr/IxarOPffjwYYf1sWNiYizOh/rYtqOR3XamE/lBx3cFX1cEkfIu1LIIRxeJkKeeSscwZvsNuxzrgVKLl3bctCnt9jERcBJU/qQ6KysLM2bMwKJFizBo0CDI5XKcPn3arCE/ceIExGIxduzYgZSUFMTHx8PT0xMLFiwAAJSUlODVV19F8+bNUVJSgtWrV2Pq1Kk4cOAAeLxHzzXfe+89JCQkYO3atRCJRJg/fz40Gg1++OEHSKVS3LhxAzKZzKKMnTp1wtKlS7F69WocO3YMACCTyVBYWIi1a9fiwoULaNeuHQDg6tWruHz5Mj799FOb6ikzMxO//vornn32WZvSDxgwACqVCuHh4Zg1axZ69Ohh036EEEIIIaTh0joFodB/ItwztkKsuAqX7F0o9nkBaGAjRwlxNHv1r1ccs3yjujK12cdWKBTUx66nKNhtbxwHtSwSkqKzEJUkUbCbEFKp7OxsaLVaxMbGIigoCAAs5u0SCoVYu3YtJBIJIiMjMXfuXCxfvhzz588Hj8fD4MGDzdKvWbMGbdq0wY0bN9C8eXPT9qlTpyI2Ntb0c3p6OmJjY035NWnSxGoZRSIRXFxcwHGc2WtXMpkMffr0wfbt200N8fbt29GtW7dyj2U0ffp07N+/H6WlpejXr1+5T6mNfHx8sGrVKrRp0wYqlQo//PADxowZg507d6JbN5o2ihBCCCHkaaeRhqHQ90W4ZX4DSfGf0POlUDQaRAFvQp4y9uhjDx06FBrNoxkbarOP3bt3b+pjPwEKdtcAlfRRsBsY6ujiEPLUE/M5bB9T+YOnK9kleOdIaqXpEvoEoZWP1KZ8bdGyZUtERUUhJiYG0dHRiI6OxuDBg+Hu7m6WRiKRmH7u2LEjFAoF0tPTERQUhOTkZHzwwQc4f/488vLyoNfrAQBpaWlmDXHbtm3N8p4yZQoWLlyIo0ePomfPnoiNjUXLli1tKrfR+PHjMXv2bCxevBh8Ph+7du1CQkJCpfstWbIE8fHxuH37Nt5//30sXboUK1asAACEh4eb0j3//PNYuXIlmjVrhmbNmpm2d+rUCenp6fjkk0/qdUNMCCGEEELsR+3cCsU+z8M1+wfICo6D8aUo8ejt6GIR0mDY2r82Yoxh0f/u426BCvoys5DwOCDEXYx3+zW2ee7u2uxj3717FytWrHBIH3vs2LGYM2cO9bGriYLdNUAjbQYGPgSaB+Crc6ETeTm6SIQ81TiOs+lVp3Z+MjSSCvCgRFtuGi+pAO38ZODz7Dc6hM/nY9u2bTh37hyOHj2KLVu2YOXKldi7dy8aN25c4b7Gm4K4uDgEBARg1apV8PPzg16vR9++fc2eRAMwa8wBQyMaHR2NQ4cO4dixY9iwYQMSEhIwZcoUm8s/YMAAiEQi/PbbbxCJRFCr1RYjza0xzgfWrFkzeHh4YOTIkZg9ezZ8fX1x4MABU7qyC2U8rkOHDvjxxx9tLishhBBiTY5CgyJV+fP7uor58JbRYneE1Belrp3A6ZRwebAPzg/2Q8+TotSti6OLRUiDYGv/2uh8uhy381UW2/UMuJ2vwrUcJToEONuziHbpY0+YMAH+/v4O6WP369eP+thPgILdNYDxxNBImkKkvA1RSRKUFOwmpF7g8zi80tEX7x8vf+6wqR197RroNuI4Dp07d0bnzp3x1ltvoUuXLvj111/x2muvATDM0aVUKk0N6fnz5yGTyeDv74+8vDzcvHkTK1euRNeuXQEAZ86csTnvwMBATJw4ERMnTsSKFSvw7bffWm2IRSIRdDrLQIBAIMDo0aOxfft2iEQiDBs2zKLBr4xx7jTjgiAhISE27Xf58uUaWc2aEELI0yNHocG03Xeg0Ze/6JWQx+HjYaEU8CakHlF69ARPXwJZ/u9wyfkJjC+ByvkZRxeLkKcKYwzfXMwFB8BaK8sB+OZiLtr7y2we3W2rJ+1j37hxA++//z71seshCnbXEJU00hDsViRB6V6/J3Yn5GnybGMXLOgZiE1/ZpmN8PaSCjC1oy+ebVz+E9DqOn/+PE6cOIHo6Gh4eXmZXpMq+5qRRqPB3LlzMWvWLKSmpmLNmjWYPHkyeDwe3N3d4eHhga+//ho+Pj5IS0szvapUmYSEBPTt2xehoaEoLCzEyZMnzV5jKisoKAgKhQLHjx9Hq1atIJFITA3uSy+9hN69ewMAfvrppwrzPHToEHJzc9G2bVvIZDLcuHED7777Ljp37ozg4OBy99u0aROCg4MREREBjUaDH3/8Efv27cOmTZtsOldCCCHEmiKVrsJANwBo9AxFKh0FuwmpZxSe/cHTlUBSdAaumdtREOAEjTS88h0JIXah1TPklmisBroBQwA8t0QDrZ5BaOMUJbawRx/b09OT+tj1FAW7a4haFgk82AeR8g6gVwN8saOLRAix0bONXdAlyBlXc0qQr9TBQ8JHS29pjYzoBgyvEJ0+fRqff/455HI5AgMDTQ2kUVRUFEJCQvD8889DrVZj+PDhiI+PBwDweDxs3LgRCQkJiImJQWhoKJYtW4ZRo0ZVmrder8eiRYuQkZEBZ2dn9O7dG0uWLLGatnPnzpgwYQKmTZuG/Px8xMfHY86cOQCA0NBQdOrUCfn5+ejQoUOFeTo5OeGbb77BkiVLoFar4e/vj9jYWMyYMaPC/TQaDZYtW4bMzEw4OTkhIiICX375JWJiYio9T0IIIYQQ8hTiOBR7DwenV8JJ/jfcMr5GQeDL0DpVPI0BIcQ+hHweVg9sWuFUYW5OfAj5PLvma48+9qeffoq3336b+tj1EMeM49odaP/+/di9ezcKCgoQFBSEuLg4i1VSjT766CMcPXrUYntQUBDWrl1bpXxzcnIs5tqxG8bQ6N5q8LV5KPCfCI1zS/j7+yMjIwN1oMqfGMdxdD512NN+PkVFRXB1da2FklWPUCis0rVn9uzZKCoqwubNm2uwVNUnFAqhVqvRq1cvjB8/3vRaWH1V1d9Ped83oVAIb29vexbtqVajbXYNaWjX4uqiejCgejCoi/VwO68U8b8mV5pu7aCmCPN0skuedbEeHKEu1AO11/ZVZ9trpoVb+pcQK29Cz5MgP/A16MS+1T5cXfjuNhRUl/ZTk3VZ1/vYVWVLH7uq/UJ7Y4w9lX1se/SvHT6yOzExEVu3bsXUqVMRGRmJgwcP4r333sO6devg5WU51/XkyZMxbtw40886nQ7z5s2re6uEchxUskhIC09BrLgOjXPVVl4lhJD6IicnB9u2bUNmZibGjBnj6OIQQgghNlFp9biQqcD/bhXalH7tyTS09XdGCy8JWvhI4CWlKU0IqTc4AYr8x8E97b8QqlLgnr4Z+UGvQy/0cHTJCCHEQm5uLnbu3El97GpyeLB779696Nu3r2mIfFxcHC5evIgDBw5g7NixFumlUimkUqnp5zNnzkChUKBPnz61VmZbqaWGYLeoJAmgJ5SEkAaqVatW8PT0xKpVq+Du7u7o4hBCCCHlKlLpcC5NjtOpxfgrXQGVzvZ79NQiDVKL8vFLUj4AwFsqQAtvKZp7S9DCW4Im7uIam/KMEPLkGE+MgoA4eKR9BoE6C+7p/0V+4GtgAvuvyUMIIU+ibdu21Md+Ag4Ndmu1Wty5cwcjRoww296mTRskJSXZdIzDhw/jmWeeqXAou0ajMRsuz3GcacJ3e6/2apavNAyME4CvLYRAkw0goEbzq03G86DzqZvofBqW9evXO7oIFcrOzq6br6vWoqf1u0kIIfVBllyNM6ly/JEqx9XsEpRdi9JHJkCklwTH7xVXepwJbb2QV6rD9ZwS3M1XIadEi5x7RTh2rwgA4CTgIdLLCS28JWjhLUWElxOkQn5NnRYhpBoYX4qCgCnwSP0EAs0DuKdvQUHgq2B8+0xRRAipH+p6HzstLc3RRajXHBrsLioqgl6vh5ubm9l2Nzc3FBQUVLp/fn4+Lly4gDfffLPCdLt27cLOnTtNP4eEhGDlypW1MjebLr8VWN5FNOKlAWgHPz+/Gs+zNtH51G1P6/kolUoIhXX71eK6Xr6qeprPRyQSwd/fvwZLQwghpCoYY7ibr8Lp1GKcTpXjbr7K7PMQDzG6Bjmja5ALQjzEuJOvsinY3T7A2TRnt1Kjx40HSlzLMfxLylFCqdXjYmYJLmaWAHgAHgc0cRebgt8tvCXwljWs9pKQ+kgvcDUEvNM+hVCdAbeML1AQMBngiRxdNEIIIXbg8GlMAOsj4mwZJff7779DJpOhS5cuFaYbOXIkhgwZYnHsnJwcaLXaKpa2apz4TeGCi1BlnoMkeDAyMzMbxKILHMfBz8+PzqeOetrPR61W1+mRxo5e6MLenvbzUavVyMjIsNguEAhowStCCKklOj3DlewSnE6V40xqMbIVj+7xeRzQ0keKbkHO6BLkDF9n84CWq5gPIY+DRl/+PYaQx8FV/GiUtkTIQ1s/Gdr6yUz53y9U4VqOEtcfBsCzFRrczVfhbr4K+24UAAAaSQVo7iVBSx8penIyuOgZaOYTQmqfTuSFgoDJcE/7DKLSZLhlfotC/wkAR29jEEJIfefQYLerqyt4PJ7FKO7CwkKL0d6PY4zhyJEj6NmzJwSCik9DKBSWO0qvpgOBKmkEXAAIlMlg2hIwxhpE8NGIzqduo/MhpHbQ95IQQmpfqVaPv9IVOJ1ajHNpchSr9abPRHwOHQJk6Brkgk4BMrg6ld9f8JYJ8fGwUBSpdOWmcRXzKxyVzedxCPFwQoiHE2IjDAvePSjRmALf13KUuJNfigclWpy8X4yT94ux6VwWnAQcIhpJTPN+R3pJIBNRsI2Q2qAVB6DQfxLc0zdDXJIE1+ydKPIZDXA8RxeNEELIE3BosFsgECA0NBSXLl0yG5196dIldO7cucJ9r169iszMTPTt27emi/lE9EJPaIXeEGhywPKvAAhydJEIIYQQQgiplwpKtTiXJscfKXJczFRAXWaBSVcxH50DndE12Bnt/GQQC2wPWHnLhHafYqSRVIgeTYTo0cQVgCE4fyP34cjvXCVuPFBBrtLiUlYJLmWVAAA4PJr6xBgA95EJaW0IQmqIRhKCQr9xcMv4Ck7FF6DnSSH3GgLQ3xwhhNRbDp/GZMiQIfjwww8RGhqKiIgIHDx4ELm5uejXrx8A4Ntvv0VeXh5mzpxptt/hw4cRHh6Oxo0bO6LYVaKWRUJQkAOWdxFwpWA3IYQQQgghtsooVhvm306R41qOEmXfpfFzFhrm3w52QXMvCfh1eE4QJwEPbfxkaOMnA8dx8PXzw+lrybiWU2Ka/iRTrkFygQrJBSr8erMAAOApEZgC3y28JQjxcIKgDp8nIfWNWtYcRb6j4Jb1PaSFidDzpSjxjHF0sQghhFSTw4Pd3bt3R3FxMX744Qfk5+cjODgYCxcuNM1zmp+fj9zcXLN9SkpKcPr0acTFxTmgxFWnkkZCWnACLP8S4DIIhjEbhBBCCCGEkMcxxnArrxSnU+Q4kyrHvULzBSbDPJ3Q7WGAu7GbqN6OeuZxHJp6OKGJuxgDww1Tn+Qptbj+MPh9LUeJO3mlyFNqkXi/GIn3DYtoivkcwr0kaOH1cOoTbwmcaeoTQp6IyqU9inVKuOTugXPeQTCeBEr37o4uFiGEkGpweLAbAAYMGIABAwZY/WzGjBkW26RSKb7++uuaLpbdaCRNoedE4KkLIVBlQCMOcHSRCCGVYHqGB7laqJQMYgmHRl4CcE/ZKKrExESMHj0aV69erXQdBUIIIeRJaHSGBSb/SCnGmTQ5HpQ8WmCSzwGtfaXoGuSCLkHOdp9upC7xlAjQvbErujc2TH2i0upx80Hpo9HfuUoo1HpczirB5TJTnzR2E6N5malP/Jxp6hNCqkrp3h08XQlk+YfgkrsHer4UKpd2ji4WIaQBoT527agTwe4GjxNAI20GseIqRCXXKdhNSB2XkarG5fNKlCofvSjtJOHQuoME/kEiB5asdnXq1Al//fUXXF0NHe7t27djyZIluHbt2hMfOzAw0GLbihUrMHHixHL3mT17Nnbs2GGxPSIiAkeOHHniMhFCCKldJRodzqcrcDpVjj/T5FBoHi0w6STgoWOADF2CnNEpwBnO4qdz5LJYwENrXyla+0oBAHrGkFqkfrjwpSEAnlGswb1CFe4VqrD/VgEAwMOJ/zDwLUVzbwlCPZwg5FPwm5DKKDxjwOlLIC08BdesHSjkOUEta+7oYhHSYORkanD5LyVat5fA26/hPrwuD/WxawcFu2uJWtbcEOxWJEHhUbcX1STkaZaRqsa5kyUW20uVDOdOlqBTDzSYgLdGo4FQWP4Nhkgkgo+PT43lv3btWvTp08f0s4uLS4Xp33nnHbz99tumn7VaLfr164chQ4bUWBkJIYTYV75Si1MX03DgciouZpZAq3/0YNndiY8uQc7oGuSCNn5SiPi2LzD5tOBxHBq7idHYTYz+zdwBAAVKLa4ZF77MKcHtvFLkl+pwKkWOUylyAICIzyG8kRNaeEsNU594SeDylD5AIHXf/fv3cfToUURHR9f+Gl0cB7nXEPB0SjjJL8At81sUBEyBRtK0dstBSAPEGMO1S6WQF+lx7VIpvHwFDe4tJOpj1w0U7K4lalkkAEBQmgJOpwDjyxxcIkKeHowx6HS2pbt8XllhmsvnlTY3ynw+bG689+7di3Xr1iE5ORlOTk5o3bo1tmzZAqlUitmzZ6OoqAitW7fG1q1boVKpMHz4cCxfvhwikSHwfuTIEfznP/9BUlISeDweOnbsiHfeeQdNmzYFAKSkpKBbt274+OOP8eWXX+L8+fNYsWIFevTogUWLFuHs2bNQq9UIDg7Gv/71L8TExJi9YnXlyhXEx8cDePTEOD4+HjweD7/88gsOHjxodj4DBw5ETEwM5s2bV+45u7m5Vamhd3V1NT0BB4DffvsNhYWFGDNmjM3HIIQQUvtSi1Q4nSLH6dRi3MgtNVtgMsBFhG7BhgB3hJcTeA2s01sb3CUCPBvsgmeDDR1alVaPW3mlDxe9LMH1HCWK1XpcyVbiSvaj+5xgNxGaexkXvpTC34WmPiGOxxhDYmIi8vPzkZiYiODg4Nr/XnI8FPmOAqdXQlySBLeML1AQ+Cq0Yv/aLQchdZSt/evH5WRqUJhv2LEwX4fMNE2VR3fXZh/78OHDWLNmjUP62Hv37sWhQ4fMzof62LajYHct0QvcAFljcIr7EJXcgMqlvaOLRMhTQ6cDfv2h0C7HKlUy/PZjkU1pB73gBoENV9msrCzMmDEDixYtwqBBgyCXy3H69Gkw9igccOLECYjFYuzYsQMpKSmIj4+Hp6cnFixYAMCwcO+rr76K5s2bo6SkBKtXr8bUqVNx4MAB8HiPRsa99957SEhIwNq1ayESiTB//nxoNBr88MMPkEqluHHjBmQyy4dxnTp1wtKlS7F69WocO3YMACCTyVBYWIi1a9fiwoULaNeuHQDg6tWruHz5Mj799NMKz3vRokWYO3cuGjdujBdffBHjx483K2tlvvvuO/Ts2RNBQUE270MIIaTm6RnDzQel+COlGKdT5UgrUpt93trfFR18xega5IwgN7GDStlwiQU8tPKRopWPFEAj6BlDepHatOjltRwl0ovVSCk0/PvfbcM9kpsT3yz4HeYphpBG15Nadv/+fWRnZwMAsrOzcf/+fTRp0qT2C8LxUeg3Fu7pWyAqTYZb+mYUBL0OnbBR7ZeFkDrGXv1ra29UV6Y2+9gKhYL62PUUBbtrEefZBkxxH2JFEgW7CSEm2dnZ0Gq1iI2NNTUqLVq0MEsjFAqxdu1aSCQSREZGYu7cuVi+fDnmz58PHo+HwYMHm6Vfs2YN2rRpgxs3bqB580fzDE6dOhWxsbGmn9PT0xEbG2vKr7zOhEgkgouLCziOM3tSLJPJ0KdPH2zfvt3UEG/fvh3dunWrsGMyb948REVFwcnJCSdOnMA777yDvLw8zJ49u/IKg+Hm5ciRI9iwYYNN6QkhhNQsjU6PS5klOJ0qx5nUYuSXPhryJeABbXxl6BrsjC5BLmgd1hgZGRlmHU5Sc3gchyA3MYLcxOj3cOqTwlLtw2lPDP9u5ZWisFSH06lynE41TH0i5BmmPjEuetncWwpXmvqE1CDGGH7//XfTzxzH4dSpU2jcuLFj3jrgiVDoPxHuaZsgVGfAPe2/yA96HXqBa+X7EkIcyh597KFDh0Kj0ZjS12Yfu3fv3tTHfgIU7K5FPM+20KXshajkBsD0AEcjJQipDXy+4QlwZR7kaHHmmKLSdF16ydDIu/LLJ9/G/mDLli0RFRWFmJgYREdHIzo6GoMHD4a7u7tZGolEYvq5Y8eOUCgUSE9PR1BQEJKTk/HBBx/g/PnzyMvLg15vWOQrLS3NrCFu27atWd5TpkzBwoULcfToUfTs2ROxsbFo2bKlbQV/aPz48Zg9ezYWL14MPp+PXbt2ISEhocJ9yja4rVu3BgCsX7/etD08PNz0+fPPP4+VK1ea7f/999/D1dUVAwcOrFJZCSGE2I9cbVhg8o+UYpxPV0CpfbTApFRoWGCya5ALOgbKIBUaGkWaJqNucHMSoGuwC7o+nPpErdPj9gPD1CfG+b+LVDpczVHias6jqU8CXUUPR35L0NxbgkAXEf1Oid3cv38fhYWPRosyxhw7uhsA40tQGDAZ7mmfQKDJg3v6ZuQHvgoIaFpS8vSytX9txBjDqSMKFBboYDaXGQe4ufPxbB+ZzW1Jbfax7969ixUrVjikjz127FjMmTOH+tjVRMHu2uQaBj3PCTy9EoLSFGgljmmwCXnacBxn06tOPr4COEk4lCrLH2nmJOHg4ysAx7Nfx47P52Pbtm04d+4cjh49ii1btmDlypXYu3dvpYvyGG8K4uLiEBAQgFWrVsHPzw96vR59+/Y1exINwKwxBwyNaHR0NA4dOoRjx45hw4YNSEhIwJQpU2wu/4ABAyASifDbb79BJBJBrVZbjDSvTMeOHVFcXIycnBx4e3vjwIEDps8eX1SDMYZt27bhhRdeMM2nRgghpHbklmhwJlWO0ynF+DurBLoyTaanRICuQc7oGuyC1j5SCPkUBK0vRHweWvhI0cJHCsDQ1qYXa3Atp+Th3N9KpBapkfbw38GHU5+4ivmGkd8Ppz8Ja+REC4uSamGM4dSpU+A4zuytD4eP7gagF7igIOBleKR+AoE6C+4ZX0Dh0Qfac/8HoccgqCXNHFIuQhzF1v61UXaG1jRXtxlmmLs7P1cHH/+qzd1dGXv0sSdMmAB/f3+H9LH79etHfewnQMHuWsRxfKilEXCSX4K4JImC3YTUMRyPQ+sOkgrnDmvdQWLXQLcpb45D586d0blzZ7z11lvo0qULfv31V7z22msADHN0KZVKU0N6/vx5yGQy+Pv7Iy8vDzdv3sTKlSvRtWtXAMCZM2dszjswMBATJ07ExIkTsWLFCnz77bdWG2KRSASdlZVIBAIBRo8eje3bt0MkEmHYsGEWDX5lLl++DCcnJ9PiGCEhIeWmPXXqFJKTk/HSSy9VKQ9CCCFVxxhDSqEaf6QW43SKHLfySs0+D3YToWuQC7oFOyPMkxaYbCg4jkOgqwiBriI8F+YOAChS6XC9TPD75oNSFKl0OJMqx5mHU58IeByaeTqZjf52c6IuJ6lc2bm6y6oLo7sBQC/0REHAFHikfQZh6X24Zm4DmAoy3X6og8IAuvYRYhVjDNf/Lq0wzfW/S+HtJ7D7A60n7WPfuHED77//PvWx6yG686hlalkknOSXICpJgqJRf0cXhxDyGP8gETr1AC6fV5qN8HaSGALh/kH2f8p5/vx5nDhxAtHR0fDy8jK9JlX2NSONRoO5c+di1qxZSE1NxZo1azB58mTweDy4u7vDw8MDX3/9NXx8fJCWloYVK1bYlHdCQgL69u2L0NBQFBYW4uTJk2jWzProlKCgICgUChw/fhytWrWCRCIxNbgvvfQSevfuDQD46aefKszzwIEDyMnJQceOHeHk5ITExESsXLkS48aNg1hc+UJl3333Hdq3b2/26hghhBD70ekZknKVD+dvLkZG8aMRTByA5t4SwwjuIBcEuNb/0T/ENq5iProEuaBLkGE0mEanx+08Fa7llOB6rmHu78JSHa7nKnE9V4ld1wz7BbgI0dxbagqAB7nS1CfEnHFUd0UcPbobAHRiPxT4T4JH2ibwmAoAIFSlQlRyE2pZhMPKRUhdptcDyhJ9hWlKlXro9bZPUWILe/SxPT09qY9dT1Gwu5appZEAAKEqHTxtES1uQUgd5B8kgl+AEA9ytVApGcQSDo287Dt1SVkuLi44ffo0Pv/8c8jlcgQGBpoaSKOoqCiEhITg+eefh1qtxvDhwxEfHw8A4PF42LhxIxISEhATE4PQ0FAsW7YMo0aNqjRvvV6PRYsWISMjA87OzujduzeWLFliNW3nzp0xYcIETJs2Dfn5+YiPj8ecOXMAAKGhoejUqRPy8/PRoUOHCvMUCoX44osvsHTpUuj1ejRp0gRz585FXFxcpeUtKirCvn378M4771SalhBCiO1UWj0uZipwOlWOs6lyFKoejTIS8ji085caAp2BznCXUBeCAEI+D80fjt4GDAHLTLnm4aKXhhHgKYVqpBdrkF5ciMN3DFOfuIiM+0nR0kcKDy8rr7ZbkaPQoEhVflpXMR/eMvu+Bk9qh06ng1wurzCNXC6HTqeDoCpzJ9QArVNj6ITu4GsegAPAwEGWdwBqaTiN7ibECj6fQ6/+LlCVlh/wFjvxwLfz1Gf26GN/+umnePvtt6mPXQ9x7CleBj0nJ8dirp2awnEc/P39kZGRAff7GyBUpaLI5wWUunaqlfztrez5NISvEJ1P3VbV8ykqKjK9qlMXCYXCKl17Zs+ejaKiImzevLkGS1V9QqEQarUavXr1wvjx402vhdVXVf39lPd9EwqF8Pb2tmfRnmq12WbbS0O7FlcX1YNBXayHYpUO59IMo7fPpyugKjMBt0zEQ+cAZ3QNdkZ7f2dIhPaZh7ku1oMjPC31UKzSIenhqO9rOSW4+aAUap35+Qp4HMIeTn3S/OHc348/UMlRaDBt9x1o9OXXlZDH4eNhoVUOeFN7bV/Vba+Li4uhVCrNtikUCuzbtw86nQ5RUVGVBntqg0hxA+4ZWyy2F/hPptHd1fS0XA9rQ03WZV3vY1eVLX3sqvYL7Y0x9lT2se3Rv6ZhGQ6glkYaXndSJNXbYDchhBjl5ORg27ZtyMzMxJgxYxxdHEIIIRXIlmtwOrUYp1PluJJdgrKxQy+pAF2DXdAtyBktfaQQ1NAbTeTp4SLmo1OgMzoFOgMANDqGO/mluJ6jfDj3dwnySw0B8aTcR4FOP2fhw2lPDNOfqHT6CgPdAKDRMxSpdDS6u55ycXGxWDANALp164aTJ0/i3LlzaNGiRZXnrLUrxiDLOwAGDhwefR8ZQKO7CSF2lZubi507d1Ifu5oo2O0AKlkkZPmHIFLeBJgO4Ow4MREhhNSyVq1awdPTE6tWrYK7u7uji0MIIaQMxhiSC1Q4nWIYwX0nX2X2eVN3MboGO6NbkAtCPMQ0lzKpUUI+h0gvCSK9JBjewrBNL/XAsSv3cDW7BNdzlLhfqEKmXINMuQZH7hYBACQC+l4+rdq1a4ekpCTk5ubixIkT6Nevn8PKIiq5CaEqzWI7B0CoSqO5uwkhdtO2bVvqYz8BCnY7gFYcCD1fBp5OAWHpPWgkoY4uEiGkDlu/fr2ji1Ch7Ozseje9BCGENGQ6PcPVnJKHAW45shWPrtE8DmjpLUHXYBd0DXKGrzMtMEkch+M4BLlL0CfUDb1DDK8sy9U6JD0c+X0tV4kbuUootTS1wdMkJ1ODy38p0bq9BN5+QvTp0wc7duzAtWvX0KJFCwQFBdV+ocoZ1W36GDS6m5D6pK73sdPSLB+sEdtRsNsROB5U0ghIiv+CSJFEwW5CCCGEEPJEVFo9/spQ4HRqMc6mylGsfrQQlIjPob2/DF2DnNE50BmuTtQFIHWXs4iPjoHO6Phw6hOtnuF4ciHWn8p0cMlIbWCM4dqlUsiL9Lh2qRRevgL4+/vjmWeewd9//43Dhw9j7NixDlioUgeettBqoBswjO7mq3MB6EBhFkIIcSy6CjuIWtockuK/IC5JggKDHF0cQgghhBBSzxSWanE2zTB6+0KGwmzhPxcxH50DndEtyBnt/GUQC+yzwCQhtU3A49DY3cnRxSC1JCdTi8J8HQCgMF+HnEwtfPyF6N69O27fvo2CggL8+eef6Nq1a+0WjBMgP2gGeDqF4UeOg5eXF3JzcyEs/hvOBb8DYODplNALLOceJ4QQUnso2O0gamk4GDgI1FngaQqgF7o7ukiEEEIIqedyFBoUqXTlfu4q5tPibfVcRrEaZ1Ll+COlGNdzlWYLTPo6C9E1yDD/dnNvCfi0wCQhpB5hjOHyX48WKgUHXP+7FN5+AojFYvTq1Qu//fYbzp49i4iICHh4eNRq+fRCd1O/neM4cC7+0MrF0Ij8IFYa5vOWPfgVxb7/qNVyEUIIMUfBbgdhfAk0Tk0gKk2GqCQJpW61/GSaEEIIIQ1KjkKDabvvQKMvf25bIY/Dx8NCKeBdjzDGcDtPhdOpxTidKse9AvMFJsM8xegaZJh/u4k7LTBJCKm/cjK1UBQ/moIJzHx0d3h4OK5evYr79+/jyJEjGDlyZN245nE8FHsPh0fqx5AU/4VS187QSEIcXSpCCHlqUbDbgdTSSIhKkyFWULCbEEIIIU+mSKWrMNANABo9Q5FKR8HuOk6rZ7icVYIzDwPcuSVa02c8DmjtK0XXIGd0DXKh3yV5KriK+RDyuEof5rmK+bVYKmJPjDFc/7vUMPl12V9zmdHdHMehT58++Prrr5GamoqkpCQ0b97cUUU2o3UKRqlrZ0iKzsAl52fkBb8BcPR9JIQQR6BgtwOpZZFA3n6IlLcAvQbgUWeFEEIIIeRpVKLRGRaYTJHjXLocijILTDoJOLT3d0a3YGd0DHCGCwX0yFPGWybEx8NCaZqmBqzsXN1mHhvd7ebmhi5duuDUqVM4fvw4mjZtCienujGnu7zRAIjlVyBQZ0FSkAilR09HF4kQQp5KFOx2IK3IDzq+K/i6IohK70ItjXB0kQghD+n1eqSnp0OhUEAmkyEgIAA83tO1uFdiYiJGjx6Nq1evws3NzdHFIYQA0OkZitU6FCi1KCjVoaBUa/in1CGlUFX5AQAcTS5EZrEanlIBGkmE8JAIIOTXgdfAn0L5SsMCk3+kFONiZgm0ZUatujnx0SXQGd2CXdDGTwoR/+lqgwh5nLdMSMHsBso0qrsCZUd3d+jQAUlJScjLy8PJkycRExNTSyWtGONLIfcaCNfsHyDLOwiVSxvoBXQPTQh5hPrYtYOC3Y7EcVDLIiEpOguRIomC3YTUEbdu3cKxY8cgl8tN25ydndGrVy80a9bMgSWrXZ06dcJff/0FV1dXAMD27duxZMkSXLt27YmOu337dsTHx1v97OLFi/Dy8ip3361bt2LLli1ITU1FQEAA3nzzTYwePfqJykMarvqyWKPu4dQihsC1MZBt5f9LtShS6VDJTCWV+vlaPoB8s21uTnw0kgjgKRGgkVT4MBAuQCPpo23OIl7dmBu1nksrUuGP+8X4I1WOG7lKs7f1/V2E6Bbkgq7BzohoRAtMEkKeDno9oCzRV5imVKmHXg/w+QCfz0ffvn2xc+dOXLlyBc2bN0dgYGAtlbZipS4dICk6C2HpfTjn/oIiv7GOLhIhdcr9+/dx9OhRREdHo3Hjxo4uTq2jPnbtoGC3g6mkD4PdJUkAhjq6OIQ89W7duoV9+/ZZbJfL5di3bx9iY2MbTMBbo9FAKCw/0CcSieDj42P3fIcNG4Y+ffqYbXvrrbegUqkqbIS/+OILrFixAqtWrUK7du1w4cIFzJs3D25ubujfv7/dy0nqN0cv1qjTMxSqtCjKKsbNdLkhaF0mcJ1fqkWh8lEAuyrxaw6Ai5gPDycB3CR8uDsJ4O7Eh07P8MuNgkr3b+snhVrH8KBEizylFlo9Q2GpDoWlOtzJL390uIjPwdMUEH8YFDf+v0QAz4eBcSGNQDajZww3H5TidKoc53+9h7sPSsw+D2/khG5BLugS7IxgVxE9UCCEPHX4fA69+rtAVWoe8D6XqIBSwdCkmQjhLZzAL/MWUkBAAFq1aoUrV67gyJEjeOmll8Dn14EpnoyLVaZsgJP8byhLbkEjbRh9B0KeFGMMiYmJyM/PR2JiIoKDgxvcfQ/1sesGCnY7mEYaBgY+BJoH4KtzoROV/yUkhFQPYwxarbbSdHq9HkePHq0wzbFjxxAcHGzTlCYCgcDmxnvv3r1Yt24dkpOT4eTkhNatW2PLli2QSqWYPXs2ioqK0Lp1a2zduhUqlQrDhw/H8uXLIRKJAABHjhzBf/7zHyQlJYHH46Fjx45455130LRpUwBASkoKunXrho8//hhffvklzp8/jxUrVqBHjx5YtGgRzp49C7VajeDgYPzrX/9CTEyM2StWV65cMT0pNo6ciY+PB4/Hwy+//IKDBw+anc/AgQMRExODefPmWZyrRCKBRCIx/fzgwQOcPHkSq1evrrCOfvjhB4wfPx7Dhw8HADRp0gR//vknNm7cWK8bYlIzamKxRkNQWIt8ZZnpQx6OuC58bFtFI8qt4QC4Oj0KXLs7CeAhEcDtsW3uEgHcxHyrI35v55XaFOye1N4HYZ6G+U0ZM9SBMfCdp9TiQYnG9PODEi0eKLUoVumg1jFkyjXIlGsqPL6rmF9mRLghKB6awyBQK+AhMYwgdxHzG1znpiyNTo+/s0pwOlWO06ly5CsftUECHvCMrwxdg5zRJcgZjaSOf7uAEEIcTSLlQSI1v79u/owEf/1RgvT7GrRsI7HYp0ePHrhz5w7y8vJw/vx5dO7cubaKWyGtOABKt2chLUw0LFbZeBbAUeiFNBy29q8fd//+fWRnZwMAsrOzcefOnSqP7q7NPvbhw4exZs0ah/Sx9+7di0OHDpmdD/WxbUdXXAdjPCdoJE0hUt6GqCQJSgp2E2J3Wq0WH3/8sV2OJZfL8emnn9qUdtq0aRU+1TXKysrCjBkzsGjRIgwaNAhyuRynT58GY48CdSdOnIBYLMaOHTuQkpKC+Ph4eHp6YsGCBQCAkpISvPrqq2jevDlKSkqwevVqTJ06FQcOHDALzL/33ntISEjA2rVrIRKJMH/+fGg0Gvzwww+QSqW4ceMGZDKZRRk7deqEpUuXYvXq1Th27BgAQCaTobCwEGvXrsWFCxfQrl07AMDVq1dx+fJlm+tpx44dkEgkGDx4cIXp1Go1xGKx2TaJRIILFy5U+gSdkPJodXrkKDSGgPXDwHW+2XzYhqlECku1KFZX/Ir143gc4CEVwVXEwa1swLpMMNv4/y7lBLBrGscZyubmJEBoBenUOj3yygTATUFxpRZ5DwPieSVa0wOEIpUOd8uOEr+Ua3Y8IY8zTZXyaMoUw/zhZUeK1/Y81U8y9Y1CrcOf6QqcTi3Gn2kKKLWPvi8SAQ+dAp0x8JlghEo1kApp9DshhFQmMFiIG5d5UMj1SL6tQrPm5gtROjk5oWfPnjhw4ADOnDmD8PBwuLu7O6awj1F49oNY/jcEmlxI84+jxLNP5TsRUk/Yq3/9yy+/VHmf2uxjKxQK6mPX0z42BbvrAJU08lGw272Ho4tDCKll2dnZ0Gq1iI2NRVBQEACgRYsWZmmEQiHWrl0LiUSCyMhIzJ07F8uXL8f8+fPB4/EsGrE1a9agTZs2uHHjBpo3b27aPnXqVMTGxpp+Tk9PR2xsrCm/Jk2aWC2jSCSCi4sLOI4ze+1KJpOhT58+2L59u6kh3r59O7p161busR63fft2jBgxwuxJtDXR0dH47rvvMHDgQDzzzDO4dOkStm3bBo1Gg7y8PPj6+tqUHyFlzT9wv0rpeRxMgWsPJwHcTdOIPDYKWyKAq1iAoMAAZGRkmN1Y1xRXMR9CHlfp1C2u4qq/5i3i8+DnIoKfi6jcNIwxFKv1yHs4MrxsIFyh5yM9X468Ei0KH466z5JrkFXJKHEXMd9s7nDjopplR4672mmUeHWmvnlQosGZVDn+SJXjcpYCZeLb8JAI0DXIGV2DnPGMrxQiAR/+/r619n0ghJD6juNxCG8pxoUzSty+rkJIMzH4AvPrfWRkJK5du4aUlBT8/vvvGD58eJ14c4jxnSD3GgS3rO8hyz+CUpd20As9HF0sQp4a9uhjDx06FBrNo3vV2uxj9+7dm/rYT4CC3XWAWhYJPNgHkfIuoFcDvPI7koSQqhMIBJg2bVql6dLS0rB79+5K0w0bNsymRXAEAtsusS1btkRUVBRiYmIQHR2N6OhoDB482GxkSsuWLc0aqo4dO0KhUCA9PR1BQUFITk7GBx98gPPnzyMvLw96vd50TmUb4rZt25rlPWXKFCxcuBBHjx5Fz549ERsbi5YtW9pUbqPx48dj9uzZWLx4Mfh8Pnbt2oWEhASb9j137hxu3LiB//znP2bbw8PDTf///PPPY+XKlZg9ezZycnIwdOhQMMbg7e2Nf/zjH9i4cWPdmKOR1FsCHuAmfhS4NgWzJQLzKUSc+HAW88GzsRNd251tb5kQHw8LddiinBxnCKS7ivlo6mG+3d/f3xTk1ej0hilTHgbCy44ULztyXK1jKFbpUKzSIbmg/LnEBTzOFPj2fGykeNm5xMWCikdT2zr1zY0HSvx+txCnU+W4+aDU7PMgVxG6Bbuga5AzmjVysvm7QgghxLrAJiIkXVFBqdDj3h01QiPMRyByHIfevXvj22+/xf3793Hz5k1EREQ4qLTmVM7toC46B5HyDlxy96LQf4Kji0SIXdjavzZijOGHH35Abm6u2QN/juPg5eWFF154web75trsY9+9excrVqxwSB977NixmDNnDvWxq4mC3XWATugNncADfG0+RMrbUMtaVL4TIcRmHMfZ9PpN48aN4ezsDLlcXm4aZ2dnNG7c2KY5u23F5/Oxbds2nDt3DkePHsWWLVuwcuVK7N27t9I5zIw3BXFxcQgICMCqVavg5+cHvV6Pvn37mj2JBmDxZHfs2LGIjo7GoUOHcOzYMWzYsAEJCQmYMmWKzeUfMGAARCIRfvvtN4hEIqjV6kpflzL67rvv0KpVK7Rp08Zs+4EDB0z/7+LiYir72rVrsXLlSuTk5MDX1xdff/01nJ2d4enpaXN5CSlrWUwwnvGV1olRYPbgLRPWWDDbXoR8HnydRfB1rniUuFytNwuAG0eK5ykfjRwvLNVBq2fIVmiQrahklLiIB0+J0BAMLzun+MOR4sUq2+aeXHU83fT/HIBILwm6Bjuja5ALAl1pwAIhhNgTj8ehWXMx/v5TidvXS9EkTGS2UCUAeHh4oFOnTjh9+jSOHTuGJk2aWLyW7xAch2LvYfC8/38QK65CpLgOtax55fsRUsfZ2r82unfvHnJyciy2M8aQk5ODjIwMm0cs28oefewJEybA39/fIX3sfv36UR/7CVCwuy7gOKhkkZAW/gGRIomC3YQ4CI/HQ69evbBv375y0/Tq1cuugW4jjuPQuXNndO7cGW+99Ra6dOmCX3/9Fa+99hoAwxxdSqXS1JCeP38eMpkM/v7+yMvLw82bN7Fy5Up07doVAHDmzBmb8w4MDMTEiRMxceJErFixAt9++63VhlgkEkGnsxwxKhAIMHr0aGzfvh0ikQjDhg2r9HUpwDAH2p49e7Bw4UKLz0JCQsrdTygUIiAgAACwe/duPPfcczXyO3ka7d+/H7t370ZBQQGCgoIQFxdn8bpfWVevXsUXX3yB1NRUeHh4YNiwYWYLmfz+++/YuHGjxX5ff/21aeEXR5OJGvZCifUVx3FwEfPh8tgo8cdpdAz5Si0eKDVmc4obAuMa08hxtc4wxUqxWoV7heWPErcFnwPa+cvQLdgFnQOd4SGh22lCSN1T1Tb9+PHj2L17NzIyMiCVStGuXTtMmDDBFBBxpOAQEW5eLUWpkiHlrhpNm1kGsjt27IgbN24gPz8fiYmJ6NOnbsyRrRP5osQ9CrKCY3DJ2Y0HkjCAV7cfShNiT4wxnDp1qsI0p06dQuPGje1+T/6kfewbN27g/fffpz52PUR353WEWmoIdotLkiBnDKCONyEO0axZM8TGxuLYsWNmI7ydnZ3Rq1cvNGvWzO55nj9/HidOnEB0dDS8vLxMr0mVfc1Io9Fg7ty5mDVrFlJTU7FmzRpMnjwZPB4P7u7u8PDwwNdffw0fHx+kpaVhxYoVNuWdkJCAvn37IjQ0FIWFhTh58mS55xgUFASFQoHjx4+jVatWZis+v/TSS+jduzcA4KeffrIp7927d0On02HkyJE2pb99+zYuXLiA9u3bo7CwEJ999hmuX7+O9evX27Q/qVhiYiK2bt2KqVOnIjIyEgcPHsR7772HdevWwcvLcvHk7OxsrFixAjExMXjjjTeQlJSEzz//HK6urujWrZspnUQisXiFrq4Eukn9J+Rz8HEWwse5/MABYwwKtd4QADdOl2I2hYphpHhBafnTv5S17LlgtPKxXGSIEELqiqq26devX8eGDRswadIkdOrUCXl5edi0aRM++eQTzJs3zwFnYI7P5xDW3AlX/lLi1nUVGoeKwHtsUWeBQIA+ffrgxx9/xN9//43mzZvD39/fQSU2V+LZF07FF8DX5kOWfxSKRs85ukiE1BqdTlfhm9MAIJfLodPpbJ6ixBb26GN7enpSH7ueomB3HaGWhIJxAvC1BeCrs6ET189J4AlpCJo1a4bQ0FCkp6dDoVBAJpMhICCgxp5suri44PTp0/j8888hl8sRGBhoaiCNoqKiEBISgueffx5qtRrDhw9HfHw8AMOI9I0bNyIhIQExMTEIDQ3FsmXLMGrUqErz1uv1WLRoETIyMuDs7IzevXtjyZIlVtN27twZEyZMwLRp05Cfn4/4+HjMmTMHABAaGopOnTohPz8fHTp0sOm8v/vuOwwaNMhs3rTKyvrpp5/i9u3bEAqF6N69O37++WcEBwfbtD+p2N69e9G3b1/ExMQAMEyNc/HiRRw4cABjx461SH/gwAF4eXkhLi4OgOFG7fbt29izZ49ZsJvjOJt/x/ZUk4s1kvqF4zg4iw3zrTdxL/+19hu5Sszbf6/S4zkJ6DtDCKnbqtqm37hxAz4+PqYF1nx8fPDcc8/ZtJZNbWkSKsKta6VQKvRITVajcajl9TwoKAgtWrTAtWvXcOTIEYwZM6ZOzDnLeGLIvYfALfNbSAuOotS1PXTCRo4uFiG1QiAQYMyYMVAqleWmkUgkdg10A/bpY3/66ad4++23qY9dD1Gwu67giaCWhEJccgPikiSUULCbEIfi8XimVZtrWnh4OL755ptK082dOxdz5861+lmvXr3w+++/m21LS0sz/X9wcLDZz0bLly8vN7/u3btb7PP+++/j/ffft0hrnG9t/PjxFZ2Cmap2oMLDw83mGSP2o9VqcefOHYwYMcJse5s2bZCUlGR1n5s3b1rMA9euXTscOXIEWq3WdMNaWlqK6dOnQ6/Xo2nTphgzZkyFr9BpNBqzefA4jjONbqjKq40+ziJ8MjwMRaXlz8Ps6iSo0fmtjeV92qdJqS/1IODZVj4O1TuX+lIPNY3qwYDqwYDqwf6q06ZHRkZi27ZtOH/+vGl03x9//IH27duXm4+92mtbCYSG0d1XLyhx65oKjUPE4Kxct3v27Im7d+8iNzcXFy9eRMeOHe1eFqDq31218zNQS8MhKrkJ55w9KAqIo7e5H6LrgP3U1bp0cXGp9SmR7NHHjo6Opj62gzzpd5iC3XWIWhoJcckNiEqSUOLRy9HFIYQQm+Tk5GDbtm3IzMzEmDFjHF0cUg1FRUXQ6/Vwc3Mz2+7m5oaCggKr+xQUFFhNr9PpUFxcDA8PDwQEBGD69Olo3LgxlEol9u3bh3//+9/44IMPyn21eNeuXdi5c6fp55CQEKxcuRLe3t5VPq+68fIy4Ofn5+gi1Al1vR4KecUAkitN5+XtDX/f6nfY6no91BaqBwOqBwOqB/upTpseGRmJN998E+vXr4dGo4FOp0OnTp0qXEzNnu21rbwa6XHn+k0o5DooimUIb+5mNd2QIUOwc+dOnD59Gt27d6/RRdaq8t1l7lOh+3MRxCVJ8BWlg+fVqcbKVR/RdcB+aqIulUpllRalrOt4PJ5NC2066pxzcnKwY8cOZGZmYvz48Q2i7m09B5FI9MTTUFGwuw5RyZrDJXcPhMpkcLpSML6To4tECCGVatWqFTw9PbFq1SqHTFdB7MfaE/SKnqo//hljzGx7REQEIiIiTJ9HRkbin//8J3799ddyO9AjR47EkCFDLPLIycmBVlv+KO26iOM4+Pn5ITMz01Q3T6P6Ug9qhcamqW/UxfnI0Fc896Q19aUeahrVgwHVg0FdqAeBQFCjAVpHqUqbnpqaii1btmDUqFFo27Yt8vPz8fXXX2PTpk2YNm2a1X0c1V43DRfi+t86nD2ZAZmrwuo5BQQEIDAwEGlpafj+++8xbNiwGln4rjrfXal7T8jyj0Bz40vkqbwBHq1jUheuAw1FTdalWq02e5ujvtPr9WCMVXhOQqHQYedcto8tk8nqfd1XpS7VajUyMjIstlelvaZgdx2iF3pCK/SGQJMDkfIWVM6tHV0kQkgdUNcXh8jOzq73je/TztXVFTwez2LEV2FhocXIMCN3d3eL9EVFReDz+XB2dra6D4/HQ1hYGDIzM8sti1AoLPepf33tADHG6m3Z7amu14OXVICPh4WiSFX+QpWuYj68pIInOo+6Xg+1herBgOrBgOrBfqrTpu/atQuRkZEYNmwYAKBJkyZwcnJCQkICXnzxRXh4eFjs46j2umkzMW5dL0VxkR7pKWoEBFsPFvfp0wfffvstkpOTcevWrRpZZB6o+ndX4dEbTsV/ga8tgPTBISi8BtZIueojug7YD9Vl5ep6H9va9ChPkyf9/tbMamuk2tRSwwg4kcL6fGqEEEKIvQkEAoSGhuLSpUtm2y9duoTIyEir+4SHh1ukv3jxIkJDQ8tdYIYxhnv37tEbAKTO8pYJEebpVO6/mpzjnRBC7KE6bbpKpbIY+WxcmL2uBcyEIg4h4YbFKW9eVZVbPk9PT3TqZJgm5OjRo1CpVLVWxgrxRCj2HgoAkBacAF+d7eACEUJIw0PB7jpGJWsOABCVJAF17MaCEEJIwzVkyBAcOnQIhw8fRmpqKrZu3Yrc3Fz069cPAPDtt99iw4YNpvT9+/dHbm4uvvjiC6SmpuLw4cM4fPgwhg4dakqzY8cOXLhwAVlZWUhOTsbHH3+M5ORk9O/fv9bPjxBCCHlaVLVN79SpE86cOYMDBw4gKysL169fx5YtW9CsWbMane+6ukIjxOALgKICHbLSy58ypVOnTnBzc4NCocAff/xRiyWsmFrWEippc3DQwSVnN/X7CSHEzmgakzpGI2kKPScCX1cMgToDWnGAo4tECCHkKdC9e3cUFxfjhx9+QH5+PoKDg7Fw4ULTvGj5+fnIzc01pffx8cHChQvxxRdfYP/+/fDw8MDkyZPRrVs3UxqFQoHPPvsMBQUFkEqlCAkJwdKlS2vsVWJCCCGEVL1N7927N5RKJX777Td8+eWXkMlkaNWqFcaPH++oU6iQSMxDSDMxbl1X4ebVUvgGCKzOyS0QCNCnTx/89NNPuHjxIpo3bw5fX18HlNhSsfdQiO7fgkh5G2L5Jahc2jq6SIQQ0mBQsLuu4QTQSJtBrLgKkSKJgt2EEEJqzYABAzBgwACrn82YMcNiW8uWLbFy5cpyjxcXF4e4uDh7FY8QQgghNqpqmz5o0CAMGjSopotlN6GRYty5qUJBng45WVr4+FmfZqpx48aIjIxEUlISDh8+jDFjxpimaHEkvdATCo/ecM47COfcX6CWRYLxnBxdLEIIaRAcf5UnFlRSw1xqohKat5sQQgghhBBCCClL7MRDk7CHc3dfKa1wbvGePXtCLBYjJycHFy9erK0iVqrEvRe0wkbg64ohe3DQ0cUhhJAGg4LddZBxkUph6X1wOoWDS0MIIYQQQgghhNQtzZqLweMBebk6PMjRlZtOKpWiR48eAIA//vgDxcXFtVXEivGEkHsNAwBICk+Br8p0cIEIIaRhoGB3HaQXukMj8gMHBlHJTUcXh5CnE9NDWHIH4uILEJbcAZje0SWqdYmJiQgMDERhYaGji0IIIYQQQp4SFzIUmLHnDi5kVDzwy0nCQ3CICABw82pphWlbtWoFf39/aDQaHD161G5lfVJqWQRKZa3BQQ+XnJ9psUpCGjjqY9cOCnbXUeqHU5mIaSoTQmqdWH4ZjZJXwSN9E9yytsMjfRMaJa+CWH7Z0UWrVZ06dcJff/0FV1dXAMD27dvRokULuxw7ISEBAwcOREhICPr162c1zbVr1/DCCy8gLCwMHTt2xLp16yp8RRUA9u3bh0GDBqFFixZo1qwZ+vXrh507d1qk27p1K7p164bQ0FAMHDgQp0+ftst5EUIIIYSQ6mOM4asLOUgtUuOrCzmV3vs1a+EEjgNys7TIy9WWm47jOPTt2xc8Hg937tzB7du37V30apN7DQbjhBCVJsOp+C9HF4eQGiUsuQXPe+sgLLnl6KI4BPWxawcFu+sotezhvN2KG0/liFJCHEUsvwzXzG/A05k/aeXpCuGa+U2DCnhrNJoKPxeJRPDx8bG6uv2TYozhxRdfxNChQ61+XlxcjJdeegm+vr745ZdfsGzZMnzyySf49NNPKzyuu7s73nzzTezevRsHDx7EmDFjEB8fj99//92U5ueff8aSJUvw5ptvYv/+/ejSpQvGjx+PtLQ0e54iIYQQQgiporNpctzKM4zSvpVXir8qGd0tlfEQ3NS20d2NGjVC+/btAQBHjx6FWq22Q4mfnF7oDoVnDADA+cGv4HRKB5eIkBrCGJwf/AaBJhvOD35rkG8yUB+7bvSxKdhdR2mcGkPPcwJPXwKBKtXRxSGkfmMM0Ksr/6crhXPOHgDA402P8WfnnD2ArtS241Wh8d67dy9iYmIQFhaGVq1aYcyYMSgpKQEAzJ49G1OmTMHatWvRpk0bREZGYv78+WY36EeOHMGIESPQokULtGrVChMnTkRycrLp85SUFAQGBmL37t0YNWoUQkND8eOPPyI1NRWTJk1Cy5Yt0axZM/Tp0weHDh0CYP6KVWJiIuLj41FUVITAwEAEBgZizZo1WLduHaKjoy3OZ+DAgfjggw/KPd9ly5YhLi4OTZo0sfr5jz/+CJVKhXXr1qF58+aIjY3FG2+8gU2bNlX45Ll79+4YNGgQwsPD0bRpU0ydOhUtWrTAmTNnTGk2bdqEF198EWPHjkV4eDjeeecdBAQE4Msvvyz3uIQQQgghpGYxxvDp2SzTzzwO+OZirg2ju8UAB2RnaFGQV/7obgDo0qULXF1dIZfL69SbfSXuPaAV+oCnk0OWd8DRxSGkYrb2rx/7J1Jcg1BlCH4KVWkQKa5V/Ti12Mc+fPiww/rYMTExFudDfWzbCRySK6kcx4daGg4n+d8QK5KgdWrs6BIRUn8xDXzuLH7iw3AA+Loi+NxdalP67NClACeqNF1WVhZmzJiBRYsWYdCgQaab77INzokTJyAWi7Fjxw6kpKQgPj4enp6eWLBgAQCgpKQEr776Kpo3b46SkhKsXr0aU6dOxYEDB8DjPXqu+d577yEhIQFr166FSCTC/PnzodFo8MMPP0AqleLGjRuQyWQWZezUqROWLl2K1atX49ixYwAAmUyGwsJCrF27FhcuXEC7du0AAFevXsXly5crfUJckT///BPdunWDWCw2bevduzdWrFiBlJQUNG5c+TWRMYYTJ07g9u3bWLRoEQBArVbj0qVLmDFjhlna6OhonDt3rtrlJYQQQgghT+avDAVySx4Fq/Xs0ejuDgHO5e4nc+EjsLEQafc0uHlVhc5R5Yc5hEIhevfujd27d+PChQuIjIyEj4+PXc+jWjgBir2HwSP9c0gKT6PUpRO0ToGOLhUh1tmpf+2e+VWV96nNPrZCoaA+9mPqSx+7TgS79+/fj927d6OgoABBQUGIi4urcM4ajUaDnTt34vjx4ygoKECjRo0wcuRI9O3btxZLXfPU0kg4yf+GqCQJikbW59shhNR/2dnZ0Gq1iI2NRVBQEABYXAOFQiHWrl0LiUSCyMhIzJ07F8uXL8f8+fPB4/EwePBgs/Rr1qxBmzZtcOPGDTRv3ty0ferUqYiNjTX9nJ6ejtjYWFN+5T0FFolEcHFxAcdxZh0CmUyGPn36YPv27aaGePv27ejWrVu5x7JFTk4OgoODzbZ5eXkBMNRXRQ1xUVEROnbsCLVaDT6fj/feew+9evUCAOTl5UGn05mOVfbY2dnZ1S4vIYQQQgipPsYYvrmYCx5nCHIbGUd3t/eXVfjaf3hLJ6Td0yAzTYOiAh1c3fnlpm3atCnCw8Nx8+ZNHDlyBKNHjzYLXDmKRhqGUue2cJJfhEvOz8gPeh3gHF8uQuoje/Sxhw4dajYtSW32sXv37k197Cfg8GB3YmIitm7diqlTpyIyMhIHDx7Ee++9h3Xr1llUlNG6detQWFiI119/HX5+figqKoJOp6vlktc8lTQCgOH1Dp62GHqBi4NLREg9xQkNT4ArIVTehUfG1krT5fvHQSMJsSlfW7Rs2RJRUVGIiYlBdHQ0oqOjMXjwYLi7u5ulkUgkpp87duwIhUKB9PR0BAUFITk5GR988AHOnz+PvLw86PWGuf7T0tLMGuK2bdua5T1lyhQsXLgQR48eRc+ePREbG4uWLVvaVG6j8ePHY/bs2Vi8eDH4fD527dqFhISEKh3DFsan8BzHIS0tDb179zZ99sYbb+DNN98EADg7O+PAgQNQKBQ4ceIEli5disaNG6N79+6m9I93lhhjNTJvGiGEEEIIqdxfGQrTXN1l2Tq628WVD/9gITJSNLh5tRQdu1uOoiyrV69euHfvHrKysvD3339b3CM7itwrFiLFdQhVKXAqOodSty6OLhIhlmzsX5swBo+0zyBQZ4DDo6dZDBy0In/kB74K2NoXq8U+9t27d7FixQqH9LHHjh2LOXPmUB+7mhwe7N67dy/69u1rmo8mLi4OFy9exIEDBzB27FiL9BcuXMDVq1exYcMGODsbGrs68dpRDWACF2jEgYa5jEpuoNS1o6OLREj9xHE2veqkkYZDx3cDT1doMWc3ADAAeoEbNNJwu46y4PP52LZtG86dO4ejR49iy5YtWLlyJfbu3Vvpq0TGxiMuLg4BAQFYtWoV/Pz8oNfr0bdvX4sFMso25oChEY2OjsahQ4dw7NgxbNiwAQkJCZgyZYrN5R8wYABEIhF+++03iEQiqNVqi5HmVeXt7Y2cnByzbQ8ePDB95uvriwMHHs1nWPamhcfjISTE8DCidevWuHXrFjZs2IDu3bvD09MTfD7f6rG9vb2fqMyEEEIIIaTqjKO6OQDWZo3lYNvo7oiWTshI0SA9RYOIIh1cXMsf3S2TydC9e3f8/vvvSExMRFhYmCm+4Eh6gSsUjZ6DS+4vcH7wG1TOrcD4FQfuCal1NvavjUSKGxCq0y0PAwahOh2i0ntQyyLsWUK79LEnTJgAf39/h/Sx+/XrR33sJ+DQd2K0Wu3/s3ff4XGU1+LHvzPbd7XqklUs22qWq9x7tzHVYCCEHgJckhD8u4EQQgIk3HCTC4EEuAmQ3FwSQgglvqFDABtsgys27lXNlqzerL69/f5YvEZYtrUqXlk+n+fZ57F25505M5Z2d86cOS9Hjhw56SpIfn4+hYWFXY7Zvn072dnZvPPOO3zve9/j7rvv5qWXXjrtTMoejwe73R56OBwnZjdWFOWsPXqyPbcleLVIby88q7H21/4M5Ifsz8B+hLM/PaaodCQtA07+on38547EZf1yO6GiKEybNo377ruPVatWodPp+PDDD0OvHzx4sNN7186dO7FYLKSmptLU1ERxcTF333038+bNIzc3l9bW1m5vOz09nVtuuYU///nPfO973+PVV1/tcjm9Xt/lXTRarZZvfvObrFy5kpUrV3LFFVec9IEfrilTprB169ZO7+2fffYZKSkpZGRkoNVqyczMDD3i4uJOua5AIBBaj16vJz8/P9QT7bj169czderUHsfbp7+HQgghzjq7zU9Lk/eUD7vNH+kQhRi0vP4AjXZPl4luCH4Pb7R78PpPPzFddKyGIenBer6SgydXiX/duHHjGDJkCB6P56TvhpHkiJmFR5+C6ncQdWxVpMMRoncCASxNqwl0WU4WrO62NK0Oa+LJ7urtOXZRUZGcY5/C2TjH7o2IVna3tbXh9/uJiYnp9HxMTAwtLS1djqmrq6OgoACdTsePf/xj2tra+Mtf/kJHRwd33XVXl2PeeustXn/99dDPmZmZPP744xG5wpCSkhLW8gHLHHxNazA6DmMZkoSiRrwYv5Nw92egk/0Z2Lq7Pw6HA52ue7c3fZ0/bhI2jRZz3dso3hMfZgFtLPYhy/FHj6dna+7sq/Ht2LGDDRs2sHDhQhITE0O3SY0ePRqdToeqqng8Hu6//35++MMfUllZyZNPPsm//du/YTAYSEpKIj4+nldffZW0tDSqqqr41a9+BQSvaOt0OrTa4HuHVqvttO2f/exnLF68mOzs7NCM0CNHjuw0RqfTodPpGDFiBDabjS1btjB27FhMJhNmsxmAW265hTlz5gDBO3bOdPyPHDmCzWajsbERl8tFQUEBAHl5eej1eq699lqefvppfvSjH3H33Xdz5MgRnnnmGX70ox+h15+6iuB3v/sdEyZMYMSIEXg8Hj755BNef/11nnjiiVBM3//+91mxYgWTJ09m6tSp/P3vf6eqqorbbrsttEw4vz96vZ7U1NRuLy+EEGJgsdv8rPugDf9p8tmqCosujcZskf65QvQ1nUbltxePoM11IuETCAR4enMNlW1uLs6J5ZvjE9Bpzvz3N3KMkbqqDqrKPYwc58MSderqblVVWbx4Mf/4xz8oKSmhrKyMESNG9MUu9Y6ioSNpOXFVf8LU9gWO6Kl4jWeeOE6IgcmH6m3t1L7kqxQCqN5WwEdfpih37tzJxo0bWbBgQadz7Nzc3NAyHo+H++67j7vvvjt0jn3bbbehqiqxsbHEx8fz8ssvk5ycTFVVFY899li3tv3www+zePFisrKyaG1tZdOmTeTk5HS57NChQ7HZbGzYsCF0jn08qX3DDTew8Mu2Im+//fYZt1taWorNZqO+vh6n08n+/fsBGDlyJHq9nquuuoqnn36aH/7wh/z7v/87paWlPPPMM9xzzz2nLdZ65plnmDBhAsOHD8fj8bBmzRpef/31TsfjO9/5DnfffTcTJkxgypQpvPzyy1RVVfGtb32rW8esrw2IzGlXB/VUB/p4P5kf/OAHoSSLx+Phqaee4o477ugyCXLVVVexbNmyk9bd0NCA1+s9afn+oCgKKSkp1NbWdpr99YwCRhI0FlSfjWNlW/GYsvovyDD0eH8GKNmfgS3c/XG73SfdWhQOj2kU9uH3o3OUofra8Gui8ZhGBCu6e7He43Q6Xaf4TCYTmzdv5k9/+hMdHR2kp6fz8MMPM3/+fDweD36/n7lz5zJ8+HCuuOIK3G43y5cv55577gmt57nnnuPhhx9mwYIFZGVl8ctf/pJrrrkGn8+Hx+MJvdd5vd5O2/Z4PPz0pz+lpqaGqKgoFi5cyC9+8YtOYzweDx6Ph0mTJvGtb32L73znOzQ3N3Pvvffyox/9CJ1OR0ZGBlOnTqW5uZn8/PwzHv8f/vCHbNmyJfTz8VZWn3/+ORkZGZhMJl577TUeeughLrzwQmJiYvjud7/LHXfccdp1t7e3c//991NbW4vRaCQ7O5vf//73LF++PDTusssuo6Ghgd/+9rfU19eTl5fH3//+d1JSUvB4PCf9/5yJ2+2mpqbmpOe1Wq20RhFCiHOA2+U/baIbwO8PLifJbiH6R5JFR5Klc7HBteMSeGpzDZ9XtnPH1O61Lo2N15KUoqWh1kvJIRcTpplPv92kJCZNmsTOnTtZt24dN998c4+LZvqSxzQCh3UKpvYdX05WuUImqxTnJkVL89AVqD7bKRfxa6NA6dv0pNVqZevWrfz5z3/udI69ePHi0DJz584lMzOTq6++OnSOfe+99wLBi2F/+tOfePDBB1myZEmnc+wz8fv9PPTQQyedY3dl2rRpfOtb3+L73/9+p3NsgKysrNA59uTJk8+43R//+MedzrEvuugi4MQ5dnR0dOgc+9JLLw2dY3/ve9877XrtdjsPPPBAl+fYxy1fvpzm5maefvrpTufYxycHPduUQAQzYV6vl5tvvpl7772X6dNPTLzw17/+lbKyMh555OSG988++yyFhYU888wzoecqKyu59957+d3vfhdWdV1DQ0OvEmLhUBSF1NRUampqwk4+RtetxNi+G1vsAmyJF/dThOHpzf4MRLI/A1u4+9PW1kZ0dPRZiKxnwk2m3nPPPbS1tfHCCy/0Y1Q9p9PpcLvdzJ8/n5tvvvmMH5YDXbj/P6f6fdPpdJLs7kNn8zO7rwy29+KekuMQJMchaCAeh5YmLxs+7jjjcvOWRhEb3zcn4wPxOETCQDgO8nndt/ry89rrD/Ddtw9zzOHl7lmpLM6KOfMgoKnRy6Y1HSgqLO7GHRkej4eXX36Z9vZ2pkyZErpb8XTOxu+u4u0gofxJVL+T9sTLccTOPvOgc9BAeB8YLPrzWA70c+xwdeccO9zzwr4WCATOy3Psvji/juilQa1WS1ZWFnv37u30/N69e8nLy+tyzKhRo2hubsbpPNGDq6amBkVRSEhI6Nd4I8VlDh4Lg73rPuZCCBFJDQ0N/OlPf6K2tpbrrrsu0uEIIYQQQohBQKsqXJYX7Bn7zqGmbifv4hO1JCRrCfjhcMGZe3frdLpQq4Bdu3bR2NjY45j7UkAbhS0hWJlpafoYxdse4YiEEGdLY2OjnGP3QsTvg1m2bBlr1qxh7dq1VFZW8uKLL9LY2MjSpUsBePXVV3n22WdDy8+dOxer1cof/vAHKisrOXjwIC+//DKLFi06bR/Xc5nbPJIAClp3LaqnJdLhCCFEJ2PHjuW5557jiSee6DRjsxBCCDFQBQIB2lp8HNrrYNuGU99aLYSIrItyYjFoFMpaXOyrs3d73MgxBgDKj7hxOs48wWxmZibZ2dn4/X7Wrl07YCqMHdHT8RjSUf1Ooo59eOYBQohBYcKECXKO3QsR79k9e/Zs2tvbeeONN2hubiYjI4MHHnggVJre3Nzc6cqq0WjkZz/7GS+88AI//elPsVqtzJo1i+uvvz5Su9DvAhozHuMw9M6j6O1FOGOmn3mQEGLQ+O///u9Ih3Ba9fX151x7CSGEEOenjnYf1eUeqsrddLSdOQEmhIisKIOGxVkxfFjcwrsFTeSnWLo1LiFZS1yihuZGH4cLXIydZDrjmPnz51NeXk5tbS379+9n/PjxvQ2/9xSV9qTlxFX+EVP7LpzR0/CYMiMdlRDnvIF+jl1VVRXpEM5pEU92Q7Bp+vHG6V+3YsWKk55LT0/n5z//eX+HNaC4zXnonUcx2Ask2S2EEEIIIUQ32W1+qivcVB310NbiCz2vqpCcqiMuXsOhfWdudeByDoxKTyHON5ePiuej4ha+qLJR1eYmPfrMd3QrisLIMUa2rrdRdthFzmgDBuPpb2w/Xki3fv16Nm/eTFZWFhZL95Lr/clrzMAZPQ1T2zasDe/QlPHvoGgiHZYQQgxYEW9jIrrHbQn27dbbSyDgjXA0QgghhBBCDFxOh5/SIhcbP2lnzfttHNrjpK3Fh6JAUoqWidPNXLg8hmlzLSSmdK/+Z/c2W6dkuRDi7EiP1jM1PQqA9wqauj0uKUVLTJwGvw+OFLm6NSY/P5/k5GRcLhcbNmzoUbz9oSPhQvyqGa27DlPL5kiHI4QQA5oku88RXn0qPo0VJeBB5yiNdDhCDHh+v9yaLPqf/J4JIcTA4Xb5OXrYxZZPO/j4vTb273LQfCyYnE5I1jJ+iomly6OZuSCKjEw9Or0CgN6gonbjrMjtgk1r22msl9ZdQpxtV4wKTlS59kgr7a7uXXRSFIWRY40AlBa7cLvO/L1NVVUWL16MoigUFRVx9OjRngfdhwIaCx2JFwNgafoE1dsa4YjE+Wig9LIXg1df/Y4NiDYmohsUBbclD1Pbdgy2Qjzm3EhHJMSAZTabaW9vx2q1onbn7FWIHvD7/bS3tw+I21uFEOJ85fUEqK3yUF3hpr7WS+AruazYeA3pw3SkDdNjNJ36+4DZorLo0ujTJsIUBfbtdNDc6GPrZzYmzjCTPuzMrRSEEH1j/BAzmXEGSptdrCpp4ZqxCd0aNyRNS3SMSlurn9JiF3njzty7Ozk5mQkTJrB7927WrVvHzTffjFYb+dSJ0zoFU9t2dM5yoho/oC3lhkiHJM4jBoMBh8OB2WyOdChiELPb7RgMhl6vJ/Lv2KLb3OZgsltvLwSWRTocIQYsrVaLxWKho6Mj0qF0Sa/X43a7Ix1Gnzmf98disQyIkx8hhDif+LwB6mo8VJd7qKvx4P9KkWd0rEraMD3pGTrMUd3vaWu2qJgtp79APmtBFDu32qmt9LBzix2n3U9WngFFUXq6K0KIblIUhStGxfO7LTX8q7CZ5aPi0WnO/LenKAq5Y43s2GyntMhNVp4Rne7M42bOnElxcTFtbW188cUXzJo1qy92o3eOT1ZZ8SzGjr047NPwmHMiHZU4TxgMBmw2G62trefN595gO8+NpO4cy0AggFarlWT3+cZtziGAitbTiMbdiE+fGOmQhBiwtFot0dHRkQ7jJIqikJqaSk1NzaC4DUz2RwghxNng9wdoqPVSXe6mtsqD9ytT2FiiVNKH60jL0GON6b9J2zRahamzzBzY7aC02M3BPU4cdj9jJ5pQ1PPjxF+ISJo3PJqXdtXT5PCyqbyNhZkx3RqXOlRHVLRKR5ufsmIXuWOMZxyj1+tZuHAh//rXv9ixYwcjR44kIaF71eT9yWtIwxEzE3PrFqwN79I07AegSFpHnB3n0x2tcl7YdyJxLOX+/nNIQDXiMY0AQG8vimwwQgghhBBC9KOAP0BjnYc9X9hZ/U4b2zbYqDwaTHSbzArZowzMvzCKRZdayRtn6tdE93GKqjB2kokxE473AXazY4sdn09OhIXobzqNwqUjg7273y1o6nbSRFEUckcH/2YPF7rwers3Lisri8zMTPx+P+vWrRswCS9b/IX4NFFoPQ2YmzdGOhwhhBhwJNl9jnGZ8wC+bGUihBBCCCHE4BEIBGhq9LJ/p52P32tjy6c2yo+48bgDGIwKmbl65iyJYsmyaMZMMBETpz3rt1MrikL2KCOTZ5pRVKip9PD5px3dmvxOCNE7F+fGotcoHG5ycbDe0e1xacN0mKNUPO4AR0tc3RqjKAoLFy5Ep9NRXV3NwYMHexp2nwpojHQkXgqApXktqqc5whEJIcTAIsnuc4zb8mWy23EE/NI7SAghhBBCnNsCgQCtzV4O7XGw5v02Nq3poLTYjcsZQKdXGJalZ9ZCC0svj2bcZDPxiWc/wd2V9OF6Zs63oNVBU6OPTWs7sNsk4S1Ef4o2aln0ZfuSdwqauj1OVRVyRwf7wB4udOHrZnW31WplxowZAGzatAm73R5mxP3DFTURtzETJeDB2vh+pMMRQogBRZLd5xifLhmfNhYl4A0mvIUQQgghhDgHtbf5KNzvYN2H7axf3UFJgQuHPYBGC+nDdUyfZ+HCK6KZMM1M4hDdgOyLnThEx5zFVowmhY42Pxs/aae12XvmgUKIHrt8VLCVybbKDmrau18ANnS4HpNZweUMUF7a/XETJ04kMTERp9PJxo0DpG2IotCetJwAKgbbQfS2gkhHJIQQA4Yku881iiKtTIQQQgghxDnJ3uFj9xeNfPpRG59+2E7RARe2dj+qGpxEbspsMxctj2HyTAtD0nSomoGX4P666FgNcy+wYo1RcTkDbFrbQUOtJ9JhCTFoZcQYmJJmIQC8X9j9Fh6qRiHny97dJYec3e61r6oqixcvBqCgoICKioqwY+4PPsMQHLFzALA2vAd+ed8RQgiQZPc5yW0ZBYDBVggDZJIMIYQQQgghuuJ0+DlS5GLjJ+188n4bWzfW09biQ1EgOVXLpBlmLrwyhqlzLKRl6NFoB36C++tMZpU5i6NISNbi88LW9TYqwqgcFUKE54pR8QB8criFDrev2+MyMvUYTQpOR4DKsu7/jaakpJCfnw/AunXr8HoHxh0ctvgl+DTRaLxNWJo/i3Q4QggxIGgjHYAIn9uURUDRovE2o/E04NMnRzokIYQQQgghQtwuPzWVHqrKPRyr75wUSsswk5QCKela9IbBU3uj06vMmG9h9zY71eUedm+z43T4yRltGBA9xoUYTCakmBkeY+Boq4uPS1q4akxCt8ZpNArZeQYO7HZSfMhFRqYetZstkmbNmsXhw4dpaWlhzZo1NDU1MWfOHDIyMnqzK70SUA10JF5GTN1rmFs+wxk9CZ+ue8dCCCEGq8Hz7fJ8oupxm7IApDeXEEIIIYQYEDyeABVlbrau72D1O23s3e4IJbrjEjSMnWTiwuUxXH7NCIZnGwZVovs4jUZh8kwz2aOCE+EV7HOyb4cDv1/uxhSiLymKwhWjg7273y9sxhfG39iwbAN6g4LD5qfqaPdbfxgMBubNmwcE25nU19ezefNmAhG+29oVNR63KQcl4CWq4T25+1sIcd4bfN8wzxPuL/t2G6RvtxBCCCG+ZLf5aWnynvJht/kjHaIYZLzeANUVbr7YZGP1263s3mqnvsZLIBDsZT0638iSZVbmXmAla6QBo2nwn34oisKYCSbGTTIBcPSwm+2bbHi9koASoi/NHxFNjFFDo93L5vL2bo/TaoPV3QDFh5wEwkiU5+bmkpx84s7quro6ysvLux90f1AU2pOuIIAGg70Qve1gZOMRQogIkzYm5yi3eSQAOkcZit9JQDVGOCIhhBBCRJLd5mfdB234T5PPVlVYdGk0ZsvgTziK/uP3BWio81JV7qa2yoPvK11KLFaV9GF60obpsEZrIhfkAJA50oDBpLDrczt11V62rOtg+jwLBqP8/QnRF/QalUtyY/nHvmO8W9DEvBHR3R47IsdASUFwgtzqCg/pw/XdHuvzde4RvmXLFoYNGxbRdkU+fRL2uHlYmj/F2vg+x8y5oHZ/n4QQYjCRb1rnKJ8+Ea8uEQU/entJpMMRQgghRIS5Xf7TJroB/P7gckKEK+AP0FDnYc82O6vfbWPbBhtVR4OJbpNFJWe0gfkXWll0iZW8ccbzPtF9XFqGnlkLo9DpFVqafGxa04Gto/uT6QkhTu+S3Dh0qkLRMScFDY5uj9PqFLJGflndfdDZ7VYk5eXlHDt2rNNz9fX1ka/uBmxxi/BpY9F4W7A0r4t0OEIIETGS7D6HHW9lopdWJkIIIYQQoo8FAgGaGrzs22Hn4/fa+PxTG+WlbjzuAAajQmaunrlLolhymZXR+SZi4jQyEWMX4pO0zFkShcmsYOvws/GTDpqPec88UAhxRrEmLQsygxXd7xQ0hTU2M1ePVgftbX5qq87cuzsQCLBly5Yu3+e2bNkS8d7dqHraEy8HwNy8AY27PrLxCCFEhEiy+xzmsnyZ7LYVyiQUQgghhOgW+cogTicQCNDS5OXgHgdr3m9j09oOykrcuJwBdHqFYVl6Zi2ysPTyaMZNNhOXqJUEdzdYozXMvcBKdKwGtyvA5rXtHD3S/R7DQohTuzwvOFHl5xXt1HW4uz1Op1fJzA1WdxcdcJ0xWV1eXk59fX2Xyw2U6m63ZTQucx4KPqwN78qHvhDivCTJ7nOYx5RJQNGh8bWjdddEOhwhhBBCnAO2fNrBF5tsHD3skgkrRUh7m4/C/Q7WfdjOho87OFzgwmEPoNXC0BE6ps+3cOHyaCZMM5OYrENRJcEdLqNJZc7iKJJStPh8sOrdCo4edkU6LCHOeSPijExIMeMPwL8Km8MamznSgEYLbS0+6mtOfcfF8aru0xkQ1d3HJ6tUtOgdhzF07ItsPEIIEQEyQeW5TNHiNudgsB1CbyvEa0iLdERCCCGEGOB8Xqit9FBb6QEcREWrJKfoSE7VEp+kRaORJOb5wtbho7rcQ3W5m7bWExc+VA0MSdORPkxHcqpOfif6kFanMH2ehb1fOKgoc7PnCzsOu4+RY41SIS9ELywfFc+eWjsfH27l+vxEzLruzRtgMKiMyDFwuMBF0QEnyald363i8/no6Og47bpaW1vx+XxotZFNs/h18djiFhLV9AlRjf/CbckjoBoiGpMQQpxNkuw+x7nMecFkt70Qe/yiSIcjhBBCiAFu0nQTdnuA+hoPzU0+Otr8dLS5OFLkQqOBhGQtyak6klO0WKwyyeBg47D7qalwU1XuoaXpxESJigrJKVrShulJSdOh1Unitb+oqsLEGWaShkSzc2sjRQeCVfT5U02oUjEvRI9MSrMwNFpPZZubTw63csWo+G6PzRppoLTYRUuTj8Y6L0kpupOW0Wq1XHfddTgcwUkwFUUhMTGRxsZGvvjiC0pKSrBYLKjqwLh53h47H2P7TrSeJixNn9CReFmkQxJCiLNGkt3nuOOTVOqc5Sg+OwGNOcIRCSGEECIS7B3da0kSFaNhaKaWkWONuN1+Guu81Nd4aaj14HQEqK/xhm7ltkSpJKUEk98JyVq0WknEnYtcLj81FcEK7mMNJxLcKJCYrCV9mI6UdB16w8BI0pwPFEVh2uxkvD47e3fYqSh143T4mTrbIhcahOgBVVG4fFQcf9xWx/uFzVw2Mg5NNy8eGU0qw7P0lBa7KTro7DLZDWC1WrFarUDwbzg1NRVVVVm4cCEVFRU0NTVx8OBBxo0b12f71WOqjo7EK4iteRFTy2Yc1in4DCmRjkoIIc4KSXaf4/y6WLz6IWjddejtxbisEyIdkhBCCCHOMr8vQOEB5xmXU1U6JTT1epW0DD1pGXoCgQDtrX7qazzU13ppavRi6/BjK3FTVuJGVSE+SUtyqpbkFB1R0aq0XRjAPO4AtVUeqsrdNNZ5O81RFpeoIX2YntShOowmSXBH0ogcAwajwo4tNhpqvWxe18H0eRb5fxGiBxZlxvDynkbqOjxsq+xg1jBrt8dmjzJy9LCbpgYfx+q9JCR3P1ViNpuZMWMG69evZ8uWLeTm5mIwRL5tiNuSh9MyFqPtANaGd2hJ/y7I57YQ4jwgye5BwGUe9WWyu1CS3UIIIcR5qPCAk442P1odTJllQW/o+mRWb1AxW7pOoimKQnSshuhYDTmjwesJ0FjvDSa/azw47AEa67w01nk5iBOjWQn1+k5M1qHTywl0pHm9AeqrPVSVB//P/F8p9o+J05A+TEdqhv6UvwMiMlLSdcxeFMW2DTZam31sXNPBzPkWoqKljZAQ4TBoVS7OieWfB47xTkFTWMluk1klI1PP0cPB6u5ZyVFhbXv8+PHs27eP5uZmtm3bxrx588INv190JC7DYC9C7yzD2L4LZ/TkSIckhBD9TpLdg4Dbkoel5TMMtiLaA/5g00UhhBBCnBeaGr2UFLgAmDDNTHJq17dfh0urU0hJD7a3CAQC2NpPVH0fq/fitAcoP+Km/IgbRQlWCx9PfkfHaqTq+yzx+QI01HqpLndTW+3B5z3xWlS0SvowPWnDdERJ//UBLS5By9wlUXy+3oa9w8/GNcEK7/hEOV0TIhyX5sXx1qFjHGpwUHzMQW6Cqdtjc0YbKD8SvBumudFLXBh/fxqNhvnz5/POO++wZ88exo0bR1xcXE92oU/5dbHY4hcTdWwVUcc+xGUZTUDT/WMihBDnIvn2NAh4jMPwq0ZUvw2tqxKvcVikQxJCCCHEWeD1BNi11Q4BSB+uIy1D3y/bURSFqGgNUdEasvKCFcRNDd5Q8tvW7qepwUdTg4+CfWAwKqFe38mn6H0qes7vD3Cs3ktVuYfaSg8ez4keJWaLStowHenD9FhjpNXMucRi1TB3SbDCu6XJx5ZPO5g800zq0P75uxZiMIo3aZk3PJp1pW28e6iZH83tfmLXbNEwdISeitJgdfeM+eFVdw8fPpwRI0ZQVlbGhg0buOKKK8INv1/YY+dibNuJ1tOApeljOpIGRlxCCNFfJNk9GCga3OZcjB37MNgKJdkthBBCnCcO7nFg7/BjNCmMn3z2KrW0WiWYyP6yitzW4aOhNpj8bqz34nIGqCzzUFnmASA5xU1sQoDkFC2x8RqUbk4aJk4IBAI0NfqoLndTXeHB7TqR4DaalGDv9WG64PGVBPc5y2BUmbUoip1bbNRVe9m+yc64yQEycyPf/1eIc8UVo+JZV9rGxvI2brElkWTp/kXXnNEGKsrc1Nd4aWnyEhsfXspk3rx5lJeXU1ZWRllZGSNGjAgz+n6gaGlPWk5c9Z8xtX6O0zoFrzE90lEJIUS/kWT3IOE252Hs2IfeXogtYWmkwxFCCCFEP6ur9nD0sBuAiTPM6PSRa2NmidJgydEwIseAzxegudFL/ZfJ7/ZWP/W1DuproegA6PRfVn2n6EhK0cpEfKcRCARobfZRVe6hutyN03Eiwa3TK6Rl6EgbpichSRLcg4lWqzB1joV9OxyUH3Gzf6cDp93PqHyj/D8L0Q1Z8UbGDTGzv87OB0XNfHtScrfHRlk1pGfoqCr3UHzIxbQ54aVM4uLimDhxIjt37mTDhg1kZGSg0US+jZTHnI0zKh9jx16sDe/QPPROaX8qhBi0JNk9SLjNIwHQuapQvO0EtN2fjEMIIYQQ5xaXy8+eL+wAZObqSRoycFqFaDQKiUN0JA7RMWaCCacjgNthprigkfpaDx53gOpyD9Xlwarv6FgNyanB5HdcogZVqr5pb/VRVe6mqtyDvePELJNaHaSmByu4E4do5VgNYqqqkD/VhMmsUrjfSUmBC4fDz8RpZlSN/L8LcSZXjIpjf52dVSUtXDsuEZOu+4nd3DHGUJuothYf0bHhJaunTZvGoUOHaG5uZu/evUyaNCnc8PtFR+Jl6G2F6FwVGNt24IyZFumQhBCiX0iye5Dwa614DOnoXFUY7EU4o6dEOiQhhBBC9INAIMC+7Q5czgBR0Sqj8wf2RFMms0pWdhwxCU58Pj8tx3zU13qor/HS2uyjrSX4KDnkQquFxCHBSS6TUnSYLedP1Zmt3UdVRbCCu731RIJb1UBKmo60YcG2MRpJdJ43FEVh5FgjJrPCni8cVB314HLYmDrHgk4vvwdCnM609ChSrTpq2j2sPdLKZXndnyzSGqMhdaiOmkoPxYecTJllCWvbBoOB2bNns2bNGrZu3UpeXh5mszncXehzfm00toQLsDb+i6hjH+GKGkNAE96+CSHEuUCS3YOI25yHzlWF3l4oyW4hhBBikKo66qGm0oOiwKQZZjTacyfppaoK8Ula4pO0jBoPLqc/2Ou71kNDrRe3K0BtlYfaKg/gICpaJTklmPyOT9IOukSvw+6nusJN1VEPrc2+0POKCskpWtKH6xmSqkOrG1z7LcKTkWnAYFTZvtlGY72XzWvbmT4/CpP5/LkYJES4VEXh8rx4/nd7He8VNnHJyFjUMNoA5Y4xUFMZvAspb6yPqOjwqrtHjx7N3r17aWho4PPPP2fx4sXh7kK/cMTMwtS2A627lqhjq2hPvjrSIQkhRJ+Tb0iDiMuSB4DeXgwB3xmWFkIIIcS5xmH3s29nsH3JyLHGsCfOGmgMRpWhI/RMnmnhwuXRzFsaRd44I3EJGlCgo83PkSIXn39mY9VbrWxd30FpsQtb+7n7Pcfl9FNW7GLT2nY+ea+Ng7udtDb7UBRIStEyYZqJC5dHM31eFOnD9JLoFgAkp+qYvSgKg1GhrdXPxk/aaW89d/8OhDgbFmfFYNGr1LR7+KKqI6yxMXFahqQFP2OLDznD3raqqixYsACA/fv309DQEPY6+oWioT1pOQDGtu1oneURDkgIIfreuX2GJDrxGobiV82ofjs6ZzkeU2akQxJCCCFEHwkEAuzeasfrgdh4DTmjDZEOqU8pikJsvJbYeC0jxxpxu/001nmpr/HSUOvB6QhQXxP8GcAcpZKcoiU5VUdCshbtAK5w97j91FZ52bnlKFXlNgIn5pkkPklDeoae1AwdBqPUoYhTi43XMveCKD7/zIat3c/GNe1MmxtFYrKc0gnRFZNO5aKcWN482MS7Bc3MGBrevFa5Y4zUVXdQddTDyLE+LFHhVXenpaUxcuRIioqK+Oyzz/jGN74xICaZ9ZhG4LBOxtS+88vJKlfIZJVCiEFFvhkNJoqK2zwSY8du9LZCSXYLIYQQg0hpsZvGei+qBibNNA/6yQn1epW0DD1pGXoCgQDtrX7qazzU13ppavRi7/BTVuKmrMSNqkJ8kjaU/I6KViOeUPB6A9RVe6gqd9NQ48V/og03MXEa0ofrSMvQSysKERazRcPcJVFs22Cj+ZiPrZ91MHGGmfRh+kiHJsSAdFleHO8camJ/nZ0jTU6y4o3dHhuXoCUpRUtDrZeSQy4mTAu/7/acOXM4cuQI1dXVlJSUkJubG/Y6+kNHwiUYbAfRuaoxtW7FETsr0iEJIUSfkWT3IOOy5AWT3fZCbFwc6XCEEEII0Qfa23wc2usAYOwEE1HW8KrLznWKohAdqyE6VkPOaPB6AjTWe4PJ7xoPDnuAxjovjXVeDu5xYjQroV7ficm6szaZn88XoL4m2OO1rtqD7ytdJqwxKqPGJmCNc2GJkgS36Dm9QWXWwih2fm6ntsrDzi12nA4/2XndT+IJcb5INOuYMyya9UfbeKegiR/OTgtrfO4YIw21HVSUub+cMDa892+r1cqUKVPYunUrGzduJDMzE6028mmYgDYKW/yFWBvfxdK0GmfUOALa8CrfhRBioIr8u6zoU25zLgEUdO5aVG8rfm1MpEMSQgghRC/4/QF2fW7H7wv2dB6eIxWcWp1CSrqOlHQdgUAAW7uf+tpg8vtYgxenPUD5ETflR9woCsQlakLJ7+hYzSmrvu02P26Xv8vXIJhkNFs6Jzr8/mCivbrcQ02VG6/nxGvmKJX0YcEK7pg4LampSdTU1BD4ah8TIXpAo1WYOtvMgd0OSovdHNztxGEPMHaiMeJ3NQgx0FwxOo71R9vYeLSNWyYmkWDWdXtsQpKWhGQtx+q9lBxyMn5K+NXdkydP5sCBA7S3t7Nz506mT58e9jr6gyNmBsb27ehc1UQd+5D2IddGOiQhhOgTkuweZAIaCx7jMPTOo+hthThjBsYHqRBCCCF6puhAcAJDnV5h4nSzJLK+RlEUoqI1REVryBppwOcNcKzBG2p5Ymv309Tgo6nBR8E+MBgVklK0JKfoSErRojcEk9d2m591H7R1ajfydaoKiy6NxmRWaGrwUVXupqbSg9t1InltNCmkDdOTPkxHTNypE+tC9JaiKoydZMJoVjm0x0lpkQun3c+kmWY0Gvm9E+K43AQTY5JMHGxw8EFRC9+amBTe+DEGjtV7KT/iJneMEaMpvOpunU7H3Llz+eijj9i+fTujR4/Gah0AVdSKSnvScuIq/wdT+y6c0dOkFaoQYlCQZPcg5DbnoXcexWCXZLcQQghxLms+FuwTCjB+iinsE+zzkUarkJyqIzk1WLln7/CFqr4b6724nAEqyzxUlgVLsGPjNSSnajGb1dMmugH8fijY6whWjztOJLj1BoW0DB1pw/TEJ0qCW5w9iqKQMyqYfNu9zU5NpQfXZx1Mm2MJXcgRQsAVo+I52FDFquJmrh2XgEHb/b+PxGQtcQkamo/5OFzoYuxEU9jbz83NZe/evVRXV7N582YuuuiisNfRH7zGYTijp2Jq+wJrw7s0Zfw/UM6vVmlCiMFHvgENQm5LHgA6ewkEvBGORgghhBA94fUG25cEApA+TCcT0PWQOUrDiBwD0+dFcfGVMcxaaCF7lAFrTPBrcEuTj6IDLnZ/4ejW+qrKPTgdAbQ6yMjUM3OBhaVXRDN+ipmEJK0kukVEDB2uZ+Z8C1odNDX42LS2A7vtDFdvhDiPTB8axZAoHe1uP+tKW8MaqygKuWODPfGPlrhwOcP/21IUhfnz5wNQWFhIdXV12OvoLx0JF+FXzWjdtZhat0Q6HCGE6DVJdg9CXn0qPo0VNeBG5yiLdDhCCCGE6IFDexzYOvwYTQrjpoRfRSZOpmoUEofoGDPBxMKLo7ng8mgmTDORmqGju/OFJaVomTbXwoXLY5g43UxSig5VlQS3iLzEITrmLLZiNCl0tPnZ+Ek7rc1S+CIEgEZVuDwvDoB3C5rxhzl3QnKKlpg4DT4fHCly9SiG5ORkxo4dC8D69esHzPwNAY2FjoSLAbAc+wTV2xbhiIQQonck2T0YKQpuc7C622AriHAwQgghhAhXfY2HshI3ABOnm9Hr5StbfzCZVYZlGZg628LMhVHdGjNqvJGUdJ30RBYDUnSshrkXWLFGq7icATav7aCh1nPmgUKcB5Zkx2DWqVS1udlZbQtrrKIo5I4xAFBW7MLt7tmdE7NmzUKv11NfX8+hQ4d6tI7+4IyegseQgRpwEdX4r0iHI4QQvSJnToPU8VYmentRhCMRQgghRDjcLj+7t9kBGJGjJylFF+GIzg/SfUQMFiazypwlUSQka/F6Yet6GxVl7kiHJUTEmXUalmbHAPBuQVPY41PSdVhjVLxe2L/Tzsq/lYR9MclsNjN9enBerc2bN+Ny9axKvM8pKu3JVxJAwdixN9gSVQghzlGS7B6k3KYcAqhoPQ1oPMciHY4QQgghumnfTgcuZwCLVWX0BGlfIoQIn06vMmO+hbRhOgIB2L3VTvFB54BpmyBEpCzLi0dVYE+tnbJmZ1hjg9Xdwd7dlWUeWprcHNrrCPvvasKECcTGxmK329m+fXtYY/uT15CGI2YmANaGd2X+LyHEOUuS3YNUQGPEYxoBgN5WGNlghBBCCNEtVeVuqss9KApMnmFGq5VyYyFEz2g0CpNnmsnOC7ZeKNjnZN8OBwG/JLzF+Ss5SsesDCsQ7N0drrShOgymE5/NLU0+GmrDSwprNBrmzZsHwK5du2hpaQk7jv5ii1+KTxOF1tOAuWVjpMMRQogekWR3L/j8AfbV2Vhf1sa+Ohu+AfbF8Xjfbr1dkt1CCCHEQOew+9m33QFA7hgDsQndnDFR9Am9QUU9wzdjVQ0uJ8S5QlEUxkw0MXZS8C6Ro4fdfLHJhtc7sM5bhDibrhgVD8BnZW20OMKsXlbo/FmhBC8khVvdPWLECIYPH47f72fDhg3hxdCPAhoTtoRLALA0rUX1tEQ2ICGE6AE5i+qhLeXtPL+jjmP2Ex+OCWYt35kyhFnDrBGM7ASXOY+oYx+idxwBvxtUfaRDEkIIIUQXAoEAe76w4/EEiInThG6TFmeP2aKy6NJo3K5TTzqmN6iYLZLsFueerJEGjCaFXZ/bqav28vmnHUybZ8EgF2/EeWhUkom8RCOFjU4+LG7mhvykbo9tqPXisH0lsR2A1uZgdXdyavfn2FAUhXnz5lFRUUFpaSlHjx5l+PDh4exGv3FaJ2Fs+wK9s4yoxvdpS7050iEJIURYBsS3m1WrVrFixQpuuukmfvKTn5x2VuIDBw5w7bXXnvSoqqo6a/FuKW/n1xuqOiW6AY7Zvfx6QxVbytvPWiyn49Mn49PGogS8wYS3EEIIIQakshI3DbVeVA1MmmlGVaV9SSSYLSqx8dpTPiTRLc5laRl6Zi6MQqdXaD7mY9MnHdg6fJEOS4iIOF7d/WFRC27fqS9yflUgEKBgnxO6+IjuSXV3fHw8+fn5AGzYsAGfb4D8PSoK7UnLCaBitB2QtqhCiHNOxL+xb968mRdffJGrr76axx9/nNGjR/Poo4/S2Nh42nH//d//zf/+7/+GHqmpqWclXp8/wPM76k67zJ931A2MliaKgktamQghhBADWkebj4N7gu1LxuSbsEZrIhyREGKwSkjSMmdJFCazgq3Dz8ZPOmg5JpPQifPPrAwrSWYtrS4fn5W2dWtMQ62X1mYfdHGqf7y6O1zTp0/HaDTS1NTE/v37wx7fX3yGFByxswGIanwX/J4IRySEEN0X8WT3+++/z+LFi1myZAlDhw7l1ltvJTExkdWrV592XExMDLGxsaGHeqYmi33kYIM9VNGtAKmKnizFSKqiD13gbbR7OdhgPyvxnInbEkx2G2yFILOvCyGEEAOK3x9g11Y7fh8kDtEyIldajgkh+pc1WsPcC6xEx2pwuwJsXtdBXbUkssT5RaMqLBsVB8C7BU1nrMoOVXWfRk+qu41GI7NmzQLg888/x+FwhDW+P9niL8CniUbracLc8lmkwxFCiG6LaM9ur9fLkSNHuPLKKzs9n5+fT2Hh6SuR77//fjweD0OHDuXqq69m3Lhxp1zW4/Hg8Zz4AqcoCiaTKfTvcDQ7grcWjVAMzFSjiVJOVF91BHx87m+jLOCi2eHrtO7j/w53e73lMecQULRovM1ovY349Ml9st5I7U9/kf0Z2AbT/gymfQHZHyF6q+SQi5YmH1odTJxult89IcRZYTSpzF4cxfZNNhrrvHyx0Ub+VBPDsgyRDk2Is2Zpdiyv7T1Geaub3bV2JqVaTrms3x+cSPp0nHY/fj9owrxBa+zYsezbt4/GxkY+//xzFi1aFN4K+klANdCReBkxda9haf4Mp3Uyfl18pMMSQogzimiyu62tDb/fT0xMTKfnY2JiaGlp6XJMXFwc3/3ud8nKysLr9bJ+/Xp++ctf8h//8R+MGTOmyzFvvfUWr7/+eujnzMxMHn/8cZKSuj8RxXG5HiMjlGMsUWNPes2CyhI1ljX+FnKHDiE1Ne6kZVJSUsLeZm/5mkYTaN5HoqYGNXVCn647EvvTn2R/BrbBtD+DaV9A9keInmhp8lJ0IFglNn6yGZM54jfcCSHOIzqdwoz5FvZ8YaeyzMOeLxw47H5GjjXKhTdxXrDoNVyQHcP7hc28e6jptMlujUZh/oVWXM5gwltRFBITE6mrbWDbxg48bhiaqUejCf9vR1VV5s+fz5tvvsn+/fsZP348iYmJPd6vvuSKGo+77Qv0jhKsDe/SmvptkPcHIcQAF9Fk93FdfZk61RestLQ00tLSQj+PHDmSxsZG3nvvvVMmu6+66iqWLVt20robGhrwesPrq5Ws+JmtiYbAyTEqikIgEGC2JppkxU5NjbPTaykpKdTW1oZ9a1NvmbQjiGIfzppttGr6Jtkdyf3pD7I/A9tg2p/BtC8g+3M6Wq22RxdVxfnB5w2w63M7gQCkZuhIH66LdEhCiPOQqipMnG7GZHZSfNBF0QEXDnuA/KkmmShXnBcuz4vjX4XN7KyxUdHqIiPm1Hc3mMxq6MK0oigkDTHh9esYN8nMrq12SotdjMgx9Ggy46FDh5KTk0NJSQnr16/nqquuGhgXnRSF9qQriC//HQZ7IXrbIdxRXeddhBBioIhosjs6OhpVVU+q4m5tbT2p2vt0Ro4cyYYNG075uk6nQ6fr+iQy3GRG8zEvZjRdzsAMwQ89Mxqaj3lJTD55m4FA4KwnhFymkUQBOkcZ+BwEVGOfrTsS+9OfZH8GtsG0P4NpX0D2R4hwHdrroKPdj8GokD/FNDBOaIUQ5yVFURg13oTRpLJvp4OKUjdOh5+psy1odfLeJAa3FKueGRlRfF7RwXsFzdw1I/y7+9KH6zh6WENTY3DC6amzT10hfjpz586ltLSUyspKjhw5QnZ2do/W09d8+iTscfOwNH+KtfE9jplzQJU5RoQQA1dE75fVarVkZWWxd+/eTs/v3buXvLy8bq+ntLSU2NjYPo6uay5H95If3V3ubPDpE/HqElDwobMfjnQ4QgghxHmtodZDabEbgAnTzegN0r5ECBF5I3IMTJtjQdVAQ62Xzes6Qi0bhBjMrhgV7EO9rrSVNmd4d35D8ILRuMlmUKCmwkNjXc8mfI2Ojmby5MkAbNiwIey70PuTLW4RPm0sGm8LluZ1kQ5HCCFOK+JnV8uWLWPNmjWsXbuWyspKXnzxRRobG1m6dCkAr776Ks8++2xo+X/9619s27aNmpoaKioqePXVV9m6dSsXX3zxWYnXYOpedUN3lztb3ObgxQOD/fQTfwohhBCi/3jcfnZvswMwPFvPkFRpXyKEGDhS0nXMXhSF3qDQ2uxj4ycddLT5Ih2WEP1qTJKJ7Hgjbl+Aj4pberSOmDgNI7KD1c77djrw+3tW/DZ16lQsFgttbW3s2rWrR+voF6qe9sRga1hz8wY07oYIBySEEKcW8WT37NmzufXWW3njjTe4//77OXToEA888ECoz2lzczONjY2h5b1eL3//+9+57777ePjhhykoKOCnP/0pM2bMOCvxJiRqMZ4mkR0IBLDjwxwb8UPbidsSTHbrbYUgt+YLIYQQEbFvpwOnI4AlSmXMRFOkwxFCiJPEJWiZsyQKc5SK3eZn45oOmhoHToWpEH1NURSWj4oD4IOiZjy+nt3RkDfOiN6g0NHmp7TY1aN16HQ65syZA8D27dvp6Ojo0Xr6g9syBpc5DwUf1oZ3Ja8ghBiwBsQElRdddBEXXXRRl6+tWLGi08/Lly9n+fLlZyOsLimqwrjJJrZvsp9iAdjsa8Nf4OeG/IEzMZnbmElA0aHxtaF11+I1pEY6JCGEEAPMqlWrePfdd2lpaWHo0KHceuutjB49+pTLHzx4kL/97W9UVlYSFxfHFVdcwYUXXtjlsps2beJ3v/sdU6dO5f777++vXRjQqivcVB31gAKTZpjRagfWXWBCCHFclFXD3CVRbNtgo6XJx5ZPO5g800zqUOnTKwanOcOj+duuBo45vGw42s7irO7PIXac3qAyaryRvdsdFO13kj5Mj9EUfhFcXl4e+/bto6amhs2bN5/yu9VZpyh0JF2OvvwwekcJho59uKz5kY5KCCFOMrDKj88RqUP1TJ1j7rLC25CkUBZw8dbBJpocA6gCQtXhNuUAX1Z3CyGEEF+xefNmXnzxRa6++moef/xxRo8ezaOPPtrp7qqvqq+v57HHHmP06NE8/vjjXHXVVfz1r3/l888/P2nZhoYG/v73v582cT7YOR1+9m53AJA72kBc4oCoNxBCiFMyGFVmLYoiOVWL3wfbN9sp62G1qhADnVZVuDQvWN39bkFTjycqH5alJzZeg9cbnIy6JxRFYf78+QAUFBRQW1vbo/X0B58uAVvcAgCiGv+F4pf3BCHEwCPJ7h5KHarngmXRzFpkYfJMM1kjg1UOaofCqAQjLl+AV/cMrD5WruOtTKRvtxBCiK95//33Wbx4MUuWLAlVdScmJrJ69eoul1+9ejWJiYnceuutDB06lCVLlrBo0SLee++9Tsv5/X5+//vfc+2115KcnHzGODweD3a7PfRwOE6cKCqKcs49jtvzhR2PO0BMnIa8saaIxxWJ4xDpGAbCQ46DHIdz7TjodCrT50UxPEsPgWArpuMJvMFyHIQ47qKcWAwahdJmF/vqTnEn9xkoSvBOcIDKMk+PWwANGTKEMWPGAPDZZ5/1OPneH+yxC/Bp49H42rA0rYl0OEIIcRIpK+oFRVVITA5OLJUyVEdVuQenI8DVwxN49FgVa460siwvjhFxxghHGuQ2jwRA5zyK4nMQ0EivUCGEEMH5MI4cOcKVV17Z6fn8/HwKC7u+QFpcXEx+fudbVydOnMi6devwer1otcGvGK+//jrR0dEsXryYQ4cOnTGWt956i9dffz30c2ZmJo8//nhoLo9zUXO9gfqaZjQahYsuH0FcgiHSIUVESkpKpEMYEOQ4BMlxCDpXjkNaWoCdWxvZvqWBkkMuCBhZeGEqGk3fJIvPleMgBjerQcPirBg+LG7h3YIm8lMsPVpPXIKWjEw9FaVu9u1wMH9pFIoa/t/KrFmzKC4upq6ujoKCgoFzh5yqoz3pcmJr/oapZRMO62R8BvkbFkIMHJLs7iMajUJ2noGDe5zYqgLMGmplS2U7f9vVwH8szoh0eAD4dXF49UPQuuvQ24ulv5YQQggA2tra8Pv9xMR07k8ZExNDS0tLl2NaWlq6XN7n89He3k5cXBwFBQWsXbuWJ554otuxXHXVVSxbtiz08/Gqu4aGBrzeAdQerBsURcFkiGPzZ8Hbj0flG3G6m6ipiXBgZ5miKKSkpFBbWzugKtPONjkOQXIcgs7F45A2HCb6zOz5wk5JQSstzTamzYlCp+95wnsgHAetVntOX1AVfevyUfF8WNzCF1U2qtrcpEf3rE/96HwjNZVu2lp8HD3iZkRO+Be6LRYL06dPZ9OmTWzevJns7Gz0+oHRN99tGYXLMgaD7SDWhndpSf8OyJ0SQogBQtqY9KHh2QZ0OgVbu58r0uLQKLCzxsbuGlukQwtxmY+3MimIcCRCCCEGmq5u5z7dLd5ff+14okJRFBwOB8888wzf+973iI6O7nYMOp0Os9kcephMJ+5CCgQC59TD5/OzdlU1Ph8kJGvJzNVHPKZIPc7F/z85DnIc5Dic/MjI1DN9ngWNFhrrvGxa04bd5junj4MQX5UerWdaehQA7xU09Xg9BqPKqHHB7zAF+5y4Xf4erWfChAnExMRgs9nYvn17j+PpD+2JywgoOvTOUoztuyIdjhBChEiyuw9pdQojcoNXWo+V+bg0NzjBxV931uPzD4wvUu4v+3Yb7EUQ6NkHrhBCiMElOjoaVVVPquJubW09qXr7uNjY2JOWb2trQ6PREBUVRV1dHQ0NDTz++ONcf/31XH/99axfv54dO3Zw/fXXD6jJlvpLySEn9TUOtDqYON0svWGFEINCcqqO2YuiMBgV2lr9bFzTTnurL9Jhia9ZtWoVK1as4KabbuInP/nJGVuJeTweXnvtNe666y5uvPFG/v3f/521a9eepWgHlitGBc/j1x5ppd3V89/t4Tl6rDEqHneAgn3OHq1Dq9Uyb948AHbt2kVra2uP4+lrfl0ctrjFAEQd+xDF17MJOYUQoq9JG5M+lplr4HChi5YmH0tHx7K2tJWyFheflrZyc3papMPDYxyOXzWg+mxoXVV4jQOjxYoQQojI0Wq1ZGVlsXfvXqZPnx56fu/evUybNq3LMbm5uezYsaPTc3v27CErKwutVktaWhq//e1vO73+j3/8A6fTGZr8cjBrafJSuD94Yjt+shmzReoLhOiK1+vFbu/ZRHDnOofDgdvtjnQYPaJqYeo8aGvx4/MGaKhvweXWoDeE/153No6D2WwOzSVxPti8eTMvvvgid9xxB3l5eXzyySc8+uijPP3006f8/H366adpbW3lzjvvJCUlhba2Nny+8/MixvghZjLjDJQ2u1hV0sI1YxN6tB5VVRg32cyWdR0cPexmWJae2Pjwfw8zMzPJyMigoqKCjRs3ctlll/Uonv5gj5uLsX0nWk8DlqaP6Ui6ItIhCSGEJLv7msGoMjxLT2mxm+oSD9eMS+Bvuxr4++4GrpkxMtLhgaLBbcrFaNuPwVYoyW4hhBAALFu2jGeeeYasrCxGjhzJJ598QmNjI0uXLgXg1Vdfpampif/3//4fABdeeCGrVq3ib3/7G0uWLKGoqIi1a9dy9913A6DX6xk2bFinbVgswYmevv78YOPzBdi11U4gAJk5VoaO0EQ6JCEGJK/Xi81mw2q1oqrn3wUhnU6Hx+OJdBi9EhsbwNYRTHgDGA1q2Anv/j4Ofr+f9vZ2LBbLeZPwfv/991m8eDFLliwB4NZbb2XPnj2sXr2aG2+88aTld+/ezcGDB3n22WeJigq28EhOTj6rMQ8kiqJwxah4frelhg8Km7lydDzaHkwwCZCYrCV9mI6qcg/7dzqYsyQq7Du9FEVh/vz5vPrqqxw+fJiKigoyMgbIebyipT3pCuKq/4Kp9XOc0VPxGiJf5CeEOL+dH5/2Z1lWnpGyEjeNdV7mjY3mQ0sz9TYvr2wv59IRxkiHh9uSh9G2H729EFvCBZEORwghxAAwe/Zs2tvbeeONN2hubiYjI4MHHnggNGlXc3MzjY2NoeWTk5N54IEH+Nvf/saqVauIi4vjtttuY+bMmZHahQGjYK+TjjY/BqPCvAtSaWlpkL6wQnTBbreft4nuwUJVFaKsKvYOPx5PALvNjz8ARuPA+T9VVRWr1UpHR0dYc0icq7xeL0eOHOHKK6/s9Hx+fj6FhYVdjtm+fTvZ2dm88847rF+/HqPRyJQpU7j++utPOSGix+PpdJFCUZTQPBuDoW3X/BExvLSrnmMOL5vL21mQ2bmt2/F97M6+jplopra6leZjPqqOesjIDH+yysTERPLz89mzZw/r16/nxhtvHDDvnV5LLs6ofIwde7E2vEPL0DtB6X5s4RxLcXpyLPuOHMu+E4ljKcnufmC2qKQP01F51MPRIjffmpjMk5uqeWlrObOGZBFrjGyFl9scrDDXuSpRvO0EtNaIxiOEEGJguOiii7jooou6fG3FihUnPTdmzBgef/zxbq+/q3UMNo11Ho4UuQCYON2CyaTla63NhRBfMVCSNaLnFEXBHKXisPtxuwI47X4CfjCalAGTJDiffs/a2trw+/0nzbkRExNz0lwbx9XV1VFQUIBOp+PHP/4xbW1t/OUvf6Gjo4O77rqryzFvvfUWr7/+eujnzMxMHn/88dBF8sHguqku/mdjKR+UtHPdrLwuf59TUlK6ta62mQa2bqynYJ+LCVMyMBjCzwksX76c4uJijh07RkVFxYAqMAjE34Zv+wPonOUMUUpQUxeEvY7uHktxZnIs+44cy75zNo+lJLv7Sc5oI5VHPdRUelgwLorcBCPFx5y8treB70+P7B+LXxuNx5CGzlWNwV6MM3pyROMRQgghBgOPO8CubcHew8Oy9AxJ00U4IiGEODsURcFkVlHVAE6HH5fTj9+vYLaoAybhfb7p6rif6v/i+N1HP/jBDzCbzUCwcvupp57ijjvu6LK6+6qrrmLZsmUnrbuhoQGv19vr+AeCuSlaXtAoHKprZ83eI4xNNodeUxSFlJQUamtru3X3VmJqAItVxdbuY/2aMsZNMp9xTFemT5/Op59+ykcffcSQIUMwGiN/5/hxprglRDX+C+/hf9DkSyegsXRrXLjHUpyaHMu+I8ey7/TVsdRqtd2+oHr+XOI+y6wxGoakBa8llBa6uW3yEABWl7RQ3uqKZGgAuM15AOjtXd/KJoQQQojw7N9lx2kPYLaojJ1oinQ4QghxVimKgtGkhibk9bgD2Nr9+P2SJDiboqOjUVX1pCru1tbWk6q9j4uNjSU+Pj6U6AZIT08nEAhw7NixLsfodDrMZnPocbyFCQST54PhYTVoWPRl+5J3Dh076fVw9lVVYdyk4DEqLXLR1uLtUUzjxo0jISEBp9PJ559/HvFj9NWHPWYWXv0QVL8dS+OqsMYOpt+bSD/kWMqxHIiPvjiW4ZBkdz/KGR28ylpx1E221ciCnET8AXhpV32EIwNXKNldBIHzc5ZtIYQQoq/UVLqpLPOAApNmmNHqpJJRiMHqmmuu4eGHH45oDPfccw+333576OeBENNxeoOKxaqiKOD1Buho9+PzhXeSunnzZtLT02ltbe32mBkzZvD888+HG+6go9VqycrKYu/evZ2e37t3L3l5eV2OGTVqFM3NzTidztBzNTU1KIpCQkJCv8Y70F0+Kg6ArRUd1LS7e7Wu5FQdKek6AgHYv9MRdvIGgi155s+fDwT/T091MSIiFA3tScsBMLZ9gdZZEeGAhBDnK0l294Lf76eyspLCwkIqKyvx+/2dXo9P1JKQpCHgh8OFTv7fgmxUBb6osrG31hahqIO8xgz8qgnV70QnH0JCCCFEjzkdfvZ84QAgZ5SB+CTpEieEOLuef/557r///kiHEaLTqURZNagq+H0BOtp9eL1S4X22LFu2jDVr1rB27VoqKyt58cUXaWxsZOnSpQC8+uqrPPvss6Hl586di9Vq5Q9/+AOVlZUcPHiQl19+mUWLFp1ygsrzRUaMgcmpFgLA+4XNvV7f2IlGVA001nupqfSceUBXMWVkkJ2dTSAQYP369T1KmvcXjykTh3USCgGsDW9DwH/GMUII0dfkbKyHSkpKWL9+PR0dHaHnoqKimD9/Pjk5OaHnckYbOdZg4+hhF/MWG7k4N44Pipp5cVc9v714BGqketgpKm7zSIwde9DbC/GYRkQmDiGEEOIcFggE2POFHY87QHSsSt7YgdM7Uwhx/oiLi4t0CCfRaBWirBpsHcHKblu7D3OUik4n9Vb9bfbs2bS3t/PGG2/Q3NxMRkYGDzzwQKjXaXNzM42NjaHljUYjP/vZz3jhhRf46U9/itVqZdasWVx//fWR2oUBZfnoeHbW2PjkcCs35idi0Yc/ueRx5igNOaMMFB1wcWCXg+RUHVpt+DmBuXPnUlpaSkVFBaWlpWRlZfU4pr7WkXAJBtshdK5qTG1bccTMinRIQojzjHzT6IGSkhI++OCDTolugI6ODj744ANKSkpCzyWlaImO1eDzwoHdTdyQn4hJq3K4ycX6srazHXonLsuXrUxs0rdbCCGE6InyI27qa7yoKkyaYUHVSPsSIc4HPp+Phx56iNGjRzN27Fgef/zxTtWVb7zxBpdccgkjR45k4sSJrFixolNysaWlhTvvvJPx48eTnZ3NnDlzWLlyZej1mpoa7rzzTsaMGcPYsWO57bbbqKg49d2YX29jMmPGDH7/+99z7733MnLkSKZNm8bLL7/caUy42zjeWuTTTz/lwgsvJDs7m29+85s0Njaydu1aFixYQF5eHnfddRcOR/BuF1WjoNV7+PXj/8Hc+ZMZOTKH5Vdcye7duzute82aNcydO5fs7GyuueaaLuP44osvuPrqq8nOzmbq1Kn8/Oc/x263nzLe891FF13Ec889x6uvvsrjjz/OmDFjQq+tWLGCX/ziF52WT09P5+c//zkvv/wyf/zjH7nlllvO+6ru4yakmBkeY8Dp9fPx4ZZery9nlBGTRcXpCFB80HnmAV2IiYlh8uTJAGzYsGFATQoa0FqxxQfvIrAcW43i7TjDCCGE6FuS7A6T3+9n/fr1p11m/fr1oZYmiqKQM9oAwP5dTVi0Gq4ZF+x79vfdDbi8kbutx20eSQAFnbsG1dv9fnhCCCGEAFuHjwO7gwmdUeONRMf2vNJLCPHlxEUuZ2QeYbYB+Oc//4lGo+G9997jl7/8Jc8//zyvvvpq6HWPx8OPf/xjPv74Y/7yl79QXl7OD3/4w9Drv/nNbygqKuLll1/m008/5bHHHgtVZzscDr75zW9isVh44403ePvtt7FYLNx000243d3vGfynP/2J/Px8Vq1axbe//W0eeOCBUFFOb7bx5JNP8l//9V+88847VFdXc+edd/LnP/+Z5557jpdeeon169fzwgsvhJZ/7LFHWf3xhzz+66f45/+9T3r6cG688UaampoAqKqq4jvf+Q6LFy9m1apV3HjjjTz22GOdtnno0CFuuukmLrnkEj7++GP++Mc/sm3bNh566KFuHw8hekpRlFDv7vcLmvH1ctJVjVZh7MTgnWBHCl3Y2ns2h9bUqVOxWCy0trayZ8+eXsXU1xwxM/EY0lD9TqKOfRjpcIQQ5xlpYxKm6urqkyq6v66jo4Pq6mqGDh0KQOpQHeYoFXuHj/IjLi7Pi+PDomYa7V7eK2zmmrGRmfQjoLHgNQxF56pAbyvCGTMtInEIIYQQ55qAP8CurXZ8XohP0pA10hDpkIQ497ld+P/ftRHZtPrs/4Gh+22I0tLSeOSRR4KFLTk5FBQU8Pzzz3PTTTcBdGr/MHz4cH75y19y2WWXYbPZsFgsVFVVMX78eCZMmAAEe/Ae984776CqKr/97W9Rvmx5+NRTTzF69Gi2bNnCggULuhXj4sWLufXWW4FgJe/zzz/P5s2bycnJ6dU27r//fqZNC5433HDDDTz22GNs3ryZ4cOHA3DZZZexefNmVqxYgd1u56WXXuLpp5/mkkuX4HQEeOQXv+bCizfw97+/xt0/WMGLL77IsGHDTjqezz33XGibf/zjH7nyyiv5zne+A0BWVha//OUv+cY3vsFjjz2G0SgtpET/WpAZzd93N9Bg97Klop15I2J6tb6UdB1JKVoaar3s3+VgxvyosNeh1+uZPXs2H3/8Mdu2bWPUqFFYLJZexdVnFJX2pOXEV/4RU/tOnNHTpHWqEOKskcruMNls3ZtY8qvLqapCzqjgF7DDBU50isLNE4L90l7ff4xWZ+RuOXJZRgGgt0srEyGEEKK7SgpdNDf60Gph0gwziirtS4Q4n0yePDmUJAaYMmUKpaWl+HzBCs39+/dz2223MX36dEaOHMk111wDBKuYAW655Rbefvttli5dyq9+9Su++OKL0Lr27t1LWVkZI0eOJDc3l9zcXMaOHYvL5aKsrKzbMX61bYWiKCQlJXHs2LFeb+Or601KSsJkMoUS3cefO96ypaysDI/Hw7Rp01AUBZNZJTrGwPhxEykuKsbW4aOoqKjL4/lV+/bt45///Gco1tzcXG688Ub8fv9pW68I0Vf0GpVLRsYC8G5BU6/XpygK4yaZUFSor/FSV92zySpHjRrFkCFD8Hg8bNmypddx9SWvcRiO6OCFMWvDOxDoWQW7EEKESyq7w9TdK6VfXy4jU0/JQTd2u5eqcg8LMqN5t6CJI80uVu5r5LvTUvoj3DNym/Og6WP09mIIeEGRXwkhhBDidFqbvRTuD/bYHDvJhNki7UuE6BN6Q7DCOkLb7it2u50bbriBBQsW8Mwzz5CQkEBVVRU33nhjqEXI4sWL2bFjBx999BEbN27k+uuv59vf/jYPP/wwfr+f/Px8nnnmmZPWnZDQ/TtCtdrO3+sVRQm1WuzNNr6+Xp1Od8rtHG8P89VEtsGoomoCKIqCxxPA7fZxpi4yfr+fm2++mdtvv/2k19LT008/WIg+ckluHK8faKKw0UlBg53U1N6tLyo6eGfY4QIX+3c6SByiRRPm3B+KojB//nz++c9/cvDgQcaPH8+QIUN6F1gf6ki4CEPHfrTuWkytW3DEzo10SEKI84BUdocpLS2NqKjT32IUFRVFWlpap+c0GoXxk+MBKClwogC3TU4G4KPiFirbXP0S75l4Dan4NFbUgBudoywiMQghhBDnCp8v2L4k4Ich6VoyMmXyLiH6iqIoKAZjZB5KeAmmnTt3nvRzZmYmGo2GkpISmpqaeOCBB5gxYwY5OTmdJqc8LjExkeuuu45nnnmGX/ziF7zyyisAjB8/ntLSUhITE8nMzOz0iI6O7vkB/oqzsQ2AzMxM9Ho927ZtCz3n8XjYt28vo0aPRFEgKzOXHdt34POdyHh//fiOHz+ewsLCk2I9vn4hzoZYk5YFI4J/H3/bVc+1L3zO7pru3fl9KiPHGDGaFOw2P4cLe5YTSE1NZdSo4B3bn332WdhzEPSngMZCR8LFAFiOfYLqbYtwREKI84Eku8Okqirz588/7TLz589HVU8+tGPy49DqFDra/NRWechPsTAt3YIvAC/tauivkE9PUXGbRwJgkFYmQgghxGkV7nPS3upHb1CYMNUcdoJMCDE4VFdX84tf/IKSkhLefvttXnjhBf7t3/4NCFYa6/V6/vrXv3L06FFWr17Nf//3f3ca/5vf/IYPP/yQ0tJSCgsL+eSTT8jNzQXg6quvJi4ujttuu42tW7dSXl7Oli1bePjhh6muru6T+M/GNgDMZjPf+ta3+NWvfsW6desoKirixz/+MU6nk5tuuoGoaA3XX38z5RXl/Pxn/0FhYQlvvfUW//d/nSv877rrLnbs2MGDDz7I/v37OXLkCKtXr+ZnP/tZn8UqRHdc8eVElQfqHZQes/PS7vpeJZe1OoUxE0wAFB90Yrf5e7Se2bNno9PpqK2tpaioqMfx9Adn9FQ8hgzUgIuoxg8iHY4Q4jwgye4eyMnJ4dJLL+2ywjs1NZWcnJwux+kNGjJzg7dIlhxyEQgEuGVSMqoCWys7OFBv79e4T8VtyQvGZ5NktxBCCHEqx+q9oaqrCdPMGIzyNUqI89U111yD0+lk2bJlPPTQQ9x+++3cfPPNQLANyNNPP83777/PokWLePbZZ/n5z3/eabxOp+O//uu/uOCCC7j66qvRaDT84Q9/AMBkMvHmm2+Snp7OHXfcwcKFC/nRj36E0+nEarX2SfxnYxvHPfjgg1x66aX84Ac/4OKLL6asrIxXXnmF2NhYNBqFsWOz+P3v/od1n67h4osv5KW/vcRPf/rTTusYM2YMb7zxBqWlpVx99dVcdNFFPPHEEyQnJ/dprEKcyYg4I5lxJ9oelRxzsquX1d1pw3TEJ2nw++DgbkeP1hEVFcXUqVMB2LhxIx5Pz3qA94svJ6sMoGDs2IPOfjjSEQkhBjklMJDucTnLGhoaevUh4Pf7qa6uxmaz4Xa7WbduHQDf+MY3TuodpygKqamplJVW8fF7rfh9MGuRhcRkHX/YWsuqkhZyE4w8cdFw1LNcJab4nCSW/hIFP43Df4xfF3/mMV/uT01NzYC6TaqnZH8GtsG0P4NpX0D253R0Oh1JSUl9FJno7Wd2b3k8AT5b1Y7D5icjU8/E6eYzjhlsfx89JcchSI5D0FePQ2tra5+2zDjX6HS6gZWQihCdTofb7cHW4cPrCf5tmCwqBkPfXlBsa2vr8vdNPq/7VqQ/r/tbIBDg++8doaY9uI+qAllxRn578fBe3e3V1uLjs9XtEICZCy0kDdGdedDXeL1eXn75Zdra2pg+fTozZ87scTz9IarhHcytn+PVJdE07Aeh+cLk87HvyLHsO3Is+05fHctwPq+lJKkXVFVl6NCh5OXlMX78eMaNGwcE+2Qdn5Tl6wxGlWFf9vcsORSsDrshPxGjVqX4mJONR9vPTvBfEdAY8RiDM6gbpLpbCCGEOMmBXQ4cNj8mi8rYSaZIhyOEEIOKooAlSkWvDyYLHTY/TodfEgxiwNlVYwslugH8AShp6n11d3SshsycYJ5g/04Hfn/4v/tarZa5c4MTQO7YsYO2toHVH9sWfyF+jQWtpwFzy6ZIhyOEGMQk2d2HZs2ahcFgoLGxkX379p1yuew8A4oCDbVeWpq8xJm0fGNMsJr677vrcft61qerN0KtTKRvtxBCCNFJbZWHilI3AJNmmNHppE+3EEL0NUVRghXdX7aIcjr8OOyS8BYDRyAQ4JU9jahf+xqgAK/saez172reOCN6Q3COr9Link1WmZ2dzdChQ/H5fGzcuLFX8fS1gMZER8IlAFia1qB6WiIbkBBi0JJkdx8ymUyhW4U+//xzHI6u+22ZozSkDQvelnS4IPghtnx0PPEmLfU2L/8qbD47AX+Fy/xlsttxGPyD97YzIYQQIhwup589XwTn1MgeZSAhSRvhiIQQYvBSFAWTWcVkDp6mul0BbB1+Aj2ochWir+2qsVHS5OTrv44B+qa6W6dXGZ1vBKBovxOnI/wiOEVRmD9/PoqiUFJSQmVlZa9i6mtO62TcxhEoAQ9Rje9HOhwhxCAlye4+Nn78eBITE3G5XGzZsuWUy+WMCn6IVVd66Gj3YdCq3DQhEYB/7j9Gm8t3VuI9zqcfgk8bgxLwonccOavbFkIIIQaiQCDAnu123K4A1hiVvHHGSIckhBDnBYNRxRIVPFX1egJ0tPt71NZBiL5yvKr7dPd29UV1d0amnth4DV4vHNrbs8kqExMTQy1W169ff8oWqxGhKF9OVqlitB1AL21UhRD9QJLdfUxVVRYsWADA/v37qa+v73K56FgNQ9K0EDhR3b0oM4YRsQZsHj//t7/xrMUMgKLgNksrEyGEEOK4ilI3dVVeFBUmzbCg0Uj7EiGEOFt0epUoqwZFAZ8vQEebD7fbj9cb6PLh80kyXPQfrz9Ao93D6X7LGuwevL28KKMoCuMnB+cGqSzz0NTg7dF6Zs6cGWqxevDgwV7F1Nd8hhQcMbMAiGp8V+4sF0L0OUl294P09HRGjhwJBCerPNXV3ePV3ZVlbpwOPxpV4bbJyQB8WNRMTbv77AT8JdeXfbsNtkKQ3nhCCCHOY3abjwO7ghVVo8YZiYnTRDgiIYQ4/2h1ClHRGlQV/H6wd/jpaPN1+Whv9UnCW/QbnUbltxeP4KlLgo+nLxnB32+ZxhMXDSfBFGxxNivDik7T+xRLbIKWYVnBySr37XT0qI2PyWRixowZAGzevBmXq2c9wPuLLeECfBorWk8TUfVv4t3+ADp7caTDEkIMEpLs7idz585Fp9NRU1NDQUFBl8vEJ2mJT9Lg98ORwuCHz8RUC5NTLXj98NLuhrMZMh5TNgE0aLxNaDxnubJcCCGEGCAC/gC7ttrxeiE+UUN2niHSIQkhxHlLowlOXNkdUq8j+lOSRUd2vDH4SDAxaoiVUUlmvj89BYCPS1qobO2bpPKo8UZ0OoW2Fh9Hj/SsCG78+PHExcXhdDrZunVrn8TVVwKqkY7EywAwtu8CezWWxlXyRyyE6BOS7O4nUVFRTJ06FYBNmzad8krq8erussMu3O5gL61bJyejKrC5vJ1DDfazEzAQUA24TVmAtDIRQghx/jpS5KKpwYdGCxNnmFFUaV8ihBCRpCjyPiwGrmlDo5iWbsEXgP/dXtfrvt0Q7FufNz6YKyjY58TtCr/vtkajYf78+QDs3buXpqamXsfVl1xR+Xj0qaE+6DpXJXqp7hZC9AFJdvejSZMmERMTg91uZ9u2bV0uk5yqJTpGxeeFspLgFdvhsQYWZ8UA8NedDX3yYdld7q+2MhFCCCHOM20tPgr2OQEYO9GEJUralwghhBDi9O6YMgSdqrCn1s7mivY+WefwbD3RMSoedyD03STsdQwfTmZmJn6/nw0bNvRJXH1JwR/qgx4ALE2rpbpbCNFrkuzuR1qtNnQldffu3V1OVqkoCjmjg1dsS4tceL3BN/Yb8xMxaBQKGx199mHZHccnqdQ5SlH8A6uvlxBCCNGffL4Au7ba8PthSNqJfplCCDHQbd68mfT0dFpbWyMdihDnpRSrnqvHxgPwwo56nN7wK7G/TlUVxk0xA3D0sJuWpp5NVjlv3jxUVeXo0aOUlZX1Oq6+orcXo3XXhSq7FUDnqpLqbiFEr0myu59lZmYyYsQI/H4/7733XpdV2qkZOswWFbcrQEVpsLo7wazjqjHBD8uXdjXgOUuTrfj0iXh1CSj40NlLzso2hRBCiIGg6ICTthY/eoPChGlmuW1eiAGuwebhcJPzlI8GmyfSIZ41U6dOZdeuXURHRwOwcuVKRo8e3ev1NjU1cdNNNzF58mQyMzOZOnUqDz30EO3tpy/GOZ58//qjpETOL8Tg9Y0xCSRbdDTavfxz/7E+WWdCkpb0YToA9u909Oiu79jYWCZOnAjA+vXr8fl8fRJbrwQCWJpWE6Dzd60AYDn2kVR3CyF6RRvpAM4H8+fPp6KiguLiYvLy8sjKyur0uqoqZI8ysG+Hg8MFToZn61FVhStHJ7CquIXaDg8fFjdzxaj4sxKv25yHtnUzBnsh7qixZ2WbQgghRCQ1NXgpKQje0ZQ/1YTBKPUAQgxkDTYP33/3CB7/qRMiOlXhj1dkkWTRncXI+ofH40GnO/V+6PV6kpOT+3y7qqpy4YUXcv/995OQkEBpaSkPPfQQLS0tPPfcc2ccv379eqxWa+jnhISEPo9RiIHCoFW5Y2oyj35WxduHjrEoK5qh0b2f5HrMRBO11R6aj/moLPOQkRn+nWfTpk3j0KFDtLS0sGfPHiZPntzruHpDby9G56o66XkF0Llr0NsLcFt6f8FOCHF+kjO5syA2NpZJkyYBwS98Xu/Jtx9lZOoxGBUc9gBV5cEqFJNO5cYJSQCs3NdIh+vsXIE93spEbyuUK6pCCCEGPa8nwK6tdgjA0BE6UodK+xIhBro2l++0iW4Ajz9AWz98f37//fdZsmQJ2dnZjB07luuuuw67PTip/D333MPtt9/OU089RX5+Pnl5edx///243e7Q+HXr1nHllVeSk5PD2LFjueWWWzq1FqioqCA9PZ13332Xa665hqysLN58800qKyv59re/zZgxY8jJyWHRokWsWbMG6NzGZPPmzdx77720tbWFKqqffPJJnn76aZYsWXLS/lx88cX85je/6XJfY2Nj+fa3v82ECRMYOnQo8+bN49vf/jZbt27t1rFKTEwkOTk59NBoZB4EMbhNT49iSpoFrx+e317fJ/NvGU0qI8cGW58e3OPA4w5/nQaDgdmzZwOwbdu20HtWRJyiqvurrPVvSC5CCNFjkuw+S6ZNm0Z0dDRtbW3s3LnzpNc1GoXMkcGrvocPOUMfikuyYhgWo6fD7eefB/rmVqgzcZsyCSg6NL42NO7as7JNIYQQIlIO7HZgt/kxmRXGTTJHOhwhzluBQACn19+th6ub/XBd3VxfdxNSdXV1rFixguuuu45PP/2U119/nUsuuaTT+I0bN1JcXMw///lPnnvuOT766COeeuqp0Ot2u53vfve7rF69mpUrV6KqKnfccQd+f+d9evTRR7n99tv59NNPWbBgAQ8++CBut5s33niDNWvW8OCDD2KxWE6KcerUqTzyyCNYrVZ27drFrl27uPPOO7nuuusoKipi9+7doWUPHjzI/v37ufbaa7u1/7W1tXz44YfMmjWrW8tfdNFFTJo0iWuvvZZNmzZ1a0xXuttVSrpPiUhTFIXvTB2CVlXYXWPj84qOPllvVq4BizXY+rTwQM8mqxwzZgzJycm43W62bNnSJ3H1jA/V24rCqd93NT4bxrYvzmJMQojBRNqYnCV6vZ7LLruM1157je3btzNq1KhQT73jRmQbKDnkpL3NT121l5R0HRpV4dZJyfznp5W8X9jMpSNjGRLVzxVnqg63KRuDvQCDvRC7IbV/tyeEEEJESF21h/IjwYrLiTPM6PSSKREiUly+ANetLOrTdT7wcXm3llt53UiM2jP//dfX1+P1ern00ksZOnQowEm9sXU6HU899RQmk4m8vDzuu+8+fvWrX3H//fejqiqXXXZZaDmPx8OTTz5Jfn4+RUVFjBo1KrSeO+64g0svvTT0c3V1NZdeemloe8OHD+8yRr1ej9VqRVGUTq1NLBYLCxcuZOXKlaH+vStXrmTmzJmnXNdxd911F6tWrcLpdLJ06dJTVoIfl5yczBNPPEF+fj4ul4s33niD6667jtdff52ZM2eedmxXNBoFa4zmtIWeihJcTohIS7XquXpMPP+3/xh/2VHH5DQLBm3v6gxVjcK4ySa2fmajrNjFsEw90bHh3SmhKArz58/n9ddf58CBA4wfP75f2h+dORAtzUNXoPpsobgSExNpbGwkEAhgbNuKue0LrI3v4TWk4zWmn/0YhRDnNKnsPovy8/NJT0/H6/WycePGk17X6RVG5ASru0u+Ut09Oc3ChBQzXn+Av+9uOCuxui1faWUihBBCDEIup589XwRv480aaSAx+dzv6yuE6F9jxoxh7ty5LFmyhO9+97u88sortLS0nLSMyWQK/TxlyhRsNhvV1dUAlJWVsWLFCqZOnUpeXl4o+VtV1bl/7YQJEzr9fPvtt/O73/2O5cuX89vf/paDBw+GHf+NN97IO++8g9PpxOPx8NZbb3H99defcdwvfvELVq1axQsvvMDRo0d55JFHQq/l5uaGHj/5yU8AyMnJ4aabbmL8+PFMnTqVxx57jCVLlvA///M/Ycd8nEajoNWe+iGJbjGQXDM2gWSLloY+nKwyOUVHSrqOQAD27+rZZJVpaWmMHDkSCLZY7Ys2Kz3h18XiNaaHHop1ROjfHUlX4jKPQgl4ial9GeXLpLgQQnSXVHafRYqisGDBAl577TVKSkqoqKggIyOj0zKZuQaOFLpoPuajqcFHQrIWRQlWd9/7YRkbjrZz+SgHeYmmU2ylb7jMeVgBnbMcxecgoOnf7QkhhBBnUyAQYO8OBy5ngKholVH5xkiHJMR5z6BRWHndyG4te6TJ2a2q7ceWDiMr/sx/34ZuJko1Gg3/+Mc/2L59O5999hl//etfefzxx3n//fcZNmzYaccqX/bYuPXWW0lLS+Opp54iMTERv9/P4sWL8Xg8nZb/asIcgonqBQsWsGbNGtavX8+zzz7Lww8/zO23396t2AGWLl2KXq/no48+Qq/X43a7Q5Xmp3O853ZOTg5xcXFcddVV3HPPPQwZMoTVq1eHlvvqZJRfN3nyZN58881uxyrEucygVbl9yhB+vb6Ktw41sTgrhrTo3t+hPXaSkfpaD8fqvdRUeEgbFv4658yZw5EjR6iurqa4uDiU/B4wFJW2IdcSV/kcWs8xYmpfoyXtNlCk578QonvCqux+5JFHTqo4ePPNN0+qZigrK+P73/9+r4MbjJKSkhg/fjwAn332GT5f50lzjCY1NLty8aETvbiy4o0syooB4MWdfTPRxen4dXF49cko+NHbi/t1W0IIIcTZVlnmobbSg6LA5JlmqQgUYgBQFAWjVu3Wo7stAQzdXJ8SRrNnRVGYNm0a9913H6tWrUKn0/Hhhx+GXj948CAOhyP0886dO7FYLKSmptLU1ERxcTF333038+fPJzc3l9bW1m5vOz09nVtuuYU///nPfO973+PVV1/tcjm9Xn/SeQaAVqvlm9/8JitXrmTlypVcccUVJyXVz+T4ecjxSTczMzNDj8TExFOO279/f2RaJggRITOHRjE51YLXH+DPO+r65BzebNGQOzp4Ae/AbgdeT/jrtFqtTJkyBYBNmzaddKFtIAhoTLSm3Ixf0aN3HMZybPWZBwkhxJfCSnZ//Yub3+9n5cqVNDU1dVrO4/Gc9Jw4YebMmRiNRpqamti7d+9Jr2ePMoACDbVeWpu9oedvmpCIXqNwsMHB1sq+mejidFzmL1uZ2KWViRBCiMHDbvOzf1ewfcnIcUZi4uRGNyFE9+zcuZPf//737Nmzh6qqKj744AOamprIzc0NLePxeLjvvvsoKipi7dq1PPnkk9x2222oqkpsbCxxcXG8/PLLHDlyhI0bN3ZqCXI6Dz/8MJ9++inl5eXs27ePTZs2kZOT0+WyQ4cOxWazsWHDBpqamjqdw91www1s2rSJdevWnbGFyZo1a1i5ciUFBQVUVFSwZs0aHnjgAaZNm3bSHapf9fzzz/PRRx9x5MgRCgsLeeyxx/jggw+47bbburWvQgwGX52scke1rc/O4bPzDJgsKk5HoFOBXDgmT56M1Wqlvb2dnTt39klcfc1nSKE9+RsAWFrWY+jYF+GIhBDnCunZHQFGo5HZs2cDsHXrVux2e6fXLVEa0jOCfUNLClyh5xPNOpaPigfgb7vq8fr7t7rb/WWy22AvgkD3ZrwXQgghBgq7zU9Lk/ekx/ZNNrweiIlVyRlliHSYQogeiDZo0Kmnr8bWqQrRhr697d1qtbJ161a+9a1vMW/ePJ544gkefvhhFi9eHFpm7ty5ZGZmcvXVV3PnnXeydOlS7r33XgBUVeUPf/gD+/btY8GCBfziF7/gZz/7Wbe27ff7eeihh1i4cCE33XQTWVlZPProo10uO23aNL71rW/x/e9/n/Hjx/OHP/wh9FpWVhZTp04lOzubyZMnn3abRqORV155hauuuoqFCxfyH//xH1xwwQX87W9/O+04j8fDL3/5S5YuXcrVV1/Ntm3beOmllzpNuCnE+SAtWs+Vo4Pn8H/ZUYfL2/vzao1WYdyk4B0ZRwpddLSffBfHmeh0OubMmQPAjh07aG9v73Vc/cFlzccWOx8Aa93raFy1EY5ICHEukFKmCBkzZgz79u2joaGBzZs3c8EFF3R6PWe0kapyD9UVHkaN82GxBr+oXz02ntWHW6hu97CquIXL8uL6LUaPaQR+xYDq60DrqsZrHNpv2xJCCCH6kt3mZ90HbfhPc07Z3ubH6QhgtkgLEyHONUkWHX+8Ios216mTPNEGDUmWvp14Njc3l1deeeWMy913333cd999Xb42f/58Pv30U3Q6Xah9wFdbRWZkZJzUOhLgV7/61Sm3N3v27JPG/PrXv+bXv/71ScsGAgEaGhq4+eabz7gfc+bM4d133z3jcl931113cdddd4U9TojB6JvjEvi0tJV6m5fXDxzjpglJvV7nkDQtSSlaGmq9HNjlYPo8S1jtmCD4frZ3716qq6vZtGkTF198ca/j6g+2hAvRuarQOw4TU/syzUNXyJxiQojTksruCFFVlYULFwLB9jC1tZ2vUEbHakhO1UIADheeqO426zTcMD7YC++1fY3Y3OFfxe02RYPbHLwlU1qZCCGEOJe4Xf7TJroB/P7gckKIc1OSRUd2vPGUj75OdA8GjY2N/OlPf6K2tpbrrrsu0uEIcV4walX+bUqwX/1bB5uoaXf3ep2KojBusglFhfoaL3XV3jMP6mId8+cHq6aLioqorq7udVz9QtHQmnI9Pm0sWs8xouv+T+48F0KcVp8ku8O9gvh1q1atYsWKFdx000385Cc/4dChQ90aV1BQwPXXX8+Pf/zjXm0/UlJTUxk1ahQQnKzy6xNW5Hw58URFqRun48Sb+YU5sQyN1tPu8vH6gWP9GqPb8mUrE5sku4UQQgghhDiXTZgwgeeee44nnniC2NjYSIcjxHljVoaViSlmPP4Af95e1yfrjLJqyB4ZbMd2YJcDny/8NqfJycmMHTsW6DonMVAENFG0ptxMQNFisBdgbl4b6ZCEEANY2G1M/v73v2M2m4ETM3G/+OKLoeeAk3pQn87mzZt58cUXueOOO8jLy+OTTz7h0Ucf5emnnz7tbN52u53nnnuO8ePH09LSEu5uDBhz5szh8OHD1NXVcfDgwdAHDUBCkpa4RA3NjT6OFLkYMyF4q45GVfj2pCT+67Mq3ito5tKRcf1WueI2jwRA66pE8XUQ0ET1y3aEEEIIIYQ41/33f/93pEM4ra7aowgh+p+iKHxn2hDu/lcp26ttbKtsZ/pQa6/XmzvGSOVRN3abn8MFLkaONYa9jlmzZlFcXExDQ8NJOYmBxGtMpz3pSqLrXyeqaQ1eQzpuy+hIhyWEGIDCquxOTEyksbGR8vJyysvLqaioOOm58vJyGhsbT5uo/qr333+fxYsXs2TJEoYOHcqtt95KYmIiq1evPu24//3f/2XOnDmdZj4/F1ksFmbMmAEEE/8ul6vT67lfVncfLXHhcZ+o7p6WHsW4IcErwy/vbui3+PzaaDyGNBQCGGxF/bYdIYQQQgghhBBisBoabWD5qOBklc9vr++TySq1OoUxE4NFccWHnNht4a/TbDYzffp0oOucxEDijJ6CPWYmANF1/4fG3RjhiIQQA1FYld3PPfdcn27c6/Vy5MgRrrzyyk7P5+fnU1h46rYZ69ato66ujn//93/njTfeOON2PB5PaPIXCF5VNZlMoX+fDce309X2Jk6cyIEDB2hubmbr1q0sWLAg9NqQNB3WGJX2Vj9HD7vJHXMi7tsnJ3Pvh2V8WtbGFaPjyUnon0ka3OY8dK5q9PYiXDFTzrg/5yLZn4FtMO3PYNoXkP0RQgghhBCiu64dn8inZW3U2zy8efAYN+T3frLKtAwdR0s0HGvwcXC3g6lzLGGvY8KECezfv5+Wlha++OIL5s6d2+u4+ktH4mVoXTXonUe/nLDy+wRUQ6TDEkIMIGG3MelLbW1t+P1+YmJiOj0fExNzytYkNTU1vPrqqzzyyCNoNJpubeett97i9ddfD/2cmZnJ448/TlJS7z9YwpWSktLl81dffTV/+ctf2Lt3LwsXLuy03LRZFtZ+VEVZiYfZC0ag1QYL8lNT4ZKjDj48WMcr+1v443WZ/ZKgCZjn4Gteh9FZgiUlGUU5cdxPtT/nKtmfgW0w7c9g2heQ/RFCCCGEEOJMjFqVf5uczBMbq3njQBOLMmNIsep7tc7gZJVm1q9up6bSQ0Oth6SU8NqcajQa5s+fz7vvvsvu3bsZN27cwO3rr2hpS7mRuIpn0brrsNa/QduQG0CKVYQQX+qTZLfX62Xt2rVUVFQQFxfH4sWLw3pj7CpB29Vzfr+f3//+93zzm98kLS2t2+u/6qqrWLZs2UnrbmhowOsNf9binlAUhZSUFGpra7uc9CEqKors7GwOHz7M66+/ztVXXx2K0xwdwGxRsdt8bNt8lMzcE324rsmz8klBPTsqWnh3e3Gf9P06ScBMgmpG9dpoLN2G1zTijPtzrpH9GdgG0/4Mpn0B2Z/T0Wq1EbmoKoQQQgghBq7Zw6zkp5jZW2vnzzvq+dnCob1eZ3SshhE5ekqL3ezf6WDBRVpUTXjJ3xEjRjB8+HCOHj3Khg0buPzyy3sdV3/xa6NpS7mR2KrnMXbsw2PIwBE3L9JhCSEGiLCS3W+//TZbt27lscceCz3n8/n4+c9/zpEjR0LPrVq1iscee4z4+PjTri86OhpVVU+q4m5tbT2p2hvA4XBw+PBhSktLeeGFF4DgJJmBQIDrr7+en/3sZ4wbN+6kcTqdDp2u6yubZzs5czzersybN4+ysjIqKyspLi4O9SNXFMjKM7B/p4OSAhfDsvSoavCDK9Gs5fJRcbx5sIkXd9YzOdWCRu3rK5oKbnMuxo496G0FeIzDu7U/5yLZn4FtMO3PYNoXkP0RA4/eoKKq4D9N60pVDS4nhBBCCHG2KIrCd6cGJ6v8oqqD7VUdTE2P6vV688YZqSr30NHup7TYRfao8CernDdvHhUVFZSWlnL06FGGDx9+5kER4jGNoCNxGdbGd4k69iFeQxoec3akwxJCDABhneHt2bOH7OzObx6ffPIJR44cYdasWTzxxBP84Ac/wOVy8dZbb51xfVqtlqysLPbu3dvp+b1795KXl3fS8iaTid/+9rc88cQTocfSpUtJS0vjiSeeICcnJ5zdGXCio6OZMiXYE3vDhg2d+owPy9SjNyg4bH6qyz2dxl0zNgGrQUNlm5vVJS39EpvLEvz/0NtO3UtdCCGEGCjMFpVFl0Yzb2nUKR+LLo3GbJFktxBCCCHOrowYA1eEJqusw+3r/WSVOr3K6PxggrvwgBOnI/x1xsfHk5+fD8D69evx+Xy9jqs/OWJm4rBOQiFATO1rqJ6WSIckhBgAwjrDq66uPikJvW3bNsxmM3fddRfDhw9nzpw5LFu27KQE9qksW7aMNWvWsHbtWiorK3nxxRdpbGxk6dKlALz66qs8++yzwWBVlWHDhnV6REdHo9PpGDZsGEZj+FcuB5qpU6ditVrp6Ohg+/btoec1WoWskcFJF0oKnJ0qDi16DTeMTwTgtX2N2D19/4HkNucSQEHnrkH1tvb5+oUQQoi+ZraoxMZrT/mQRLcQYrDYvHkz6enptLbK93QhzhXXjk8gwaSltsPDmweb+mSdGZl6YuM1+LxwcI+jR+uYMWMGRqOR5uZm9u3b1ydx9RtFoT3pKjyGNFS/jZjal8HvOfM4IcSgFtZZXkdHBwkJCaGf/X4/RUVFjB49Gr3+xKQKubm5NDY2dmuds2fP5tZbb+WNN97g/vvv59ChQzzwwAOhPqfNzc3dXtdgoNVqmTcv2Gtq586dnb6wjsjRo9VCe6uf+prOvcYvyo0lzaqj1enjzQN980H5VQFNFF5DsJeY3l7U5+sXQgghhBAiHHabn5Ym7ykfdlvvKyXPFVOnTmXXrl1ER0cDsHLlSkaPHt0n605PTz/p8dJLL512zD333NPluEWLFvVJTEIMBmadhtsmJwPwxoFj1HW4e71ORVEYP9kEQNVRD8cawp+jzGAwMHv2bAC2bt2Kw9GzpPlZo+poTbkZv2pG56rC2vAOSDtCIc5rYfXsjoqKoqOjI/RzRUUFbrf7pNYmOp0OjUbT7fVedNFFXHTRRV2+tmLFitOOvfbaa7n22mu7va1zQXZ2NhkZGVRUVLB+/frQxBA6vcrwHAOHC1wUH3IyJO1EH3KtqvDtSck8tr6KdwqauHhkLInm8GZgPhOXJQ+dqwK9rRBXzPQ+XbcQQgghhBDdZbf5WfdB2xn78g+WdkUej+eUcxAB6PV6kpOT+237Tz31VKdEtdVqPe3y//mf/8mDDz4Y+tnr9bJ06VKWLVvWbzEKcS6aO9zK6hIze+vs/GVHPQ8u6P1klbEJWoZl6Sk/4mb/Tjvzl1pRwpzXa8yYMezdu5fGxkY+//zzAX+hyq+LozXlBmKrX8DUvgOPMQNnzIxIhyWEiJCwvvkNGzaMTZs2hX7etm0bAGPHju20XF1dHbGxsb2P7jylKArz589HVVVKS0spKysLvZY10oCqQs3JVI0AAQAASURBVHOj76SrtDOGRjEmyYTbF+CVPX1fDe82jwJAby+BQPhXiIUQQgghhOgLbpf/tIluCE5Q63b1fXX3+++/z5IlS8jOzmbs2LFcd9112O12IFjRfPvtt/PUU0+Rn59PXl4e999/P273iYrNdevWceWVV5KTk8PYsWO55ZZbOn3fr6ioID09nXfffZdrrrmGrKws3nzzTSorK/n2t7/NmDFjyMnJYdGiRaxZswbo3MZk8+bN3HvvvbS1tYUqqp988kmefvpplixZctL+XHzxxfzmN7857T7HxMSQnJwcephMptMuHx0d3Wn5vXv30traynXXXdfdwyzEeUFRFL4zbQgaBbZWdrCjquPMg7phVL4RnV6hrcXP0cPhV4yrqsr8+fMB2L9//zlxt73HnIMtIVhEaW14D63jaIQjEkJESljJ7ssuu4zPP/+cRx55hN/97ne8+eabDBs2jFGjRnVabteuXYwYMaIv4zzvJCQkdDkxhNGkkpEZbBlTcsjZaYyiKNz65W1Q6460cqSp8+u95TWk4tNEoQZc6OSDQwghhBBC9KFAIIDX271Hd+dM8/no1voC3bzlva6ujhUrVnDdddfx6aef8vrrr3PJJZd0Gr9x40aKi4v55z//yXPPPcdHH33EU089FXrdbrfz3e9+l9WrV7Ny5UpUVeWOO+7A/7Xs/aOPPsrtt9/Op59+yoIFC3jwwQdxu9288cYbrFmzhgcffBCLxXJSjFOnTuWRRx7BarWya9cudu3axZ133sl1111HUVERu3fvDi178OBB9u/ff8Y7ZR966CHGjRvHpZdeyksvvXRSrGfy2muvMW/ePIYO7X3VqhCDzbAYA5cfn6xyRx2ePpis0mBQyRsXnNOsYL8TVw8u/A0dOpScnBwCgQDr16/v9vtkJNlj5+O0jEPBR0ztK6jetkiHJISIgLDamEycOJF/+7d/45133uHw4cOMHTuW73znO52WaWlpYf/+/dx00019Guj5aMaMGRQVFdHS0sLu3buZMmUKANl5Bo4ecVNf46WtxUd07ImWMXmJJuYNt7LhaDt/3VXPfy7OQFHCu2XplBQVtzkPU/sO9LZCYG7frFcIIYQQQpz3fD748I2+nWBx89ruVUle8o0YtN04M6qvr8fr9XLppZeGErdf742t0+l46qmnMJlM5OXlcd999/GrX/2K+++/H1VVueyyy0LLeTwennzySfLz8ykqKupURHTHHXdw6aWXhn6urq7m0ksvDW1v+PDhXcao1+uxWq0oitKptYnFYmHhwoWsXLmSiRMnAsHe3jNnzjzlugB+/OMfM3fuXIxGIxs3buQ///M/aWpq4p577jnzASN4gWDdunU8++yz3VpeiPPRdeMT+KysjZp2D28dauLacYm9XufwbD3lR1y0tfgp2OtkwjRz2OuYO3cupaWlVFZWcvjwYXJycnodV79SFNqHXIO2sh6tu57o2ldpSb8DlLBSX0KIc1zYDewuvPBCnnvuOV566SV+9rOfMWTIkE6vx8bG8sILL3R5i5wIz1cnhti2bVuoX7rFqiFtaLBn39eruwG+NTEJraqwt9bOzmpbn8bktuQBoLcX9Ol6hRBCCCGEGOjGjBnD3LlzWbJkCd/97nd55ZVXaGlpOWmZr7b5mDJlCjabjerqagDKyspYsWIFU6dOJS8vj5kzZwJQVVXVaT0TJkzo9PPtt9/O7373O5YvX85vf/tbDh48GHb8N954I++88w5OpxOPx8Nbb73F9ddff9ox99xzD1OnTmXcuHHceeed3HffffzP//xP6PXc3NzQ4yc/+clJ4//v//6P6OhoLr744rDjFeJ8YdZpuP3Lu7T/uf8Y9R2eXq9TVRXGTQ4muMuPuGlpCr8VaXR0dKjobuPGjXi9A7+daUA1fDlhpQG98yhRjR9EOiQhxFkml7cGuNGjR7N//35qa2vZtGlTaCLPnNEGqis8VFV4yBvvwxJ1orp7SJSeZXlxvH2oiRd31TMx1YImzAkpTsVtyiGAgtZdj69yNTqXGbdxBCjn/sQ/QgghhBAicjSaYIV1d7Q2+7pVtT17cRQxcZozLqc58yJfLqfhH//4B9u3b+ezzz7jr3/9K48//jjvv/8+w4YNO+3Y43db3nrrraSlpfHUU0+RmJiI3+9n8eLFeDydk1tf74t94403smDBAtasWcP69et59tlnefjhh7n99tu7FzywdOlS9Ho9H330EXq9HrfbHao0764pU6bQ3t5OQ0MDSUlJrF69OvTa1yeuDAQC/OMf/+Ab3/gGer0+rO0Icb6ZN9zKqmIT++sd/GVnHQ/M733bn4QkLenDdVQd9bBvh4O5F0SFfef3lClTOHjwIG1tbezatYtp06b1Oq7+5tMn0TbkWmJr/o65dQtew1Cc0ZMjHZYQ4iwJK0N58ODBsB6i9xRFYcGCBQAUFhaGKkJi4rQkpWghAIcLXCeN++bYBKL0KuWtbtYc6bvbQfWOwxz/tQkceYXYqudJKHsCQ8f+PtuGEEIIIYQ4/yiKglbbvUf3k9N0a33hJH8URWHatGncd999rFq1Cp1Ox4cffhh6/eDBgzgcjtDPO3fuxGKxkJqaSlNTE8XFxdx9993Mnz+f3NxcWlu7/109PT2dW265hT//+c9873vf49VXX+1yOb1eH5rz56u0Wi3f/OY3WblyJStXruSKK64442STX7d//36MRiPR0dEAZGZmhh6JiZ1bL2zZsoWysjJuuOGGsLYhxPlIURS+Oy0FVYHPKzrYWd03k1WOmWBCo4WWJh8VpeFPVqnT6ZgzZw4A27dvD91xPtC5LWOwxS0GwNrwFlpn1RlGCCEGi7Aqux955JGwVr5y5cqwlhddGzJkCGPHjuXAgQN8+umnXH/99aiqSs5oIw21HVSUuskbZ8RgPHHtIsqg4brxifxlRz2v7mlg3vBoTLreVV8bOvYTXfvKSc+rvlaia1+hLeUmXFHjerUNIYQQQgghBqqdO3eyceNGFixYQGJiIjt37qSpqYnc3NzQMh6Ph/vuu4+7776byspKnnzySW677TZUVSU2Npa4uDhefvll0tLSOHr0KI899li3tv3www+zePFisrKyaG1tZdOmTafsnzt06FBsNhsbNmxg7NixmEymUFL7hhtuYOHChQC8/fbbp93m6tWraWhoYMqUKRiNRjZv3szjjz/OTTfdhMFgOGPMr732GpMmTerUi1wIcWrDYw0sy4vj3YJmnt9ex+8vM6PT9O483mhSyRtr5OAeJ4f2OkkdqkOnD2+dI0eOZO/evdTU1LB582YuvPDCXsV0ttjil6B1VWGwFxJT+zJNGf+PgObkiX2FEINL2G1MzGYzs2bNYvz48X038aE4o1mzZlFSUkJjYyMHDhxg/PjxJCRpiEvQ0HzMx5EiF6PzO1dlXJIbx78Km6nt8PD2oWPckJ/U8wACfqIa3gfg6//rChAAohrfx2UZIy1NhBBCCHFOam9v71SR+3Umk+mkNg0iMvQGFVUFv//Uy6hqcLm+ZLVa2bp1K3/+85//P3v/GR5XeS3+39+9p2k0Rb3LVrHl3hvuvYApBkK1DTEJgeRHKiEkHPJwSMgf4pwEThIghzQM2MbGOA5gCDbuFXdbtiVXSbZ6scqoTn9eCAuEJFuyyoyk9bmuuUAz9+y99rY0Ze37Xouqqiri4uIaktBXTZ06laSkJO6++24cDgeLFi3iySef/CImlddff53nnnuOGTNmkJyczAsvvMA999xz3X17PB6effZZ8vPzMZvNzJw5k+eff77ZsePHj+ehhx7ie9/7HmVlZTz55JP89Kc/BSA5OZlx48ZRVlbGmDHXXtav0+l46623+NWvfoXH4yEhIYGnnnqKZcuWXTdem83GJ598wq9//evrjhVCfOnBEeHszrKRV+nkg/Qy7hkW1u5tJqUYuJzhoKrSw9lTdQ21vFvr6orzNWvWcObMGYYPH05MTEy74+p0ioot6n5Ccl5F6ywlqGAN5bGPSM5CiB5O8Xq93tYO3rlzJzt27CAtLY3w8HBmzZrFzJkzmyxX6y6Ki4ub1MbrLIqiEBMTQ35+Pm045Y2cOHGCnTt3EhAQwEMPPYTRaKQg18mhPdVodTD3tiB0+sap6L2Xbfxudx4GjcJf7kgmLFB3Q/vW1WQQkve3644ri/0OzsDkG9qHL3XEv48/kePxXz3pWECO51p0Oh0REe24yCga6cr37I7S0/4+blR3OQ+VlZW8/fbbzZZ+uEqj0fDwww/fUMK7u5yHzvbV81BRUdFQCuNG1FR7cNhbznbrDSqBpq5NaPz4xz/GZrPxz3/+87pjdTqdT17XvF4v06dPZ+nSpTz++ONdvv+v66rzYLPZmv19k/frjtUd369vRGe/pu/IrOCVffkYNAqv3Z5MhOnGvsd/VXGBk893VqMoMH2+BWtwK+tBfcWWLVtIS0sjKiqK++67r0MmQHbF+6PGXkBozusoXifVwTOoDu+ZDXPls0bHkXPZcTrqXLbl/bpNn/5mzJjBf//3f/OnP/2JqVOnsnXrVr7//e/zwgsvsG/fvm7Rmbc7Gz58OGFhYdTV1fH5558DEBWrxWxVcTnh0sWmtbsn97EwMNyI3e3l3dSSG9636rZ16DghhBBCCH9SW1t7zUQ3gNvtvubMb9G1Ak0qwaHaFm9dnejuDkpKSnjjjTcoKCjg/vvv93U4QogWzEi0MiSi/nv8P48Wdcg2I6J1RMfr8Hrh1NGaG0o6TZo0CZ1OR2FhIWfOnOmQuLqC2xCNLfIbAJjKd0rPMSF6uBv6BBgVFcWDDz7Ia6+9xtNPP43RaOTVV1/lscce45NPPunoGMUXVFVtaFZ56tQpiouLURSF/oMDAMg4Z8ftavyGpSgKj4ypv/KxNaOCrLK6G9q3R9O6WTetHSeEEEIIIYToWiNHjuS1117jd7/7HcHBwb4ORwjRAkVReHx8FKoC+y5Xcjy/ukO2O3SUEVUDV4rd5GW3fQa+yWRiwoQJAOzbtw+Ho+0NL33FbhlJTfA0ACyF69A4Cn0ckRCis7RruoOqqowZM4bvfve73HHHHdTU1JCWltZRsYlmxMfHk5KSgtfrZefOnXi9XuL66jAGKtjrvGRnNX2zGRwRyOS+FjxeeOtY8Q3t12lMxK0JoqVrv17ArbHgNCbe0PaFEEIIIXzF6/Vis8nqNNF+//u//9uqEia+kpuby8mTJ7nrrrt8HYoQ4joSQwK4dUAIAH89XIjT3f5SCoEmlZQvJsulHa/F5Wz7NkeOHElQUBDV1dUcPny43TF1paqwBTiMyaheB0H5K1HcNzYZUAjh39qV7D5+/DivvPIKjz/+OJs2bWL27Nmtaq4i2mfq1KlotVry8vI4d+4cqqrQb2D9G9bFM3Y8nqZvWA+PikCrwtH8ao7dyFVhRaUq4jaAJglvL1ebVnpRPLK0VwghhBD+z+l0kpmZyY4dO3jrrbdkdaIQQgi/8+CIcIIDNOTaHHx4prRDttlvkIFAk0pdrZfz6W1P9mq1WqZNq58hffToUcrLyzskri6haKiIfhC3NgitswRr0XvgvUanYyFEt9TmZHdRURFr1qzhe9/7Hi+99BI2m43HH3+cN954g8cee4zExMROCFN8lcViYfz48QDs2bMHh8NBn2Q9eoNCTbWH/GaWI8VY9NzyxVXhFUeLcDeTEL8eu3kYtugleDRBje73aKy4VRMadxVB+SvBK7XbhRBCCOFfvF4vpaWlHD16lA0bNvDGG2/w0UcfkZqais1ma3WTrdOnT1+3trcQQgjREUx6Dd8cHQnAe6dKKKlpf/NPjUZh6GgjABfP2qmqbPt7WlJSEn379sXj8bBnz552x9SVvBozFdFL8SpaDNXpBJZt93VIQogOpm3L4F/96lekp6cTGhrKjBkzmDVrFlFRUZ0Vm7iG0aNHc/r0aWw2G4cOHWLKlCkkpRg4e6qOC+l1xPbVNfnSdt+wcLZlVJBVbmdHZgVz+gW3eb928zDspiHo67IItWgorXTjCEhE4ywmJOf/0NdlYS1ajy3yPuiAzsxCCCGEEDfK4XCQnZ3NpUuXuHTpEpWVlY0et1gsJCYmkpCQgMFgYP369dfd5smTJ8nPz2fu3LlERkZ2VuhCCCEEALOSrGy+UE56cS3/PFLE09Pi2r3NqFgtkTFaivJdnDpay03TTa2+6Av1NcWnTZvG6tWrycjI4PLly/Tt27fdcXUVV0A8lRGLsBatx1S6FZchDodpkK/DEkJ0kDYlu9PS0jAajfTt25dLly6xYsWKFscqisLTTz/d3vhEC7RaLdOnT2fjxo0cO3aMIUOGkJgSxIUzddgqPBQVuIiK0TV6jtWg4d6hYaw4VszKEyVMTbBi0N5AJRtFxRnYDzUyBqc7H7xe3PooKqKXEJz3JgGVx3HpwqkJndNBRyuEEEIIcX1er5crV640JLfz8vLweL5cnqzRaIiLiyMhIYGEhARCQkIavtwXFRW1ah96vZ6SkhLWrl3LmDFjuOmmm9Bq2/SRWgghhGi1q80qn/xPFnsvV3KioJqR0aZ2b3PoaCMlhZUUF7gozHMRHae7/hO/IiwsjBEjRnDixAl27drF4sWLUdV2VcrtUnXWcWjrcgi0HcBauJay+Cdw68N9HZYQogO06ZN5eHj9H352dvZ1x7blqqC4MUlJSSQkJHDp0iV27drFHXfcQWI/AxfP2rmQXtck2Q1w68AQPjlXTlG1kw/SS7lveMe9mDsD+9dfHS3egLl0C25dGHbLqA7bvhBCCCHE19ntdrKzs8nKyuLSpUtUVzfuTRIUFERCQgKJiYnExcWh0zX/Zd5oNKLRaK5ZokSj0XD33Xdz9OhRzp07x5EjR7h48SKzZ88mPj6+Q49LCCGEuCopJIBbBoTw8dky/nqokP9dmIRO076ci9miIXmggQvpdk4fqyUiSotG27Zt3nTTTZw9e5bS0lJOnjzJyJEj2xVTV6uKuA2dPQ+dPZugglWUxn8PVL2vwxJCtFObkt2vvfZaZ8UhboCiKEyfPp1Vq1Zx6dIlMjMzSR6YSOZ5O6XFbkqLXYRGNP4n1mtUHhoVwR/25rE+7Qrz+gcTYuy42Uh1QRPQOEswle/GWrSeMm0ILmNCh21fCCGEEL2b1+uluLi4YfZ2fn4+Xu+XvUi0Wi3x8fENs7eDg4NbtV2LxcLDDz9MbW3LzbaNRiMWi4Wbb76ZAQMGsH37dsrLy/nXv/7F8OHDmTx5MgaDob2HKIQQQjSxeEQ4ey7ZyLE5+OhsKXcPCWv3NlOGBJCT5aCm2sPFs3YGDA1o0/MDAgKYOHEiO3bs4PPPP2fAgAEYjcZ2x9VlFC0VMUsJyf4zWkdBfUnWqAekJKsQ3Vz3WWMimhUSEsLo0aMB2LVrF1qdh/jE+iuRF84031l5WoKFlLAA6lxe3k0t6fCYqsNuxm4aguJ1EVzwDqqzY7pGCyGEEKJ3qqur49y5c3z22Wf84x//YM2aNezfv5+8vDy8Xi8hISGMGjWKRYsW8dhjj3HHHXcwcuTIVie6r7JYLERGRrZ4s1gsDWOTk5NZunQpw4YNA+prea9atYrMzMyOPHQhWmXfvn3ExcVRUVHh61CEEJ3ErNfwzVERAKw9WcKVDmhWqdUqDBlVn5w+n15HTXXbm1UOGzaMsLAw7HY7Bw4caHdMXc2jtWKLXowXlYCqVIzl3avhphCiqTZN6X3qqadaPVZRFP7nf/6nzQGJths/fjxnzpzBZrNx7NgxBg8aw+UMB4V5LmzlbqzBmkbjFUXhkTGR/Ndnl/nsYjm3DQqhb1AHzkJSVCqi7ick9w109jyC896iLP67eDXd6AqvEEIIIXzG6/VSVFTEpUuXyMrKorCwsNHsbZ1O12j2dlBQkE/iNBgMzJ49m5SUFLZt20ZFRQUfffQRAwcOZNq0aQQGBvokrt6isrKyVTPxe4Nx48Zx7NgxrFYrAGvXruX5558nPT29Xdtdu3YtTz75ZLOPnThxoqHMZXNWrFjBm2++SU5ODrGxsfzwhz/k3nvvbVc8QvR2s5KD2HShgrMltbx5tIinpra/WWVsHx2XLmq5UuTi9PE6xk9pWz1wVVWZPn06GzZs4OTJkwwfPpywsPbPOu9KTmMSVeG3Yin5CPOVT3EZYnEG9vN1WEKIG9SmZLfZbL5uLe66ujoyMjLaFZRoG71ez9SpU9m0aROHDh1i0KBBxPTRkZ/t5MKZOsZMbPpmNTQykJvizRzIqeLtY0X8cmafjg1K1VMR801Csl9D6ywiqGA15bHLQNFc96lCCCGE6H1qa2sbSpNcvny5SRIzNDSUxMREEhISiImJ8aumkH369GHx4sUcOHCAY8eOcfbsWS5dusSMGTMYMGCA9LLpBJWVlbz99tvXrbH+8MMP94iEt9PpbLHePNR/H4iMjOzw/d5xxx3MmjWr0X0/+clPsNvt10x0v/XWW7z00kv87ne/Y9SoURw/fpyf/exnBAUFMX/+/A6PU4jeQlUUvjs+ip9+msXuS5XM71/NiA5oVjlstJFdmyspyHFSVOAkMrptzSr79OlDv379uHjxIrt27eLOO+/sdu99tUGT0NpzMFYeI6jwXUrjv49HF+zrsIQQN6BN3xKef/75Fh9zu91s2bKF999/H4CpU6e2KzDRNgMGDODkyZPk5eWxZ88eJt00j/xsJ3mXnQwa5ibQ3DTJ/M3RkRzOreJQbjWpBe1/k/w6j9ZKRew3Cc55A33tBSzFH1AZcZfUvxJCCCEEHo+HwsLChgR3YWFho8d1Oh19+/ZtmL3t7wlLnU7H1KlTSUlJYcuWLVy5coVNmzZx9uxZZs2a1TDjVnSM2traaya6of77SW1tbYf/7mzcuJFXXnmFrKwsAgICGDZsGG+++SaBgYH8+Mc/xmazMWzYMFasWIHdbmfRokX85je/Qa+vLzW4fft2/vjHP3L27FlUVWXs2LH8+te/JjExEYDs7GwmTpzIX/7yF95++22OHj3KSy+9xJQpU3j22Wc5dOgQDoeDPn368Mtf/pI5c+awb98+7r33XtLS0jh9+nTDbOy4uPpZn08++SSqqrJx40a2bt3a6Hhuvvlm5syZw89+9rMmx2o0GhvV371y5Qp79+7l97///TXP0fr161m6dCmLFi0CICEhgSNHjvD6669LsluIdkoODWBB/2D+c76cvx6ub1apVdv3HdsarCExxUDmOTunjtYyc4EWtY0NMKdOnUpWVhbZ2dlkZGTQr183mxmtKFRG3InWXoDOkU9QwSrK4h4DtW2JfyGE73XIlJj9+/ezZs0aCgoKGDFiBEuWLGn4sCa6hqIozJgxgzVr1nD+/HmGDRtGRHQIxQUuLp61M3xs02W0cVY9N6cE8/G5ct48WsQfbklE7eBEtMsQiy36AYLy38FoO4RLF0FtyLQO3YcQQgghuoeamppGs7fr6hr3FwkPD29IbsfExKDRdL8VYVFRUTzwwAMcOXKEgwcPkpWVxcqVK5k2bRpRUVG+Ds+veb1eXC5Xq8a2ZZzTef26tlqttlWzEAsLC3niiSd49tlnueWWW6iqquLAgQONyuzs2bMHg8HAunXryM7O5sknnyQ0NJRf/OIXQP3fwWOPPcbw4cOpqKjg97//PY8++iibN29GVb9sqfTiiy/y3HPP8fLLL6PX63n66adxOp2sX7+ewMBAzp07h8nUdLLKuHHj+NWvfsXvf/97du3aBYDJZKKiooKXX36Z48ePM2rUKADS0tI4deoUb7zxxnWPHWDdunUYjUZuvfXWa45zOBxNmrUajUaOHz9+3VnqQojrWzoygr2XK8mucPDx2TIWDQ5t9zYHDg0g95KD6koPmeft9BvUtmaVQUFBjB49msOHD7N7924SEhL8ahVWq6h6KmIeIjT7z+jsOVhKPqQy4m6ZsCdEN9OuV57Tp0+zatUqLl68SFJSEr/85S8ZPnx4R8Um2igiIoJhw4Zx8uRJdu3axbzZ91Bc4OJypoMBQwMwBDTtR3r/8HC2Z9rIKLOzK8vGzKSOr3npMA3+ov7VRsxX/oNbF4rDPLTD9yOEEEII/+LxeCgoKCA1NZXTp09TVFTU6HGDwUCfPn1ITEykb9++mM1mH0XasTQaDRMmTKBfv35s3bqVgoICtm3bRmZmJtOmTWtz48zewuVy8Ze//KVDt3l11en1fO9732tVAraoqAiXy8XChQuJj48HYPDgwY3G6HQ6Xn75ZYxGIwMHDuSpp57iN7/5DU8//TSqqjYkinU6HU6nkz/84Q+MGDGCc+fOMWjQoIbtPProoyxcuLDh57y8PBYuXNiwv4SEhGZj1Ov1WCwWFEVpVNrEZDIxc+ZM1q5d25DsXrt2LRMnTmxxW1+3du1a7rzzzkazvZszY8YM3n33XW6++WaGDx9Oamoqa9aswel0UlpaKhd+hGgns0HDN0dH8OfPC1idWsLUBAthge27iKTTKwwZGcDxg7WcPV1HXIKeAGPTHMK1jBs3jvT0dGw2G8ePH2fcuHHtiskXPLoQKqIfJDjvTYy2wzgN8dQF3eTrsIQQbXBDye7Lly+zatUqjh8/TmRkJD/84Q+ZMmVKR8cmbsDEiRM5f/48V65cIa8wneDQfpSXusk4Z2fwiKYfSoMCtHxjaBjvHC/mnePFTOpjwaBt2xtaa9QGTUbjLCGw4nOCCtdSpn0cV0D7m2kIIYQQwr9UVVU1mr3tcDgaPR4ZGdkwezs6OrrRTNaeJiwsjHvuuYfU1FT27dtHZmYmly9fZuLEiYwePbpHH3tPNWTIEKZOncqcOXOYMWMGM2bM4NZbb210AWPIkCGNksFjx46lurqavLw84uPjycrK4n/+5384evQopaWleDweAHJzcxslu0eOHNlo39/61rd45pln2LlzJ9OmTWPhwoUMGTKkTfEvXryYn/70p/z3f/83Go2GDRs28Nxzz7XquYcPH+bcuXP88Y9/bHR/SkpKw//ffffdLF++nB//+McUFxdz++234/V6iYiI4L777uP111/vlis2hPBHs5OD2HS+nHNX6lhxrJifTolt9zbjE/Vcuuig7IqbtBO1zfb/uha9Xs/kyZP57LPPOHToEIMHD252BYq/cwamUB02H/OVTViKP8JliMEV0NfXYQkhWqlNye6SkhLWrFnD3r17MZvNLFu2jHnz5nW/pSk9mNFoZNKkSWzfvp0DBw6wYG4S5aWQdcFO/8EB6HRNl9/cPjCE/5wro6TGxUdny7hnaCd0TlYUqsJvQ+MsxVBzjqD8tyjr8wQebcfPJBdCCCFE13G73eTn5zckuEtKSho9HhAQwMCBA4mKiqJv374EBjYtrdaTqarKqFGjSE5OZs+ePVy4cIG9e/dy/vx55syZQ0REhK9D9BtarZbvfe97rRpbXFzcqlnb99xzT6vOcWu/z2g0GtasWcPhw4fZuXMnb775JsuXL2fjxo307XvtRMjVMinLli0jNjaWl19+mfDwcDweD7Nnz25SbuXrs6cXL17MjBkz2Lp1K7t27eLVV1/lueee41vf+larYgeYN28eer2eTz/9FL1ej8PhuG5Jkqveffddhg4dyogRIxrdv3nz5ob/v1of3Wg08vLLL7N8+XKKi4uJiopi5cqVmM1mQkPbX25BCFHfrPLx8dE89WkWu7JsLOgfzLCo9r3HKorCsDFGdn9WRe4lJwn9XIRFtC3fM2jQIFJTUyksLGTfvn3MmzevXTH5Sk3wDLR1uQRUnyIofxVlfb6PR+vf/UOEEPXa9Kr1ox/9CJfLxahRo1i0aBEBAQFcvny5xfHJycntDlC03dChQzl16hTFxcVcyDyE2TqBKpuHSxft9G+m7pZBq/LQqAhe2ZfP+6euMK9fEEEBnXABQ9Fgi36QkJz/Q+soJCjvLcrjH8erGq7/XCGEEJ1u06ZNfPjhh5SXlxMfH8+yZcuaLM//qrS0NN566y1ycnIICQnhjjvuaNR47MCBA2zYsIGCggLcbjfR0dHcfvvtTJ8+vSsOR3SiyspKLl261NCI6utJuqioKBISEkhMTCQqKoq4uDjy8/Mb1TXubYKCgvj2t7/N1q1b2b17N0VFRaxdu5axY8cyfvx4mTxCfZKltbWcW3u+tFpth9eHVhSF8ePHM378eH7yk58wYcIE/vOf//D4448D9a+NtbW1Dcnqo0ePYjKZiImJobS0lPPnz7N8+XKmTp2K0+nk4MGDrd53XFwcDz/8MA8//DAvvfQSq1evbjbZrdfrm23gqdVquffee1m7di16vZ477rjjuiVJAKqrq/noo4945plnmjyWlJTU4vN0Oh2xsfWzTT/88EPmzp0rKxqE6ED9wwJYkBLMp+fL+euhQl5emNjuZpXBoVr6Juu5nOHg1JEaps23oLZhm1f7ib333nukp6czYsSI7lm6SFGojLoHbXYRWmcR1oLVlMc9CoqsThHC37XpU/XVRjDHjx/n+PHj1x2/du3aGwpKtI+qqsyYMYP333+ftLQ0Zk4bRJXNTMZZO0kpBjTNdFWenmjlwzOlXCy1s+ZkCY+Pj+6U2LxqAOUx3yQ053V0jnysBWuoiHkIFPnQK4QQvrRv3z5WrFjBo48+ysCBA9myZQsvvvgir7zyCuHh4U3GFxUV8dJLLzFnzhx+8IMfcPbsWf7+979jtVqZOHEiAGazmbvvvpvY2Fi0Wi1Hjx7l9ddfx2q1NtSLFd2Dy+UiLy+vYfZ2aWlpo8eNRiN9+/ZtqL391eRZa5r+9RaKojB06FASEhLYsWMHFy9e5NChQ1y4cIG5c+cSExPj6xDFdRw9epQ9e/YwY8YMwsPDG0qRfLWUh9Pp5KmnnuJHP/oROTk5/OEPf+CRRx5BVVWCg4MJCQlh5cqVxMbGcunSJV566aVW7fu5555j9uzZJCcnU1FRwd69e+nfv3+zY+Pj46murmb37t0MHToUo9HY8Hf54IMPMnPmTAD+/e9/t2rfH374IW63m7vuuqtV4y9evMjx48cZPXo0FRUV/PWvf+XMmTP87//+b6ueL4RovavNKi9V2PnkXBl3DGr/6olBIwLIz3Fiq/Bw6aKDpJS2TVCLjo5m0KBBnDlzhp07d3Lvvfd2y88DXtVARcxSQrJfQ1+XhbnkE6oibvd1WEKI62hTsru1ywqF78XGxjJw4EDOnj1L+rm9hBgXYK/1kpPlIKFf0zcqVVFYNjqS/9/WbDadL+fWgSHEWztnxrVHF0J5zEOE5P4NQ82ZL94wbuuUfQkhhGidjRs3Mnv2bObMmQPUL7M/ceIEmzdvZvHixU3Gb968mfDwcJYtWwbUJ1YuXrzIRx991JDsHjq0cTPihQsXsnPnTs6cOSPJ7m6goqKiIbmdk5PTaPa2oihER0c31N6OjIzsll9ifcVkMnHrrbdy4cIFduzYQVlZGevWrWPkyJFMmjQJvV7v6xD9ntFoRKPRNDt7+SqNRtOqWcttYbFYOHDgAH//+9+pqqoiLi6uIQl91dSpU0lKSuLuu+/G4XCwaNEinnzySaB+Usrrr7/Oc889x4wZM0hOTuaFF17gnnvuue6+PR4Pzz77LPn5+ZjNZmbOnMnzzz/f7Njx48fz0EMP8b3vfY+ysjKefPJJfvrTnwL1q2/HjRtHWVkZY8aMadVxv/vuu9xyyy2tbq7q8Xh44403uHjxIjqdjsmTJ/PBBx/Qp0+fVj1fCNF6FoOGh0dF8NqBAt5NLWFqgpVQY/tWCxkMKoOGB3DySC1nT9YR20eHIaBtE9QmT57MxYsXKSgo4OzZs416EnQnbn0Etqj7CC54h8CKfTgD4rFbRvs6LCHENbTpFfDqDADRPUydOpWMjAwKCwuJHnYZe21fLpyx0zdJj9LMMqQR0SbGx5k4lFvN28eK+a8Z8Z0WmyugL7ao+wgqWE1gxV7c+jBqgyZ12v6EEEK0zOVykZGRwZ133tno/hEjRnD27Nlmn3P+/PkmdVtHjRrF9u3bcblcTUoMeL1eTp06RV5eHkuWLGkxFqfT2SSpejVZ1d2SqVfj7cq4bTYbdXV1LT4eEBCA1Wpt9jGXy0Vubi5ZWVlkZWVRXl7e6PHAwMCG0iR9+/YlIKBpabTm+OI8+KPmzkNKSgp9+vRh165dpKenc+LECTIyMpgzZw4JCQm+CrVTddTvg8Vi4eGHH6a2trbFMUajsaGGdEdJSUlh1apV1x331FNP8dRTTzX72PTp09mxYwc6na7h9S43N7fh8T59+jT6+arf/OY3Le5v8uTJTZ7z29/+lt/+9rdNxnq9XoqLi1m6dOl1j+OqDz/8sNVjof48fbWWt7/o7a9Douea2y+IzRfKOX+ljreOFvGTDmhWmZBc36zSVu7mzMk6Ro5vWz1ws9nMuHHj2L9/P3v37iU5ObnbXsx1mIdQHTILU9l2rEX/okwfhcvQ/nMshOgcUhywBzOZTEyYMIG9e/dy7uIBYkNjqKnSkZfjJK5v828y3xwdyZG8TA7kVHG6sIah7WxwcS1283CqQhdgLt2Eufgj3NpQHKaBnbY/IYQQzbPZbHg8HoKCGjcNDgoKapLwvKq8vLzZ8W63m8rKSkJCQgCoqanh8ccfx+Vyoaoq3/72t5skyb9qw4YNjZrOJSUlsXz58m7dxC86unNKg31deXk5r732WkPZueZotVqeeuqphtmZJSUlnD17lnPnzpGRkdHoQoOqqiQkJDBgwAAGDhxITExMuxJFXXUe/F1z5yEpKYlz587xr3/9i/Lycv79738zduxYbr311h7b0DM6Opqampp21dP2x0aHqqq2qfZ4R9cTv57i4mLWrVtHQUEBS5cu7fL9t6Qr4tDr9VIqSPRY9c0qo/jZp5fYkWVjfkowQyPb2axSVRg+xsjebVVcznCQkKwnOKxtKaTRo0dz+vRpbDYbR44cYdKk7jvBrTp0Llp7LoaacwTlr6S0zxN4NSZfhyWEaIYku3u4UaNGkZaWRllZGS71FCqjuZBuJ7aPrtkvrH2CDMzvX9/g4s1jRfxuQQJqJ86AqAmZgcZZgrHyCNaCdymL/y5ug3wZFkIIX2jufeFayc2vP3a1+eBX7w8ICOB//ud/qKur4+TJk7z99ttERUU1KXFy1V133cVtt31Z2urqtoqLi6+ZxPVHV0t9FBQUdEljxqKiouueI5fLxb59+ygvL+fSpUtUVFQ0etxsNjfM3u7Tpw8Gw5clzQoKCm4orq4+D/7qeufBYrHw4IMPsn//fo4fP86RI0dIT09n5syZjepBd3dfPQ8Oh6NJc9PuzuPx4PV6W3VcX53Z3VWGDh1KaGgov/vd7zCZTH5x/rvqPDgcDvLz85vcr9Vqu/UFVSGuSgkzMr9/MJsulPPGoUJeuSURTTubVYZGaIlP0JFzycnJo7VMnWtu04VvrVbLtGnT+Pjjjzl69ChDhw5tcYWZ31NUbFEPEJr9KhpXKdaCtVTELpP+Y0L4IUl293AajYbp06fzwQcfkJ17mvjwJGzlwRQXuIiMaX4GxYPDw9mRaeP8lTr2XKpkemInvhkpCpWRd6JxlqKvyyQ4/y3K4v8fHm3HLjkVQgjRMqvViqqqTWZxV1RUNJm9fVVwcHCT8TabDY1Gg9lsbrhPVdWGmayJiYnk5uby73//u8Vkt06na3GGX3dNlHq93i6JvbX72LVrV8P/q6pKbGxsQ4I7NDS00ZfYjoy7q86Dv7vWedDpdEyfPp2UlBS2bNlCWVkZn3zyCf369WPmzJmYTD1nBllP/V3w9waMzZVH6U166u+dEFctHRXBvss2LpXXN6u8vQOaVQ4eaaQg10l5qZvsTAd9k9vW2ys5OZn4+HhycnLYs2cPCxcubHdMvuLVGCmPWUpozl8w1J7HVPoZ1WELfB2WEOJr5BJUL5CQkEBycjIej4dKx2G8Xi8X0luu5xls1PKNofVviu8cL8Lh9nRugIqWipiluHRhaFzlBOW/DR5H5+5TCCFEA61WS3JyMqmpqY3uT01NZeDA5stLpaSkNBl/4sQJkpOTm9Tr/qrWzngUnScwMJDhw4dz66238thjj3H33XczduxYwsLCpJ6tn4iJieHBBx9k/PjxqKrKxYsXWblyJWlpaZKsE0II0SKrQcPSUfUrFVanllBe2/5VcQFGlQHD6vt0pKfW4XS0LT+gKArTp09HURQuXLhATk5Ou2PyJbchBlvk3QCYynZgqDrl44iEEF8nye5eYtq0aWg0GsrK86h1XOZKsZvSkpbf+BYNCiXMqKWo2sXHZ8s6PT6vJpCKmGV4VCM6ew7WwnXg7eQkuxBCiAa33XYbW7duZdu2beTk5LBixQpKSkqYN28eAKtXr+bVV19tGD9//nxKSkp46623yMnJYdu2bWzbto3bb7+9YcyGDRtITU2lsLCQ3NxcNm7cyK5du5g2bVqXH5/40u23386sWbPo169ft20U1RtotVomTZrE/fffT2RkJHa7nS1btvDvf/+7SfkZIYQQ4qp5/YLpFxpAjdPDW8eLOmSbSSkGzFYVh93L2VMtT5xrSXh4OMOGDQPqV5h5PN37u77dMoqaoCkAWArXoXF0zHkWQnQMSXb3EkFBQYwZMwaA8pojeLyua87uNmhVlowMB2DdqSvY7O5Oj9GtD6ci5iG8aAioPoWp9LNO36cQQoh6kydPZtmyZaxfv56nn36a9PR0nnnmmYY6pmVlZZSUlDSMj4yM5JlnniEtLY2nn36a9evX88gjjzBx4sSGMXa7nb///e88+eST/PKXv+Tzzz/nBz/4AXPmzOny4xNfktnb3UtERAT33XcfU6ZMQaPRkJ2dzapVqzh+/Hi3TxYIIYToeBq1vlklwLYMG+lFNe3epqoqDBttBCDzggNbedvzAxMnTsRgMFBSUsLp06fbHZOvVYXfgsOYjOp1EJS/EsXT9osAQojOITW7e5Fx48aRnp5OVVUVFdWnUPNGUVnhxhKkaXb8zKQgPjpbRmaZnfdOlvDouKhOj9FpTKIy8m6sReswle3ArQujzjqu0/crhBACFixYwIIFzdcdfOKJJ5rcN2TIEJYvX97i9h544AEeeOCBDotPiN5KVVXGjh1Lv3792Lp1K7m5uezatYtz584xZ84cwsLCfB2iEEIIPzIw3Mi8fkF8drGCNw4X8oeb29+sMiJaR0y8jvwcJyeP1jB5VtuaVRqNRiZOnMjOnTvZv38/KSkpBAQEtCsmn1I0VEQ9SGjOq2idxVgL11ERvUQaVgrhB+SvsBfR6XQNS8dtNadxuqu4cKblq48aVWHZ6EgAPjlXRn5l19TRrrOOoTpkFgCWog3oai52yX6FEEIIIfxZcHAwd999N7NmzUKn01FQUMC7777LgQMHcLs7fxWeEEKI7uPhURGY9SqZZXY+PV/eIdscMsqIqoHSYjd52W3vwTJs2DBCQ0Opq6vj4MGDHRKTL3m1Ziqil+BFg6E6jcCynb4OSQiBJLt7nf79+xMfH4/H66a08jC5l5zUVLe8BHZUjImxsSbcXnj7eHGXxVkdOo868wgUPAQVrELj6Lp9CyGEEN2R0WhEo2l+tdZVGo0Go9HYRRGJzqAoCsOHD2fp0qUkJibi8Xg4cOAAa9asobCw0NfhCSH8xKZNm3jiiSdYsmQJP//5z0lPT2/V886cOcMDDzzAz372s06OUHQ2a4CWpSPry9GtOlFMeV37m1UGmlRSBtfPxk47XovL2bamyRqNhunTpwP1jdBLS0vbHZOvuQL6UBmxCABT6Wfoq8/6OCIhhCS7exlFUZgxYwaKolBjv0xNXR4ZZ69dW+qboyNRFdh3uZL04vbX+2ploNgi78EZ0BfVU0tQ/goUd3XX7FsIIYTohiwWC4sXL0arra9SN3fu3IZSMldvDz/8MBaLxceRio5gsVi4/fbbWbBgAQEBAVy5coX33nuP3bt343S2fbad6N727dtHXFycNC8VQP3vw4oVK7j77rtZvnw5gwcP5sUXX2zUe6M5NTU1vPbaawwfPryLIhWdbX7/YPqFGqh2enj7WMdMIOs3yECgSaWu1sv5tLbXqe7bty9JSUl4PB527dqF19u2hLk/qgsaT611AgperIVrUZ3dP4kvRHcmye5eKCwsjJEjRwJwpfIQWRdrsde1PLs7IdjAnOQgAN48WtR1b0aqjvLoh3BrQ9A6SwnKXwne9l+NFkIIIXqqK1eu4HK5sFgsDB48mMjIyEY3SXT3LIqiMHDgQJYuXcrAgQPxer0cO3aM1atXk52d7evwOp3qLEdbl9viTXWW+zrELjNu3DiOHTuG1WoFYO3atQwePLhDtv3cc89x8803k5SUxLx585odk56ezje+8Q369evH2LFjeeWVV677neGTTz7hlltuoX///vTv35958+bx/vvvNxm3YsUKJk6cSHJyMjfffDMHDhzokOPqyTZu3Mjs2bOZM2cO8fHxLFu2jPDwcDZv3nzN5/31r39lypQppKSkdFGkorNpVIXHxkUDsDWjgjPFte3fpkZh2Jj6VWIXz9mpsrW9jNa0adNQVZXLly9z6NAhXn75ZS5fvtzu2HypMuJ2nIY+X0zWewc8XVMGVgjRlCS7e6mbbroJo9GI011BeeUZMs/brzl+8cgIDBqFsyV17Ltc2UVR1tfAKo/9Jh7VgL4uC0vRv6AHXPkVQgghOsO5c+cASElJaVPTKNG9BQYGsmDBAm6//XZMJhMVFRVs2LCBbdu2Ybdf+zNed6U6ywm7/AdCc15t8RZ2+Q89JuF9vdn6er2eyMjITvm793q9PPDAA9x+++3NPl5ZWcmDDz5IVFQUH3/8MS+88AL/93//xxtvvHHN7QYHB/PDH/6QTz75hC1btnD//ffz5JNPsmPHjoYxH3zwAc8//zw//OEP2bRpExMmTGDp0qXk5uZ25CH2KC6Xi4yMjIbJTVeNGDGCs2dbLq+wfft2CgsLuffee1u1H6fTSU1NTcOttvbLJKqiKL3i1l2OdXBkIHP61U9ee+NQAR5v++OOjtMTFavD64FTx2rbfC5CQkIYPXo0AAcPHqSoqIh9+/Z1m3Pa7E3VYYtZikdjRucowFq8AcUHx9Otz6Gf3eRc+te5bAttm0aLHsNgMDB58mS2bt1KWXUqF84k039QAFpd879AoUYtdw8J492TJbx1rAiTXkNqeQFKXTWDI4zt7ux8LW59FBXRSwjOW4Gx8hhuXTg1obM7bX9CCCFEd+RwOMjKygJgwIABvg1G+ERSUhJLly5l3759nDx5klOnTpGZmcmsWbNITk72dXgdSnVXo1xnxZ/idaG6q/Hogjt03xs3buSVV14hKyuLgIAAhg0bxptvvklgYCA//vGPsdlsDBs2jBUrVmC321m0aBG/+c1v0Ov1QH1S8Y9//CNnz55FVVXGjh3Lr3/9axITEwHIzs5m4sSJ/OUvf+Htt9/m6NGjvPTSS0yZMoVnn32WQ4cO4XA46NOnD7/85S+ZM2cO+/bt49577yUtLY3Tp0/z5JNPAhAXFwfAk08+iaqqbNy4ka1btzY6nptvvpk5c+a0WKP5hRdeAOpXjjRX9/lf//oXdrudV155BYPBwKBBg8jIyOBvf/sbjz/+eItfUCdPngyATqfD6XTy6KOPsm7dOg4ePMjMmTMB+Nvf/sYDDzzA4sWLAfj1r3/Nzp07efvtt3nmmWda+0/Wq9hsNjweD0FBQY3uDwoKory8vNnn5Ofns3r1an71q19dt/fDVRs2bGg0Ez8pKYnly5cTERFxw7F3R9HR0b4OoVWeXhDGwX98TkaZnf1FHu4dHd/ubc5a4OC9ty9SXODCUWshsV/bVo/dfvvtnD59mrq6+lIohYWFVFVVdfPPMDF4rT/AnbqcgMrjBEYMQY1f0OVRdJffy+5AzmXH6cpzKcnuXmzIkCGcOnWKwsJCisqOcOniXPoNCmhx/J1DQvnwbCmF1S7+e9uXS2PDArV8Z2wUk/p23tJoZ2AKlRGLsBZvwFz6GW5dGHbLyOs/UQghhOglMjMzcblcBAUF9bpkg/iSwWBg1qxZpKSksG3bNsrLy9m4cSMpKSnMmDGDwMBAX4fYMq8XvK2sN96Wca1ZSq7ooBWzhgoLC3niiSd49tlnueWWW6iqquLAgQONSnbs2bMHg8HAunXryM7O5sknnyQ0NJRf/OIXQH1d5Mcee4zhw4dTUVHB73//ex599FE2b96Mqn658PbFF1/kueee4+WXX0av1/P000/jdDpZv349gYGBnDt3DpPJ1CTGcePG8atf/Yrf//737Nq1C6Bhxv/LL7/M8ePHGTVqFABpaWmcOnXqurOwr+XIkSNMnDgRg8HQcN/MmTN56aWXyM7Opm/fvtfdhtfrZc+ePVy8eJFnn30WqL+Al5qayhNPPNFo7IwZMzh8+PANx9tbNHeRobn7PB4Pf/rTn7j33nuJjY1t9fbvuusubrvttibbLi4uxuXq+aUnFUUhOjqagoKCblNzevGIMN44VMhruy4wPNhLUED700H9Bho4n1bH7q25aPVWNNrWT4Lzer3odLqGZLeiKHz88ceYzeY2z+L0L0EYwxdiLtmIO2MNpXYzzsCuueDcHX8v/ZWcy47TUedSq9W2+juOJLt7MUWpb1b53nvvUVWXwanUbBJT+qPRNP/GciyvmmpH09reV2pc/HZ3Lr+YFtepCe+6oAlonSUElu/GWvQ+ZdpgXMaETtufEEII0Z1cLWEyYMCAbv4lUXSE+Ph4Fi9ezIEDBzh69Cjnz58nOzub6dOnM3DgQP/8HfE6icz47w7dZGhu65K4Rcm/AkV//XFFRbhcLhYuXEh8fP3MyK/XxtbpdLz88ssYjUYGDhzIU089xW9+8xuefvppVFXl1ltvbRjndDr5wx/+wIgRIzh37hyDBg1q2M6jjz7KwoULG37Oy8tj4cKFDftLSGj+c7Ber8disaAoCpGRkQ33m0wmZs6cydq1axuS3WvXrmXixIktbqs1iouL6dOnT6P7wsPDgfrzda1kt81mY+zYsTgcDjQaDS+++CLTp08HoLS0FLfb3bCtr267qKjohuPt6axWK6qqNpnFXVFR0WS2N0BtbS0XL14kMzOTf/7zn0B9EvJq+Zpf/vKXDBs2rMnzdDodOp2u2Rh6U2Lo6rnqDhb0D2bzhXIyy+y8dayIH0yMafc2+w82kJ1pp6baw/n0OgYOa3ny3NddunSJysovS6R6vV4KCwu5dOlSu16T/EFN0GS0dTkEVB3HWrCa0j7fx6Nt+vfXWbrT76W/k3PZcbryXErN7l4uOjqawYOHAJBfcpDszOa7Kbs9Xv52pPCa2/r7kULcns79xa0Kuxm7aQiK10VwwTvS5VgIIYQA6urquHTpEiAlTMSXtFotU6ZM4f777yc8PJy6ujo2b97Mhx9+2CjBIFpvyJAhTJ06lTlz5vDYY4+xatWqJknFIUOGYDQaG34eO3Ys1dXV5OXlAZCVlcUTTzzBuHHjGDhwIBMnTgRoUof66zWXv/Wtb/HHP/6RRYsW8fvf/560tLQ2x7948WI++OAD6urqcDqdbNiwgQceeKDN27meq19mFUUhNzeXlJSUhtuf/vSnhnFms5lt27bx8ccf8/TTT/OrX/2qoW7vVV+/MOP1ev3zYo2f0Gq1JCcnk5qa2uj+1NRUBg4c2GS80Wjk97//Pb/73e8abvPmzSM2Npbf/e539O/fv6tCF51Moyo8Pj4KgC0XKzhb0v5mlVqtwtDR9a93F87UUVPdumaVXq+X/fv3N/u3vH///u6fXFQUbJF34dTHoLqrCMpfCdcpvSWE6Dh+MbN706ZNfPjhh5SXlzd0i26pe/iZM2dYtWoVubm52O12IiIimDt3bqMlVKJtpkyZzPnz53G4rnD40GkSkseifK0Gd1pxDVdqrv3iXFLjIq24huFRTZdTdhhFpSLqfkJy30BnzyM47y3K4r+LV2O8/nOFEEKIHiojIwOPx0NoaChhYWG+Dkf4mcjISO6//36OHj3KgQMHuHTpEitXrmTKlCkMHz7cfxKHiq5+hnUraO15rZq1XRr3OC5DK0ozKM3PUP06jUbDmjVrOHz4MDt37uTNN99k+fLlbNy48brlOq6e52XLlhEbG8vLL79MeHg4Ho+H2bNnN2lC+dWEOdQnqmfMmMHWrVvZtWsXr776Ks899xzf+ta3WhU7wLx589Dr9Xz66afo9XocDkfDTPMbFRERQXFxcaP7rly50vBYVFQUmzdvbngsODi44f9VVSU5ORmn08mwYcO4cOECr776KpMnTyY0NBSNRtPstqVU07Xddttt/PnPfyY5OZkBAwawZcsWSkpKmDdvHgCrV6+mtLSU73//+6iq2uR312q1otPpWlWCRnQvgyMCmZ1sZVuGjTcOFfI/CxLa3X8rJl5HWKSWK0UuTh+rY/zU6+cDLl++3OIKjaKiIi5fvtztZ3ej6qmIWUpo9qvo7DlYij+kMvJuX0clRK/g85nd+/btY8WKFdx9990sX76cwYMH8+KLL1JSUtLseIPBwIIFC/jVr37FK6+8wt13383atWvZsmVLF0fecwQGBnLThPoZJQUlR7iUWdVkTFlt667QtnZcu6h6KmIexq2xonUWEVSwGrxdsF8hhBDCT321hIkQzdFoNIwfP57FixcTExOD0+lkx44drF+/nrKyMl+HV09RQNW37tbK5DSKrpXba32yR1EUxo8fz1NPPcWmTZvQ6XT85z//aXg8LS2N2tovZ0wePXoUk8lETEwMpaWlnD9/nh/96EdMnz6dlJQUKioqWr3vuLg4Hn74Yf7+97/z+OOPs3r16mbH6fV63O6mn4+1Wi333nsva9euZe3atdxxxx1NkuptNXbsWA4cOIDD8WVt9J07dxIdHU2fPn3QarUkJSU13EJCQlrcltfrbdiOXq9nxIgRDXXHr9q1axfjxo1rV8w93eTJk1m2bBnr16/n6aefJj09nWeeeabhIkFZWVmL37dFz/fNUZGYdCoXS+v47GJ5u7enKArDxxhRFCjIdVKUf+2eCldndV/Lvn37uv/sbsCjC8UW9QBeFIy2QwRUHPR1SEL0Cj6f2b1x40Zmz57NnDlzgPqZDidOnGDz5s0NXbe/6uqHpKsiIyM5ePAg6enpzJ07t8vi7mlGjR7B8RMnqa4uZ9/ez0lInttolk+IsXVduVs7rr082iAqYr9JcM4b6Gsv1F8ljbizTV9UhBBCiJ6gpqaG7Oz6xtGS7BbXExoayj333ENqair79u0jLy+P1atXc9NNNzF69Gg0mq75LNddHT16lD179jBjxgzCw8M5evQopaWlpKSkNIxxOp089dRT/OhHPyInJ4c//OEPPPLII6iqSnBwMCEhIaxcuZLY2FguXbrESy+91Kp9P/fcc8yePZvk5GQqKirYu3dviyUm4uPjqa6uZvfu3QwdOhSj0diQ1H7wwQeZOXMmAP/+97+vu9/MzEyqq6spKiqirq6OU6dOAfWvN3q9nrvuuotXXnmFn/zkJ/zgBz8gMzOTP//5z/z4xz++5qqBP//5z4wcOZJ+/fpRW1vL1q1bef/99xudj+985zv86Ec/YuTIkYwdO5aVK1eSm5vLQw891Kpz1pstWLCABQsWNPvY15t+ft19993Hfffd1xlhCT8QbNTy4Ihw/n6kiHeOFzO5jwVrO5tVWoI0JKUYyDhn59SxWmZGalFb6AXmdrupqmo6we6rysrKcLvdaLU+T1m1m8M0gOrQeZhLN2Mp/hCXIRpXgKyaEKIz+fSVw+VykZGRwZ133tno/hEjRnD27NlWbSMzM5OzZ89es9ac0+lstCxQUZSGD3tdtWzz6n78Zpno12i1WmbPnslHH/2bkvIznD83nIGDvmxYMTTSRFig9pqlTMIDtQyNNHXZMboD4qiMfgBr/jsYbQdx6yOoDZl2Q9vy93+ftpLj8V896VhAjkcIf3Dx4kW8Xi8RERGNygMI0RJFURg5ciRJSUls27aNy5cvs2/fPs6fP8+cOXMaNTX0Vx6NCa+iRblGDVSvosWj6djyehaLhQMHDvD3v/+dqqoq4uLiGpLQV02dOpWkpCTuvvtuHA4HixYt4sknnwTqy3a8/vrrPPfcc8yYMYPk5GReeOEF7rnnnuvu2+Px8Oyzz5Kfn4/ZbGbmzJk8//zzzY4dP348Dz30EN/73vcoKyvjySef5Kc//SkAycnJjBs3jrKyMsaMGXPd/f7sZz9rNAvzagL1888/p0+fPlitVt59912effZZFi5cSFBQEI899hiPP/74NbdbU1PDM888Q0FBAQEBAfTr148//elPLFq0qGHMokWLKCsr45VXXqGoqIiBAwfyzjvvNDQHFULcmIUDQthysYKscjvvnCjmiZva36xywNAAci87qK70kHHeTv9BzTer1Gq13H///Q0rYBRFITw8nJKSEnJycti9ezcul4v8/PwmzW+7q5qQmWjtuQRUnyYofxWlfb6PV2vxdVhC9FiK14drQ0pLS/nud7/LCy+80KhZxr/+9S927tzJH//4xxaf+93vfhebzYbb7ebee++95gfE9957j/fff7/h56SkJJYvX94xB9HD/PGVf5BfeB6rOYZnnv1ho4TPtnNF/PyDUy0+d/miYcwe0PVfjjw5m/BkrAYU1CE/RA2//od2IYQQ3UtxcXGTerb+TlEUYmJiyM/P79SluOvXryc3N5cpU6YwduzYTtvPjeqq8+Dv/PU8eL1ezpw5w65du7Db7SiKwtixY5kwYUKnzKj76nmoqKjAarXe8LZUZzmqu7rFxz0aEx5d8A1v/0b8+Mc/xmaz8c9//vO6Y3U6nU9e17xeL9OnT2fp0qXXTUh3ha46DzabrdnfN51OJzXAO1B3fL++Ef76mt4WaUU1PPPZZRTgf25OICWs/X2wsjMdHD9Yg0YLs26xYgy8fuXcr5/L7du3c/LkSUwmE0uWLCEgoPmkeXejeOoIyX4drbMYR0AS5XHfBqVjV1P1hN9LfyHnsuN01Llsy/u1X6wJaW4G3fVm1f3617+mrq6Oc+fOsXr1aqKjo5k6dWqzY++6665GDSyvbru4uBiXq2s64iqKQnR0NAUFBX79hzJr1hTeXZOBrSqfTz7ezpixXzYKHWyBX0yP42+HC5vM8NaqEKbUkZ+f39Uhgzocc9BEjBWf405/nSvx38UVENemTXSXf5/WkuPxXz3pWECO51q0Wq18eRadrqqqitzcXIBGZRSEaC1FURg8eDAJCQns2LGDCxcucPjwYS5cuMDcuXOJjW1Fc0cf8eiCuzyZ3d2VlJTw/vvvU1BQwP333+/rcIQQPjQkMpCZSVZ2ZNY3q/zdggTUdq5ujE/UcemihrIrbtJP1DJmUttX10ydOpXs7GzKy8vZvn07N998c49YdelVA6iIWUpI9uvo6zIxl/yHqojbrv9EIUSb+TTZbbVaUVWV8vLyRvdXVFQQFBR0zedeXV7Zt29fKioqWLduXYvJbp1Oh07XfBObrk7OeL1ev04IhUda6Rs/iks5RzhwYA9DhyWj1+sbHp/Ux8KEODPpxbV4A8xQV8m7J4o5XVzHP44U8IvpvllSWBl+G6rjCoba81jz3qKsz//Do73271Bz/P3fp63kePxXTzoWkOMRwlcuXLgAQHR0dLtmyAoRGBjIwoULuXjxItu3b6e8vJz333+fESNGMHny5EafB0X3NXLkSEJDQ/nd734nZY+EECwbHcnBnCrOX6ljy8UK5vcPbtf2FEVh2Bgjuz+rIveyk4R+LsIi25Z20ul0LFiwgHXr1nH+/HmSkpIYNGhQu+LyF259JLaoewkuWElgxV6cAfHYLaN8HZYQPc7115R0Iq1WS3JyMqmpqY3uT01NbVTW5Hq8Xm+XzdDuDabPHIdWY8bhrGHf3qbdgjWqwvBoEwsGRzMi2szjE2JQFdifXcWx/JaXknYqRYMtejEufRQat42gvLdQPHbfxCKEEEJ0kXPnzgHSmFJ0nH79+rF06VKGDBkC1H8uX7lyJVlZWb4NrJv43//931aVMPGV3NxcTp48yV133eXrUIQQfiDki2aVAG8fL8Zmd7d7m8GhWhL61V8gPXW0Bo+n7RNIoqKimDBhAgA7duzAZrO1Oy5/4TAPpTpkJgDWon+htftgdbwQPZxPk90At912G1u3bmXbtm3k5OSwYsUKSkpKmDdvHgCrV6/m1VdfbRj/6aefcvjwYfLz88nPz2f79u189NFHTJt2Y40JRVMhoQb6JUwE4OSp401m3n9dQrCBWweGAPC3w4U43b6ZDenVBFAe8008GjM6Rz7WgrXg9fgkFiGEEKKz2Ww2CgoKAOjfv7+PoxE9SUBAAHPnzuXOO+/EarVSVVXFhx9+yObNmxsaigkhhOgZbh0QQkKQgUq7m5XHiztkm4OGB6DTK9gqPFy66LihbYwbN46YmBgcDgebN2/G4+k53+2rQ+dhD0xB8ToJyn8HxV3j65CE6FF8nuyePHkyy5YtY/369Tz99NOkp6fzzDPPNNQ5LSsro6SkpGG81+vl3Xff5emnn+YXv/gFn376KUuWLOG+++7z1SH0SOMnpmDUx+L1eti+fed1xz84PJzgAA25NgcfnSntggib59GFUB7zEF5Fi6EmHXPJJz6LRQghhOhM58+fByAuLg6z2ezjaERP1LdvX5YsWcKoUaMAOHPmDCtXruTcuXNS6kkIIXoIjarw+PgoADZfKOf8lfZf1NQbVAYNr28sefZkHfa6tieqVVVl/vz56HQ68vLyOHr0aLvj8huKii3qAdzaEDSuMqyFa2SinhAdyC8aVC5YsIAFCxY0+9gTTzzR6OdbbrmFW265pSvC6tVCw3X0S5zEqXMbyM6+RGZmJklJSS2ON+k1fHN0JH/cn8/aUyVMT7ISHth8nfTO5groiy3yXoIK3yWwYi9ufTi1QRN9EosQQgjRWaSEiegKOp2O6dOnk5KSwtatWyktLeXTTz/l3LlzzJw5s90XWjweD6rq8/k3oofrSTNChegMQ6MCmZFoZWeWjb8eKmR5BzSrTEjWc+miA1u5mzOpdYycENjmbQQFBTFjxgy2bNnC559/Tt++fRv6t3V3Xk0gFTEPEZLzFww15zGVbqE6bL6vwxKiR5BPlqJFw0dFEhQ4GICdO3ddty76zCQrg8KN1Lm8vHm0qCtCbJHdMoKq0Po3CnPxR+irz/k0HiGEEKIjlZeXU1xcjKIo9OvXz9fhiF4gJiaGBx54gAkTJqCqKhkZGaxcuZJTp07d8CzvwMBAKisrJREpOpXH46GyspLAwLYn2oToTZaNicSoVTl3pY6tFyvavT1FVRg+1gjA5UwHZVdurM/a4MGD6devHx6Ph02bNuF0Otsdm79wGWKwRdb3UDCVbUdfddrHEQnRM/jFzG7hn8KjtPSNG03axQxstgqOHz/OuHHjWhyvKvXLn376aRZ7LlWyoH81I6JNXRhxYzUhM9E4SzBWHsVauJqyuO/iNkT7LB4hhBCio1yd1d2nTx9J4Iguo9VqmThxIv3792fr1q0UFhaybds2zp07x+zZswkODm7z9kwmE1VVVZ0TsJ/T6/U4HDdWy7Yn6YrzYDKZ0Grlq68Q1xL6RbPKfx4t4u3jxUzsY8Fi0LRvm+Fa4hN15GQ5OXW0lqlzzShtnDGuKAqzZ8+moKCAsrIy9u7dy8yZM9sVlz+xW0ZTU5dDYMU+rIXrKNNH4Nb3jNnrQviKvOOLFimKwsBhZvILx1Bi28vBg4cYNGjQNZerJocGcHNKMJ+cK+evhwv534VJaNX2LX+6YYpCZeRdaJxl6OsyCc5/i9L4/4dXa/FNPEIIIUQHkRImwpfCw8O59957OX78OJ9//jk5OTmsXr2aiRMnMmrUqDaVJdFqtVit1k6M1j8pikJMTAz5+fm9uv65nAch/MutA0PYcrGcyxUOVp0o5rsT2j9ZbPAIIwU5TspL3WRnOuibbGjzNoxGI3PnzuWDDz4gNTWVxMREEhMT2x2bv6gKX4jWno++LpOg/JWU9fl/eNUAX4clRLclZUzENcXE6YiK6I9BF4HL5WTPnj3Xfc6SERFYDRqyKxx8fLasC6K8BkVLRcwSXLowNK5ygvPfAU/PWfYkhBCi97ly5QqlpaWoqiolTITPqKrKmDFjWLx4MfHx8bhcLvbs2cO6deu4cuWKr8MTQghxA7SqwmNfNKvcdKGci6V17d5mgFFlwLD6xG16ah0Ox42VrkpISGDkyJEAbNmyhdra9jfS9BuKhoroB3FrrGidxVgK3we5ACjEDZNkt7gmRVVIGRxAmGUCUD+TLDc395rPMRs0PDwqAoB3U0sorb2x2lwdxasxURGzDI9qRGfPxlq0TjodCyGE6LauzupOSEjAYGj77CghOlJwcDB33XUXs2fPRq/XU1hYyLvvvsvnn39+3X4vQggh/M/wKBPTEix4vPDGoQI8HZB0TUoxYLaqOOxezp268QT6lClTCAkJoaamhq1bt/aoFSFerYWKmCV40RBQfZrAsp2+DkmIbkuS3eK64hL0BFnDsRjrl0rv2LGDy5cvc/z4cXJycpptKjSnXxApYQHUujy8dcy3zSoB3PpwKmKW1r9xVJ3EVPqZr0MSQggh2szr9UoJE+F3FEVh2LBhLF26lKSkJDweDwcPHmTNmjUUFBT4OjwhhBBt9MiYSAK0KmdL6tiW0f5mlaqqMHxMfbPKzAsObOXuG9qOVqtlwYIFDY2S09LS2h2bP3EF9KUy4g4ATKWb0Vef83FEQnRPkuwW16XRKCQPMBBiHoWqaLly5QobNmxgzZo1rF+/nhUrVnDhwoVGz7narFIBdmTaSCuq8U3wX+E0JlPZ0Ol4BwG2Iz6OSAghhGib4uJiKioq0Gq1JCUl+TocIRoxm83cdttt3HzzzRiNRkpLS3nvvffYtWsXTqeUkRNCiO4iLFDHA8PDAHj7WDFV9htLTn9VeJSOmD468MLJozU3PCs7MjKSSZMmAbBr1y7Ky8vbHZs/qQuaQK11PAperIVrUJ2lvg5JiG5Hkt2iVRL6GXB6ivB4my5Hraqq4pNPPmmS8E4JMzKvfxAAbxwqxO3x/RKjOutYqkNmAWAp2oCuJsPHEQkhhBCtd3VWd2JiInq93sfRCNGUoigMGDCApUuXMmjQIACOHz/OqlWruHz5so+jE0II0Vq3Dwol3qqnwu5mdWpxh2xzyEgjGg2UFrvJvXzjF0FHjx5NbGwsTqeTzZs3N7vavDurjLgDpyEe1VNLUP5K8Dh8HZIQ3Yoku0WrqBovpVWHrjlm165dTd5kHhoZgVmvklVu59Pz5Z0YYetVh86lzjwcBTdBBSvRODrmjVsIIYToTF6vl/PnzwNSwkT4P6PRyPz587njjjswm83YbDb+/e9/89lnn1FT4/sVf0IIIa5Nq9av1gb4z/lyMjqgWWWgSSVlyBfNKk/U4nLe2IQ4VVWZP38+er2egoICDh8+3O7Y/IqipSJ6CR6NCZ0jH2vRBmlYKUQbSLJbtEpeXh52e/U1x1RVVZGXl9foPmuAlqUj65tVrjpRTHmdHzQqUlRskffiNPT54krpWyjuax+bEEII4WsFBQVUVlai0+lITEz0dThCtEpiYiJLly5lxIgRAKSlpfHKK680WREohBDC/4yINjGlb32zyr8eLuyQZpXJAw2YzCp1tV7Opd14At1qtTJz5kwADhw40ON6RHh0wVREL8aLSkDVcYwV+3wdkhDdhiS7RatUV7cuGdzcuPn9g0kOMVDt9PDOcT+ZRa3qKI95CLc2GK3zCta8d/B6pJakEEII/3W1hElycjJardbH0QjRenq9npkzZ/KNb3yD4OBgKisr+fjjj/nkk09klrcQQvi5b42NJECrkF5cy45MW7u3p9EoDB1d36wy45ydSxl21r51geKCtn8fHzhwIAMGDMDr9bJ58+Ye1x/CaUymKvwWAMwln6CrzfRxREJ0D5LsFq1iMplueJxGVXh8fDQAWy5WcLaktkNju1FerYXymGV4VAP6uiw8596UpUFCCCH8ksfjkRImotuLi4tjyZIlzJw5E0VRuHDhAu+88w7p6ek33KhMCCFE5woP1HH/sHAAVhwrosrR/maVUbE6omK1eD1w+mgN5aUO0lNr2/xeoCgKM2fOxGw2U15ezu7du9sdm7+pDZpCnXkkCh6CClajuip8HZIQfk+S3aJVYqJj0GoCrzlGqwkkJjqm2ccGRRiZnexfzSoB3IYobFH1S4O8RXsJLNvu65CEEEKIJnJzc6mpqcFgMNC3b19fhyPEDdNqtdx888088MADREREYLfb+eyzz/jggw+w2do/Y1AIIUTHa2hWWefm3dSSDtnm0NFGFAVcX1Q6LS91U1zQ9rKnAQEBzJs3D4BTp06RkZHRIfH5DUXBFnk3Tn00qruKoPxV4PWD8rBC+DFJdotWKSv1EGoef80xwaaRlJW23AX5m6MiMOlULpbW8dnF8g6O8MY5TAOoirgDANOVzRgqU30ckRBCCNHY1Vnd/fr1Q6PR+DgaIdovMjKS++67j8mTJ6PRaLh8+TKrVq3ixIkTMstbCCH8jE6j8J1x9c0qPzlXRlZZxzSr1BuUL+9Q4MzJuht6D+jTpw+jR48GYOvWrT2vRJaqxxazFI8agM6ejaX4I19HJIRfk2S3aBV7rRdTQAKRQTPQqF+f4V3/BlVjz6GupuVkd7BRy4Mj6pc/rTxejM3e/uVPHaUueCJK3AIArEXr0NZe8nFEQgghRD23293QzE9KmIieRKPRMG7cOBYvXkxsbCxOp5OdO3fy/vvvU1pa6uvwhBBCfMWoGBOTv2hW+cahwnZfmCwucGGv+8o2vFBRdmOzuwEmTZpEWFgYtbW1bNmypcddOHXrwrBFPYAXBaPtIAG2Q74OSQi/Jclu0SoGY31C2xSQQJ/wu4kOmU+EdRrRIfOJCVkIqNTYs8nNP3vN7SwcEEJCsIFKh4eV/tKs8gtq8gPYTYNRvC6CC95BdcqXLCGEEL6Xk5NDXV0dRqOR+Ph4X4cjRIcLCQnhG9/4BjNnzkSn05Gfn8/q1as5dOgQbrf/TI4QQoje7ltjIjFoFNKKa9mZdeOlp7xeL2dO1l2dN9fIjc7u1mq1LFiwAFVVycrK4tSpUzccn79ymAZSHVpfssVS9AHaumwfRySEf5Jkt2iVsHAtAV8kvBVFxaiPxmxMwqiPJkAfRoh5FABHj++lvLy8xe1oVIXHv1j+tPlCOReutH/5U0dRFBVb9AM4DbGo7mqC899CcftPfEIIIXqnc+fOAdC/f39UVT66iZ5JURRGjBjB0qVLSUhIwOPxsH//ftauXUtRUZGvwxNCCAFEmHTc90WzyjePFlF9g80qiwtcVJS5oZmcdkWZm6IC5w1tNzw8nClTpgCwe/duysrKbmg7/qwmZAZ20xAU3AQVrEJxVfk6JCH8jnxjEq2iqArDxhhbfDwocAiBAVE4nU4+++wzPJ6Wy5kMjQpkRqIVL/DGoQI8/rS8SDVQEfMwbo0VraOIoIJV4JUZRUIIIXzD5XJx8eJFQEqYiN7BYrFwxx13MH/+fAICAigpKWHt2rXs3bsXl0sacgkhhK8tGhxCrEVHeZ2bd0+2vVllw6zua0g9VHvDZUhGjRpFnz59cLlcbNq0qeetEFJUbFH34tKFo3FVEFT4ruQshPgaSXaLVouJ1zNuSmDDDO+rDAEKWp1KqHkKGrV+6emRI0euua1vjo4gQKty7kod2zIqOjPsNvNog6iI/SZeRYe+9gKW4g/BnxLyQggheo3Lly/jcDgwmUzExsb6OhwhuoSiKAwaNIilS5cyYMAAvF4vR44cYfXq1eTk5Pg6PCGE6NV0GrWhWeXHZ9verNLjgdpr9PoCqKv1kp3luKH4FEVh7ty5GAwGioqKOHSo59W29qoBVMQ8hEfRo6/NwHzlU1+HJIRf0fo6ANG9xMTriY7VUVrixhgQRG1dBaHhGspK3ezfASHmCZTY9nLgwAESEhKIjIxsdjthgToeHBHGm0eLeftYMRPjLZgNmq49mGtwGWKpiH6AoPyVGG0HcekjqA2e6uuwhBBC9DJXS5ikpKSgKM0UthSiBwsMDOTmm29mwIABbN++nfLycv71r38xfPhwJk+ejMFg8HWIogtVVlZSW1vb4uNGoxGLxdKFEQnRe42JNTOpj5n92VX89XAh/9/cvq3+nKLRKEyfb8FeV5/wVhSF8PBwSkpK8Hq9ZJy1k3vZSerhWoyBKhFRujbHZ7FYmDVrFp9++imHDh0iISGBmJiYNm/Hn7n1kVRG3UtQwSoCy/fgNMTh1ZpxHf4TupBbcBj7+zpEIXxGkt2izRRVITxKR0xMEPn5NXi9XkLDtYydZOLQnmRq7DnU2C+xadMmHnzwQbTa5n/NbhsYymcXKsixOVidWsxj46O7+EiuzWEaQlX4QiwlH2Mu+QS3NhivGojqtuHRWHEaE0GRxRFCCCE6h9PpJDMzE5ASJqJ3S05OJi4ujj179nD69GlOnjxJZmYms2bNIikpydfhiS5QWVnJ22+/fc1yBBqNhocfflgS3kJ0kW+PjeJIXjWni2rZlWVjRlJQq59rDFQxBtZ/l1YUhYgoIy6PFq/Xy+iJGrzeGvKynRzeW83kWRaCQto+MW7AgAFkZWVx5swZNm3axOLFi9Hr9W3ejj+zm4dRHTITU9kOrIXrcevDwFGIyb0JR3w/kIkSopeSTJ3oMNFxOkaODyTcehMa1UhZWRl79+5tcbxWVXh8fP3yp/+cLyezjcufukJt0BRqrDeh4CWoYBUheX8jqHAtIXl/Iyzrdxiqel6HZyGEEP4hKysLp9OJ1WolKirK1+EI4VMGg4E5c+Zw1113YbVaqaqq4qOPPmLTpk3U1NT4OjzRyWpra69bd9ftdl9z5rcQomNFmHTcOywMgDePFVPj7Ji60YqiMOqmQMIitbiccGBXFTXV1y570pIZM2ZgsViw2Wzs2rWrQ+LzN9Wh87AbU1BwoXUUAqCz56CvOe/jyITwHUl2iw7VN9nA0JHBhFsnA3DixAkuX77c4vgR0Sam9LXg8cJfDxXecBOKTqMoOI3JeIGvXxNV3RVYC1ZJwlsIIUSnkBImQjTVp08flixZwujRo1EUhbNnz7Jy5UrOnj3rf58jhRCih7trcCgxFh1ltS7WnrzSYdvVaBTGTwnEEqRir/NyYFcVDnvbE94Gg4H58+cDkJaWxoULFzosRr+hqNii7sPLl7PfvSiYSjdL7zHRa0myW3S4/oMNDBmahMU4EIBNmz6jrq7lWduPjInEoFFIK65lZ5atq8JsHa8Hc8knzT50Ne1gLtkI3hu70iyEEEI0x263k5WVBUgJEyG+TqfTMW3aNO677z7CwsKoq6tj06ZNfPTRR1RWVvo6PNEOTqeTK1eukJWVRWpqKnv37uU///kPmzdv9nVoQohm6DQq3xlbv/rswzOlXC63d9y29So3TTcTYFSosnk4uKcat6vtydu4uDjGjh0LwLZt26iqquqwGP2Fzp6Hwpcz6xW86Oy5Mrtb9FpSs1t0OEVRGDbaSG3NRI6k5lNba2PTpq3cccfCZmemRZh03Dc8nHeOF7PiaBET4s0E6vyjWaWuNguNu6LFxxVA46pAV5uFMzC56wITQgjRo2VmZuJ2uwkODiY8PNzX4Qjhl6KionjggQc4cuQIBw8eJCsri5UrVzJ16lSGDRsmKyL8kN1ux2azUVlZ2fBfp9NJUVERNpvtmhNkhBD+aWycmZvizRzIqeKNw4X8Zk6fDnv9NQbWJ7z3bqukrMTN0QM1jJsUiKK2bfsTJ07k8uXLFBcXs2XLFhYtWtRz3iO8Xkylm/GioPDlxQAvYCrdjCMwRWp3i15Hkt2iUyiqwtjJVmy2maRd/IhLly6SmprOyJFDmh2/aFAIWy+Wk1fpZE1qCd8a6x+1SVV362aat3acEEII0RpXS5gMGDCg53wZE6ITaDQaJkyYQL9+/diyZQuFhYVs376dc+fOMWfOHIKDg30dYq/h9Xqpq6trSGR/Palts9lwOBzX3Y7BYMBisWC1Whv+6/F4rtkLSAjhW98eG8mx/GpOFdaw+1Il0xOtHbZta7CG8VPNHNhZRUGOk1PHahk2xtimz0cajYYFCxbw7rvvcvnyZVJTUxk5cmSHxehL+prz6Oy5Te5XoGF2t8MkqwRF7yLJbtFpNBqFGfMTKF03ioKSY+zevZO4uDjCw5t2adZpVL4zLopfbc/ho7NlzO0XTN9ggw+ibsyjad2bdGvHCSGEENdTV1fX0O8iJSXFx9EI0T2EhYVx7733cuLECfbv309ubi6rVq1i4sSJjB49GlWV6o3t5fV6qa2tbTGRfXWW9vUEBAQ0SmTHx8cDYLFYsFgsGAxNvwMUFRV1+PEIITpOlFnPPUPDWJ1awptHixgXZ+rQ1drhkVpG3xTIkf01ZF1wYAxU6T84oE3bCA0NZerUqezcuZM9e/YQHx9PWFhYh8XoEy3M6m54GDAXf0hp4E9ldrfoVSTZLTqVTqdw26JJrFqZQ629mA82bOKhb96DXt/0C8eY2C+XP/31cCEvdODypxvlNCbi1gShuiuaNKiE+jcPjzYIpzGxiyMTQgjRU128eBGPx0NYWFj3/xImRBdSVZXRo0eTnJzMtm3byM7OZu/evZw/f545c+YQERHh6xD9mtfrpbq6usVEts1mw+12X3c7gYGBDYnsrya1ryaz9Xp9w1hFUYiJiSE/P18ajArRzd01JJRtGRUUVDl57+QVlo2J7NDtx/bVU1fn5fSxWtJT6wgwqsQn6q//xK8YMWIEWVlZXLp0iU2bNnH//fej0fhHCdUb40Z1VTSb6IarZVevoKvNwBnYr2tDE8KHJNktOl2gScttt83n/X+tpbq2gI8/OMAdd09Eo2maPr66/OlkYQ17LlUyrQOXP90QRaUq4jasBavwQqOE99Wf68yjQJHZQkIIITrGV0uYCCHaLigoiDvvvJP09HR2795NUVERa9euZezYsYwfPx6ttnd+BfJ4PFRVVbWYzK6srMTjuX7TdbPZ3KTMyFf/2xnn12g0otForpls12g0GI3GDt+3EKJ19F+s1n5hRw4fnillTr8g+gR17Grt5AEGams8ZJy1c/xgDYYAhYhoXaufrygKc+fOZdWqVZSUlPD5558zZcqUDo2xSylayuKfQHVX1/+oKISHh1NSUoLX68Zc8gn6uiyCClZSFvdd3Ab/KBcrRGfrnZ/0RJeLiQvjpglT+fzADrLzj7B3ezzT5sQ3mbkdZdbzjaFhvNuw/MmMUefbRLLdPAxb9BLMxRsbNav0KgYUr52AyiPUhEzDqzH5MEohhBA9QU1NDTk5OYCUMBGiPRRFYciQISQkJLBjxw4uXrzIoUOHuHDhAnPnziUmJsbXIXY4t9vdkLT+aiL76v9XVVVdd/a0oigNM7CbS2abzWafzIK0WCw8/PDD1NbWtjjGaDRisVi6MCohxNeNizMzPs7Modwq/nqokF93wmrtISMDqKv1kHfZyeG91UyebSYopPWpLZPJxJw5c/j44485cuQICQkJDeWUuiOPLhiPLhiofw1XLDG4qgx4vV7KYx8hJO8f6OouE5z/JmXx38OjbVpWVoieRpLdosuMnzCc7OxMcvMucfrcdoKD72L4WHOTN7+7h4Sy/eryp1MlfHN0xy5/uhF28zDspiHoarNQ3TY8GitOQxyhua+jdRRhKf4QW/SDvg5TCCFEN3fhwgW8Xi+RkZHSWE+IDmAymbj11lu5cOECO3bsoKysjHXr1jFy5EgmTZrUqKSGv3O5XC2WF7HZbFRXV193G6qqtpjItlqtmEwmv61vfjUJL4Twb4+OjeR4fjWphTXsvVzJ1ISOXa2tKAqjJgRir6vmSpGLA7uqmTrXTKCp9Rfi+vXrx5AhQ0hLS+Ozzz5j8eLFzfYL6PZUPeUxDxOS8wZaZzHBeW9SFvc4Xo2sghE9myS7RZdRFIVbFs7jnbdXYneUc+z4QYyBU0gZ0rixhF6j8ujYKH6z88vlT/FWP3jjUVScgcmN7rJF3kdIzusEVKVirxqG3TzcR8EJIYToCaSEiRCdo3///sTHx7N7927S09M5ceIEGRkZzJ49m4SEBF+HB4DD4WgxmV1ZWUlNTc11t6HRaFpMZFssFkwmk8974ggherZoS32zyndPlvDPI0WMje341doajcL4KSb2bqukssLD5zurmTrHjN7Q+v1Mnz6dnJwcbDYbO3bsYMGCBR0ao7/wakz1M7xz/oLWUUhQ/tuUx34L1NaXfxGiu5Fkt+hSgYGBzJs/l40bN1JRc5pjR+IwBCTRN7lxMnt8vJlxsSYO51Xzt0OFPD/b980qm+MKiKMmZCamsm1Yiv6NIyARr1ZmnAghhGi7yspK8vLyAClhIkRnCAgIYN68eQwYMIBt27ZRWVnJBx98wODBgxk9evQ161V3RIkMu93eqKzIkSNHyM/Pb/i5rq7uutvQ6XQt1sq2Wq0YjUa//MwshOhd7hoSyrbMCgo7cbW2Tq9w03Qze7ZWUl3p4eDuaibNNKPRtu41UK/Xs2DBAt5//33Onj1LUlJSj51s4NGF1Ce8c99AX5eFtXAttujF0ntM9FiS7BZdLjk5maFDh3L69GmKK/Zy/GAohoAQomIbX1l8dFwUxzdmcryghs+zq5jU1z+TyNWhs9BXp6Nz5GMt/jcV0UtBvmQIIYRoowsXLgAQExMjS/WF6EQJCQksWbKE/fv3c+LECdLT00lPT7/mczQaDQ8//HCLf5ter5e6uroWZ2XbbDYcDsd1YzMYDE1mY3/1vwaDQZLZQgi/Z9CqPDo2kv9vZ26nrtY2BqpMnG5m79Yqyq64Ofp5DeMmB6KorXudjImJYfz48Rw8eJDt27f36M9gbkMMFdEPE5z3TwKqT+Mp+Yiq8DskdyF6JEl2C5+YNm0a2dnZ2Gw2SmwHObxvKpNmmgkN//JXMsai5+4hobx36gr/OFLImFgTBq0fXnlUtNii7iU0+zUM1WkYqo5jt4z2dVRCCCG6GSlhIkTX0ev1zJgxgwEDBvDpp59SWVl5zfFut5vS0lKqqqpaTGa7XK7r7jcgIKAhkR0TE9OkhnaPrBkrhOiVJsRbumS1tiVIw/hpJj7fUUVBrpNTx2oZNqb1q1zGjx/PpUuXKCws5LPPPuOuu+7qsRcVnYHJ2KLvx1rwLoEVn+PRWKkJneXrsITocJLsFj7x1SVDVXUZBFbHc3B3ElNmm7EEfdlY4p6hYWzPqKC4xsX7p6+wZGSED6NumdsQQ3XoHMylm7EUf4jTmCxdjoUQQrRaRUUFhYWFKIpC//79fR2OEL1GTEwMN998M+vWrbvu2A8++OC6YwIDA69ZZkSnq1/JqCgKMTEx5Ofn4/V6230cQgjhjx4dF8WJL1Zr78uuZErfjm1WeVVYhJbREwM5sq+GrAsOAoxqk95gLdFoNMyfP593332XnJwcjh07xpgxYzolTn9gNw+nKrwSS8lHmEs349FaqLOO83VYQnQoSXYLn4mJiWHcuHEcOnSIK1UHMOgi+XwnTJ1rwRhYP4PboFX59tgofrs7l3+llTI7OYgYi97HkTevJmQ6huo0dPYcLEX/oiJmmSwJEkII0Srnz58HIC4uDpPJ5ONohOhdNBrN9Qd9wWw2t5jMtlgsaLXy9UoIIa6Ksei564vV2lebVQZ00mrt2D567KO9nDpWy5mTdQQYVfoktS53EBISwvTp09m2bRv79u2jb9++hIeHd0qc/qA2eDKqy4apfCeWog14NGYcpkG+DkuIDuOHNSFEbzJhwgQiIyNxu+2UVe+jtsbD5zurcNi/bBA0sY+ZUTEmXB4vfz9c6MNor0PRYIu6F6+ixVBzjgDbYV9HJIQQopuQEiZC+L/77ruPb33rW9xzzz0sWLCASZMmMWzYMPr27UtISIgkuoUQohn3DA0j0qSjpMbFulNXOnVfSQMM9BtUXw7qxKEaigqcrX7u0KFDSUxMxOPxsGnTplaVpurOqsMWUGsZjYKHoILVaOsu+zokITqMJLuFT11dMqTRaKiqzaPWdZYqm4eDe6pxueqXdCqKwnfGRaJV4XBeNQdzrl1T0Zfc+kiqQucBYC75GNVZ5uOIhBBC+LvS0lJKSkpQVZV+/fr5OhwhRAtUVb46CSFEW11tVgnw7/Qr5Nqu36y3PQaPCCAuQYfXC4f3VlNe2rqktaIozJ07F6PRyJUrV9i/f3+nxulzikJl5DewBw5A8ToJznsLjaPY11EJ0SHkE5vwudDQUKZOnQpAScURvNgoK3FzdH81Hk99wjveauCOQaEA/P1IEQ63p8Xt+Vpt8FQcAQmoXjvWovXg9d9YhRBC+N7VEiZ9+vTBaDT6OBohhBBCiI41Id7M2FgTLg/87XBhp/YqUBSFUeMDCY/S4nbBwd3V1FS5W/XcwMBA5s6dC8CxY8fIzs7utDj9gqLBFr0YpyEO1VNDcN6bqC6br6MSot0k2S38wogRI+jbty9utxubcy+K6qYwz8XJw7UNb4T3DQsnzKilsMrJv9JKfRzxNSgqlZH34FV06GsvYqw44OuIhBBC+Cmv1yslTIQQQgjRo9Wv1o5Cqyocy6/m85yqTt2fqlEYN8WENVjFXufl813V2O2tm4SWlJTE8OHDAdi8eTN1dXWdGarPeVUD5THLcOnC0LjKCMpbgeLu2ccsej5Jdgu/cHXJkMFgoLS0GEPQGVDgcqaDs6fqX2iNOpVHxtQvf1p/+gqFVZ27/Kk93PpwqsJuBsB85T9oHCU+jkgIIYQ/unLlCmVlZaiqSnJysq/DEaJXMhqN121SqdFoZOWFEEK0Q4xFz12D61dr/+NwIXZX566A1ukUbppuxhioUF3p4dDuL0ulXs/UqVMJDg6murqa7du3d+pMdH/g1Zopj/0WHo0ZnSOfoIKV4O3ZNctFzyZdVITfMJvNzJ49m//85z+cOXuUqRPjyckI4nyaHUOASlKKgakJFjZdCORkYQ3/OFLEf82I93XYLaoNmoih+jT62gwsRespj/sOKHJ9SQghxJeuzupOTEzEYDD4OBoheieLxcLDDz9MbW1ti2OMRiMWi6ULoxJCiJ7n3mFh7MisoPiLZpVLR0V06v4CjCo3zTCzd2sVZVfqS6WOm2JCVZVrPk+n07FgwQLee+89zp8/T1JSEoMGDerUWH3NowulPGYZwbl/RV97EWvhOmxR90sOQ3RL8lsr/EpKSgqDBg3C6/Vy4vR2+g2qn2Vz6mgteZcdKIrCY+Oi0ChwIKeKo3mdu/ypXRQVW+Q9eBQ9+rosjOV7fR2REEIIPyIlTITwHxaLhcjIyBZvkugWQoj2M2hVvj02CoAN6aXkdXKzSgCLVcOEqSZUFQrzXJw6WtuqmdpRUVHcdNNNAOzYsQObrefXsnYFxFERsxQvKgFVqZhLPoEePqtd9EyS7BZ+Z8aMGVgsFmw2G3nFB0jsrwfg2IEaSgqd9A02cNvAEKC+uYXTj5tVenQhVIXfCoC5dDMaR5GPIxJCCOEvioqKsNlsaLVakpKSfB2OEEIIIUSnm9jHzOgYEy6Pl78f6dxmlVeFRmgZMykQgEsXHZxPt7fqeePGjSMmJgaHw8HmzZvxePw399BRnIEp2KLuASCwYi/G8t0+jkiItpNkt/A7BoOBefPmAZCWlkZgcD4x8To8Hji0p5qKMhcPjAgnJEBDXqWTD86U+Tjia6uzjsceOADF68JauA68resELYQQome7Oqs7KSkJnU7n42iEEEIIITrfl80q4UheNWtOlnDfPz/neH51p+43Jl7PsDH1vRfOnqwjO/P6CW9VVZk/fz46nY68vDyOHj3aqTH6C7tlNJVhCwGwXPkPhspjPo5IiLbxi2T3pk2beOKJJ1iyZAk///nPSU9Pb3HsgQMHeOGFF/j2t7/NN7/5TZ599lmOHz/edcGKLhEfH8+YMWMA2LZtGwNHQFikFpcLDuyqxmuHZV80q3zvZAnF1U5fhnttikJl5N141AB09hwCy+TKqBBC9HZer5fz588DUsJECCGEEL1LnFXPnYPDAFh3qoTMKzW8fbyo02d5J6UY6D+4vkfKiUO1FOVfP48QFBTEjBkzAPj8888pKuodq7VrQ6ZREzQFAGvh++hrzvk4IiFaz+fJ7n379rFixQruvvtuli9fzuDBg3nxxRcpKSlpdnx6ejojRozgmWee4be//S1Dhw5l+fLlZGZmdnHkorNNnDiRsLAwamtr2bFjG+MmB2INVrHXefl8ZzUTo80MiTBid3t586h/v+F4tEFUhd8OgKl0Cxp7gY8jEkII4Uv5+flUVVWh1+tJSEjwdThCCCGEEF3q3mFhWA0qri8qg1y4UsexTp7dDTBoeADxCTq8Xji8r5ryUtd1nzN48GD69euHx+Nh06ZNOJ1+PNmuA1WFL6TOPAIFD9b8VWjrcn0dkhCt4vNk98aNG5k9ezZz5swhPj6eZcuWER4ezubNm5sdv2zZMhYtWkT//v2JiYlh8eLFxMTEcOTIkS6OXHQ2rVbLggULUFWVzMxMzp1P46bpZgJNKjVVHg7uruHboyNRFdh7uZITBZ3/xtgedZbR2E2DUXBjLXwPvNd/UxVCCNEzXS1hkpycjFar9XE0QgghhBBdy6BRCNRpGn5WgFUnSjp9dreiKIwcH0h4lBb3FyvHq6uuXWpUURRmz56NyWSirKyMvXv3dmqMfkNRsUXdi8PYD9XrIDh/BRrnFV9HJcR1+TTZ7XK5yMjIYOTIkY3uHzFiBGfPnm3VNjweD7W1tZjN5hbHOJ1OampqGm61tbUNjymK0mW3rt5fTzieiIgIpkypXzqze/du7I5KJs40ozcoVJS5KT7t5paUL5tVujw3HlOnH4+qflHOJBCdIx9T2Y5u/+/TlbeedDw96VjkeK69HSGa4/F4pISJEEIIIXq1Y/nVFFR9OUPaC1woreNwXudPYlM1CuOmmLAGa3DYvRzYWY297trNJ41GI3PnzgUgNTWVrKysTo/TLyhaKmKW4tTHoLqrCMp7E8VV5euohLgmn04lstlseDwegoKCGt0fFBREeXl5q7axceNG7HY7kyZNanHMhg0beP/99xt+TkpKYvny5URERNxQ3O0RHR3d5fvsTF1xPLfccgu5ublkZGSwfft2Hn/8cYKtYXz4fhYlhS4m9g9jn7GK7AoHu/JdLB3f94b31fnHE4PHsAzPmdcxlW7HmjANxZLUaXuT3zf/1ZOOBeR4hGiL3NxcamtrCQgIoE+fPr4ORwghhBCiS3m9XladKEFVwPO1idx/2JPL/92RTLCxc5t363QKN003sWdLJdVVHg7urmbSLDNabcuTVhISEhg5ciQnTpxgy5YtLFmyBKPR2Klx+gOvGkBF7COE5PwFrfMKwfkrKI/7Dl7V4OvQhGiWX6ybbW4GXGtmxe3Zs4d169bxs5/9rEnC/KvuuusubrvttibbLi4uxuXqmlISiqIQHR1NQUFBpy/L6QpdfTwzZswgJyeHy5cvs3HjRiZMmMC4ySYO7Kri0oUq7o8K4/9yC/jrngxGhUJYYNveGLv2ePpiMQ8noOok9tN/oazPD0Dt2D9F+X3zXz3pWECO51q0Wq1PLqoK/3e1hEm/fv3QaDTXGS2EEEII0bMcy6/mQmlds4/Vurz88ONM/nt2X/qFBnRqHAFGlZtmmNm7tYryUjdH91czbooJVW05HzVlyhQuX75MWVkZW7du5dZbb+0Vqzo9WgvlsY8QkvMGOnsu1oJVVMR8ExT5LCv8j0/LmFitVlRVbTKLu6Ki4prJa6hvbPl///d//OQnP2HEiBHXHKvT6QgMDGy4ffXKm9fr7bJbV++vJx2PxWJh5syZABw4cICCggIiorWMuikQAFchzDYHUevysOJokd8fT2XEIjwaM1pHIYFXPuv2/z5dcetJx9OTjkWO59rbEeLr3G43Fy9eBKSEiRBCCCF6H6+3flb3tdLDFXYPP9+UxY7Mik6Px2LVMGGaCVUDhXkuTh6pveZn+a/2FsvIyCAtLa3TY/QXbn0E5bEP41V0GGrOYylaD/K9R/ghnya7tVotycnJpKamNro/NTWVgQMHtvi8PXv28Nprr/HDH/6QMWPGdHaYwk8MHDiQlJQUPB4Pmzdvxul0Ep+gZ8io+qu9yXVGBihGdmbZOF1Y4+Nor82rMWGLuBOAwPJdaOsu+zYgIYQANm3axBNPPMGSJUv4+c9/Tnp6+jXHp6Wl8fOf/5wlS5bw/e9/v0lz6S1btvDcc8/xyCOP8Mgjj/DCCy9w4cKFzjwEv5ednU1dXR2BgYHExcX5OhwhhBBCiC7l8ngpqXFyrRSpVgWnB17Zl88/jhTi/nqtkw4WGq5lzMRAUOByhoPzafZrjo+MjGTixIkA7Nq1q9VleHsCV0BfKqIX40XFWHkM05VNvg5JiCZ8Xsbktttu489//jPJyckMGDCALVu2UFJSwrx58wBYvXo1paWlfP/73we+THQvW7aMAQMGNLyo6PV6AgMDfXUYogsoisKsWbPIy8tr6IA8c+ZM+g0MwF7n5eIZO9M0VmrdHt44XMgrtySiucbyI19zmIdSaxmNsfIY1sJ1lPb5Aah6X4clhOil9u3bx4oVK3j00UcZOHAgW7Zs4cUXX+SVV14hPDy8yfiioiJeeukl5syZww9+8APOnj3L3//+d6xWa8OH/7S0NKZMmcLAgQPR6XR88MEH/OY3v+Hll18mNDS0qw/RL1wtYdK/f39U1adzDoQQQgghupxOo/L7mxOx2d0AKEB4RAQlxcUNCXCLQeWzCxW8d+oKH54pI6vMzs+mxmIN6LwUVky8nuFjvJw8UsvZU3UEGBX6Jrdck3rMmDFkZWWRl5fH5s2bueeee3rNZzuHaRCVkXdhLVqPqXwnHq2F2uApvg5LiAY+/0ucPHkyy5YtY/369Tz99NOkp6fzzDPPNNQ5LSsro6SkpGH8li1bcLvd/OMf/+Cxxx5ruL355pu+OgTRhQICAhouhHy1A/LgEQHEJ+pQUJijCaam3MMn58p8GGnrVIXfjltjResswXxl8/WfIIQQnWTjxo3Mnj2bOXPmEB8fz7JlywgPD28yW/uqzZs3Ex4ezrJly4iPj2fOnDnMmjWLjz76qGHMD3/4QxYsWEBiYiJxcXF897vfxev1cvLkya46LL/icrmkhIkQQggher0Ik45+oQH1tzAjg6Is9AszNtwXadKzZGQEv5gWR4BWIbWwhp9+mkVGC3W+O0pifwP9B9cnuFMP11KY52xxrKqqzJ8/H71eT0FBAYcPH+7U2PxNnXUcVaHzATCXfIyhMvU6zxCi6/h8ZjfAggULWLBgQbOPPfHEE41+fv7557sgIuHP+vbt29ABeevWrSxevBij0cjI8YE47NUU5btYoAlh44kypiVYCTb6xa95s7waI5WRdxOcvwJjxT7s5qE4jUm+DksI0cu4XC4yMjK48847G90/YsQIzp492+xzzp8/36RnxqhRo9i+fTsulwuttulrr91ux+VyYTabW4zF6XTidH75xUJRlIZeG92t+c/VeK/+99KlSzidTsxmM7Gxsd3ueG7U189DbyXnoZ6ch3pyHurJeRBCXMukvhZirYm8uDOHgionP998iR9MjGF6orXT9jloeAB1tR5yspwc2VfN5FlmgsOazylYrVZmzpzJ5s2bOXDgAH379iU6OrrTYvM3NSEzUd02Ais+x1r4HuUaE87Afr4OSwj/SHYL0VZf7YC8bds2Fi5ciKoqjJ1sYv/2KspLYaY3mJWHi/n+tBhfh3tNDtNAaq3jMdoO1Zcz6fsjvGrLy6WEEKKj2Ww2PB5Pk+bQQUFBLdYgLC8vb3a82+2msrKSkJCQJs9ZtWoVoaGhDB8+vMVYNmzYwPvvv9/wc1JSEsuXL29Y8dUdXf3Ss337dgBGjx5NbGysL0Pyid705e9a5DzUk/NQT85DPTkPQoiWJAQb+MPNifxhbx5H86v5w948MkrreGhURKeULVUUhZHjA7HXVVNc4OLA7mqmzjVjMmuaHT9w4EAyMzM5f/48mzdv5sEHH0Sn03V4XH5JUagKvx3VVUVA9SmCCt6hLO5x3Ab/zsGInk+S3aJbutoB+b333uPixYucOXOGwYMHo9UqTJhuYvvmSsw1Ghy5Wk7n1TA01r/ruVeFL0Rfcx6NqwxTyX+oirzT1yEJIXqh5mbWXWu23dcfu9q5vrnnfPDBB+zdu5fnn38evb7l/gR33XUXt912W5N9FBcX43K5rn0AfkZRFKKjoykoKMDhcJCWlgZAbGws+fn5Po6u63z1PFz9HemN5DzUk/NQT85DPX84D1qttltfUBWiNzAbNPxyZjyrThSzPq2UDemlZJbV8dTUOCyG5pPQ7aGqCuMmm9i3vYqKMjef76xm6hwzhoCmlYCv9hbLz8+nvLyc3bt3M3v27A6PyW8pKrao+1DzqtHXZRKc9yZl8d/Do2s68UWIruLzmt1C3KjIyEhuuukmAHbu3InNZgPAYFCZPtuCS+MlVNFxdF81DqfHl6Fel1cNwBZ5DwCBtgPoas77OCIhRG9itVpRVbXJLO6Kiooms7evCg4ObjLeZrOh0WialCn58MMP2bBhA7/85S9JSEi4Ziw6nY7AwMCG29USJlCfTO9ut6txZ2Rk4HK5sFqtREZG+jwuX52H3n6T8yDnQc6D/50HIUT3oFEVHh4dyc+mxmLQKBwvqOGpT7PIKuucOt5ancKEaSaMJpWaKg8Hd1fjcjX/mvHV3mKnTp0iIyOjU2LyW6qOipiHcOmj0LgrCc57E8Vd7euoRC8myW7RrY0dO5aYmBgcDgebN2/G46lPageaVG6aHogDD8FuHZu3VuDx+PeHWWdgP2qCJgJgLVqP4u7c5htCCHGVVqslOTmZ1NTGjWVSU1MZOHBgs89JSUlpMv7EiRMkJyc3qtf94Ycfsn79ev7rv/6Lfv16bw2/c+fOAfWNKaU2rRBCCCHEjZmaYOV3CxKIMusoqHLy9KZL7L1k65R9BRhVJk43odMrlJe6ObKvusW8Qp8+fRg9ejQAW7dupaamplNi8ldejZHy2Edwa4PQOosJznsLPA5fhyV6KUl2i27tagdknU5HXl4ex44da3gsNtKAob+Cy+vFW6Fw9GC138/eqAq7BZcuFI2rAnPJRl+HI4ToRW677Ta2bt3Ktm3byMnJYcWKFZSUlDTMUlm9ejWvvvpqw/j58+dTUlLCW2+9RU5ODtu2bWPbtm3cfvvtDWM++OAD1qxZw/e+9z0iIyMpLy+nvLycurredTHPbreTlZUF1Ce7hRBCCCHEjUsMCeD3NycyKjoQu9vL7/bk8faxItydMMHNbNVw0zQTqgaK8l2cPFLbYl5h0qRJhIWFUVtby5YtW/w+/9DRPNogymMfwaMa0dmzCSpYA163r8MSvZAku0W3FxQUxPTp0wHYv38/xcXFDY/dMjqY08ZqPF4v+ZdcnD3l5wkWVU9l5L14UTBWHkFfne7riIQQvcTkyZNZtmwZ69ev5+mnnyY9PZ1nnnmmoY5pWVkZJSUlDeMjIyN55plnSEtL4+mnn2b9+vU88sgjTJw4sWHM5s2bcblcvPzyyzz22GMNtw8//LDLj8+XLl68iMfjISQkhLCwMF+HI4QQQgjR7VkNGp6b1Yc7B4cCsD6tlN/syKHK3vHJ1ZBwLWMnmUCByxkOzp22Nzvuam8xVVXJysri1KlTHR6Lv3Pro6iIeRivosVQk46l+APoZUl/4XvSoFL0CEOGDCEzM5OMjAw2b97M/fffj1arRaMq3D0plBVbipmmCeJ8mp2AAJXEFIOvQ26R05hIbfAUAsv3YCnaQGnfBLwa/26wKYToGRYsWMCCBQuafeyJJ55oct+QIUNYvnx5i9t77bXXOiy27kxKmAghhBBCdDyNqvDImEiSQwy8eqCAo/nVPLUpi/+aHk/f4I79zh8dp2P4GCMnj9Ry7nQdAUaFhH5N9xEeHs6UKVPYvXs3u3fvJj4+npCQ3tWs0WlMpCLqAYIKVmG0HcKjsVAdNs/XYYleRGZ2ix5BURRmz56N0WjkypUr7N+/v+GxIZGBxCTqOOKuBODk0Vrysv27dlRV6Hxcugg07kosxb1rBqQQQvQk1dXVZGdnA1LCRAghhBCiM8xICmL5/AQiTVryK538bNMl9l+u7PD9JPY3kDKkPsF98kgthXnOZseNGjWKPn364HK52LRpE2537yvl4TAPpTJiEQCmsm0EVBzwcUSiN5Fkt+gxAgMDmTt3LgDHjh1rSC4AfHN0JGc0taR56ptEHPu8hpLC5t+Y/IKqwxZ1D14UAqpOYKjqfcufhBCiJzh16hQej4fw8PBeN6tHCCGEEKKrJIcG8IebExkeFUidy8Nvd+ey6kQxng4uoTFwWAB9EvV4vXBkXzVlV1xNxiiKwty5czEYDBQVFXHo0KEOjaG7qAu6ieqQ2QBYij9AX3XaxxGJ3kKS3aJHSUpKYtiwYQB89tln2O31tbRCjVoeHBHOfo+NbOx4PHBobzUVZU3fmPyFK6AvNSEzALAU/xvFXeXjiIQQQrRVamoqILO6hRBCCCE6mzVAy69m9+H2QfUTDN47dYUXd+ZQ7ei4mdWKojBivJGIaC1uNxzcXU11ZdPtWywWZs2aBcChQ4fIz8/vsBi6k+rQudRax6PgJahwDbraLF+HJHoBSXaLHmfq1KkEBQVRVVXFjh07Gu6/dWAIfYL0bHGVYQ/w4HLCgV3V1FT575Ki6tA5uPTRqO5qLEXS2EEIIbqT6upqMjIyAEhJSfFxNEIIIYQQPZ9GVXh0bBQ/nhSDXqNwKLeapz69RHZF800lb4SqKoybbCIoRIPD7uXzndXY6zxNxg0YMIBBgwbh9XrZtGkTDod/l1PtFIpCZcQi7IGDUbwugvLfQuMo9HVUooeTZLfocfR6PfPnz0dRFM6ePdvQGEyrKnxnXBRu4L3qYgxmBXtdy29MfkHRYou6Fy8qAdWnMFSd8HVEQgghWunChQt4vV6io6MJCgrydThCCCGEEL3GrOQgXpqXQHiglrxKBz/79BIHcjqujrdWp3DTdBOBJpWaag8HdlXjcjadnDZjxgwsFgs2m41du3Z12P67FUVDRfQDOAP6onrqCM57E9VV4euoRA8myW7RI8XExDB+/HgAtm/fTlVVfQmQEdEmpiZYsHu97FYrMJoUqqs8HNhVhdPhnwlvlyGW6tCrda4+RHXZfByREEKI1jh79iwgs7qFEEIIIXyhf1gAf7glkaGRRmpdHl7cmcua1JIOq+NtCFC5aYYJvUGhoszNkf3VeDyNt20wGJg/fz4AaWlpXLhwoUP23e2oespjHsali0DjqiA4700Ud62voxI9lCS7RY81fvx4oqKisNvtfPbZZ3i/eEN7ZEwkAVqF1NIaSPaiNyiUl7rZvDEbj9s/y4TUhMzEaYhD9dRiKdog5UyEEMLPVVZWkp+fj6IoUq9bCCGEEMJHggO0/HpOX24dEAzAuydL+O2uXGqcHVPO1GzRMGGaCVUDRfkuUg/XNuQeroqLi2Ps2LEAbNu2rWEyXm/j1Zgoj30Et8aC1lFIUP7b4HH6OizRA0myW/RYGo2G+fPno9Vqyc7O5sSJ+hIg4YE67h8WDsA76cWMmGhEo4WcS9UcO1jT5I3JLygabJH34kWDoeYMAZVHfR2REEKIazh//jwAiYmJmM1mH0cjhBBCCNF7aVWFx8ZH84OJ0WhVhQM5Vfzs/8/encfHcdeH/3/NzN6X7vuy5NuO78Sxndg5nNgQzBGgQAOlptD2+02gtKVfaJpSaEuB0HIV6K+lUBJaAoRASi6wcezEsePEju/Yjm9b1q2VtNLex8z8/lh5bdm6bEtaHe/n47G2NDsz+/l8drSz+573vj+/PU9jz8jU0M4rsHDzKjcocOFsghNHYlets2LFCoqKiojFYmzZsmV8xh3GgGHNI1D+MQzVji12Dl/rz8Ecn9+yFxOXBLvFpJaXl8ftt98OwM6dO+no6ADgnXPyqfDZCMR0nm/s4pbbPKgqNJ5PcPRAbFyeeHR7CeGCewHw+J9FTQay2yAhhBADujhfxMKFC7PcEiGEEFPRpk2beOihh/jwhz/M5z73OY4dOzbguq+//jr/+I//yMc//nH+8A//kEceeYQDBw6MXWOFGCP3TM/lK/dWU+C00NCT4K9+e443Gkcmy7qk3MrCZU4AThyJc/503wkxNU1j/fr1aJpGfX09hw4dGpHHnYh0exndpR/FRMMRPoLH/6x8e12MKAl2i0lvwYIF1NTUoOs6mzdvRtd1rFp6skqA5493EXHo3LGuHIAzJ+KcPj5yMzWPpEjuapL2KlQjjq/tl3JCEEKIcSgQCNDW1oaiKCxYsCDbzRFCCDHFvPrqqzz22GO8973v5dFHH2Xu3Ll8+ctfxu/397v+sWPHWLhwIQ8//DBf/epXmT9/Po8++ihnz54d45YLMfpmFTr5+tunMa/ISSRp8KWXGnjy8MjU8a6ZbmfWfDsAh/ZGaWnsW6IjPz8/k4y3Y8eOTDLeVJR01dFT+kFMFFzdr+HqeinbTRKTiAS7xaSnKAr33HMPDoeD9vZ2Xn/9dQCWlLlZWeXBMOE/9rQyc04O8xanr8QeOxjjwtmR+UrTiFJUekp+D1OxYIuewtGzO9stEkIIcYWLJUyqqqqkhIkQQogx99xzz3H33Xezdu1aKisr2bhxI4WFhWzevLnf9Tdu3Mi73/1uZsyYQVlZGQ888ABlZWXs3bt3jFsuxNjIc6breL99Zi4m8JNDfr72ysjU8Z4130FVrQ1M2LsrTJc/1ef+hQsXZpLxNm3ahK6PTO3wiSjuWUCocAMAns7NOHreyHKLxGQhwW4xJbjdbu6++24A9u7dS1NTEwB/tLQEm6ZwpC3C5rdamTHHwfTZ6SuxB/dEaG0ef5Ml6LYiQgXrAfD4X0BNdma5RUIIIS53sYTJzJkzs9wSIYQQU00qleLMmTMsWrSoz/KFCxdy/PjxYe3DMAyi0eigF2yTySSRSCRzi0ajmfsURZkSt6nU18k4ljaLyv+9tYyHbi3FosKuCyE+t6me5lDyhvarqiqLbnFRXGbB0GH3K2HCQaPP/ffeey8OhwO/389rr7024cfyRm6xvNuI5N0JgLftaeyR41lv00Qdy/F8G4mxvBaWa1pbiAlsxowZzJ07l2PHjrF582YeeOABij02fm9+AT855OfbL53iO++YxtxFDmIxg8bzSfbuDLPyLg95BePrTyWaswp76Ci22Fl8rU8RqPgEKHLtSgghsq2jo4OOjg5UVWXGjBnZbo4QQogppqenB8MwyMnJ6bM8JyeHQCAwrH0899xzxONxVq5cOeA6Tz/9NE899VTm99raWh599FGKioquq90TVWlpababMGlkayw3lpWxdHoFn/v1Yeq74/y/357nS++cz6raghva74b3GTz7i3O0t8bYsyPKez5Ui8t9Ka7w/ve/n//5n/9h3759LFu2jLq6uhvtSsZEOy7N0o0Yx5PQtpOclifQFv41im96tpsFTLyxHM/GcizHVwRPiFG2Zs0aGhoa6OnpYfv27dxzzz28Z14+L57ppiWU4OeH/WxcUszi5S4S8TDtLSle3x7m9rUePD4t282/RFHpKXk/+fXfxhY7i7N7F9Hc27LdKiGEmPIuljCprq7G4XBkuTVCCCGmqv6y4IaTGbdjxw5+8Ytf8P/+3/+7KmB+ufvvv58NGzZcte/29nZSqdRAm00aiqJQWlpKS0sLpsyjdEPGw1gWqfDP66t5dHsjb/mj/PlTB/mDxUW8b37BNWeUXm7pSjuvbEkQ7EnyzC9Oc9vdXizW9P4KCgqYN28eR48e5ac//Skf/vCHsdvtN9SP8TCW1813HzmhdmyREyQP/QuBqv+LbsvexbMJPZbjzEiNpcViGfYFVUkFFVOK3W5n3bp1ABw9epTTp09j09TMZJXPHOvkQnccVVW4eZWb3HyNZMLktZdDRMI6/rYkjecT+NuSmEZ2X/AMaz7hwrcD4OnYhJZoz2p7hBBiqjNNM1PCZNasWVlujRBCiKnI5/OhqupVWdzd3d2DBq8hPbHlv//7v/MXf/EXLFy4cNB1rVYrLpcrc3M6nZn7TNOcErep1NepMJb5TgtfuqeKdTNyMIEfH2jna680Ek3q171Pm11hxRo3NrtCd5fOnp0hdN3I3L9mzRp8Ph/BYJBt27ZNmrG8rhsq3aUPkLRXoBoRchr/CyXZndU2TdixHIe3kRjLayHBbjHlVFRUsGzZMgBefPFFwuEwt1R6WT29EN2E/3yjFdM0sVgVlq924/aqRCMmW58PsmtbmH2vRdi1LcyW53pobsjuJJZR360knDNQzCS+tqfANLLaHiGEmMra29sJBAJomkZtbW22myOEEGIKslgs1NXVcejQoT7LDx06xOzZswfcbseOHXzve9/jz/7sz1i6dOloN1OIccmqqTx0axn/d3kJmgI764N8dtN5WoLX/7nf7dVYvtqNpkF7S4qDeyKZwJ3NZmP9+vUoisLx48czSRNTlanaCZRtJGUtQEt1kdP0GIoRy3azxAQkwW4xJd16660UFhYSi8V48cUXMU2Tv7x7JlZV4WBLhFcvBAGwO1TqZtkAuPJCUixq8sbOSHYD3opCT/H7MFQ71lg9rsAr2WuLEEJMcRdLmEybNu2Gv4YqhBBCXK8NGzbw4osvsnXrVhoaGnjsscfw+/3ce++9ADzxxBN897vfzax/MdD90Y9+lFmzZhEIBAgEAkQikWx1QYisetvMPL50TzW5Do3zgTif+e05DjSHr3t/eQUWlq1yoyjQcC7J8TcvBXDLysq45ZZbANi2bRvBYPCG2z+RmRYPgfI/wtA8WBPN5DT/D5iTvzSSGFkS7BZTksViYf369Wiaxrlz53jzzTepzHXyvvnpSSj+a28bsZSBaZicPBofdF9v7otmtaSJYc0lVJiul+fu+B1avDVrbRFCiKnKNM1MsFtKmAghhMimVatWsXHjRn75y1/y2c9+lmPHjvHwww9nap12dXXh9/sz62/ZsgVd1/nhD3/In/zJn2RuP/rRj7LVBSGybl6xi6+/fRozCxyEEgZ/v+0CTx/tuOZyCheVlFtZeHO63M/Jo3HOnboUZ7jlllsoKSkhHo/zu9/97rofY7IwrPkEyjZiKDZs0dP4Wn8h32IX10QmqBRTVkFBAatWreKVV15h+/btLF26lPfNL2DrmW7awkl+8WYHby/PJRYd/EQTi5p0+FMUFlvHqOX9tMG7DHvoCPbIW/jafkGg6sGstUUIIaai1tZWenp6sFqtTJs2LdvNEUIIMcWtX7+e9evX93vfQw891Of3L37xi2PQIiEmnkKXlS/fW82/727lxTPdPLa/nTOdcT65ohS75dpzR6vr7MSiJsffjHF4XxSHU6W0woqmaaxbt46f/vSnNDQ0sH///ilfTijlqKC77CPkNj2GI3QIQ/MSKnwH3MCEoWLqkMxuMaUtXryYyspKUqkUP//5z7Gq8PFlxQD877FOWjqTw9pPLJrlq4yKQrD4fgzViTXeiKvzpey2RwghppiLNRZra2uxWrN38VMIIYQQQowcm6byqRWl/MnN6Tre28/38LnN52kNXV8505nz7FTX2cCEvbvCdPrTJTry8vJYvXo1kJ4s9vJvX0xVSddMekreD4CreydOKdsqhkmC3WJKUxSFe++9F5vNxoULF9izZw+3VnpYWuYmZZhsOhcY1n5OHY3T0Z7dOlKGxUew6F0AuDpfxAydz2p7hBBiqpASJkIIIYQQk5eiKLxjdh7/uLaaHLvG2a44n/nteQ61XHsdb0VRWLDMSXGZBUOH3a+ECfXoANx0001MmzYNwzDYtGkTqZTUqo57lxAseDsA3o7fYA/uz3KLxEQgwW4x5Xm9Xu666y4AXn/9dVpbW/nEzSVYVHilowfVNvQ+gj0Gr24N8fr2EN1d2TshxT2LiLnno2CgH/8+GHJyFEKI0dbU1EQ4HMZms1FdXZ3t5gghhBBCiFEwvyRdx3t6voNgXOcLWy/wzFud11xjW1UVlq1yk5uvkUyYvLY9TCxqoCgK99xzD06nk46ODnbt2jVKPZlYormrieTcBoCv9SlskRNZbpEY7yTYLQQwZ84cFi1ahGmabN68mWKnwnvmFmACrxuDz4a88GYnNdNtKAq0NafYvjnEvl1hwkF9bBp/OUUhWPQeDM0N4QZcnS+OfRuEEGKKuVjCZPr06VgsMh2KEEIIIcRkVeS28pV7q7mz1odhwg/3tvGtV5uJp66ttKnForB8tRu3RyUaNnh9e5hU0sTlcnHPPfcAsH//fi5cuDAa3ZhYFIVQ4X3EPAtRMPA1/wRLrDHbrRLjmAS7hej17ne/G4/HQyAQYMeOHfzeTQUUuCwcjIWJVqRwOPtOhOBwKtx8m4ua6XYW3uzirrd7qahO12ltrE+y7TdBDr0RGfN63qbFQ7DoPQC4ul7CEpOToxBCjBbDMDh16hQgJUyEEEIIIaYCu0Xlz1eW8YllxagKvHSuh4d/d5728PDm/Mrsx6Fy6x1ubHaFnoDOG6+GMXST2tpabrrpJgA2b95MLBYbjW5MLIpKT8nvkXBORzUT5DY/hpbsyHarxDglwW4herlcLu69914ADh8+TEtDPR9fmp6s8skLHdx0p4OVd7lZusLFyrvc3LPBR1nlpRonbq/G0pVu1qzzUFxmwTTh/OkELz7fw9GDURLxsQt6J7wLUIpWoGDia/0FGNd20hVCCDE8DQ0NRKNRHA4HlZWV2W6OEEIIIYQYA4qi8M45+fz93VV47RqnO+N85jfneLM1ck37cXs0bl3jRrNAe0uKg3simKbJ6tWryc3NJRwOs23btmsulTIpKRa6yz5C0laGqofIafoRSiqU7VaJcUiC3UJcprq6msWLFwOwZcsWlhRZWFjiImmY/HBfG81mgtNmjGYzwUCh65w8C7eu8bDqbg95hRqGDqffivPi8z2cOBojlRybk5Q64w/QNS+WZDuezt+NyWMKIcRUc7GEyYwZM9A0LcutEUIIIYQQY2lhqZuvv62G2jw73XGdv3uxnuePd11TcDo338KyVW4UBRrOJ3nrcAyr1cr69etRFIWTJ09y/PjxUezFxGGqDrrLN6Jb8rAkO8htfgzFiGe7WWKckWC3EFdYtWoV+fn5RCIRtm3bxh/fXIwK7GkM87dbLvD1nU387ZYL/PGvT7OrfuB63gVFFm6728Py1W58OSqpJBw/HOPF53s4ezKOoY9u0FuxeggVvxcAZ2AH1ui5UX08IYSYanRd5/Tp04CUMBFCCCGEmKpKPDYeXVfDmhofugnff6OVf32thYQ+/G93l5RZWXizE4BTx+KcPRmnpKSEW2+9FYCXXnqJnp6eUWn/RGNYfATKP4ahurHGG/G1/ATMLMyZJsYtCXYLcQWLxcK6detQVZXTp09z8PDRfrO4OyIpvvpK46ABb0VRKCm3sma9lyUrXLg8Kom4yZv7omz9TZAL5xKYxugFvROeuUS9y1Aw8bb9AozEqD2WEEJMNfX19cTjcdxuN+Xl5dlujhBCCCGEyBK7ReUvbyvjY0uLUBXYeqabv/ldPf7I8EuKVtfZmX2TA4A390Vpbkhw8803U1paSiKRYPPmzRjG2M4JNl7ptiIC5R/FVKzYIyfxtv0SpNSL6CXBbiH6UVxczIoVKwA4deA1HPrAdbd+sLcVfYiAtaIoVNbYuOvtXhYsc2J3KETDBgdej/DypiAtjclRq8EVKtyAbsnBkuzE0/HbUXkMIYSYii4vYaKq8pZKCCGEEGIqUxSF98wt4At3VeG1qZzsiPGXvznH0bbh1/GeOc9OzfT03GD7XosQ6DBYt24dVquVpqYm9u3bN1rNn3BSjmq6Sx/ARMUZ3I+7Y1O2myTGCflkJsQAli5dSk5hCZqZYn7ozQGvEvojKY62D+/kpaoK02bYufsdPuYudGC1KQR7DPbsCLPzxRD+tpGfSNLUHAR7y5m4undhjZwe8ccQQoipJpVKcebMGUBKmAghhBBCiEsWl7n5l7dNoybXTndM52+31PObE8Or460oCjctdVJSbsHQYfeOMJrq5Y477gDgtddeo62tbbS7MGEk3HMIFt8PgDvwMs7Aziy3SIwHEuwWYgCqqlK+6HZSaOSmAtREz5Kb7KQk3kxusrNP8Lsrem31oSwWhRlzHax9h5cZc+1oGnR16OzaFua1l0MEOlMj2peEaxYRX7rWl6/tKRQjNqL7F0KIqebcuXMkk0m8Xi+lpaXZbo4QQgghhBhHSr02vra+htuqvegm/PueVr73egvJYdTxVlWFpSvd5OZrJBMmr78conbabKZPn45hGGzatIlkcuQT5SaqmO9mQvnrAPD4n8cePJTlFolsk2C3EIMoLczlhHsOANOjp1jW8wY3hQ6zrOcNbgtspyjeCoDXpl3X/q02lbkLndz9Dh/TZthQVGhvSfHK70K8sTNMqGfkJlkIF74d3ZKHlgrg8b8wYvsVQoip6GIJk5kzZ6IoSpZbI4QQQgghxhuHReX/3V7ORxcXoQC/O93NI1vq6RhGHW+LRWH5Gjduj0o0YrL7lTCrV9+Fy+Wiq6uLnTslg/lykbw7ieSsQMHE1/ok1siZbDdJZJEEu4UYxLwiF06HDRO4MpRhN+IsCB2kKN7Kf+xpZndD8LrrbjucKguWubjr7V4qaqwANDckeem3QQ7ujhCN3PgkFKZqp6fk/QA4e/ZgCx+/4X0KIcRUlEgkOHfuHCAlTIQQQgghxMAUReF98wv4u7sqcdtUjvtjfOY353irPTrktna7yq13uLE7FHoCBkf2Gaxdew8Ahw4dyrwfFYCiECp8JzH3TSjo5LT8GC3enO1WiSyRYLcQg1AwmTVAUPhi8Ht25DjNwST/9HIjX9zWQH13/Lofz+3RWLrCzR3rvZSUWzBNqD+bYOvzPRzZHyUev7Ggd9JZRyRnFQDetl+h6EOfYIUQQvR19uxZUqkUOTk5FBUVZbs5QgghhBBinFta7uHrb5tGdY6NrpjOI1vOs/lUYMjt3B6N5avdaBbwt6boai1i4cKFAGzZsoVoVD7TZygqPSUfIOGoRTXi5Db9CDXZle1WiSyQYLcQg2hqaiIZi1yV1X2RAtiNGO+qSGFRFQ40h/n082f5zzdaCcavvwSJL1dj+WoPt631UFCkYRhw5kScrc/1cPzNGKnk9WWQA4QK1pOyFqDpPXj8z173foQQYqq6WMJk1qxZUsJECCGEEEIMS5nXxqPra1hZ5SFlwPdeb+HfXm8hqQ/++T4338LNq9woCjSeT1LoW0ZeXh6RSIQXX3zxur9hPimpVrrL/oCUrQRND5Lb9CMUPZztVokxJsFuIQYRDg/vRfH2chvf3VDLrZUeDBOeO97F/33mNC+c6EI3rv/Ek19oYeVdHm5d4yYnTyOVghNHYrz4fA9njsfQhzgp9ku10VP8e5goOIP7sYWOXnf7hBBiqonFYpw/fx6QEiZCCCGEEOLauKwan1tdwYcXFaIAm04F+PyL9XRFU4NuV1xmZdEtLgDOntRZMPduVFXlzJkzHD0qn+kvZ2pOAuUfQ7fkYEm2k9v8YzAS2W6WGEMS7BZiEG63e1jrnTp1Cq+S4G/uqOTv766iOsdGMGHwH3ta+YsXznGw5fqvJCqKQnGZldX3eli2yoXbq5KImxw5EGPrCz3Un4ljXGNAPeWsIZK7GgBf+9NypVMIIYbpzJkzGIZBfn4+BQUF2W6OEEIIIYSYYBRF4QM3FfK3d1bitqoca4/ymd+c44R/8JIkVbU25ixwAHDhtJt5c28BYPv27QQCgdFu9oRiWHIIlH8MQ3VijdWT0/IzMK//2/diYpFgtxCDKC8vx+PxDLne6dOnefzxx3nppZeY7jH41n21/OktJXhtKue74/zdixf48ssNNAev/2qioiiUV9m4821eFt7sxOFUiEVMDu6J8vJvgzRdSFzT15fC+feQshWj6iG87b++7nYJIcRUcnkJEyGEEEIIIa7XzRUe/vlt06j02eiIpnj4d/VsOR0YdJsZc+3UTLcBEOmYSXFROclkks2bN3Pu3Dm+8Y1vUF9fPwatH/90WwndZR/FVCzYI8fScQ8p+TIlSLBbiEGoqsqaNWsGXWf58uWUl5ej6zqHDh3i8ccfZ/vLL3F7qcb/967pvGN2HqoCrzeE+ORzZ/nx/jYiyeu/oqiqCjXT7dx9n495ixxYbQqhoMHeVyO88rsQ7S3JYe7ISk/xBzBRcYQOYw8euu42CSHEVBCJRLhw4QIgwW4hhBBCCHHjKnw2/vltNdxa6SFlmHzntRb+Y08LqQG+va0oCguWOimtsGKaKm7LSqxWGy0tLWzZsoW2tjZeffVVqePdK+mcRnfJh9JlXHv24O7cku0miTEgwW4hhjBjxgzuu+++qzK8PR4P9913HytWrOB973sf999/PxUVFRiGweHDh/nxj3/M7h0v8cGZDr59Xy2LS12kDJNfHu3kwWfO8OLpAMYNnIA0i8L0OQ7WbvAxa74dzQLdXTqvvRzm1a1B2lqGnpU55aggkncnAN72X6OkgtfdHiGEmOxOnz6NaZoUFRWRm5ub7eYIIYQQQohJwGXV+Os1Ffz+gkIAXjgR4O9erCcQ67+Ot6IqLF3hIq9AA8NNUe5y4NKcY62trZLdfZmEZz7BoncD4O7aiqP79Sy3SIw2S7YbALBp0yaeeeYZAoEAlZWVbNy4kblz5/a7bldXFz/+8Y85c+YMLS0tvP3tb2fjxo1j22Ax5cyYMYO6ujqampoIh8O43W7Ky8tR1fT1IkVRqKqqoqqqioaGBnbv3k1DQwNHjhzh2LFjzJkzh7+4+WZOhPL4r31tNAeT/OtrLbxwIsAf31zCnCLndbfNalWYfZOTaTPsnDwa4/zpBP62FE//9CylFVbmLHDgzdEG3D6cfxe28DGsiWZ87f9Ld+lHQFGuuz1CCDFZSQkTIYQQQggxGlRF4UMLC6nNt/PNnc0caYvyl785x8NrKphZcHW8QLMoLF/tZseLIYzuaWjqbvTLJmF86aWX+NCHPoTdbh/LboxbsZxb0VI9uLu24m3/NYbmIeGZn+1miVGS9czuV199lccee4z3vve9PProo8ydO5cvf/nL+P3+ftdPJpP4fD7e+973UlNTM8atFVOZqqpUVlYye/ZsKisrM4HuK1VWVvLe976X97///VRXV2MYBkePHuW///u/CRzdxT/elssfLinCaVE51Rnjc5vP842dTfgjwyw/MgC7Q+WmpS7uus9HVa0NRYGWxiQvbQqy//UwkfAApVMUCz0lv4eJhj18FEdw/w21QwghJqNQKERjYyMAM2fOzHJrhBBCCCHEZHRrpZd/eVsN5V4bHZEUD2+uZ+uZ7n7XtdlVVtzhRlda+gS6Abq7u/n+97/P//7v/3Lw4EGCQfkWdzj/HqK+W1AwyWn9GdbouWw3SYySrGd2P/fcc9x9992sXbsWgI0bN3Lw4EE2b97MAw88cNX6xcXFfOxjHwNg27Ztw3qMZDJJMnkpkKgoCk6nM/PzWLj4OGP1eKNN+jO0iooK7r//fpqbm3n99dc5f/48b731FsePH2fWrFl8dc1SnjufYsvpbl4+18NrF4K8b34B988rwG65/utQbo/G0hUeVq7O45Wt9TQ3JGk4l6SxPsm06XZmznfgcPTdv+EoJ1JwD+6OTXj8z5J0zcCw5tzoEIyYyXS8Taa+gPRHTB2nTp0CoLS0FJ/Pl+XWCCGEEEKIyaoyx86/vK2Gb77axJ7GMN/e1cyZzhgblxZjUft+TnG6VKL6QUAB+pZJNU2T+vp66uvrefnllyksLKS2tpba2lpKSkqm3mceRSFY9G7UVAh75Bg5zY/TVfl/0G0l2W6ZGGFZDXanUinOnDnDe97znj7LFy5cyPHjx0fscZ5++mmeeuqpzO+1tbU8+uijFBUVjdhjDFdpaemYP+Zokv4MraysjKVLl3LhwgVefPHFTMD7xIkTLFy4kHfedyv/dbCLA43dPHHIz9ZzQT5950zWziq64ZPPu35vJm0tUXbvaKPxQpizJ+NcOJdg4dICFi4rwG6/VN7ELP0g+oGTqMEzFHY/h3rTZ8bdyW8yHW+TqS8g/RGTn5QwEUIIIYQQY8Vt0/ibOyr56SE/T77ZwbPHuzgXiPP/bi8nx3EplFdfX09HR/uA+6mqmE0i1UNbWwt+vx+/38+ePXtwuVxMmzaN2tpaqqursVqtY9Gt7FM0uks/RF7TD7HG6slt+hFdlf8XwzJ+kv3EjctqsLunpwfDMMjJ6XtQ5eTkEAgERuxx7r//fjZs2JD5/WIAr729nVSq/4L/I01RFEpLS2lpaZkUs+JKf66dxWJh/fr1LFmyhNdff50zZ85w8OBBDh48yK0zZnDbgvn8/HSSlp44Dz/zJvOKnfzxzaVMz3dc82Nd2Z9lt9moblE4dihKoFNn3+t+Du/vYOZcB7Uz7WiW9N+Elv8e8kL/Cl2HCRx/hljO8pEehusymY63ydQXkP4MxmKxZOWiqhh5PT09tLS0AOk5HIQQQgghhBhtqqLw4UVF1OU5+NauZg63RvjMb87xN3dUUpfvwDRNdu3aNeg+Wlv9lOffx9zaJIqtmWC4geaWeiKRCEePHuXo0aNomkZVVVUm69vj8YxRD7NEtREo+yh5Df+BJdmeDnhX/Cmmdv1zqYnxJetlTKD/r4uPZEap1Wod8CrVWAdnTNOcFAGhi6Q/166oqIgNGzbQ3t7O7t27OX36dPrr8adO8e7aOrqnzeaZCwZH26L85QtnuXdGDh9eVESu49r/XC/vT2GJhdvv8dDSmOStwzFCPQZHD0Y5cyLGrPkOqmptmNYiQvnr8Ha8gLv9OeLOGRjWvJEegus2mY63ydQXkP6Iye3kyZNAujzVpH/zL4QQQgghxpWV1V4qfDa+vL2B5mCSz20+zydvLeW2Kjc93YPX4jbMMIpiEA3bIFyDRg21pSuxuf3EEg20ttcTDPZw7tw5zp07x7Zt2ygqKqK2tpa6ujqKim78G+fjkam5CZR/jLyG/w9LopWc5h8TKP8jUKdIhvskl9Vgt8/nQ1XVq7K4u7u7r8r2FmKyKSoq4h3veEfma0QnT57k3NkzcPYMH6qexjnXdLa3a2w+1c2O80E+uKCAd8zKx6pd/4lGURTKKm2UlltpOJ/g+JsxohGTQ29EOf1WnNkLHJRXrsIePoItdh5f21MEyj8OStbnshVCiKyREiZCCCGEECKbqnPt/Mv6aXzj1Sb2NoX5xqvNnJmTT13lBgJdkQG3y81zs3ptLu2tOm1NSdqaUyQTKslEMVBMoXsJ1WUhdLORzsB52tpbaW9vzyTnud3uTMZ3VVUVFsu4yJkdEYY1Lx3wbvwPbLFz+Fp/Tk/pAxL/mASyepRaLBbq6uo4dOgQy5dfKpdw6NAhbrnlliy2TIixU1hYyNvf/naWL1/Onj17OHHiBI3157Byjg+WV3FIm8axiJMf7Wtn08kAf7S0hJsr3Dd0dVVRFapq7ZRX2zh/OsHJozHCIYN9uyKcytVYeNN7mKX8G7boGZzdrxHxraTDnyIeNbE7FQoKLSjq5Lu6K4QQV+rq6qK9vR1FUaSEiRBCCCGEyBqPXeOROyp54pCfp4508MxbnfyBtRi7deDyG0ZKwWJVqazRqKyxYRgmnf4UrU0pWpuShIMGkW4vMAe3Ood5tXGwNRMMX6CltYFwOMybb77Jm2++icVi6VPuxO12j13nR4luL6O79KPkNv0XjvARDP+zhArfBZMwm30qyfolmQ0bNvCd73yHuro6Zs2axZYtW/D7/dx7770APPHEE3R2dvLJT34ys825c+cAiMVi9PSkv25hsViorKzMRheEGBEFBQW87W1vY/ny5bzxxhscP34cf9MFyrnAzKJy9prVNAZ9fOnlBpaUufn4smKqcuw39JiaplA3y051rY0zJ+KcPh6jJ6CzY4eDWO1dLMrfjMv/W7buKsVihHBZQ0SSHg7oVcxf6qas0jZCvRdCiPHpYgmTqqoqnE6p4yeEEEIIIbJHUxX+YHERdXl2vr2rmaeSfsqdNj62tIgnj3RyIRCnKtfOX6wsA8DuUNEu+3a4qioUFlspLLYyf7GTUFCntTFJa1OSTr9ONGKHyDQsTGNaqYHN1d5b7uQ8oVCIs2fPcvbsWQBKSkoyge/CwsIJW+4k6aqjp+QD+Fp/hqv7NQzNR8pZReqNf8Wa93YSTkl4mWiyHuxetWoVwWCQX/7yl3R1dVFVVcXDDz+cmdSrq6sLv9/fZ5vPfvazmZ/PnDnDjh07KCoq4nvf+96Ytl2I0ZCfn8+6desymd5vvfUW4fYm5tDETbkl7KGa/c3wZ8+f5R2z8vjQgkI8du2GHtNiVZg138G0GTZOHYtz9mScN84upsjyFuW+ejZM/yGaamTWDyW8vHZkLbBEAt5CiElNSpgIIYQQQojx5rYaX28d70ZOhmJ8YdcFkr0f2TsCKc7EYiwtH3quGY9XwzNHY/ocB4mEQXtzOuP7YrmTVKIEKKHIs5Sash6SZiOdgXr8/jZaW1tpbW3ltddew+PxZALflZWVE67cSdy7kJAewut/Fk/nZlKWPEh14dY3kaicLpneE8y4OPrWr1/P+vXr+73voYceumrZk08+OdpNEiLrcnNzuffee7nlllt44403eOutt0gFWllCKylPEQfVGp49Di+d6+HDCwtZNyMX7QZLi9jsKvMWO6mdZef4m1HOdM2hzFvfJ9AN4LYGWVv3v7xyUqG0/BYpaSKEmJQ6Ojro7OxEVVWmT5+e7eYIIYQQQgiRMS3PwdffNo1/fqWBg63RzHIF+MEbrXz5Xju5zuFPuGizqVTU2KjIlDvRaW1KXip30pMD5ODV5lFYG0OxXip3EgqFOHz4MIcPH8ZqtVJdXU1tbS3Tpk3D5XKNfOdHQTR3FWqqB3fgZSypLgCs8QZskZMk3JL4MpGMi2C3EGJgubm53HPPPZnyJkePHsUSamcZ7UQc+byVrOXfd6f4zckAn1hWzMLSG6+b5XSpVNZYqO7Y1e/9igKmCUtLtnCuZRHF5TdWTkUIIcaji1ndNTU12O3yOieEEEIIIcYXr13jXXMLONjakFlmAo3BJH/4q9Pk2DWqcu1U59iozrFTnWOnKteOb4hvh6fLnVgoLLZcKnfSlKS1KUVne4p4xAHUYqWWaSU6Nlcb0WQDbe31hMNhTp8+zenTpwEoLS2ltraWuro68vPzx3W5k3D+Opw9u1GN9MUDE/D4n6XT+RegysSVE4UEu4WYIHw+H3fffXcm0/vIkSO4Yp0sjXUStOZyKlnH57fEWFHt5Y+WllBWdmOPZ42cw2MLDni/ooDHFqT+wHFOH6+joCR9IszN11Al01sIMcGZpiklTIQQQgghxLhmmiY/PeRHVcAwr76/O67T3RrhzdZIn+W5Di0T+L48ED5QiVSPV8MzW2P6bPqWO2lJkUxoRHvKgDKKvTfjLOvOlDvp6GinpaWFlpYWdu3ahc/ny5Q7qaioQNNurCTrSLNFT2UC3ZDOkrck/eRd+FdCRRtIOqWkyUQgwW4hJhiv18tdd93FzTffzN69ezly5AjeZIAlyX10W3I4ebqOBxtCfGR5irdNs+O0XN/VR6ctBNGh13NZgpxuS+FvS3Ec0CyQX5gOfBeWWMjJ1aTMiRBiwmlvb6e7uxuLxUJtbW22myOEEEIIIcRV9jeHOdUZG/D+P15WjMumUR+IU98d50J3nLZwikBMJxCLcOiKIHie03Ip+J1rp6r3Z7ftUlB6qHIn0WAukIvPMp+i2ihYmukJ19Pa2khPTw8HDx7k4MGDWK1WampqMuVOsj4ZvGni7tyMiYLCpSsHJmBNtpLX9EMSjhrC+WtJOmdI0Hsck2C3EBOU1+vlzjvv5Oabb2bfvn0cPnyYnFQ3i4P76Y74ePaVdp45WMofLCnmzlof6jW+ELtyc4cV7L59+jZqDZ232hbQ2qaSTJi0t6Rob0kBYLFCQVE6+F1QbMWXq47rry0JIQRcKmEybdo0bDaZiFcIIYQQQowvpmnyk4N+FKCfpG4UYNvZHv7lbTV9PoNHkjoN3Yne4HciEwj3R1J0RdO3gy19g+AFTkvfLPDeQLjLqg1R7sQJ1GGnjtrSFDZXG5FEA61t9USjEU6dOsWpU6dQFIWysrJM1ndeXt6Yxw1skZNY441XLb/YChMVW+w8tqb/IumoJpy3loRrpgS9xyEJdgsxwXk8HtasWcOyZcsuC3r3sDi4n56Il5+8PJ0Xjlfxx7eUMrtw+FdKU65aEviwmj39vnabJqAoWMwwNcpvqCp7mcicFbQpt9LWbsPflqKjPUUqCa1NKVqbUkAMq03pDXynM789Xgl+CyHGF9M0OXnyJCAlTIQQQgghxPiUMkz8kWS/gW5IB8D9kSQpw8SqXfrM7bJqzCp0MuuK+EAkqfcJftd3J7gQiNMRTWVuB5rDfbYpdFmuygKvqrMzfbYjXe6kJUVr48VyJxaiPeUolFPquwVHRYCU2UhH13k6OztoamqiqamJnTt3kpOTkwl8l5eXj365kwGyujN3o5CylZB0TMMZ3IM1Vk9u849I2qsI568l4ZolQe9xRILdQkwSbreb1atXs2zZMvbv38/hw4fxJYIsCh4gGDnNPzfXMX/WDD66tJgC1zBmZFZUoqXvxNryE0yz7+t2OtANPSUfRDFiuALbsSQ78XRtxa28Qmn+zUTqbkfX8ugO6PjbUvhbU3T6UyQTJs0NSZobkgDYHUo68N17c3kk+C2EyK6WlhaCwSBWq5Vp06ZluzlCCCGEEEJcxaqp/MvbptET14F0BnJhURH+9vZMuDbHoWHVhlfa1GXVmF3ovCpJLpTQuXBFFnh9d4KuaAp/JH3bd0UQvNhtoaq3Dnh1iZ26GVY8KQuBVp2W3nInsWAekEeO9SaKpkXA0kRP6AKtbY10d3dz4MABDhw4gN1uz5Q7qampweFw3ODI9UdHTXX3G+gGUDBR9SChovuI5N+Jq2s7zp7dWOMXyG1+jKS9sjfoPVuC3uOABLuFmGRcLhe333479913H7/97W85cOAA3mSQhaGDhA6e5vOnpnPH0rm8Z14h9iHqecc9N9FT+mE87c+i6T2Z5YYlh1DRBuKemwCI+W7BHj6Cq+tlrPFGXN27cHa/TtyzAGveGnLnlDNjDhiGSaAzHfzuaEsHv+Mxk6b6JE316eC3w3Vp1ueCYisut8x4LIQYWxdLmNTV1WGxyFslIYQQQggxPhW5rRS508lsiqJQVuKl2QhhmgPle187j01jbpGLuUWuPsuD8XQQ/PIs8PruOIGYTls4RVs4xd6mS0FwBSj2WKnOsVFTYKdYt2EJqUQDBomoC5iBgxnUlaWwOFuJ9pY7icWinDhxghMnTqAoCuXl5dTW1lJXV0dubu7IdFKx0FX5EKqebq+iKBQWFuL3+zNjaVg8oFgwLD5CRRuI5N2BK/AKzu7XsMYbyG1+nKS9ojfoPUeC3lkkn+CEmKTcbjerVq1iyZIlHDhwgH379+NJhpjTc5Azr5zikcMzec/tC7mtOmfQTOq45ybi7nlYo+dQ9R4MzUfSOQ2Uy4LQikrcs4C4+yas0TO4ul7GHj2JI3QQR+ggcedMInlrSDqnk19oIb/QAvNA1026OnQ62pL421J0dejEIiYN55I0nEsCUVxulcISC6HZ3VhsBnaHnDCEEKPHMIwJXcJETQYyb9L7Y2huDGvu2DVICCGEEEJMSl67xrxiF/OK+wbBe+J6JvB9eSC8O67TGkrSGkqyh0vvV+0ozHe6qNUc5CQskLKgBytQqaAs5xYc5QESZgMdXfUEAp00NjbS2NjIjh07yMvLy5Q7KSsrQ1WvP1nOsOZm3icrioLiLSMVsg944cCweAkV3kc4dw2uwCu4undhjTeS2/xjkvbydE1v91wJemeBBLuFmOQcDgcrVqxg8eLFHDhwgL37D+BOhnF3HOCVZ0+wtXQOD9y5lBmFroF3oqgkXXVDP5iikHRNp9s1HUu8CVfXduyhQ9ijJ7FHT5K0VxDJXZPOCFdUNO1SFvdsIJUy6fKnMpnfgU6dSNig/kyC+jPpiSI8XjVT77ugyILdIZnfQoiR09jYSCQSwW63U11dne3mXBM1GaCg/usoZmrAdUzFQkf1ZyTgLYQQQgghRoXPrjG/xMX8kr4xhu5YKh38DiT6ZIQH4zr7omH2EUYBSrBSrTqoVuzkKhZi4Xwgnzz7QvKrQmjWJoLhBtram+jq6qKrq4t9+/bhcDj6lDux2+1j0l/T4iFc+HYieatxde3A2b0La7yJ3Jb/JmkrS2d6u+f2TRgUo0qC3UJMEReD3kuWLGHf/gO8sW8/7lQEmvbx1M/ewjNtPh++eyl5rpE5IaTs5fSUfgg1uQ5XYAfOnjewxhvJaf0pekc+kbzVRL3LQL1UP9xiUSgqtVJUml6WTJp0tqcD391dCv62GKGgQSiY4PzpBADeHDUdMC+xUlCkYbXJCUQIcf0uZnVPnz599CfCGWGqHh400A2gmClUPSzBbiGEEEIIMaZyHBYWOCwsKHFnlpmmSXdMv5QF3hsIP9odZnciiA+NasVOtWKnVLGhJjykErNwMouywjhRtQldbyTS3UgsFuP48eMcP34cVVWpqKjIZH3n5OSMev9MzUO48G3poHdgB87Aq1gTzeS2/A9JWymR/LXE3fMk6D0GJNgtxBRjt9tZueJWli5ZzGt7D3Bg/35cegTjzB7+8/yblM9exPvXLMVhu/TykEzp7Dp2lq7uEHk5HlbOrcVqGV4QyLDmEyp6F+H8tbgCu3B270JLdeJt/zXuzi1EclYRzVmBqV2dWW61KpSUWymtsFFWVsb58434W5N0tKWzv4PdRu8twdmT6eB3Tp6WrvddYqGg0ILFKl8ZEkIMj67rnDp1CpiYJUyEEEIIIYSYSBRFIddpIddpYWFp3yB4V0ynPhDPZIG/3tmD0QMlho1KxY5DsWMza0GtJSdHpznZTDTVgJZsxogHuXDhAhcuXGD79u3k5+dn6nyXlJQMWe7kQHOYT//mNT62uJBFpYN8C74fpuYmXLCeSO7tuAI7e4PeLeS0/ISUrZRw/t3E3fMl6D2KJNgtxBRlt9u5Y9WtrLx5CVt27eP4mwdw6FE6j77Gd48fZM7CJbx91RJ+u+cox/buwqbHADgP7N7uYO6ylbxjxYJhP176Bf8ewnlrcPa8gSvwCloqgKfzd7i6Xibmu4VI7u2DZhvabCpllTbKKm0AxGMGHe0p/K3p4Hc4aNDdpdPdpXP6eBxFgdx8LV32pNhCXqEFi2X4wW/TMOnwp4hHTexOhYJCC4oqwXMhJqsLFy4Qi8VwOp1UVlZmuzlCCCGEEEJMSYqikO+0kO+0sLisbxC8M5rifCDOhcYEQb+ONaTiQqPSXgn29Hv4jmQXbfFzpOJNuFOddHamb3v37sVis1NeVcO8mdOZNq0Gm83W57FN0+TJnUcobj7Ek+GFLHzvzYPOczaQdAxk3aWgd/dOLIkWclqeIGUrIZx3d6bEqxhZEuwWYoqz2Wzcd8cK7l6xlF9vf4OG44ew6VHO7H+Vfz24B9VIYr1iG6se49TubTwP1xTwBkC1Ec1dRTTnVuyhw7i6tmNNNOPq3omzexcx7yIiuWvQ7aVD7sruUCmvslFelT45xaIG/tZUJvM7Ejbo6tDp6tA5dSyOqkJugdZbJ9xKboGGpvV/0mpuSPDmviix6KXJKBxOhZuWOjPBdiHE5HKxhMmMGTNuaHKbsaamurFFTmEPHsx2U4SYsGRyVyGEEGL8UxSFApeVApeVpeWXlod6Upw5n6ClMUms26DAmkeBNQ88S4joMZrj54kkGrAnWiERp/70CepPn8BExfQWklNaRW1dHTPLCmjqieNsOYLHCGO0HGFf0xyWVXivu82m5iJccO8VQe9Wclp/SqqzmHD+XcQ9CyXoPYIk2C2EAMBht/HBe1fRc/syfrplNz3njmA3Ev2uqwAmcGzvLtbdPG/YJU367kQj7l1M3LMIW/Qkrq7t2KKncQb34wzuJ+6aTSRvDUlH7bBnL3Y4VSqn2aiclg5GR8IGHW3JTOZ3LGrS2a7T2a5z4kgcVYP8wnTWd0Gxhdx8DVVVaG5I8MbOyFX7j0VN3tgZ4ebbkID3JHQxkz/c3U00liS/UJNM/ikklUpx+vRpYAKUMDES2KJnsUVOYouexJJou6bNvS0/I5aznLh3MYbl+t+4CzFZyOSuQgghxMTm8VlYuMDCwgWQTBi0taRobUrS1pzClXAw3TUbXLMxTB2/3ow/Uo8Sb8JhRFCCbQSDbRw6uZedmoew5qZU7wHAp/fwk1eOkHvvIipy7Dgs1x+QNjUn4YJ7iOTehrN7J67ATizJNnJaf06qc2tv0HuRBL1HgAS7b4BpmpCID29lRcGIRTHjsfR2E530Z3y7gf54VfiTdbfw7Bu5nNu7beCHAGx6jJ0H3+KOm6bfUHPjWjXxwo9gSTTh7tmJPXoMe+Q49shxErYKor7b0HPvvOb+OC1QWQ6V5RqmqRIOm3T4DTraDfx+g0ScdCC8Nf3hVrNAXr5CoHPwx3hzX4SSQv26vso0EY4100yPUzwOdjsUFKoD93UC9Gc4mpt0jhxKEosBhADJ5J9qzp8/TyKRwO12U15ePvQGY8k0sMSbsUVPYoucxBo9j4J+6W4UUvYKUrZSnME3htydNeXH2vECno7fkHDNJOZdkp4sR5VjXUxNMrmrEEIIMXlYbSoV1TYqqm0YhklXh05rU5LWxiShIBRbKin2pcud6JZuelL1dAcvYET8ePUQXj3UZ3/F/kP89fMOEpqDApeFCp+NCq8t/X/vrchtRR1mfMDUnETy7yGaczvO7ldxBXZgSbaT0/okqc6tRPLuIuZdBMp1JBUKQILdNyYRx/jkB4a9euMoNiUbpD/j2432R69eDjm+Idc7tGMLbZt/SWkkQGmkm9JIN+5U/xnhQ0n03rRcG+7lBbgW5GKjEZv/SZLH/xvbng6ibwZAv76gqqv3VkU6Mz3kLqcjbx4d+XPpzJ1LEg/+tqH3HYvCkX99mpxgPaqRRNMTqEYC7fKf9WTvsgSankDh0n7H87HWUnQzR2d/mJijILPMEetg3vGfUNrefxBtPPdnOFqKbmbfwk+lf7nsDYpk8k8tF0uYzJw58/ouZI2wdGmSk72306hG3/IKuiWXhGtm+uacjqm5sMQahxXsDufegS12FmusHnvkBPbICQzFTtxzEzHvUpLOaZJRIoQQQgghJjxVVSgoslBQZGHeIifhYG/guylFR3sKLZVDHgvI8y5AzY1zvucAqdDxPvtwGTFWB7YT1Dx0hgu4ECjkTWsuxmXBaJumUNYbAK/09Q2Eu6z9B61NzUEk/26iuatwBnbhCryCJenH1/YLXF0Xg96LJeh9HSTYLYToV348xAWGDnajKLS4c2lx52YWeRNRSiPdlPQGvwtjQbRryPrVAwl6NjcT2tGGa1kB7qX5WArs5L6tHO/tRYTf6CRyoBMzblxHz3qbDXjDTXjDTUxr2IKJQtBTxZmat9FUdvuQ25+rue/aHs9IoRkJVP2KoLiR7F3WN0Cu6sn0ssu2yax32c8DraeaKa41XNcn6HuZmD2PfQs/xdJD3xkw4D1RmSgcnf3h9C8DBDjf3BeltNwqJU0msWQyyZkzZ4AsljAxEtiiZ3qD26ewJPuWJjEUG0nXdBLOdIBbtxZcdcwamhtTsQxZiiGas4Jw4dvQEn4cwf04gvvRUl04g3txBveiW3KJeRcT8y5BtxWPSneFmIgUPQKmIReDhBBCiAnK7dWom61RN/vqcieJuA015udS4dZLTMhkfdfEzoOqkXIX0mkt4LyZS4/p5nwgzvnA1dUf8hxab+Db3icIXuy2oqkKpuogkn9XOujdvQtX1ytYkh342p66LOi9RILe10CC3TfCZkf97pPDWlVRFEpLS2lpaZnQX/W/SPozvo1Ef1bqOnt+9BOseqzfoKkJxFU7R3KW4Ux0k5PqxpcK4NFDBG1OgjYnJ3PTk0xqmkZxUSGlxSWUlpRQVlKC2+0aVjsiQMxMUKyeJNW4Gc3Tg+/OEjx3VRH1LCPiWYFhGUZQfhhygep2naadySHXzctTsFgVdN1E18HQQddBN8zMz8ZlsXhTtZBSLWAZXr9HgqaBqqX/11Tl0s9a78/qxXUUVNWk4YIB/cXIej/UH7r5z4jN1tIBtouHlaLg9XoJ9vRw+aFmZv65bJnZ/8/p369ccNXm/Wxz5QqXbWP2+a/f/WGms7djrYNfNIlF07W8C4uvnKpVTBZnz54llUrh8/koKSkZmwc1DSzxJmyRU9iiA5UmqcxkbycdVUO+wTWsuXRUf2bYk+zptkLCBfcSzl+LNXYeR3A/9tBhtFQAd9dLuLteImmvJOZdQsy7CFNzj0jXhcg2xYhhiTdjiTelb9Hzw9our/m/MNEwLDnolpxL/1tz0C25md9N1TXs+UaEEEIIkR2XlzvRdYNHn9qHJ9XR77oKkOO6Cd2IEk00oRtRLMFWimmlGLBaXXh8FWjeUqLOQlpSUB+O0xJP0RXT6YpFebMt2mefFlWh1GO9Ihv8VirLllMc29Mb9O7E1/ZL3J3bCOffScy7VILewyDB7hugKArYHcNeV3U4UeyOfiI0E4/0Z3wbif7YgLnLVnJq9zZM6BPwvrjH+Tev4i+X38Rxf5T9TWEOtITZ5w/hTXWTk+wmJxUgJ9UNepLmllaaW1oz+/B6vZSWllJWVkZpaSlFRUVo2gAv2ooTreydtNmWYO85gCuwHUuiFXdwF67gbmLexUTyVqPbbjxIVVhu4nD2EIsOPG4Op8Jt9/iGzPQ1zYuB8PT/up4OhOflFdDW6ieVMjPLLgXNzSt+vvI+0FPmgPddTu8NuqdD95f35/qOiVQSjr6p93NP53XtbyKJD3I8iIlvrEqYqMkAtuipTPa2avSdCFe35F1RmsR5zY9hWHOvvaawopJ01pJ01hIsfCf28DEcwf3YIiewxhuwxhvw+J8n4Z5NzLuUuHsOKPIWUkwMSiqENd6EJdF0Kbid7P+D7FDS74d0tFQnWmrgc5+pWNEtPgxL7mVB8dzLguS5oA3vM4QQQgghRp9umiidRwZdpyfRyE217yIWNYlEu4jGm4kmGokl2kgmI3R1nISO9OeKQkshVfZyXI5y3O5CDKtKTDHoMVJ0JFM0xxN06zqdPSkaexK8fsVj+ezl1OZ8iPcUH2eNax+uVCe+tl/h6txGJO9OYr6l8n58EDIyQogBvWPFAp4Hju3dhU2PZZYnNQdzl63kHSsWADC/2MX8YhcfoYieuM6hljD7m9O3g+EkLiOCL5kOfOcb3TiTQYLB9O1ikEnTNIqLizPB79LSUjweT98GKRox31Ji3iXYIsdxdW3HFjub+ep93DWXSN6adL3Z66So6UkJ39gZGXCdm5Y6h1XSQlEULBbAovRZVlLmwsA64t8iME0Tw7g6uK7393uq732BzhStTYNPzgWQm6/h8qiXLn4oCk6nk1g0Cph9roooKFf8Dld+TeDKuOKgv/f+cumx+9/vtTxOJGzQcK73coBpEEu2oetRNM2Jw1qM0pvVbndKht5kFY/HOXfuHDAKJUyMOEbHAdztr2MLn8SSbO97t2JPlyZxzSDh7L80yZhTrcS9C4l7F6KkQjhCB3EE92ONN2IPH8MePoahOoh7FhL1LiXlqM5+m4UAME3UVABLvCkd3O69aXpPv6vrlhxS9nJStnIM1Y6344UhH6Kr8v9iaF60VAA11Y2W6r7s/0D6fz2MYibTAfVBguqGYiPVVEgObvTLguAXg+OGJQdTtV/3cAghhBBi+FRM8pQEg80+ZtNirL7XjcViIZXKIRatJhYxCIeSNDY30dpSj7+zkWisi3jKTzzlJxA+hNJpxWkrw2krJ8deRqHmZbbiuiwia6JrEFUMuvUUXXqKcEIn1G7wH21z+J5ax7riozxQ9iYFdOFrf5pk8xb2JJfT6VxCmc9Jhc9Gjl0bF3MPjQcS7BZCDOodKxaw7uZ57Dp2lq7uEHk5HlbOrcVq6T8L22fXuL3Gx+01PkzTpKEnwf7mMAeawxxujXBcN9HMFL7e7O8ypQd3IoCeStDc3Exzc3NmX5dnf6dSqXTGuqqCopBwzyHhnoMlVo+razv28FHskWPYI8dIOGqI5K0h4ZpzXXU1yypt3Hxbulbz5RneDmc6ED5eJytUFCVTpuRaC27425LDCnbPXeToU85DURTKyspobm6ekCWATMPE39pDR9c5OoJ70C/LtNVUFwXeWyjIm0ZBoZwuJ6uzZ8+i6zp5eXkUFhbe2M5MA0u8MV2aJHISa6weA52LxYuupzRJNpkWD9Hc24jm3oaWaMXRsx9H6ABaqhtnz26cPbtJWfOJeZcQ9y5JB+uFGAumgZb0ZwLaF4PbqhG9elUUdGtBOrBtLyfZ+//lZXksseFOtaxhWPMwrHkDr2Ike4PfPZmgeDogflmA3IiimgmINDHYOwpDdQySHZ7+H1VKbAkhhBA3StM0ZlRtINA1cNJbbp478210i0XB49XweDUKS6zUTJ8BzAAgFApRX1/P+fPnqa+/QDweIxKvJxKvhyA47D68rnIctnI0swRFsaLp4EHDg0ZFfxe7/WU81XE7MwoPsLx0NwW2IG+zvEhH/HV+eWgR32ibQdKiUeKz9qkLXuGzU+a1YtOm1nwj8uldCDEkq0VjzYIZ17ydoihU5dipyrHzrjn5JHSDY+1RDjSH2d/s5mxXAecAHCZOI0Kh0U2NJYQ3ESAR7u6T/b19+/ZM9vfl5U88nmp6yj6ClmjHFXgFR88+bLHz2Jr/m5S1mEje6t4ZjK/t5a6s0kZpuZUOf4p41MTuVCgotEzaSQoLCi04nMqQ5VsmW9BXURVyS5o5du7lq+7TjQht3S8zfY4dRc3JQuvEWDhx4gRw/SVM0qVJTl5WmuSKYJujiKitrjd7+/pKk4wHuq2EcOHbCBeswxo9iyO4D3voTSzJTjydL+LpfJGEoyYd+PYsnLD9FOOQmcISb00HthMXA9vNKObV82uYaKRsxZnAdvpWNmSG9HAndzWGU7detaLbCtFthQw4A4iRwKL3UOjTCLSeuZQVnvm/G9WIoxox1EQLlkTLwG1X3ejWnD4lUvqWUPHJ15yFEEKIIRgG6EkXduvA72GNlIJhpOe9GozH42HevHnMmzcPwzBob2/PBL9bWlqIxXuIxXuAt1BVlZKSUkqLqyjIr8RhLyAeNYlGDWIRg1jvz4YOFtPOufZbueBfyuzCgywsfZ0Ce4g/mbaTB8oPcahlBYfbbyIYUPCbOucJEaaHKDoWu4LPo1GQa6Esx0ZlTjoYnu+0TMpscHnnI4QYMzZNZVGpm0Wlbv5wCXRFUxxsCbO/Kcz+FgsXYm4uANhBs6Wo0kLMsKdLoCR6OolGI5ns7/379wOXsr/TAfBVlFTdjSf4Gs6e17Ak29KTOXT8jkjubcRylmOqw6+RqajKlJmU8PLyLQOV8xhu+ZaJxDAMDh95ddB1Dh95lWW3zEp/q2CS27RpE8888wyBQIDKyko2btzI3LlzB1z/6NGjPP744zQ0NJCXl8e73vUu1q1bl7n/woUL/PznP+fs2bO0t7fzh3/4h7zjHe8Yi64MSywWo76+HkgHu4dDMeJYo2cywe2rSpOodhLOGSRdM0i4ZlFScxOhCfrNh34pKknXdJKu6QSL3o09fARHz/50LfLYeWyx85jtzxJ3zyXmW0LCNQuUqfE6Km6cYsR7J45svDSBZKIVhasnEjYVa2+WdlmmHEnKXnJdgd1rndz1hqk2dK0INa+MeCy/39cHxYihJrsHKJmSXq6YSVQjjBoPQ7yp34cyUTA0z9WTavYpmeId198yEUIIIUabpimsWeclHku/51AUhcLCQvx+f+Y8bXeoaNq1fR5OB7NLKCkp4ZZbbiEej9PQ0JAJfvf09NDc3ERzcxPwOk6nk+rqaqqrq5m9oBq3241pmiQTJtGISSxqEIsaRCO3sSu0nGJlLzM8u/DYgqyq/h2LSndxqGUFx/2L0M3LLvYnga70LW6aHCLKLjNEXDVRbeB0qfg8GoU5FsoLbNQU2nBYR+a9QXtLku2bTzF3oY3CkrEJQ0uwWwiRNXlOC3fW5nBnbQ6GaXI+EO8NfIc52hblnJHLuWguUI7qMplbajDDHiY3FSAa8NPZ0TFg7e/KsjUsKu2mUj2KRe/B2/Eb3F3biPpuJZq7Kp3pJPooq7RROu0Me97YQUq/9PUti+bilptvp6xyThZb1z/TNEmlUiSTSRKJxFW3y5f3t04kEiEUCg36GKFQiKamJiorK8eoV9nx6quv8thjj/GJT3yC2bNns2XLFr785S/zzW9+s9/yHm1tbXzlK19h7dq1fOpTn+L48eP84Ac/wOfzsWLFCiBdD7ukpISVK1fy+OOPj3WXhnT69GkMw6CwsJCCggFKcFxVmuR8n8CbiUrSUUXSOYO4ayYpR2UmaDQZsyT6UG3Ee0uYqKke7MEDOIP7sSRacITfxBF+E0N1E/cuxPSsA1Mm5BOXpCeObLwsuN2EluxE6WcSZUN19pYgqcgEt3Vr4XWVKhvIdU3uOopM1YFud6DbB5h82zRRjOjVGeF9aoj3oJgpND2Ipgexxhv63xUKhsU3eEBc84zoeAsxENM0IRHPdjOGpigYsShmPDZ5Lmhni4zlyJGxvCEODRy9X+JSFIWCHEhGU33G0rzBlycbUFdZQV1lBaxaSXd3D+cbLlDf0EBDYxPRaJTjx49z/PhxAAry86mpqqSqspLy0lJ8rothXKV3bysJmreQCu3H1bMDt62HldVbWFb1Gg3JlZwNLqI7bCEUMUnGTNAVLIpCDhZyLiYIJHpvAQg1mJwgzltmjJhioFtMLDZwOhVyPCpFORpFORoup4rdAeoQyXCmafLGnjjJMLzxRoL19+WMyWckCXYLIcYFVVGozXNQm+fgvfMLiKcM3myNsL8lXe/7QneCIz0aR/ABPlzWaSy8ycosR5R8o4dgR1v6K0GxWCb7ew+gqR6W17q4rTZIri2KO/AyrsAOYr6lRHJXo9uKBmyTYRg0NTURDodxu92Ul5dP6uzeU6dOsev1zVctT+kRdr2+mbwCCzNmXHs5mytdDFAPFoS+Mkgdj8evWu/i72PxRi4cHjjbb7J47rnnuPvuu1m7di0AGzdu5ODBg2zevJkHHnjgqvU3b95MYWEhGzduBKCyspLTp0/z7LPPZoLdM2bMyBwzTzzxxNh05DJqMjBopmbT2cPA1VndarIrnbkdPdVvaZKUNZ+Es7futrNOSnYAhsVHNG8N0bw1WOLN6TInwYNoehBn9y70/bvIsxYR8y4h5l0yroKKYpRdOXFkopnU+RYKE139rq5bcnqztMt6M7crMCw5MhHqlRQFU3OR0lxgL+t/HdNE0cNXBcS1PnXEe1Aw0HqXD/Q9DBMNw+K7Ihh+WR1xaw6m6h7V52mo1/QRzb4X2ZOIY3zyA9luxbAMt9q/GJqM5ciRsRw5YzGWXuCm3puOQqsrh3pvARc8+bQ5fXR0dtLR2cm+g4ewGDrl4S6qgx1UhTrIi0e4eNYNA2FNwbUgF8/KQmy+EHW231Fjf4HwgQ7CBzohZaKrVmL2PGL2PMKOQvyeCgLuUsKOQpK2HBSrG5tiRVUUXGiQIn2LQHcHdGNwqjfxxzRNTD2GJdGNM9ZBbqQVT7QdR7wLR7wTR6yToLuc5OK/BCAZgraWJCVloz8HmgS7hRDjkt2isqzCw7IKD4qioLjz2HzwLPubQxxsDhNMGLzWFOc1VCCXMm8RixbdwqIcndxUN53tbTQ3N9PR0cGu0wqvnc5hdrGD1XUhavKTOHv24OjeQwc1xAvuwpo/u8/jnzp1ile2v0yhrROv3SAYV/ldIp/Va+4YkYDveGMYBtu3bx90ne3bt1NSUnJVoLqlpYW2trZ+A9L9BbOTyeSoBKhtNhtWqxWbzdbnduWyy3/v7u5mx44dQ+7b7R5GndYJLJVKcebMGd7znvf0Wb5w4cJMVsGVTp48ycKFC/ssW7x4Mdu2bSOVSmGxXN9bjGQySTJ5qdKtoig4nc7Mz8OlJgPk13990Bq8H5gJ32oqZs6MGuzhY+nM7chJLEl/n/UM1UHSOT0zsaRh65sFPlCrLrZ30md4X0F3lBN2lBMufDvWyCkcwf04wkexJNvxdG7G07mZhLOOmHcpCc9NmNrUyPieEsfDxYkjY02ZySPTE0f2P9lTylp4RX3tckyL56r1JuOIjcnxoCigetGtXnQq+68hbhqoeiidFZ68VDv88gxxNRVEQUdLdaGl+r9IAb11zfsJhBvWSxnipursExAf7jgM5zXdVCx01vyVBLyFEEJMSBom5ZEA5ZEAK1pPE9WsNHjyqfcUcMGbT9jqoN5bSL03/a1bTyJGVaiD6mAHleFOHHqKyIEuIocCOHuD3pYcG761pbhvLSC8u4PIgU7c0Tbc0TYKOE51P+0wFI0OdykNvlraPZUEXKVEnQUkrT40iwuXYsGFiqYoKBYnhsVJ2FVKOH9+v/0yTRNFUTBMk/37Iqy/zzrq74cl2C2EmBBKfQ7unZHLPdNz0A2TM10x9jen630f90dpDiZpDnbzW0BTNGYX1rFk4QLuKbThSnTT1tpCc3Mz/32ghWJnD6vrQswtiVPIeeh8jPozTk6Ep6P75pJK6XSf2cr/uaWHHOelcgXd0QDP7/UD7xvRgLdpmui6jmEYmdvlv1/8ub9lw11nqJ/D4fCwynn86Ec/GrF+AwMGpIcKUl+5zGq9vhOmYRgcOHBg0L57PB7Ky8tvpJvjXk9PD4ZhkJPTdyLOnJwcAoFAv9sEAoF+19d1nWAwSF5e3nW15emnn+app57K/F5bW8ujjz5KUdHA38LojxmMo58bOCgCYNVg44ogRZ3/CqZ+2T0q+Kaj5s1HyVuA5q3Fpmhc7yWP0tLS69xyMqgE7sRMRTH9ezBbX8XsPoYtegZb9Az4n0EpWIpSchtK3nyUKVA3eLIcD6aRhHAjZuh8+hY+D6F6MBJXr6xo4KpA8VSjeKaheGrAXYXFIt+KmAjHg2nqEA9AvBMz3gnxjt7/OzET6f9JdKdLpiQ70JIdA+9MtYG9AMWeD703ozmfYnt+77IClH6Oi+G8pitmiuI8J4p3gEx3MTHY7KjffTLbrRiSoiiUlpbS0tIi5SJukIzlyJGxHDnjYSzdwOzem2madHZ1cf5CAxcaGmhsbiZkc3Asv4Jj+RUoikJxURHVlZVUV1VSWlxMXDFxhg/i7nkFzRPAd3cpnnvqCHtXEfHckj4n90MFSnpvV9INk9ZwioaeJE3dCdq7dQIhg2jERNUV3Gi4UXErGh60dEC893O6qihjlt0twW4hxISjqQozC5zMLHDygZsKiSR1DrdG2N8U5kBLmOZgkqPtUY62p0sPeO0ai0rLWTJ/JvevdWFNpie6PNd8imrLMWYXdFGdG6U6901agm9xJmDjvqVXZ6H5HAa/vzTAkwd/zblzizBNc1iB5CsD05DOXr1430R7I3JlwNnr9WIYxjUHqa83QD2SVFVlzZo1vPDCCwOus2bNmkldvuZy/T0fgz1HV9538Vi+kef1/vvvZ8OGDVc9Rnt7O6nU4IGOy1lifoYTbi9yRcGElLWApOtiaZLpl7KNw0C47Rp6cMl4eJM8Hlwch1ZmYRbPRM0LYA/ux9GzD0uyHbP9Ncz21zA0DzHvYmK+pej2yXeBaSIfD4oRR7ustrY11oSWaENBv2pdU7FemjSytwxJylYCavpjh6IolOZcHIfAGPdk/JiYx4MnfbNUpz9FXn4F0EyhpnrSpVGSl5dJuax0ih5OXwyJNmNGmy9tesWjGKod42J5lN7/TdPg6pz/q/n9flIh+9ArXsZisVzzBVUxehRFAfv4/8aPoiioDieK3QET5m94fJKxHDkyliNnvI2lAhSWOSksK2fZ8uWkUikaGxszE112dnbS2tZGa1sbe/btw2azUVVVlZ7ssuqPKVHP4O7chpbqxNu9BXdwF5G81URzVmCqwz9vWoAKJ1RcPaUToYROY08ifetOEDmt405pqJd9Nhyr7G4JdgshJjyXVePWSi+3VnoBaAkm2N+cDnwfaokQjOvsOB9kx/kgAFU5NhaX5bOk7i58Je+gPdGB0voihakjlHpTlHpTmObVZScVJX2eWz+rk69vO4I5il+sVlUVTdNQVTVzu/j75cuHWmeg+69cJxAIsG/fviHbdf/991NVVXXZmCiUlZXR3Nw8gT6s9zVjxgzuu+8+Xt6+nfBlGd4ej4c1a9ZMyrI1V/L5fKiqelUWd3d391XZ2xfl5uZetX5PTw+apuHxDCck0b+LF0L6cy3H2HDX7XKtRC+6HcOaf+UOhv1Yw2nLRP37GEkXx0G35BDJu5NI7h1Y4g3pMifBQ6h6CFdgB67ADlK2UqLeJcS9iyfdhMLj/XhQ9FC6tna8OVOGREt2DDFx5KUyJANOHHlFn8f7OIyVyTMOGrolD92SBwPFKY3kVfXCtVQ3LkuMZKg1XTLFiKEacdREKyRar7kVk2c8hRBCiIFZLBZqamqoqalh9erVBINBLly4wPnz57lw4QKxWIzTp09z+vRpIP3ZraZ6GUurEtRoh7GkOvF0/BZX13YiuauJ5q68pqB3fzw2jdmFTmYXOmltTrD7ROSqWnRjld0twW4hxKRT6rXxdq+Nt8/KQzdMTvij7G9Jlzw51RnjQneCC90Jnn2rC4uqMK/YyZLSe7m59G1UdPyKMvXkgPMrKQrkOg3WLMwn6Zk7YOB5oKCypmmUlJTQ0dExYJBaueyrPmPFMAxOnDgxZDmPioqKMWzV2Gm3lbAzdzW62o7diBNX7Wi+IubaSpj8oe70m6W6ujoOHTrE8uXLM8sPHTrELbfc0u82M2fOZO/evX2WHTx4kLq6uuuu150NZv6yqwPdYmwoCilHFSFHFaHC+7BFTuDo2Y89fAxLogVvx2/wdPyWhHMGMd8S4u75A37dUlwH00RNdV+aODLehCXRhJbq7nd1XfNlAtoXg9uGJVcmjhTDp1rRbYXotsJM/XBFUfCWldHWe9FcMeJ9guEXJ9bU4q3Y4hey2nwhhBBivPJ6vcybN4958+ZhGAbt7e2cP3+e+vp6mpubCQQCBAIBDh4Ci+Zg9dxp3Frhx0MIT+cmXIHLg9439u0aszd7+2Kt7oHuH83s7onzaVQIIa6DpirMLXYxt9jFAwuLCMZ1DrWmA9/7m8P4IykOtUQ41BLhceCDBV7+fBjRzXsrj2Ko59Ct6Swm3ZqH0fu/bs1JZzb1E5RRFIWSkhIMwxhXmUeXl/Mw6XsB9uLvk7Wcx676IF99pXeu7cuDnlGdr77SyF+vrmBltTc7jRtDGzZs4Dvf+Q51dXXMmjWLLVu24Pf7uffeewF44okn6Ozs5JOf/CQA69atY9OmTTz++OOsXbuWEydOsHXrVj796U9n9plKpWhoaMj83NnZyblz53A4HBOiTq0YQ4qFhHseCfc8FD2KPXQYR3Aftth57NGT2KMnMRQbcc9NxLxLSDrr+s8eFv27OHFkb8a2dciJIwsulSGxpYPb/U0cKcRIM1U7uq0Y3VbcZ7kl1kh+w3ez1CohhBBi4lBVlZKSEkpKSli+fDnxeJyGhoZMyZOenh62vRnn5SMeFpRp3DUzQqE7iqdzM86u7UTzbieac9t1TyKv6ybhsIFtgPfqiqIQChvouonFIsFuIYS4YV67xm3VPm6r9mGaJo3BRLrWd3OYw60RTiT6KT41ANWIoMYjWOON/d4fx0VMzSWu5ZLUcklpeei2fCyWOD0RA81ixaqqWNQbq3E8UtptJRzyLGJW5C0cRjyzPK7aOeGawy0TLMvZME10wyRpmKSM9GQaqd5b0jBJ6SZJw+D/290y6H5+sLeV5ZUeNDX7z9FoWrVqFcFgkF/+8pd0dXVRVVXFww8/nKlj2tXVhd/vz6xfXFzMww8/zOOPP86mTZvIy8vjYx/7GCtWrMis09nZyWc/+9nM788++yzPPvss8+bN44tf/OKY9U1MLKbmJJaznFjOcrRkB/bgfpw9+9FSnTiD+3AG96Fbcoh5FhPzLUG39Td9zhRmprAk2jL1tdPlSJpRzasnjjRRSdmK03W1M3W2y244o0cIIYQQQowPdrud6dOnM336dAACgUAm8H20oYFDTU4WlMe4c0aQYk8MT+cWbP6XaLcuRi1fh2a/tsQvU4HfqV0k4gMn99nsCu9Wcm+kW4OSYLcQYspSFIVKn51Kn513zsknqRs8+WYO/vjLFNji/X4z2zTBH3fw4TffTbEtQpk9RJk9TLk9mPm5zB7Ea0liJ4LdiIDRROb7umGgC/KAjoSDpriXlrib1qSX9qQHf9JHp+6lS/eCasWmKVhVBWvmfxWrpmSWWzQF28X7NRWr2nvfZdvZNBVL5ufL9tO7rkVT0BT4z72tdNhLaLcVk5vqypTzCFjyQFH4z72tLC5zYUJvoNjEMBWSXRGaA3GSukHSMK8KKuu9webMMt1EN9PB5kzguc929LPsUoBaN3uX6en1Lt/X5Y+pj1DivD+S4mh7hAUl7qFXnuDWr1/P+vXr+73voYceumrZvHnzePTRRwfcX3FxMU8++eSItU9MPbq1gEj+PUTy1mKJ1eMM7sMeOoSW6sYdeBl34GWS9gpi3iXEPIumXPaxYsT71NZOlyIZZOJIW2lvCZKK3qztYlD7r5EvhBBCCCEmn9zcXHJzc1m4cCG6rtPS0sL58+f5+VvnKdbquXNGiBJvigr9DWJn9nKkq5yA8xYqamaSl5c3ZKKeVVP5x7dX0xNPvx9VgMKiIvzt7ZkZYHIcGlZt9L6lKcFuIYToZdVUFpZ6+Ze9K/nKzJeumqTyYtWRr9evYFFFETlOCyndxK8bNBsmyahJMpQOtlrMGLlqN3lakAJLD4WWIEXWEMXWIGX2IC4tRYEtRoEtxgJve7/taU84aY57MremuIeWkIcLcQ8tCTcpUxuVcVAVk9r8BIW2KP6EwsGgiYFCRyTFh5482c8Wp0alHSNNAayagqakA/wWVUE3DHrixpDbdkWvDhyJ8c3Q3JiKBcVMDbiOqVgwtMl/EWNSUBRSzhqCzhqChRuwR46ny5yEj2ONN2KNN+Lxv0DCNZOYdylx99xJF8RV9HDf+trDmDgyXV+7jJS9YuCJI4WYAOQ1XQghhBh5mqZRUVGRnptr1SoikQgnLtRzou0N5rhPUuROsKy4kViyiV2vu/ltezHF5bXU1NRQVVWFw9H/twGL3FaK3On34oqiUFbipdkIjVkpVwl2CyHEZeYVufhmfDoPn4S/qNlNif1SPdPWhItvnV/Okfh0vv+28usqa6EoCt7SUpobTmPEOlCSXSiJLrRUF5ZUJ1Y9gF0PoJGkyBalyBZlYT/BcNOEkOmh2/DRZfjo1H10pLz4k17akh7aEm7ihkpST2dSJw0znXmtmyR6M6QTvcsvd0fe+av7HXfxzfPLebmrps+6qkJvxriK1vuzRb34/wC33iCzRVGwaEOs2+dGP9tfut+qKmhXrNt3mdLv83W4Nczfbhl6wqs85+hcWBCjx7DmUl/wpySjXZlloVCInTtfRVHgzjvvwp1TjNOam71GiuujWol7biLuuQlFD+EIHsIR3I813oA9chx75DiG6iDuWZCu7+2omVhB3isnjkz0BrZl4kgxhRnWXDqqP4OqhwdeR3NjyGu6EEIIcd1cLhezZ88B5mAYOhdaXic3uB2vtZu7ZoZYOS3Ma+dbeWnLm8RSGsXFxdTU1FBTU0NJSUm/c3zV19fz05/+lNtuu42qqqox6YcEu4UQ4jKaqvDHy0r46ispXumqYpG3jUJbBH/CxcFgMQYqf7265IbqNyuKgmJxo7pdQPrFXu+9xYGQaaIYEbRkJ1oqgJbsQk12oqW60JIBtFQXCkm8SgivGqKSpqsew0TBsOT0Tp6Zi2HJv2IyTR8oGmZvSZCDLWG2H3w1ndF+xb6KbBG+MvMlHj55J2sWrWJhqRtNSQePFUWhrKyM5ubmcTXh5nDNK3JR4LLQERk4U6zQZWFekWsMWyVGQjAY5Mc/+TW6fmVWfjrD4Ilf70DTND760Y/i9U7+CUgnK1PzEM1dRTR3FVqiDUfwAI7gfrRUAGfPHpw9e9AteekyJ94l6Lbhz8swJkwDLdmRydQe9sSRtkvB7alWukVMXYY1V4LZQgghxBhRVA17+Sqi5gqM8FGcHS/ioIU7Z4RZVRtl1zknO8/o7G5tZffu3dhsNqqqqqiurqampgafLz1P2quvvkpbWxuvvvoqH/jAB8ZkvjIJdgshxBVWVnv569UV/OfeVvYHSzPLC10WPrGshJXVoxwYUxRMzU1Kc5Oinyufpomihy4LfnemA+KXB8PNVDpQngpArJ9doKaD4b0B8NX2HFbXvQqkM7YvpypgmPCZaXtIld6DNoq1tcbapYsb/U8yCvCJZTd2cUNkRzQa7SfQ3Zeu60SjUQl2TxK6rZhwwTrC+fdgjZ7DEdyPPXQYLdWFu2sr7q6tJO1VxHxLiXkWYmpjfBHLTGGGzuPoPoiWKUUy1MSR5ZfdZOJIIYQQQggxxhQ1/a1K9zxs4WO4u7Ziizdxx/Qwt9XFOdZVyu+OqHQGE5w+fZrTp08D6drgeXl5tLa2AtDa2kp9fT01NTWDPdqIkGC3EEL0Y2W1l+WVHo62R+iK6uQ5NeYVucZH0FNRMC1eUhYvKUf11febBqoeQk129QbEL/1/MSCuoKeXpS6VeBjsjKAqUGQLE2/9MbqtGEN1YKoOTM2BYS3DGoliKHZM1ZG+T3OAMjFOMRcvbvxwbzOVWlMmk79RL+ePlpWN/sUNIcTIUlSSrjqSrjqCRe/EHj6KI7gfW+Qk1vgFrO0X8LQ/R9w9h5h3CQn37MzrlZoMjEiZhL4TRzb3liJpRUfnyleUvhNH9t5sJZOu5rgQQgghhJjAFJWEZz4J9zxskWO4O7dijTeyIL+B+WusdFgWsL+tlFPnW2lubiYQCBAIBC5trijs2rWL6urqUc/unhiRCCGEyAJNVVhQMgEnOlJUDIsPw+IjRT9XTU0DVQ9eFvzuwhY9hS16dshd2yMnIHKizzKjFXL7WddULL3B73QQPBMIVx2Yqr3v71p62aX70/ehWMek7uyd+efZsPhZNL0ns0zXfITy30mcm0b98YUQo0S1EfcuJu5djJoKYg8dxNGzD2uiGUf4CI7wEQzVScy7iIRzBjmtPxtyAryO6s/0CXinJ45sxhpvzAS3taS/34kjsbhIWEv71NdOTxwp8wIIIYQQQogJQFFIuOeRcM3FFjmOu/NFrPEGipL7uDffyu21t9Ll+n32HjrF7t27mV4Q5x3zunn+aA6n29rGJLtbgt1CCDHVKOkSJoYlB5gGQDIyDVv0P4fcNOpdhqG5UI0YihFHNWLYLAapWA+KHkMxYpmv5CtmCkUPoeqh626qidpvYNy4LGDeN4h+RUBdc2AqtkEnp7OH3sTX8pOrlqt6D76Wn9BT+mHiHgl4CzHRGRYv0dzbiebejhZvwRHcn67vrQdxdb+Gq/u1IfehmCns4cMoRhxrvBlLvHGIiSPLLmVrOyoorppHd0vLhJzjQAghhBBCiAxFIeGeQ8I1G1vkRG/Q+wKuwA6c3a/RpudyzKFy7+wgxV6de2cHObPLPibZ3RLsFkIIQdI5DV3LQdW76e+UYwKGJYdg8Xv7BI4vTlDZfvkElaaBYsRRjN7gd+//mZ/1/u6L91lPMeIo6Wk2UYwoGFGuN+/RROknMN4bQFfsOEIH0n25Yjult98e/3PE3fMGDZgLISYW3V5K2P52wgXrsUZP4wzuwx58E4WBs7ov8vpfuGpZyprfO2lkBSl7We/EkX0LliiKMiYT8gghhBBCCDFmFIWEezYJ1yxskZO4u17EGqtnSYmfBYVg6f0gX5mbZHpBnFNjkN0twW4hhBCgqISKNuBr+QkmfQO/F/MPQ4UbhhfwVVRMzYmpOQEYfIrAAZgmiplIB771oQLjF4PoMRQzjqpfdh9GOmhuxMDoZ6bOoboCaKlurNFzJF1119MTIcR4pqgkXTNJumZi9S0nr/H7Q26SshSQdFb3ZmxXkLKVpecpEEIIIYQQYqpSFBLuWcSdM3j1tz9kaWE9NfmXEkkMA+6ZFeSU3zbq2d0S7BZCCAFA3HMTPaUfxtP+HJp+6Wv5hiWHUOGGsS3loSiYih1TtYMl5/r2YZpgJvsEyfsEzfUY1tg5HOGjQ+5KvayWtxBicjIV27DW6yn9fVKOilFujRBCCCGEEBOPbhgca1LoDnjZuLwrs1xV09ndMwoTNIVC6LqOxTI6YWkJdgshhMiIe24i7p6HNXoOVe/B0HwkndMmZgkPRQHFhqHaAF+/q6QiFcMKdhta/9uL8cvpdKJpGro+8HcLNE3D6XSOYauEEEIIIYQQYvKyWCx88AMfoMz/X5iG0mfSdhOFD6yw0lz4gVELdIMEu4UQQlxJUadMyY7h1ipPOqeNccvEjfJ6vXz0ox8lGo0OuI7T6cTr9Q54vxBCCCGEEEKIa1OgteAyWq9armDiMlop0FpIDJCQNhIk2C2EEGLqGsla5WLc8Xq9EswWQgghhBBCiLFimrg7N2PSN6s7czcK7s7NJFwz09/GHgXjIti9adMmnnnmGQKBAJWVlWzcuJG5c+cOuP7Ro0d5/PHHaWhoIC8vj3e9612sW7duDFsshBBishhXtcqFEFljaG5MxYJipgZcx1QsGJp7DFslhBBCCCHERKKjprr7DXRDOrtbTXUDOqMVls56sPvVV1/lscce4xOf+ASzZ89my5YtfPnLX+ab3/wmhYWFV63f1tbGV77yFdauXcunPvUpjh8/zg9+8AN8Ph8rVqzIQg+EEEJMdBdrldti58j3anQGdRKOaZLRLcQUYlhz6aj+DKoeHngdzY1hzR27RgkhxHWShDIhhBBZoVjoqnwo855aURQKCwvx+/2YZjoAblg8oEzimt3PPfccd999N2vXrgVg48aNHDx4kM2bN/PAAw9ctf7mzZspLCxk48aNAFRWVnL69GmeffZZCXYLIYS4fopK0jUdtbiMpN4MZv9XooUQk5dhzZVgthBiwpOEMiGEENl0+XtqRVFQvGWkQvZMsHu0ZTXYnUqlOHPmDO95z3v6LF+4cCHHjx/vd5uTJ0+ycOHCPssWL17Mtm3bSKVS/c7mmUwmSSaTmd8VRcHpdGZ+HgsXH2esHm+0SX/GN+nP+DWZ+gLSHyGEEEKI8UYSyoQQQkxlWQ129/T0YBgGOTk5fZbn5OQQCAT63SYQCPS7vq7rBINB8vLyrtrm6aef5qmnnsr8Xltby6OPPkpRUdGNd+IalZaWjvljjibpz/gm/Rm/JlNfQPojhBBCCDEeTKWEsmySBImRI2M5cmQsR46M5cjJxlhmvYwJ9N/hwQbhyvsupsEPtM3999/Phg0brtq+vb2dVGrgSYhGkqIolJaW0tLSMmZp+6NJ+jO+SX/Gr8nUF5D+DMZisWTloqoQQgghpq6pmFCWTZIgMXJkLEeOjOXIkbEcOWM5llkNdvt8PlRVveqk293dfdXJ9qLc3Nyr1u/p6UHTNDweT7/bWK1WrFZrv/eNdXDGNM1JERC6SPozvkl/xq/J1BeQ/gghhBBCjCdTIaEsmyZbwkc2yViOHBnLkSNjOXJGaiyvJZksq8Fui8VCXV0dhw4dYvny5Znlhw4d4pZbbul3m5kzZ7J3794+yw4ePEhdXV2/X68SQgghhBBCCCGmgqmYUJZNkiAxcmQsR46M5ciRsRw5YzmW6pg8yiA2bNjAiy++yNatW2loaOCxxx7D7/dz7733AvDEE0/w3e9+N7P+unXr8Pv9PP744zQ0NLB161a2bt3KO9/5zmx1QQghhBBCCCGEyLrLE8oud+jQIWbPnt3vNjNnzrxqfUkoE0IIMVFl/cy1atUqgsEgv/zlL+nq6qKqqoqHH344k5re1dWF3+/PrF9cXMzDDz/M448/zqZNm8jLy+NjH/uYzBIthBBCCCGEEGLK27BhA9/5zneoq6tj1qxZbNmy5aqEss7OTj75yU8C6YSyTZs28fjjj7N27VpOnDjB1q1b+fSnP53NbgghhBDXJevBboD169ezfv36fu976KGHrlo2b948Hn300dFulhBCCCGEEEIIMaFIQpkQQoipbFwEu4UQQgghhBBCCDEyJKFMCCHEVJX1mt1CCCGEEEIIIYQQQgghxI2SYLcQQgghhBBCCCGEEEKICU+C3UIIIYQQQgghhBBCCCEmPAl2CyGEEEIIIYQQQgghhJjwpvQElRbL2Hc/G485mqQ/45v0Z/yaTH0B6c9o7UNcMpHHcyK3fSTJOKTJOKTJOKTJOKRlcxzkORhZU208p1p/R5OM5ciRsRw5MpYj50bH8lq2V0zTNG/o0YQQQgghhBBCCCGEEEKILJMyJmMkGo3yuc99jmg0mu2mjAjpz/gm/Rm/JlNfQPojxGDkeEqTcUiTcUiTcUiTcUiTcRATlRy7I0fGcuTIWI4cGcuRk42xlGD3GDFNk7NnzzJZEumlP+Ob9Gf8mkx9AemPEIOR4ylNxiFNxiFNxiFNxiFNxkFMVHLsjhwZy5EjYzlyZCxHTjbGUoLdQgghhBBCCCGEEEIIISY8CXYLIYQQQgghhBBCCCGEmPAk2D1GrFYr73//+7FardluyoiQ/oxv0p/xazL1BaQ/QgxGjqc0GYc0GYc0GYc0GYc0GQcxUcmxO3JkLEeOjOXIkbEcOdkYS8WUAjRCCCGEEEIIIYQQQgghJjjJ7BZCCCGEEEIIIYQQQggx4UmwWwghhBBCCCGEEEIIIcSEJ8FuIYQQQgghhBBCCCGEEBOeBLuFEEIIIYQQQgghhBBCTHiWbDdgMnj66afZvXs3jY2N2Gw2Zs2axUc+8hHKy8sH3ObIkSP8/d///VXLv/nNb1JRUTGazR3Sk08+yVNPPdVnWU5ODv/5n/854DZHjx7l8ccfp6Ghgby8PN71rnexbt260W7qsDz00EO0t7dftXzdunV84hOfuGr5eHtujh49yjPPPMPZs2fp6urir/7qr1i+fHnmftM0+cUvfsGLL75IKBRi5syZfPzjH6eqqmrQ/b722mv8/Oc/p7W1lZKSEn7/93+/z35Hy2D9SaVS/OxnP2P//v20tbXhcrlYsGABDzzwAPn5+QPu86WXXuLf/u3frlr+P//zP9hstlHrCwz9/Hzve9/j5Zdf7rPNzJkz+ad/+qdB95uN52eovnzgAx/od7uPfOQjvOtd7+r3vmw+N8N5bZ5ofz9i/Bmt14CJZjT/3iaS4YzDVDgmNm/ezObNmzPvvyorK3n/+9/PkiVLgKlxLMDQ4zAVjoX+PP300/z0pz/lvvvuY+PGjcDUOSbExDNan8WmGnmfMHLkHDt65Px0/YaKI471OEqwewQcPXqU9evXM336dHRd52c/+xlf+tKX+MY3voHD4Rh0229961u4XK7M7z6fb7SbOyxVVVV8/vOfz/yuqgN/CaCtrY2vfOUrrF27lk996lMcP36cH/zgB/h8PlasWDEWzR3UV77yFQzDyPxeX1/Pl770JVauXDnoduPluYnH40ybNo277rqLr3/961fd/+tf/5rnn3+eBx98kLKyMn71q1/xpS99iW9961s4nc5+93nixAm+9a1v8cEPfpDly5eze/duvvnNb/IP//APzJw5M2v9SSQSnD17lve9731MmzaNUCjE448/zte+9jW++tWvDrpfp9PJt7/97T7LRjuYCkM/PwCLFy/mwQcfzPxusQz+0put52eovnz/+9/v8/v+/fv593//d2699dZB95ut52Y4r80T7e9HjD+j8RowEY3W39tEM9z3hJP9mMjPz+eBBx6gtLQUgJdffpmvfe1rfO1rX6OqqmpKHAsw9DjA5D8WrnTq1Cm2bNlCTU1Nn+VT5ZgQE89ofBabiuR9wsiRc+zokPPTjRssjjjW4yhlTEbAI488wp133klVVRXTpk3jwQcfxO/3c+bMmSG3zcnJITc3N3MbLKg8llRV7dOuwQK9mzdvprCwkI0bN1JZWcnatWu56667ePbZZ8ewxQPz+Xx9+rJv3z5KSkqYN2/eoNuNl+dmyZIlfOhDH+o3oGiaJi+88AL3338/t956K9XV1Tz00EPE43F27Ngx4D6ff/55Fi5cyP33309FRQX3338/N910E88///xodgUYvD8ul4vPf/7zrFq1ivLycmbNmsXHPvYxzpw5g9/vH3S/iqL0eb5yc3NHqQd9DdafiywWS592eTyeQfeZrednqL5cOb579uxh/vz5lJSUDLrfbD03Q702T8S/HzH+jMZrwEQ0Wn9vE81w3xNO9mPi5ptvZunSpZSXl1NeXs7v//7v43A4OHny5JQ5FmDwcbhosh8Ll4vFYnznO9/hT//0T3G73ZnlU+mYEBPPaHwWm4rkfcLIkXPsyJPz08gYKI6YjXEcH5HVSSYSiQAM683qZz/7Wf7kT/6Ef/iHf+DNN98c7aYNW0tLC3/6p3/KQw89xLe+9S1aW1sHXPfkyZMsXLiwz7LFixdz5swZUqnUaDf1mqRSKV555RXuuusuFEUZdN3x+txcrq2tjUAgwKJFizLLrFYr8+bN4/jx4wNud+LEiaues0WLFnHixIlRa+v1ikQiKIrSJ8u+P7FYjAcffJD/83/+D1/96lc5e/bsGLVwaEePHuUTn/gEn/70p/n3f/93uru7B11/Ijw/gUCA/fv3c/fddw+57nh5bq58bZ4Kfz9ifLjW14DJYKT+3ia6gd4TTqVjwjAMdu7cSTweZ9asWVP2WLhyHC6aSsfCD37wA5YsWXLVOXSqHhNi4pNj9/rJ+4SRIefYkSHnp5ExUBwxG+M4ub8nlwWmafL4448zZ84cqqurB1wvLy+PP/mTP6Guro5UKsX27dv5x3/8R77whS8MmXE82mbOnMlDDz1EeXk5gUCAX/3qV/zt3/4t3/jGN/B6vVetHwgEyMnJ6bMsJycHXdcJBoPk5eWNVdOHtHv3bsLhMHfeeeeA64zn5+ZKgUAAoN/xHywTOhAIXJVdm5ubm9nfeJFIJHjiiSe47bbbBg12l5eX8+CDD1JdXU00GuWFF17g85//PP/8z/9MWVnZGLb4akuWLGHlypUUFhbS1tbGz3/+c/7hH/6Br371q1it1n63mQjPz8svv4zD4RiyTvV4eW76e22e7H8/Yny4nteAiW4k/94msoHeE06VY6K+vp5HHnmEZDKJw+Hgr/7qr6isrMx8qJkqx8JA4wBT51gA2LlzJ2fPnuUrX/nKVfdNxdcHMTnIsXt95H3CjZNz7MiR89PIGCyOmI1xlGD3CPvhD39IfX09//AP/zDoehe/cnLRrFmz8Pv9PPvss1kPqF6c2ACgurqaWbNm8alPfYqXX36ZDRs29LvNlVnSpmn2uzzbtm3bxuJYCWzwAAAcJElEQVTFiwed7HA8PzcDGWj8r4VpmuPq+UqlUnzrW9/CNM1+JxK93KxZs/pkSc2ePZvPfe5z/OY3v+GP/uiPRrupg1q1alXm5+rqaqZPn86DDz7Ivn37hqx1fbnx9vxs27aN1atXD1l7e7w8N4O9Nk/Gvx8xfozUa8BEMtp/bxPFQOMwVY6J8vJy/vmf/5lwOMzrr7/O9773vT4TgE+VY2GgcaisrJwyx4Lf7+exxx7jkUceGfR9w1Q5JsTkI8futZH3CTdOzrEjQ85PI2ewOOLFea3GchyljMkI+q//+i/27t3LF77wBQoKCq55+1mzZtHS0jIKLbsxDoeD6upqmpub+72/v4zGnp4eNE0bV3UH29vbOXToEGvXrr3mbcfrc3Mxu7S/8b/yqtmV2125TXd396DbjKVUKsU3v/lN2tvb+du//dshS5hcSVVVpk+fPi6fs7y8PIqKigb8e4Lx//wcO3aMpqamYZUwuVI2npuBXpsn69+PGN+G8xowkY3039tEdS3vCSfrMWGxWCgtLWX69Ok88MADTJs2jRdeeGHKHQsDjUN/JuuxcObMGbq7u/nrv/5rPvShD/GhD32Io0eP8pvf/IYPfehDmed9qhwTYvKYaq9nI0HeJ4wMOceODDk/jZ7L44jZOC4l2D0CTNPkhz/8Ia+//jp/93d/R3Fx8XXt5+zZs2M2cdu1SCaTNDY2DliOZObMmRw6dKjPsoMHD1JXVzeuZpTftm0bOTk5LF269Jq3Ha/PTXFxMbm5uX3GP5VKcfToUWbPnj3gdrNmzeLw4cN9lh06dKhPBm62XAx0t7S08PnPf77f0jlDMU2T8+fPj8vnLBgM0tHRMWh5n/H8/ABs3bqVuro6pk2bds3bjuVzM9Rr82T8+xHj33BeAyai0fp7m2iu5z3hZD0mrmSaJslkcsocCwO5OA79mazHwoIFC/iXf/kXvva1r2Vu06dP5/bbb+drX/saJSUlU/qYEBPXVH89uxbyPmF0yTn2+sj5afRcHkfMxnE5fiKRE9gPf/hDduzYwWc/+1mcTmfmaoXL5cp8FeKJJ56gs7OTT37ykwA8//zzFBUVUVVVlZk08fXXX+czn/lMtrqR8eMf/5ibb76ZwsJCuru7+eUvf0k0GuWOO+4Aru7LunXr2LRpE48//jhr167lxIkTbN26lU9/+tPZ7EYfhmHw0ksvcccdd6BpWp/7xvtzE4vF+mTBtrW1ce7cOTweD4WFhdx33308/fTTlJWVUVpaytNPP43dbuf222/PbPPd736X/Px8HnjgAQDuu+8+vvCFL/C///u/3HLLLezZs4fDhw8PWX5ntPuTl5fHN77xDc6ePcvnPvc5DMPI/D15PJ7MxZMr+/OLX/yCmTNnUlZWlqkLfe7cOT7+8Y9ntT8ej4cnn3ySFStWkJubS3t7Oz/96U/xer19al2Pl+dnqGMN0pPJvPbaa/zBH/xBv/sYT8/NUK/NiqJMuL8fMf6MxGvAZDBSf28T3VDjEIvFpsQx8cQTT7BkyRIKCgqIxWLs3LmTI0eO8Mgjj0yZYwEGH4epciwAOJ3Oq+YystvteL3ezPKpckyIiWckPosJeZ8wkuQcO3Lk/DRyBosjZuO4lGD3CNi8eTMAX/ziF/ssf/DBBzMTIXZ1dfUpvJ5Kpfjv//5vOjs7sdlsVFVV8dd//dfXlXU80jo7O/n2t79NT08PPp+PmTNn8k//9E8UFRUBV/eluLiYhx9+mMcff5xNmzaRl5fHxz72MVasWJGtLlzl8OHD+P1+7rrrrqvuG+/PzenTp/vU3/rxj38MwB133MFDDz3Eu9/9bhKJBD/4wQ8Ih8PMmDGDRx55BKfTmdnG7/f3qY80e/Zs/vzP/5yf/exn/PznP6e0tJQ///M/z9RSylZ/fu/3fo833ngDgM9+9rN9tvvCF77A/Pnzgav7Ew6H+f73v08gEMDlclFbW8vf//3fM2PGjNHuzqD9+eM//mMuXLjA9u3bCYfD5OXlMX/+fP78z/98XD4/Qx1rAK+++iqmaQ54UhpPz81wXpsn2t+PGH9G4jVgMhipv7eJbqhxUFV1ShwT3d3dfPe736WrqwuXy0VNTQ2PPPIICxcuBKbGsQCDj0MikZgSx8JwTZVjQkw8I/FZTMj7hJEk59ixJeM5PEPFEcd6HBVTKqsLIYQQQgghhBBCCCGEmOCkZrcQQgghhBBCCCGEEEKICU+C3UIIIYQQQgghhBBCCCEmPAl2CyGEEEIIIYQQQgghhJjwJNgthBBCCCGEEEIIIYQQYsKTYLcQQgghhBBCCCGEEEKICU+C3UIIIYQQQgghhBBCCCEmPAl2CyGEEEIIIYQQQgghhJjwJNgthBBCCCGEEEIIIYQQYsKzZLsBQgghhBBCCCGEEGLkvfTSS/zbv/0bAF/4wheYP39+n/tN0+TP/uzPaG1tZd68eXzxi1/MQivFRfv27ePUqVN84AMfGNb63/ve93j55Zczv9vtdnw+H9XV1Sxfvpzbb78dq9XaZ5uLz/FEf66PHDnC3//93/d7XIupTYLdQgghhBBCCCGEEJOY0+lk69atVwUFjx49SmtrK06nM0stE5fbv38/mzZtGnawG8Bms/F3f/d3ACQSCTo6Oti/fz//8R//wXPPPcff/M3fUFBQkFn/E5/4xIi3Oxtqa2v50pe+RGVlZbabIsYZCXYLMc6dPHmS//3f/+XMmTN0d3fjdrspLi5m9uzZfPSjHwUuXa23Wq1861vfoqioqM8+vvjFLxIMBvn617/eZ/2LVFXF5/Mxb948PvjBD1JWVjbs9j311FPs3LmTr3/966jq4JWRDMPgD//wD7n33nszbd+3bx9f/epX+6zndDopLS3l3e9+N6tWrQJg69at/PznP+fb3/42Dodj2O0TQgghxtLFc+xXvvIVpk+ffs3nXDlHCyGEGA0rV65kx44dfPzjH8flcmWWb926lVmzZhGNRrPYupGRSCSwWq0oipLtpowpRVGYNWtWn2V33HEHBw8e5Ktf/Srf+MY3+Kd/+qfMfZMlOOxyua7qtxAgwW4hxrV9+/bx6KOPMn/+fD7ykY+Ql5dHV1cXp0+f5tVXX818GL0omUzys5/9jE996lPD2v+DDz5IeXk5yWSS48eP86tf/YojR47wzW9+E4/HM+T2nZ2d/PrXv+ahhx4a8kM0QENDA/F4nOnTp2eWnT17FoDPfvaz+Hw+APx+P08++STf/va3qaiooKamhjvuuINf//rXPPPMM9d0lVsIIYQYD671nCvnaCGEECPp9ttvZ8eOHezcufP/b+/Oo6q6zj6Ofy8XUaYIaEGhQgwOgLMQh2iM0JgYU3HAiUjUJo1ZJraNHZKgrTGJq2iNbdRoXatZicuhBgwOJIBBDa6EyeVAUwfEMeBQQFygCCFyubx/+HJer1wVLLyF5vf5j8s+Z+9zcPnc85y9n82YMWMAqKqq4sCBA/zsZz8jJSWlwTEWi4Vdu3bx9ddfU1JSgrOzM6GhocTExBhxASArK4svv/ySwsJCKisr8fb2JiwsjKioKJuXoMXFxWzdupW8vDwqKipwdXWlW7duzJo1i4cffhiAadOmMWXKlAbx5NVXXyUkJIRXX30V+L+Xw4sWLSIzM5PDhw9TUVHB5s2bcXJyIisri+TkZAoLCwEICgriueeeo3v37sY5165dS05ODsuWLWPDhg2cPHkSZ2dnxo0bx8SJEzl16hSbNm3i22+/xcvLi0mTJjF69GibcZWXl5OQkMCRI0e4du0aXl5ejB49msmTJ2M2mwEoKSlh/vz5xMTE4ODgQGpqKtevX8ff35/Zs2cbCdvbS5Lcfv0ffPAB3t7ejf9j/68BAwbwk5/8hLS0NE6cOEFISAjQsIzJ7eOzWq3s2bOH8vJyevbsydy5c/H29iY+Pp6vvvqK6upq+vbty9y5c+nYsaNNf0255ytWrODjjz/mxIkTuLm5MXz4cKKjo21KrqSlpbFnzx6KioowmUx4eXkxZMgQnnvuOeDuZUwOHTrEjh07KCgowMHBgZ49ezJ9+nSbxHhCQgKffvopK1euJDExkdzcXJycnBg0aBBz5syxeSEkbY+S3SKt2K5du/D29mbRokVGoAQYMWIEMTExDdoPHDiQjIwMxo8fb3xZuJdu3boZD7V9+vTBarWSkJDAwYMHCQ8Pv+/xKSkpuLq6MmTIkEZdz5kzZwAaPEi7uLgQFhZmfNarVy9qa2tZs2YN58+fJyAgALPZzJNPPkliYiITJkygffv2jepTRESkNWhqzFWMFhGR5uTs7MywYcNIT083kt0ZGRmYTCYee+yxBsluq9XKn/70J/Ly8pgwYQK9evUyXnguWbKEZcuW4eTkBMC//vUvBg0axLhx4+jQoQOXLl1i165dnDlzhrfeess4Z1xcHFarlZkzZ9K5c2cqKirIz8+nsrLyga/rr3/9K4MHD+YXv/gF1dXVODo6sn37duLj4xk9ejRRUVFYLBaSkpJYvHgxcXFxNjOba2tree+99xgzZgzjx48nIyODv//978aLgAkTJtCpUydSU1NZt24d/v7+PPLII8CtRHdsbCwODg5MmTIFHx8fTp06xfbt27ly5QqvvPKKzVi/+OIL/Pz8mDNnDgDx8fHExcWxdu1aXFxciIqK4vvvvycnJ4elS5cax3l6ej7w/QkLCyMtLY28vDwj2X03X3zxBf7+/rz44otUVlayceNGli9fTs+ePTGbzcybN48rV66wadMm1q9fzxtvvGEc29R7vnz5ciIiIvjpT39KXl4eiYmJuLi4MGXKFAAyMzP58MMPGTt2LM8//zwmk4mioiIuXrx4z2vIyMhg9erVDBgwgF/96lfU1NSQlJTEkiVLWLx4MUFBQTbtV65cyWOPPUZERASFhYVs3boVoMHfTtoWJbtFWrEbN27w0EMP2SS669mbpRUZGcm5c+fYsmULixYtanJ/9UH72rVr921rsVhIT08nPDzc7lj27t1LamoqRUVFdOnSheeff54zZ87g6upKly5djHbnzp2zm5i/evUqYLvE6vHHH2fz5s1kZmYSERHR1MsTERFpNZoSc5vaXjFaRETsCQ8P5+233+bChQt069aN9PR0hg8fbrded3Z2Nv/4xz/4zW9+w9ChQ43PAwICiI2NZf/+/Tz11FMAREVFGb+vq6ujd+/e+Pn5sWTJEgoKCggICKCiooLLly8zZ84cRo0aZbS//dwPon6Wcb3S0lK2bdvG008/zQsvvGB83r9/f375y1+ybds2FixYYHxusViYMWOGMY4+ffpw5MgRdu7cyfLly41ZyYGBgfz85z8nIyPDiMkJCQlUVlby5z//mc6dOwPQr18/nJyc2LRpE5GRkTax0tnZmTfffNOIzZ6enixcuJDc3FxGjBhBly5djNnSzVWeo77EaVlZ2X3buri48Lvf/c4YX0VFBRs2bMDPz4/XX3/daHfp0iVSUlKoqqrCxcXlge75tGnTGD58OHDrnp09e5aMjAwj2Z2fn4+rq6vN+fr163fP8VutVjZt2oS/v7/xEgIwXoZs2bKFd9991+aYiIgIIiMjjfEWFRWRnp7OvHnzfnDlcP6b3H9No4j8x/Ts2ZPTp0/z0Ucfcfr0aSwWyz3bOzs7M3nyZL755huOHTvW5P5KSkoAGlUP9PTp01RUVNjd9XjDhg18/PHHPProo8TGxvL000+zdu1acnNzbWaMVVRUUFpaSkBAALW1tdTW1nLt2jW++uorduzYQUREBD169DDae3h44Ovry5EjR5p8bSIiIq1JU2JuU9srRouIiD0hISH4+PiQnp5OYWEhZ8+evetqocOHD+Pq6kpoaKgRB2pra3n44Yfx8PDg+PHjRtvi4mJWrVrFSy+9xIwZM4iOjjZKZFy6dAkANzc3fHx8SEpK4vPPP+f8+fNYrdZ/+5qGDRtm8/M333xDbW0tTzzxhM2427VrR0hICCdOnLBpbzKZGDRokPGz2WymS5cueHp62pTfcHNzo2PHjly5csX47MiRI/Tp0wdPT0+bvurPd2dfgwcPtnkJHRAQAGBzzuZWV1fX6LaDBg2yGZ+fnx9wa9y3q0/gl5aWAg92z0NDQ20+CwgIsLkPPXr0oLKykvfff5+DBw9y/fr1+47/8uXLlJWVMWrUKJvr6NChA0OHDuXUqVN8//33Nsfcvnqtfhw1NTWNnowgrZNmdou0YjNnzuTy5cvs3r2b3bt3Yzab6dGjB6GhoYwdO9buJlBPPfUUqampbNmyhT/+8Y/3fBtptVqpra2lpqaGkydPsn37doKDgxv8h2/PqVOnAGy+AADk5OSQkpLCa6+9Zmxc1bdvXyorK9m6davNW/z6WqCpqamkpqYan5vNZqZOncrkyZMb9Nu9e3eOHj163/GJiIi0Jk2NuYrRIiLS3EwmE+Hh4aSmpnLz5k26du1KcHCw3bbXrl2jsrLSqI98p4qKCgCqq6tZvHgxTk5OzJgxg65du9K+fXuuXr3Ke++9x82bN42+Fy9ezKeffsquXbvYuHEjbm5ujBw5kujoaLuzyxvDw8OjwbgBYmNj7ba/8/nYycnJKMdSz9HR0e7+GI6OjtTU1Nj0dfjwYaKjo+32dWeC9s5z1tenrr9HLaE+Id2YUih3js/R0fGen9ffi+a657ff21GjRlFbW8u+fftYuXIldXV1BAYGMmPGDPr372+3nxs3bgAN/03Areuvq6ujsrLSptzaf+JvIi1PyW6RVszd3Z133nmHs2fPcvToUc6dO8fx48fJz89nz549xMXF2WwMAreCxPTp01m9ejXZ2dnGw6w9d5Y6qV+eZK9syp3KysowmUwN+k9MTCQwMLBBv/Vvf2+fNXbu3DkAfvvb39KpUyfg1pemtLQ04uPj8fPza7CsrWPHjly/fp3a2tpGjVNERKQ1aGrMVYwWEZGWMHr0aOLj49mzZ89dk7Rw61nU3d2dhQsX2v19fXL62LFjlJWVsWTJEpua0PbqcP/oRz9i3rx5wK1ZuNnZ2Wzbtg2LxWKUImnXrp3dFc31yfU73ZlIdXd3B+DXv/61UcKjpbi7uxMQEMCMGTPs/v7fqbXdXA4dOgRgd7VXc2mpex4eHk54eDjV1dXk5eWRkJDAsmXLWLVqld1+6hPX5eXlDX5X/93I1dW12cYnrZeS3SJtQGBgoPEAarFY2LJlC8nJySQlJdndqHLEiBF89tlnbN269Z4bU82fPx8/Pz++++47srKy2Lt3L6tWrbrrF5rb3bx5E7PZbLM8qLy8nIKCAmbPnt2gfX19zzsfpJ2cnAgLC7M5T0hICLNnz2bfvn0NHqTbtWtHXV0dNTU1epAWEZE2o6kxVzFaRERagpeXF5GRkVy6dIknnnjiru1CQ0PJysrCarXSs2fP+563frZvvb17996zva+vL1FRURw4cMBYTQS3EuIFBQU2bY8dO0Z1dfV9xwAwYMAAzGYzxcXFDUqcNLfBgweTm5uLj4+P3ZngD+L2mcV3zn5uqn/+85/s27eP3r17N9iYsTm19D3v0KEDgwYNwmKxsGLFCi5cuGA32e3r64uXlxcZGRmMHz/eeBFSXV3NgQMH6NWrlzbR/oFQslukjXF0dGTq1KkkJydz4cIFu21MJhMzZ85k6dKl9/yS4efnZzzY9u3bF6vVypdffklOTs59g5S7uzsWi4Xq6mqjnEr9w7K9N9iZmZl4eHgYs8Pg1hJpf3//BptnOTo64uDgYHfp0I0bN2jXrp3dEi4iIiKtVVNjrmK0iIi0lJkzZ963zYgRI8jIyCAuLo5x48bRo0cPzGYzV69e5fjx4zz66KMMGTKE3r174+rqyt/+9jemTp2K2Wzm66+/bpCwLigo4KOPPmLYsGF07doVR0dHjh07RkFBARMnTjTajRo1ivj4eOLj4wkJCeHixYvs3r0bFxeXRl2bt7c306ZN45NPPqG4uJiBAwfi5uZGeXk5Z86coUOHDkybNq1J9+tupk+fztGjR/nDH/7AM888g6+vLzdv3uTKlSvk5uby0ksv2cTWxvD39wdg586dRg3tgICABi8TbldXV2eUMLNYLJSWlpKbm0t2djZ+fn42m0O2hJa45+vXr8fJyYmgoCA8PDwoLy9n586duLi42OwZcjsHBwdiYmJYvXo1y5YtY8yYMdTU1JCUlERlZWWj/t3Lfwclu0VasbKyMrsPpRcvXgTuvSyqf//+9O/fn8TExEYH2JiYGA4cOEB8fDxDhgxp8IB7u/rNKoqLi42NNeqXSxcWFtoskc7JySE/P99mY4uqqipKSkrs7qh88OBBampq7NaPKykpsdnRWkREpC1qSsxtanvFaBER+Xc5ODjw+uuvk5KSYmxObDab6dSpE8HBwUZS1t3dndjYWDZu3MiaNWto3749YWFhvPbaa7zxxhvG+Tw8PPDx8SEtLY3S0lJMJhM+Pj7MmjWLZ555xmgXGRlJVVUV+/fv57PPPqNHjx4sWLCAFStWNHrskyZN4sc//jEpKSlkZmZisVjw8PAgMDCQMWPGNNs98vT0JC4ujsTERJKSkrh69SrOzs54e3szcODAByqZMXLkSE6ePElaWhqJiYnU1dXxwQcf4O3tfddjbt68ye9//3vgVj3shx56iICAAF5++WUef/zxeybKm0tz3/Pg4GD2799PdnY2lZWVuLu7ExQUxPz58xuUabvdyJEjad++PTt37uQvf/kLDg4O9OrVi7feeovevXv/O5cobYiprilbs4rI/6v6OpmhoaH4+vpSV1fHt99+y+eff853333H0qVL8ff3Z//+/axbt464uDibJcjnz5/nzTffpK6ujm7durFy5UqAu7YHSEpKYvPmzcyfP99mo6o7lZaW8sorrzB37lyefPJJ4NYb5YULF3Lx4kWio6MJCAggLy+PlJQUbty4wbRp05gyZQpwaynaO++8w7PPPsvw4cOBW3Xd8vPzSU5OpkuXLrz99ts2b/CtVisvvPACERERzJo1q3lusoiISDO6M8Y2NeYqRouIiIiIPDjN7BZpxSZPnsyhQ4dITk6mrKyMmpoaPD096devHxMnTrzv7Knu3bsby88aa+zYsezevZvExERGjhx515ljnTt3Jjg4mIMHDxoP0iaTiQULFvDhhx/yySefYDabCQoKIiYmhvXr1/PII48Yx9fXZUtOTiY5ORmA9u3b4+vry6RJk3j22Wcb1NM6ceIEVVVVjBw5stHXIyIi0lo1NuY2tb1itIiIiIj8UGlmt4g8sJycHN5//33WrVuHl5dXi/e3Zs0aSkpKePfdd1u8LxERkbZMMVpEREREfojuPX1EROQehg4dSmBgIDt27GjxvoqKisjKytKmEiIiIo2gGC0iIiIiP0RKdovIAzOZTLz88st4enpitVpbtK/S0lJefPFFgoKCWrQfERGR/waK0SIiIiLyQ6QyJiIiIiIiIiIiIiLS5mlmt4iIiIiIiIiIiIi0eUp2i4iIiIiIiIiIiEibp2S3iIiIiIiIiIiIiLR5SnaLiIiIiIiIiIiISJunZLeIiIiIiIiIiIiItHlKdouIiIiIiIiIiIhIm6dkt4iIiIiIiIiIiIi0eUp2i4iIiIiIiIiIiEibp2S3iIiIiIiIiIiIiLR5/wPRYeJjyJphwAAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], "source": [ "plt.style.use('ggplot')\n", "fig1, (ax1, ax2, ax3) = plt.subplots(ncols=3,nrows = 1,figsize=(18, 6))\n", @@ -1277,7 +1257,23 @@ " ax3.grid(True)\n", "\n", "plt.show()" - ] + ], + "outputs": [ + { + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAABb4AAAIqCAYAAADrS1yjAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjYsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvq6yFwwAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzs3Xd8FEX/B/DPXi/pPSSQTiChE3oglAdFmtQHKdIEEVDACEhRwAcQQZqKBeUHFgSiICIIWOhNAenSCQESUkm/JFfn98dxR467S73kkvB9v155we3O7czu3e3MfHd2lmOMMRBCCCGEEEIIIYQQQgghdQTP3gUghBBCCCGEEEIIIYQQQmyJAt+EEEIIIYQQQgghhBBC6hQKfBNCCCGEEEIIIYQQQgipUyjwTQghhBBCCCGEEEIIIaROocA3IYQQQgghhBBCCCGEkDqFAt+EEEIIIYQQQgghhBBC6hQKfBNCCCGEEEIIIYQQQgipUyjwTQghhBBCCCGEEEIIIaROocA3IYQQQgghhBBCCCGEkDqFAt+kVgkMDERgYKC9i1Ej2erYcByHrl27Vno71enjjz9GREQEpFIpOI7D2rVr7V0kQgipdb7++mtwHIevv/66yvI4fPgwOI7DokWLqiyPmqg21q3F2epzq47vmK2lpKRgzJgx8Pf3B5/PB8dxyM7OtnexCCGEEABA165dwXFcpbdTG2MtW7duRcuWLeHo6AiO4zBjxgx7F4nUQBT4JpXGcRw4jkNAQACKioospgkMDATHcdBoNNVcuqoxduxY434vWLDAarpvvvnGmK42d3hLYtg/wx+fz4eHhwe6d++OLVu2VHn+27Ztw/Tp0yGRSDBjxgwsXLgQ7du3r/J8CSHPNsM5z5qzZ89i3LhxCA4OhlQqhZOTE5o3b463334bKSkp5c7PUI8mJCRUotSktjB8v3g8Hu7cuWM1Xbdu3Yxpa1MwuawMgfLif2KxGEFBQRg7diyuXr1a5WUYO3YsvvvuO8TExOCdd97BwoULIZFIqjxfQkjVoPMrASoe5F20aJHxezF69Gir6Y4cOWJMV9uCyWVlaJsW/025uLigY8eO+PTTT6s89nPq1CmMHDkSeXl5mDx5MhYuXIhevXpVaZ6kdhLYuwCk7rh//z7Wrl2LOXPmVFkeBw4cqLJtV4RAIMCmTZuwcOFC8Pl8s/VfffUVBAJBnQn4l2ThwoUAALVajevXr2PXrl04dOgQzp49i9WrV1dZvnv27DH+W69evSrLhxBCyoIxhjlz5mDFihUQCATo2bMnhg4dCpVKhZMnT2LFihX47LPPsHXrVvTt29fexSU1mKH98H//9394//33zdbfunULhw8ffibaGc2bN8eAAQMAADk5OTh8+DC++eYb/PDDDzh48GCVXfBWqVT4448/8J///Afff/99leRBCKl+dH4llSUQCLB9+3Z8/PHHcHFxMVv/LMUBpk+fDhcXF2i1Wty9exc7duzAqVOncODAAfz0009Vlu+vv/4Kxhi+/fZbdOzYscryIbUfjfgmNuHq6go3Nzd88MEHyMjIqLJ8QkJCEBISUmXbL6++ffsiMTER+/fvN1t37do1nDhxAv369bNDyarfokWLsGjRIixduhQ7duzAb7/9Zpx2pCpHKD58+BAAKOhNCKkRFi9ejBUrViAwMBAXLlzA3r17sXz5cqxZswZ///03tm/fDo1Gg0GDBuHvv/+2d3FJDebt7Y2oqChs2rTJYsd5w4YNAPBMtDNatGhhbGesWbMG586dw5gxY1BYWIi5c+dWWb4pKSnQ6XTUxiCkjqHzK6msvn37orCw0OJF0aysLOzYseOZ+f7MmDEDixYtwuLFi7F582acPXsWUqkUO3fuxJEjR6osX4oDkLKiwDexCZlMhnfffRc5OTl47733yvXeH374AV26dIGzszOkUimaNm2KZcuWQalUmqW1dEuSSqXCxx9/jFatWsHV1RUymQyBgYF48cUX8eeffwLQVz4ymQwhISFgjFksR79+/cBxHM6ePVvmso8cORJSqRRfffWV2TrDsgkTJlh9v1KpxAcffICmTZtCJpPByckJnTt3xg8//GAxPWMM69atQ2RkJCQSCfz8/PD6668jJyenxHJu3boV3bp1g4uLCyQSCRo3bowlS5ZYPMa20qNHDzRq1AiMMZw5c8a4PDExEa+//jqCg4MhFovh7u6O/v37m6QxMNxKdvjwYWzZsgXt2rWDg4MDAgMDjesOHToEwHTKleIOHDiAXr16wc3NDWKxGA0bNsScOXMsHjPD/GgqlQr/+9//EB4eDrFYjLFjx5qsV6vV+N///oeQkBBIJBKEh4ebfAe++OILNG3aFFKpFP7+/li4cCF0Op1Zfl9//TUGDx5sMhVCp06dsHnzZovH1JC/RqPB+++/j7CwMIjFYtSvXx9vv/02VCqVxfddv34d48ePR2BgIMRiMby8vNC5c2d8/vnnFtOOHTsW9evXh0gkgre3N0aMGIEbN25Y3DYh5ImEhAQsXrwYQqEQv/zyCyIjI83SDB48GGvWrIFarcZrr71W6TwNU2mlpqZi/Pjx8Pb2hlwuR8eOHXHs2DEAgEKhwKxZsxAQEACxWIzIyEj8+OOPJW73119/RceOHSGXy+Hq6oohQ4bg1q1bZulu3ryJOXPmICoqCp6enhCLxQgICMCrr76KxMTEMu/HP//8g+nTp6N58+Zwc3ODRCJBWFgY3nrrLWRlZZmlLz5X9KFDh9C1a1c4OjrCyckJffr0wbVr1yzmU1BQgOXLlyMqKgqOjo5wcHBA48aNMW3aNKSmppqlXbZsGVq0aAG5XA4HBwd06NABW7dutbhtlUqFxYsXIyQkxDgdxzvvvFOpunbixIlISUkx3t1koFar8fXXX6Njx46IiIiw+v5bt25h9OjR8PPzg0gkQr169TB69GiLnyUApKam4pVXXoG3tzekUilatGiBb775psQyZmZmYu7cuWjcuDGkUimcnZ3Ro0cP/P777+Xf4TLiOA5TpkwBAJw+fdpk3W+//YbevXvDw8MDYrEYISEhmDVrlsV5uQ3tytzcXMTGxiIwMBBCoRCLFi1CYGAgAgICAJhOXWdoEwDla8clJCQY33/z5k0MGzYMXl5e4PF4OHz4sMn6O3fuYMiQIXB3d4ejoyOee+45XLlyBQCQnp6OV199Fb6+vpBIJGjTpo2xLVTcw4cP8b///Q+dOnWCj4+P8fMfMWKExSliiuefkJCAl156CR4eHpBIJIiKijL7DhYXFxeHHj16GH+7gYGBGD58uMU2tT3apIRYUtnza3nOfTk5Ofjwww/RvXt3+Pv7QyQSwdPTE/3798epU6csbv/YsWPo168f/P39IRaL4ePjg/bt25v1tUua39nacxVKOvcZlKdPYJgG9O7du1i3bh0iIiKM54L333/f2P/+8ccf0bZtW8jlcnh5eeH1119HYWGhxbJXJP+EhASsX78eTZs2hUQigbe3N1599VWTfp/hmRX37t3DvXv3TPqQxc/vpenVqxf8/f2NF0mK++6771BUVISJEydafb9Op8MXX3yBNm3awMHBAXK5HG3atMHnn39usd8I6Kf4bN26NaRSKby8vPDyyy8bg7/WlKdOtJXIyEjjNK/F6+jy/GaKf3f379+Prl27wtnZ2biM4zhs2rQJABAUFGT8DIsPuPvnn38wePBgeHl5GdunU6ZMQXJysll+hu9QfHw8PvnkEzRr1gxSqdS4H7b+jv/8888YNWoUGjZsCLlcDrlcjtatW+Pjjz+2+PmX5zteXGJiIqZNm4awsDBIpVK4ubmhbdu2WLx4scW0ZY3T1DqMkEoCwPz8/JhKpWIhISFMKBSymzdvmqQJCAhgAJharTZZPnfuXAaAeXh4sNdee43NnDmTRUZGMgAsJiaGKZVKs+0EBASYLBs+fDgDwJo0acKmTZvG3n77bfbyyy+zoKAg9tZbbxnTjRs3jgFgv//+u9k+3L9/n/H5fNa6desy7fOYMWMYAPbHH3+w0aNHM4FAwJKTk43ri4qKmLu7O4uJiWG3bt0y7k9xSqWSxcTEMACsUaNGbObMmWzKlCnMy8uLAWBz5841y3fatGkMAPP19WVvvPEGi42NZSEhISwqKor5+vqaHZvi++3v78/Gjx/PYmNjWceOHRkA1rVrV7PPxFJZSwKAWTuVNGrUiAFgP/74I2OMsX/++Ye5u7szjuNYr1692FtvvcXGjBnDnJ2dmUgkYr/++qvJ+xcuXMgAsL59+zKxWMyGDBnC3n77bfbaa6+xQ4cOsYULFxq/WwsXLjT+GXzxxReM4zjm4ODAxo0bx95++23Wrl07BoBFRESwrKwsk/wMn0ffvn2Zt7c3Gzt2LJs9ezZbuXKlyfpBgwYxPz8/NnHiRJPPbNOmTezNN99kbm5ubPTo0Wz69OksKCiIAWAffPCB2fGRSCSsdevWbMyYMWzOnDls4sSJzM/PjwFg77zzjll6Q/5Dhw5lPj4+bNy4cWz69OksLCyMAWBjx441e8+ePXuYVCplPB6P9e7dm82ZM4e99tprrEOHDiwwMNAk7b59+5hUKmUCgYANHDiQzZo1iw0fPpyJxWLm5OTE/vnnH4ufMyHPIkvnvgULFjAA7L///W+J71Wr1czX15cBYKdOnSpTfoZz3d27d83K0bx5cxYSEsJatGjBpk+fzl5++WUmFAqZVCplFy5cYO3atWNhYWFsypQpbOLEiczBwYFxHGeW96ZNmxgA1q9fPyYQCNjQoUPZ3Llz2QsvvMAAMDc3N3b9+nWT9yxbtow5OzuzAQMGsDfeeIO99dZbrFevXozjOObj48MSExNN0h86dMh4zi5u0qRJzMvLiw0dOpTFxsayGTNmsM6dOzMArHHjxiw3N9diWQcPHswEAgHr168fmzlzJuvduzcDwDw9PVl6errJezIzM1nz5s0ZABYeHs6mTZvGZs6cyQYOHMgcHBzYoUOHjGmzsrJYy5YtGQDWqlUr9vrrr7MpU6awkJAQBoDNnz/fZNs6nY69+OKLDAALCQlhsbGx7PXXX2e+vr6sf//+Fapb/fz8WG5uLpPL5axPnz4m67dv326sd+bPn2/8f3GnT59mTk5OjOM49uKLL7K5c+eygQMHMo7jmJOTEzt9+rRJ+vT0dBYcHMwAsOjoaDZnzhw2ZswYJpFIjPvw9OeWkJDAAgMDGQDWuXNnNmPGDDZx4kTm6+vLOI5jX375pcXP7emyWmNIP2bMGLN1f/31FwPA5HK5cdmiRYuM39XRo0ezmTNnsueee85Y7+fk5JhsIyAggPn6+rLWrVuzoKAgNnHiRPbWW2+xr7/+mq1Zs4ZNnz7d+BsztDF27tzJGCt/O+7u3bvGY+vi4sLatm3LZsyYwSZNmsT++ecf4/qYmBjm7u7OoqOjWWxsLBs0aBDjOI65u7uzmzdvsuDgYLPfulgsZvfu3TPJb+vWrUwqlbLevXuzKVOmsNmzZ7OBAwcyoVDI5HI5u3DhgsXyde3alXl6erJ27dqxGTNmsNGjRzOxWMx4PB47ePCgyXt0Op2xTezh4cFeeeUVNmfOHDZq1Cjm5+dn9n0pb5uUkKpgi/Nrec99p06dYkKhkPXo0YO9+uqr7O2332bDhw9ncrmcCQQCtm/fPpP0+/btYzwej7m4uLDRo0ezuXPnskmTJrEuXbowLy8vk7SG85Al1s65JZ37DPmXp09gOA8MGjSIubm5sTFjxpj0gxYuXMg++ugjJpVK2fDhw1lsbCxr2rQpA8Bee+01s3JXNP+hQ4cyJycnNnLkSBYbG2usx7t162ZMe/fuXbZw4ULm7OzMnJ2dTfqQhvN7SQz906+++srY7jtz5oxJmiZNmrCgoCCmUqkYAIt99BEjRjAArH79+mz69OlsxowZxrbeiBEjzNKvXr2aAWAuLi7s1VdfZbNnz2bNmzdnAQEBrFmzZha/AxWpEy2V1RprbVPGGOvVqxcDwD788EPGWMXbC3369GF8Pp/17duXzZ49mw0bNoydP3+eLVy40Nimmz59uvEzNPTvd+/ezUQiERMKhWz48OFszpw5rGfPngwAq1evHouPjzfJz/Ad6tu3L3N2dmYjRoxgb7/9Nps3b57Jelt9x8PDw1njxo3ZqFGjjPGNhg0bMgBs1KhRZunL8x03OHPmDHNzc2MAWJcuXdjs2bPZ66+/zrp37854PJ5J2vLGaWobCnyTSjM0Hhhj7Mcff2QA2MCBA03SWAp8nzx50niyLx40VqvVrG/fvgwAW7p0qdl2ip+Ms7OzGcdxrHXr1kyj0ZiVLSMjw/j/M2fOGDvJTzNUYE+fcK0pHvg+duwYA8Def/994/qtW7cyAGzz5s1WA9/vv/8+A8BeeOEFk+OSmppqPF4nTpwwLj9x4oSxQ/3o0SPj8sLCQta+fXuLlaqhwhg4cCArKCiwuM9r1641WW6rwPcff/zBOI5jHMexhIQEplarWUhICBOLxezw4cMmaZOSkli9evWYj48PKyoqMiujTCZj586ds5i/tcZeQkICE4lEzNHRkV27ds1k3eTJkxkANnHiRIvbatq0qVnApPj6qKgok6D5nTt3mFAoZC4uLiwwMNAk0JOVlcXc3d2Zh4eHWYfu9u3bZnkolUrWvXt3JhAIzAJGhvxbtWpl8h3Iz89nISEhjMfjmfyW0tPTmZOTExMKhWbHnDHGHjx4YPx/ZmYmc3FxYe7u7uzff/81SXf58mUml8tZy5YtzbZByLPK0rmve/fuZa5LDB2e5cuXlym/kgLfANikSZOYVqs1Lv/2228ZAObq6sr69u3LCgsLjeuOHj3KALABAwaYbMtQZwBgu3fvNlm3du1aBoB1797dZHliYqLJedvgt99+Yzwez6yxby3wnZCQYLEe37Bhg8WLh4ay8vl89ueff5qsmzNnjsVja7hQ/tprr5kcK8YYy8vLY9nZ2cbXhnr+6W0UFhay559/nnEcx86fP29c/v333zMArH379ibH+tGjR8ZgckUC34wx9sorrzA+n29yzn7++eeZk5MTUygUFgMzOp3OePF58+bNJtvetm2bMfhf/DhMnDiRAWAzZswwSX/mzBkmEAgsfm4xMTGM4zi2detWk+VZWVmsefPmTCKRsJSUFONyWwW+dTodGz16tMl38uDBgwwA69Chg9mFbcN2nt43w++qR48eLD8/3yx/QzDYUuC9vO04w7YsBcWfXr9kyRKTdf/73/+Mv2drv/Wn9y01NdXsghFjjF24cIHJ5XLWq1cvq/kvWrTIZN3+/fuN+1rc+vXrGQDWpk0bk98PY4xpNBr28OFD4+uKtEkJqQqVPb8yVv5zX3Z2tsW+xYMHD5ivry9r1KiRyfJBgwYxAGYXqBhjZtupaODb2rmvIn0CQ50ZEBBgsR8kk8mYh4cHu3r1qnFdUVERa9y4MROJRCw1NdUm+devX9/kIqBarTZeRP/777/NjkF5grwGxQPfCQkJjMfjsVdffdW4/tSpU8bzuFqttthH37JlCwPAWrZsyfLy8ozL8/PzWevWrRkA9v333xuX3717lwmFQubq6mrSDtRqtcbvytPfgYrWibYIfF+5coVJpVIGgB09epQxVvH2AsdxZheGDAyf+9P55+XlMTc3N8bj8Yz5G3zwwQcMAOvZs6fFbVkKihdfb4vvOGOW4wBardbYtvnrr78s5l/W77hSqTReaCj+XTIofs6rSJymtqHAN6m04o0Hxhjr0KEDA8COHTtmXGYp8D1hwgQGgK1fv95smzdu3GA8Ho8FBQWZLH/6ZJyTk8MAsI4dOzKdTldqWaOiosxGZ2s0Gubv788cHR1NKp6SFA98M6Yf2RwcHGwsQ/fu3ZmrqysrLCy0GvgODQ1lHMeZBWUZe9LRHzdunHGZ4Xht3LjRLL0hkPB0RdWiRQsmEAjMKjvDfru7u7M2bdqYLK9o4NtwlXXevHls8ODBjM/nMwDszTffZIwx9vPPPzMAbObMmRa3YwiqFL+aaGhYPF0pF2etsbdkyRKrncvMzEzm6OjIJBKJyQncsK2ff/65xLyeDrIwxli3bt0YAPZ///d/ZuvGjh3LALCEhASr+1Hcjh07GAD2zTffWMzf8L0rzjDioHiwauXKlQwAmzZtWql5Go7/unXrLK6fMWMGA2DWACXkWWWpk9G4cWMGwGoDvbi3336bAWBvvPFGmfIrKfAtk8nMAlwajcYYrLxz547Z9gIDA83u+jB0Mp4Obhu2ZxjtXNZzWdOmTc3qcWuBb2t0Oh1zcnIyG8liKOvIkSPN3hMfH88A0wvdqampjMfjMV9fX4sBzuIyMjIYn89nUVFRFtdfuHCBAWCzZs0yLvvPf/7DAJiNiC1e1ooGvg0jm9977z3GGDN2tCdPnswYYxYDM8ePHzd2eC2Jjo5mANiRI0cYY4ypVComk8mYo6OjWQCTsSftnuKfm+E4DBkyxGIehnr/008/NTsW5Q18Fx9xPWPGDNaiRQsGgEmlUuOdCwMGDGAA2JUrVyxuq0WLFszT09NkmeF3ZSm4xFjJge/ytuMM2/L29rbYeTSsDwwMNLsIdO/evVJ/6127drW4D5b069ePicViplKpzPIPCAiweBGqQYMGzN3d3WRZkyZNGACrgxOKq0iblJCqUNnza0XOfSV54403GACTYJYhmHnjxo1S31+ZwLelc19F+gSGOmLDhg1m6Q13erz77rtm6wwjkosH2yqT/1dffWWWfuPGjQwA++STT0yW2yLwzZh+ZLOjo6OxbTF+/HjG5/NZUlKS1cC3oc3w22+/mW3/zz//ZIDpCF5Dv3bBggVm6e/cucN4PJ7Zd6CidWJFAt+GEdfvvPMOGzlypDHobRgMWZn2wtODNIqzFvjevHkzA8CGDx9u9h61Wm0MCBf/zRm2Ze0CrC2/4yX5559/TM5JT+df1u+44c6V/v37l5pnReI0tY0AhNjYqlWr0LFjR8ycORN//fWX1XTnzp0DAHTv3t1sXcOGDeHv74+7d+8iJycHzs7OFrfh5OSEfv36Yffu3WjRogUGDx6Mzp07o127dpDJZGbpp0yZgvHjx2Pjxo2YN28eAGDv3r1ITEzE5MmT4eDgUJFdxsSJE/HWW2/h4MGDCAgIwKFDh/DGG29AIpFYTJ+Xl4fbt2/Dz88PjRo1MltvOCbnz583LjMcr5iYGLP00dHR4PP5JssKCgpw8eJFeHh4YO3atRbLIRaLrc6DWl6G+eY4joOLiws6d+6MV155BaNGjQIA4/x19+7dM5k/zsAw3+i1a9fQu3dvk3Vt27Ytd3lK+n65urqiZcuWOHr0KK5fv47mzZuXK7+oqCizZYaHarRu3dpsnZ+fHwD9vFmG+UIB4P79+1i+fDkOHDiA+/fvm83/lZSUVOb869evDwAmc+Eafn8vvPBCifsDPPl8Ll68aPHzuXnzJgD951PSfIeEkPIpKiqq9DYaNmwIR0dHk2V8Ph/e3t5QKBQIDg42e4+fn5/Vh2taqmf4fD6io6Nx584dnD9/3nguY4zh+++/x9dff42LFy8iKysLWq3W+D6RSFSmfVCr1Vi/fj22bduGq1evIicnx2SOw8qeD8+cOQOdTocuXbpALpeXWJYzZ85Aq9WC4ziL50O1Wg0AJvXnuXPnwOPxEB0dbZbeMD9kRbVr1w5NmzbFxo0b8c4772DDhg3Q6XQlzh1aUh1oWH78+HGcP38eXbp0wfXr11FQUIDOnTtbbHN17drVbK5vQ72Rk5Nj8Tilp6cDgE3aGRcvXsTFixcBAEKhEL6+vnj55ZcxZ84cY5106tQpCIVC/PjjjxbnsFepVEhPT8ejR4/g7u5uXC6RSNCsWbNylaci7TiD5s2bQywWW912ixYtzNp0hjZGSb91S3Pq//rrr/jiiy9w9uxZZGRkmD3ELyMjA76+vqXmD+h/V8XnIlYoFLhy5Qq8vb3RsmVLq/sDVH+blJCyqsj5taLnvhMnTuCjjz7CqVOnkJaWZvZsnqSkJDRo0ACA/jlSP/30E9q1a4dhw4ahW7du6NSpE/z9/Suzuyasnfsq0yeoTB+pqvK31CawpYkTJ2L//v3Ytm0bhg4diri4OPTp0wf16tWz+OBU4EmbwVL7ICYmBnw+v8xxgODgYNSvXx/37t0zWV7ROrEiPvroIwD6OICDgwOaNWuGUaNGGZ9lU5n2gq3jAAKBAF26dEFCQgLOnz9v/M2VNT9bfMcB4NGjR/jwww+xd+9exMfHQ6FQmKy3RxygInGa2oIC38TmOnTogCFDhmD79u2Ii4vDsGHDLKYzTMD/dIPbwNfXF/fv30d2drbVwDegf6DO8uXLsWXLFixcuBCAviIfMmQIVq5cCW9vb2Pal156CW+99Ra++uorzJkzBzweD19++SUAYNKkSRXaXwAYPXo05s2bhw0bNiAgIACMsRIbTGXZdwAmD50wvKf4/hgIBAJ4eHiYLMvKygJjDOnp6eV+4GhFMMZKXP/o0SMAKPWBavn5+WbLfHx8yl2eihzjsuZn6fsoEAhKXWcIlgBAfHw82rZti6ysLHTu3BnPPfccnJ2dwefzkZCQgG+++cbqg55cXFys5lE84GTYN0OFWxLD52PpQa3FWfp8CCF6Pj4+uHbtGh48eFBqWkMaT0/PSudrrY4UCAQlrrPWIbNUzwBPzo3FH6ATGxuLtWvXwtfXF88//zz8/PwglUoB6B9M9HRHzJphw4Zh586dCA4OxosvvggfHx9jcHDt2rV2OR+eOXOmxAf6FD8f5uTkwM3NDUKh0CxdReqwp02cOBHTpk3Dvn37sGnTJrRu3brEYGN568CS2hiA5X0wHKc//vgDf/zxh9Wy2KLeGDNmjNnD2SyVR6PRlNrmyc/PN+nke3l5WX0wnDU1qY1hWF+8jQHoAxEzZsyAq6srevbsiQYNGkAmk4HjOPz888+4ePGixd+Vpd+UIY/iF6PK85uq7jYpIeVR3vNrRc59O3fuxJAhQyCRSNCzZ0+EhIRALpcbH2575MgRk9/joEGDsGfPHqxatQobN27E+vXrAegDa8uWLUPPnj0ru9tWz32V6RPYoo9UmfzL2iawpX79+sHb2xsbNmyAWq2GQqEoMQ4APGkzWBocYOjXp6WlmaQHSq6jn25vVbROrIi7d+8iMDDQ6vrKtBfqYhwgOzsbbdq0wd27d9G2bVuMHj0abm5uEAgEyM7OxkcffWSXdm9F4jS1BQW+SZVYtmwZdu3ahblz52LgwIEW0xhODCkpKQgJCTFbb3jabklBbwCQSqVYtGgRFi1ahAcPHuDo0aP4+uuvsXnzZiQkJODYsWMmaceOHYs1a9bg999/R2RkJPbt24d27dqZjfotDw8PDwwcOBA7d+6Ek5MTOnTogCZNmlhNX3zfLbG074b/p6ammo3e02g0yMjIMBkFYEjfsmVL41VPezKUZ9euXejfv3+53lveDmnx/FJSUhAZGWm2vqTvV0XyK6/Vq1fj0aNH2LRpk9kTxLdu3Wo2sq4iDBVjUlISmjZtWmJaw3G4ePFiuUe+EUL0oqOjcejQIfz5558ldnq0Wi0OHz4MwPLoEHtLTU21uNxQZxnOF2lpafj444/RpEkTnDx50mwk6tatW8uU39mzZ7Fz50785z//wb59+4wNeADQ6XRYsWJFRXbDRPHzYWkM+/fmm29i9erVZdq+s7MzMjMzoVarzYLf1ur68nj55Zfx9ttv47XXXkNSUhIWLFhQanlKyvvpOrB4G8MSS9sxvOejjz7CtGnTyrAXVcvZ2Rk6nQ6ZmZnlel9l2xiW2LuNodFosGjRIvj4+ODcuXNmnf/iI7crqiK/qZrSJiWkuIqeX8tz7nv33XchEolw9uxZNG7c2GTdpEmTcOTIEbP39OnTB3369IFCocDff/+NPXv24PPPP0ffvn1x/vx542hnHo8HQP+7L15/ApYDewbWzkX27hPYO//yEgqFGDduHD744AMkJibC39+/1FG2JbUZDP16Jycnk/SAvo621K+1VkdXpE6sCpVpL9TFOnrDhg24e/cuFi5caDbC+tSpU8YR9JVRkTq6InGa2oJn7wKQuik0NBRTpkzB3bt38cknn1hMY7iSbuj8F3f79m0kJiYiKCjI6sgTS+rXr4+RI0fit99+Q2hoKI4fP268gmUwefJkcByH9evX4//+7/+g1WorNdrbYOLEiVAqlUhPTy/1Kq+joyNCQkKQlJRkvHWkuEOHDgEAWrVqZVxm+L+lhtHx48fNrmI7ODggMjIS//77b42o8Nq3bw8AJhciqlJJ36/s7GxcuHABEonErPFZXW7fvg0AGDx4sNk6S59xRRiO+b59+8qctro+H0LqonHjxkEgEGDnzp34999/rabbuHEjHj58CDc3N/Tq1asaS1g2ls5BWq0Wx48fB/Dk/BofHw+dTofnnnvOLOidmJiI+Pj4MuVnOB/279/frNN++vRps2mgKqJt27bg8Xg4evSo2e2k1tKW53zYqlUr6HQ64zEqzlI9VF4uLi4YMmQIEhMTIZfLMXz48BLTl1QHAubtjEaNGkEmk+HChQsmI/oNLG2nptUb7du3R1ZWVom/PVupSDuuOmVkZCA7OxsdO3Y0C3rn5+fbJPgsl8vRpEkTpKamWpzSpbia1iYlpLjynl8rcu67ffs2IiIizPod1uqN4uRyObp3747Vq1dj3rx5UKlUJm17V1dXALB4t9nZs2fLXEYDe5/bqyt/Pp9vs1HgEyZMAMdxSExMxPjx4y1OF1Vcy5YtodPpcPToUbN1R48ehVarLXMcID4+3uJnX511YmlqUhxAo9EYy2GvOpriANWPAt+kyixYsAAuLi5YunSpxdsixo8fDwBYsmSJcV4nQN+5njlzJnQ6HV555ZUS80hPT8fly5fNlisUCuTn50MgEJjdQhQWFoYePXpgz549+OKLL+Di4oKXXnqpIrtoolu3bti1axd27txZpu2NHz8ejDHMmjXLpNLNyMjA4sWLjWkMDKOCly5datJpKCoqwty5cy3mERsbC5VKhfHjx1u84p+VlVVtI29efPFFhISE4NNPP8XevXstpjl16hQKCgpskt+oUaMgFArxySefGCsXg3fffRe5ubkYNWpUifNsViXD7WBPV8i//fYbNmzYYJM8xowZAycnJ3z++ecWG1bF5xobN24cXFxc8N577+H06dNmaXU6nU2CN4TUZUFBQXjnnXegVqvRv39/XL161SzNzz//jOnTpwMAli9fbvF5FPZ28OBB7Nmzx2TZunXrcOfOHXTr1s04v7fhPPb0xdf8/HxMnDjR6lQqT7N2PkxLS8PUqVMrthNP8fT0xEsvvYTk5GRjG6O4/Px8Y8DXy8sLI0eOxNmzZ7F48WKLHeM7d+7g7t27xtfjxo0DAMyfP99k3vbMzEwsWbLEJvuwZMkS7Ny5E7/99pvZhYanderUCeHh4Th+/Di2b99usm779u04duwYGjZsaJyTXCgUYuTIkcjLyzMbfXT27Fl8//33ZnlERUWhc+fO+Omnn7Bx40aL5bh8+bLJ7dpV6c033wSgH4jw8OFDs/UKhaLEZ8+UV3nbcdXJy8sLMpkM//zzj0kbXK1WY/r06cjIyLBJPoaRe5MmTTK7YKLT6Yyj6oCa1SYl5GnlOb9W5NwXGBiIW7dumZybGGNYtGiRxbbC0aNHLdahhrtyircdDHMSPz01yIEDB8p851Vx9u4TVFf+7u7uSE9Pt8nF9ZCQEOzfvx87d+4s04hmQ90wd+5ck75vQUEB5syZAwAmcZCRI0ca+7UJCQnG5TqdDrNmzTJr0wDVXyeWpLrbCwMGDICbmxu2bt1qto9r167F3bt38Z///Mdsfu/qYq3de/78eSxbtswmefTr1w+BgYH45ZdfLJ4HiscBqjtOYw801QmpMm5ubpg3bx5mz55tcX3Hjh0xe/ZsrFixAk2aNMGQIUMgl8uxb98+XLlyBdHR0Zg1a1aJeSQlJaFly5Zo2rQpmjVrhvr16yM3Nxd79uxBSkoKpk2bZrHxMmXKFPz5559ITU3FG2+8YZyPtDI4jivXrSEzZ87Evn37sGvXLjRv3hy9e/dGQUEBfvzxR6SlpWH27NkmD8nq1KkT3njjDXzyySfG4yUUCrFr1y64urpanMNq/Pjx+Oeff/DZZ58hJCQEzz//PBo0aIDMzEzcvXsXR48exbhx4/DFF19Uev9LIxQK8dNPP+H5559Hnz590LFjR7Ro0QIymQwPHjzAmTNnEB8fj+TkZJsEggIDA7F27VpMnToVrVq1wn//+194enriyJEjOHXqFBo1aoTly5fbYM8qZsqUKdi0aROGDh2KIUOGoF69erhy5Qr279+P//73v4iLi6t0Hh4eHtiyZQuGDBmCbt264YUXXkCzZs2Qm5uLS5cu4cGDB8bAjbu7O7Zv346BAweiffv26NGjByIjI8FxHB48eIBTp07h0aNHNnkQHyF12YIFC6BQKPDhhx+iefPmeP755xEZGQm1Wo2TJ08aHyg5e/ZsTJgwwc6ltaxfv34YOHAgBg4ciNDQUFy4cAH79u2Dm5sbPvvsM2M6Hx8fvPTSS9i2bRtatGiB5557Djk5Ofjjjz8gkUjQokULXLhwodT82rRpg06dOuGnn35Cx44dER0djdTUVOzbtw/h4eHGhwZV1rp163DlyhV88cUXOHz4MJ5//nmIRCLcvXsXv/32G3755Rfjg6bWrVuHW7duYcGCBfjuu+8QHR0Nb29vPHz4ENeuXcOZM2ewdetWBAUFAQCGDx+OuLg4/PLLL2jSpAlefPFFqNVqbN++HW3atMGdO3cqXf4GDRqUuZPGcRy++eYb9OzZE8OGDcOLL76IRo0a4caNG/j555/h6OiIb7/91niLPAC8//77OHDgANauXYuzZ88iOjoaycnJiIuLQ+/evfHLL7+Y5bNlyxZ0794dr7zyCj7++GO0a9cOLi4uSExMxKVLl3DlyhWcOnUKXl5eld7/0vTo0QMffPAB5s6di7CwMPTu3RtBQUHIz8/HvXv3cOTIEURHR2P//v02ya+87bjqxOPxMG3aNHzwwQdo2rQpXnzxRahUKhw6dAiZmZno1q2bcVR6ZUyYMAHHjh3Dd999h7CwMLz44ovw9PTEw4cPcfDgQYwfP954IaUmtUkJeVp5zq9A+c99b775Jl577TW0bNkSgwcPhlAoxIkTJ3D16lX069cPu3fvNtn+tGnTkJSUhE6dOiEwMBAikQj//PMPDh48iICAAJNBVuPGjcOHH36IZcuW4eLFi4iIiMDNmzexb98+DBw4EDt27CjXsbB3n6C68u/RowfOnDmDXr16oUuXLhCLxWjevDn69etXoe0999xzZU47YsQI7Nq1Cz/88AMiIyMxYMAA4/MX7t69i2HDhmHkyJHG9IGBgfjggw/w1ltvoWXLlhg2bBicnZ3x22+/ITs7G82aNcOlS5fM9q8668TSVGd7wcHBARs3bsTQoUMRExODoUOHokGDBvjnn3/w+++/w8fHxzhvvj2MHj0aH374IWbMmIFDhw4hLCwMt27dwp49ezBo0CCbxAFEIhF+/PFHPPfccxgxYgTWr1+P9u3bo6ioCNeuXcOBAweMF9eqO05jF4yQSgLA/Pz8LK4rKipigYGBDAADwNRqtVmarVu3sk6dOjEHBwcmFotZREQEW7JkCSssLDRLGxAQwAICAoyvs7Ky2Hvvvce6devG6tWrx0QiEfPx8WExMTFsy5YtTKfTWSyXRqNhHh4eDAC7cuVKufd5zJgxDAD7448/Sk1769YtBoDFxMSYrSssLGRLly5lkZGRTCKRMAcHB9apUye2ZcsWi9vS6XTsk08+YY0aNWIikYj5+vqyKVOmsOzsbLNjU9zu3btZnz59mKenJxMKhczb25u1adOGzZ8/n127ds0krbWyWmP4bMsqNTWVvf322ywyMpJJpVIml8tZaGgoGzx4MPvuu+9MviMLFy5kANihQ4esbi8mJqbE/H/77TfWs2dP5uLiwkQiEQsJCWGzZs1iWVlZ5d5WSesN34m7d++arbO2HydOnGDdunVjLi4uxs9+586d7NChQwwAW7hwYZnz37RpEwPANm3aZLbuypUr7OWXX2b16tVjQqGQeXl5sS5durD169ebpb179y6bOnUqCw0NZWKxmDk6OrLw8HA2atQotnPnTot5E/IsKu3cd/r0aTZmzBgWGBjIxGKxMb2vr2+Z6o6nBQQEWDzHlHTOLqlesHQ+KX4e2b17N2vfvj2TyWTM2dmZDRo0iN24ccNsOwqFgs2bN4+FhIQwsVjM/P392ZQpU1hGRobFPKyd3x49esQmT57MAgICmFgsZsHBwWzu3LlMoVBY3I+SznklHZf8/Hy2ZMkS1rRpUyaVSpmDgwNr3Lgxmz59OktNTTVJq1Qq2SeffMI6dOjAnJycmEgkYvXr12fdu3dna9asYRkZGWbp33vvPRYUFMREIhELCAhg8+bNY0VFRRWqW621rZ42f/58q8fi+vXrbNSoUczHx4cJBALm4+PDRo4cya5fv25xW8nJyWzcuHHMw8ODSSQS1rx5c7Zp0yarnxtjjOXm5rKlS5eyVq1aMblcziQSCQsMDGS9e/dm69evZ/n5+ca0pX1uTzOkHzNmTJnSM8bYsWPH2NChQ5mvry8TCoXMw8ODNW/enL355pvszJkzJmlL+o0wpq8TS8q/PO240rZV2vry/tbVajVbtWoVa9y4MZNIJMzb25uNGjWKJSQkWGyzlJZ/SW2QzZs3sy5dujAnJycmFotZYGAgGzFiBPvnn3/M0panTUpIVbDV+bU85z7G9Oez5s2bM5lMxtzd3dmAAQPYpUuXLPYT4uLi2EsvvcRCQ0OZXC5njo6OLDIyks2bN4+lpaWZleXKlSvshRdeYA4ODkwul7OYmBh2+PBhq+fc0s59jJWvT1CRfpDhmFg7vrbK31r9lZ+fz1577TXm5+fH+Hx+mesaw/589dVXpaZVq9UMgMVjrdVq2aeffspat27NpFIpk0qlrFWrVmzdunVMq9Va3N6WLVtYy5YtmVgsZh4eHmzkyJEsKSmpxPOzLevEp1lrm1pj6/ZCSZ87Y/q2+IABA5iHhwcTCoWsfv367LXXXmNJSUnl3patv+P//vsv69evH/P09GQymYy1atWKffXVV1br4op8xxlj7N69e2zy5MksMDCQCYVC5ubmxtq2bcuWLl1qlrY8cZrahmOMscoGzwmpbeLj4xEaGopOnTrV6bmMCCGE1Ax5eXmIjo7G1atX8eOPP2LAgAH2LhIhhBBCCCGE1Gk0xzd5Jq1cuRKMMbz++uv2LgohhJBngKOjI/bs2QNPT08MGzas2m4tJYQQQgghhJBnFY34Js+M+/fvY8uWLbh16xY2bdqEZs2a4dy5cybzWxJCCCFV6eLFi9i5cydkMhlmzJhh9gBmQgghhBBCCCG2QYFv8sw4fPgwunXrBplMhujoaHz++ecIDg62d7EIIYQQQgghhBBCCCE2RoFvQgghhBBCCCGEEEIIIXUKzfFACCGEEEIIIYQQQgghpE6hwDchhBBCCCGEEEIIIYSQOoUC34QQQgghhBBCCCGEEELqFAp8E0IIIYQQQgghhBBCCKlTBPYuQE2RlZUFjUZTbfl5enoiPT292vKrarQ/NRvtT81Vl/YFoP2xRiAQwNXV1QYlIkD119m2Utd+HxVFx0GPjoMeHQc9Og569j4OVF/bVm2tryvC3t/duoSOpe3QsbQdOpa2Y4tjWZ76mgLfj2k0GqjV6mrJi+M4Y56MsWrJsyrR/tRstD81V13aF4D2h1Sf6qyzbYW+T3p0HPToOOjRcdCj46BHx6HuqY31dUXQd9d26FjaDh1L26FjaTv2OJY01QkhhBBCCCGEEEIIIYSQOoUC34QQQgghhBBCCCGEEELqFAp8E0IIIYQQQgghhBBCCKlTKPBNCCGEEEIIIYQQQgghpE6hh1sSQuo8pVIJpVJp72JYVFhYCJVKZe9i2MyzvD9isRhisbiKS0QIIYQQQggh9sMYQ35+/jP1oMe61s+1p7IeS47j4ODgYHwgZkVR4JsQUqcpFApwHAdHR8dKnzCrglAorFNPu39W94cxhsLCQigUCsjl8mooGSGEEEIIIYRUv/z8fIjFYohEInsXpdrUtX6uPZX1WKpUKuTn58PR0bFS+dFUJ4SQOk2j0UAmk9XIoDepOziOg0wmg0ajsXdRCCGEEEIIIaTKMMaeqaA3sQ+RSGSTuwoo8E0IqdMo4E2qE33fCCGEEEIIIYSQmoEC34QQQgghhBBCCCGEEELqFAp8E0IIIYQQQgghhBBCCKlTKPBNCCE1zJAhQ7BgwQK7lmHGjBkYP3688XVNKJMtnTx5En5+fsjJySnze9q1a4evvvqqCktFCCGEEEIIIcTWakJ/lvrY5qqjjy2o0q0TQgipE7766isIhUJ7F4MQQgghhBBCCKn1qI9dPSjwTQghpFSurq72LgIhhBBCCCGEEFInUB+7etBUJ7bCdBAWxEOcdwHCgniA6exdIkLIUxhjYMoi+/wxVq6yarVazJ8/H40aNUKTJk2wYsUKk21s374dL7zwAho2bIgWLVpg6tSpyMjIMK7Pzs7G66+/jqZNmyIkJASdOnVCXFyccX1SUhImTZqExo0bIzIyEuPGjcODBw+slufp27DatWuHjz/+GLGxsWjYsCHatGmDzZs3m7ynvHkYbo06fPgwnnvuOYSEhGDo0KHIyMjAwYMHERMTg/DwcEydOhWFhYXG9ymVSrz77rto1qwZgoODMWDAAFy4cMFk2wcOHEB0dDRCQkIwZMgQi+U4ffo0Bg4ciJCQEERFReHdd9+FQqGwWl5CCCGEEEIIeZZRH5v62DW9j00jvm1AnH8FDul7wNc+mcdGy3dGvmdfKB2a2LFkhBATKiV0r//XLlnz1v0AiCVlTv/jjz/ipZdewp49e3Dp0iXMnj0bfn5+GDlyJABAo9Fg1qxZCAkJQUZGBt577z28+eab+O677wAAH374IW7evInNmzfDzc0Nd+/eRVFREQBArVZj5MiRaN26NX766ScIBAJ89NFHGDlyJP7880+IRKIylXH9+vWYNWsW3njjDfz666+YO3cuOnfujICAgErlsWrVKixduhRSqRSTJk3Ca6+9BpFIhE8//RQKhQKvvPIKNm7ciKlTpwIAli5dir1792Lt2rXw9/fHZ599hpEjR+L48eNwdXVFUlISJk6ciDFjxmDkyJG4dOkS/ve//5nkmZCQgJEjR2L27NlYtWoVHj16hHfeeQdz587FqlWryvy5EUIIIYQQ2xEW3IZj+m7kefaDWhZq7+IQQp5GfWwAVdvHbt++PUJDQ6mPXUEU+K4kcf4VOKV8b7acp82BU8r3yPUZScFvQki51atXD++99x44jkNoaCiuX7+Or776ylgpv/TSS8a0AQEBWLx4MXr37g2FQgG5XI6kpCQ0adIEzZs3BwDUr1/fmP6XX36BTqfDypUrwXEcAGD16tVo3LgxTp06hZiYmDKVsXv37hg7diwAYOrUqfjqq69w/PhxBAQEVCqP2bNno02bNgCA4cOHY9myZTh58iQCAgIAAH369MHJkycxdepUFBQU4Ntvv8WaNWvQvXt3APoGSfv27bFt2zZMnjwZ3377LQICArBw4UIAMB7PTz/91JjnunXrMHDgQEycOBEAEBwcjMWLF2Pw4MFYunQpJJKyN6gIIYQQQogNMAaHR/shUKfB4dF+ZEmnAo/blYQQUl6V6WO7uLjYrY998uRJhIaGUh+7gijwXRlMB4f0PQCAp6tfDgAD4JCxB0p5BMDRrDKE2J1IrL8qbKe8y6NVq1bGygwAWrdujfXr10Or1YLP5+PSpUtYtWoVrl69ipycHOh0+umVkpKS0LBhQ4wePRoTJ07E5cuXERMTg+eff95Y0V29ehUJCQlo2LChSZ5KpRIJCQllrpQjIiKM/+c4Dp6ensZbwSqTR/Htenp6QiqVGitkwzLDbVYJCQlQq9XGfQMAoVCIFi1a4NatWwCA27dvo2XLliZ5tG7d2uT11atXce3aNezcudO4jDEGnU6HBw8eICwsrMRjQWoPxhigUlZ/xhwHXVFhhW7LrFPoOOjRcdCj46BHx0GvssdBJDZpO5HaT1RwE0JlEgBAqEyCqOAWVPKGpbyLEFKtnpE+touLi9362I8ePap0Hs9yH5sC35UgLEwwmd7kaRwAviYHwsIEqGXB1VcwQohFHMeV61aomqqgoAAjRoxA165dsW7dOri7uyMpKQkjRoyASqUCoL9SfPr0aRw4cADHjh3DSy+9hDFjxmDBggVQKBRo1qwZPvnkE7Ntu7u7l7kcAoFpFcJxnLFxUJk8nt7u00+6Lp6PrSgUCowaNQrjx483K4u3t7dN8yJ2ZsfbMZPskmvNQ8dBj46DHh0HPToOepU5DuW95Z3UcIzBMW37k5fgIM/8HSpZGI36JqQGoT429bGtqSl9bAp8VwJPm2vTdIQQYnD+/HmT1+fOnUNQUBD4fD5u376NrKwszJ07F35+fgCAixcvmm3D3d0d//3vf/Hf//4Xbdu2xZIlS7BgwQI0bdoUu3fvhoeHBxwdHauk/NWRBwAEBgZCJBLhzJkz8Pf3B6CfX+3ChQvGW6pCQ0Pxxx9/mLzv3LlzZuW9efMmgoKCTJYLhUKo1eoqKz8hhBBCCDEnKrgFvjbf+JoDo1HfhJBKoT522dS1PjYFvitBx3eyaTpCCDFISkrCokWLMGrUKFy5cgUbN240PvHZz88PIpEImzZtwssvv4wbN25g7dq1Ju//8MMP0axZMzRs2BAqlQp//vmn8VaiQYMG4fPPP8e4ceMwa9Ys+Pr6IjExEfv27cPkyZNRr169Spe/OvIAAJlMhpdffhlLliyBi4sL/Pz88Nlnn6GoqMg4R9vo0aPx5ZdfYvHixRg+fDguX76MH34wvR1vypQp6NevH+bPn4/hw4dDJpPh1q1bOH78OBYvXmyTspIawk63Y3IcBx8fH6SkpDzTUxnQcdCj46BHx0GPjoNepY9DOW95JzUYY5Bn/g4GDhyefBcYQKO+CSEVRn3ssqlrfWwKfFeCWhoILd8ZPG2O2RzfgL5i1gmcoZYGVnPJCCG13ZAhQ1BUVIS+ffuCz+fjlVdewahRowDorzKvWbMGH3zwATZu3IgmTZrg3Xffxbhx44zvFwqFWLZsGR48eACJRIJ27drhs88+AwBIpVL89NNPWLp0KSZMmACFQgEfHx9ER0fb7MpxdeRhMG/ePDDGMG3aNOPtX99//z1cXFwA6BsxX375JRYtWoRNmzahRYsWmDNnDmJjY43biIiIwI4dO7B8+XIMGjQIjDEEBARg4MCBNi0rsT973Y7JcRx4Eik4sQR4xgNbdBzoOBjQcdCj46BHx4EYiApuGef2Lo6DYa7vm1DJw6u/YISQWo362GVXl/rYHHuWhxUUk56eXqGh9uL8K3BK+R6A6QMuDQc112cklA5NTN7DcRx8fX2RnJxcJ0Z10P7UbM/6/uTm5sLJqebedVHXptJ41vfH2vdNKBTC09PTlkV7plW0zranunYurig6Dnp0HPToOOjRcdCrCceB6mvbqlB9zRhcEz+FQPnQZLR3cVq+Ax4FzAV4PBuUsvJqwne3rqBjaTtVeSxreh+7KtS1fq49ledY2qJ/TSO+K0np0AS5PiPhkL7H5EGXjCdFntcgs6A3IYQQQgghpOZKV6iRq9RaXe8k5sNTLrS6nhBSGVrwNDlWg94AwNfmQ5Z9GAVu3auxXIQQQmojCnzbgNKhCZTyCAgLEyDNOQmJ4l+oJEEU9CaEEEIIIaQWSVeoMfmXeKh11oNuQh6Hz/sHU/CbkKrACZDlPxU8rcLianHeechzTsAh8w/o+A4ocm5bzQUkhBBSm1Dg21Y4HtSyYDCeEBLFvxAV3gGYFuD49i4ZIYQQQgghpAxyldoSg94AoNYx5Cq1FPgmpIrohC7QCV0srtNI/ACeEPKsw3BM/xmML4XSoWn1FpAQQkitUTMmxapDNGI/6Phy8JgSwsJ79i4OIYQQQgghhBBSZyjcnkOhU1twYHBKiYOw4Ja9i0QIIaSGosC3rXE8KGUNAQCight2LgwhhBBCCCGkrMr6ALC/E/NwOVWBdIUa2lJGiBNCbIzjkOf5IoocmoKDFs7JmyEoum/vUhFCCKmBaKqTKqCShUOadx7ightQ4AV7F4cQQgghhBBiRXaRBheTFbiQosDZJMvzCj8t7vIjxF1+BAAQ8AAPmRA+DkJ4O4jg5SCEt1wIH0f9v45iPjiOq8pdIOTZw/GQ6/1f8LSFEBXehsvDr5HlNwlasbe9S0YIIaQGocB3FVDJwsDAQaBKBU+dbXV+MkIIIYQQQkj1Uml1uJZeiAvJClxIViA+S1nubTR0lyBPpUW6Qg2NDkjJVyMlXw2gwCytRMB7HBQXwsvhcYBcLoL342USIT0TiJAK4QTI8R0Fl6T/g1D5AC4PNyLL/zXohK72LhkhhJAaggLfVYDxZVBLGkBUdA+ighsocm5n7yIRQgghhBDyTGKM4UGOCucfB7qvpBVApTWdniTIVYwWPnJ4OQix/kxqqdt8ra0PQtwk0OoYMgs1SM1XIzVfhVSFGql5av2/+WpkFmpQpNEhIVuJhGzLAXYXCR/1XZPgKga85UJjQNzbQQgPmRB8Ho0WJ8QaxhMju94YuCZ9CYEqDS4P/w9ZfpPABI72LhohhJAagALfVUQlC4eo6B7EFPgmhBBCCCGkWhWfvuRCcgEyCzUm610lfLTwlev/fORwkeq7RXcyi8qVD5/HwVMuhKdciCbeMrP1So0O6Y+D4Cn5aqQp9AHylHw10vLVUKh1yC7SIjs51+L2eRzgaQiGG4PiT0aLO9M0KoSA8eXIrjceronrIVA/gsvDTcj2exWML7F30QghhNgZBb6riEoeDmT+DmHBHYBpAI4ONSG1lVbHcDW9AFmFWrhK+YjwlD1zo69OnjyJoUOH4urVq3B2drZ3cQghhBATpU1fIuJziPSSoaWvHM19ZAhwEVsMGDuJ+RDyOKhLeGClkMfBSVy26UnEAh78ncXwdxZbXJ+v1CJNoYZS6IDrD9KMQfHUx0FyjY49Hk2utvh+iYCDt/zxvOKPp1HxMgbJRZAKeWUqJyG1nU7grA9+J62HUJUM5+RvkF1vPMAT2rtohBBiEfWxqwdFY6uIRuQLLd8RfG0ehIUJUMtC7V0kQkgFnLqfh6/+ScWjgicjxdxlAkxs7Y0ODZ6dWyijoqJw/vx5ODk5AQDi4uKwaNEiXLt2rVLbzczMxBtvvIFr164hKysL7u7ueP755zFnzhw4Olo/vnFxcYiNjTVZJhaLER8fX6nyEEIIqR3KM31JC185IrykEPFLDwJ7yoX4vH8wcpVaq2mcxHx4ym0TTHMQ8+EoEcDX1wsRTlow9mQfdKz4NCqPp1Ix/F+hRmaBBkUahns5StzLsTyNirOY/2Re8WIjxb3lQnjIhRA8YxfySd2mFXkgu944uCR9CVFRApxTtiDHdxTA0Tz6hNREF5IV+OpsKiZGeaOFr9zexal21MeuHhT4riocB5WsIaR5/0CsuE6Bb0JqoVP38/DBsSSz5Y8KNPjgWBLmdParM8FvtVoNodB6J14kEsHLy8vm+fJ4PDz33HOYPXs23N3dcffuXcyfPx/Z2dn49NNPS3yvo6Mjjh49anxNt3oTQkjdVtHpS8rLMHWJvfE4Dh4y/TzfkRaqYLVWhzSFxiwgbnidr9IhR6lFjlKLW4/Mp3DhcYCHTPAkIP7UVCouEppGhdQ+GnE95PiOgcvDjRAXXIdT2nbkeg0FOLr7gZCahDGG7y6kIzFXhe8upKO5j6zO1TnUx64ZKPBdhVTycEjz/oGo4Ka9i0IIgb5yVWqt37pcnE7H8OXZkh9u9dXZVDT3kYFXhtFSYj5X5kpjz549WLNmDRISEiCRSNCkSRNs2rQJMpkMM2bMQG5urnGZSqXCgAEDsHjxYohEIgDAoUOH8NFHH+HGjRvg8Xho3bo1/ve//yEwMBAA8ODBA7Rv3x6fffYZvv32W5w/fx7Lli1Dp06dMH/+fJw5cwYqlQr169fHO++8gx49epjchvXvv/8arwT7+fkBAGJjY8Hj8bBnzx4cOHDAZH969uyJnj17Yvbs2Wb76uLigjFjxhhf+/v7Y8yYMfj8889LPU4cx1VJQ4EQQkjNYKvpS+oqIZ8HPycR/JxEFtfnq7RIMwbEVUjJM8wxrv9XpWVIU2iQptDgsoUmj4jPPQmIO4rMHrwpE9IoWlIzqaVByPEZAefkzZDkXYCOJ0O+R1/gGTo/EFJdytPHLu5CsgK3Hz9X43ZmEf5OzC/3qO/q7GMfPHgQq1atsksfe/fu3Th48KDJ/lAfu+wo8F2FVNIwMPAgUKeDp86ETuhm7yIR8kxTahmGxdnuQtSjQg2G/3irTGnjhjWERFB6pZyamoqpU6di/vz5eOGFF5Cfn4+///7b5Nbn48ePQywWY/v27Xjw4AFiY2Ph6uqKOXPmAAAKCgrw6quvonHjxlAoFFi5ciUmTJiA33//HTzek9Euy5Ytw4IFC9CkSROIxWLMmjULarUaO3bsgEwmw82bNyGXmzc+oqKi8N5772HlypXGq8FyuRw5OTlYvXo1Lly4gBYtWgAArly5gmvXrmHDhg1lOk4pKSnYt28fOnToUGpahUKBtm3bQqfToWnTppgzZw7Cw8PLlA8hhJCap6qmL3lWOYj4cHDjI9jN/AF/OsaQVajRB8YV6ifzij+eY/xRgQYqrf7zeJCjAqAw24ajmG8WDPd5PFrcQyaEkE9BRmI/Knlj5HoPgXPqD5DlnISOL0eBW3d7F4uQOsdWfexlR83vtC5NdfaxFQoF9bFrKQp8VyHGl0AtCYCo6C7EihsodCn9S0YIebalpaVBo9Ggd+/e8Pf3BwA0btzYJI1QKMTq1ashlUoRHh6OmTNnYsmSJZg9ezZ4PB769Oljkn716tVo2rQpbt68iUaNGhmXT5gwAb179za+fvjwIXr37m3MLyAgwGIZRSIRHB0dza4Gy+VydOvWDXFxccZKOS4uDu3bt7e6LYMpU6bgt99+Q1FREXr27IkPP/ywxPQhISFYtWoVGjdujLy8PHzxxRd48cUXcfDgQdSrV6/E9xJCCKk5MhUqHLmbg/PJ+VU6fQkxxeM4uMuEcJcJ0djCerWWIaPAEBAvNpXK40B5nlJr/DOM2DPdPuAuFcDbQQivx8Fwn8ejx70chHCVCsCrxOjbdIW62uZhJ7WX0rEl8rQFcMzYA4fMP8D4MhQ6t7d3sQgh1cwWfex+/fpBrX7yoOnq7GN37dqV+tiVQC3HKqaSh0NUdBeiAgp8E2JvYj6HuGENy5T237QC/O9QYqnpFnTzR6SXrEx5l0VERASio6PRo0cPxMTEICYmBn369IGLi4tJGqlUanzdunVrKBQKPHz4EP7+/oiPj8fKlStx/vx5ZGZmQqfTAQCSkpJMKuXmzZub5D1+/HjMnTsXR44cQefOndG7d29ERESUqdwGo0aNwowZM7Bw4ULweDzs3LkTixYtKvV9ixYtQmxsLOLj47Fs2TK89957WLZsGZKSktC1a1djujfeeAPTpk1DVFQUoqKijMujoqLQtWtXbN682eLtXoQQQmoG8+lLTB/g9KxPX1JTCPkcfB1F8HUUATAfmVag1poGww3B8cdTqai0DOkFGqQXaIC0QrP3i/gcvJ4aLe7tIEITngP4Ki1kQusj+dMVakz+JR5qnfVb64U8Dp/3D6bgN0GhSyfwtAWQZx2EQ/ov0PEkUDq2sHexCKkzytPHBvR3d83/4z7uZitR/DTO44AgFzGW9mxQ5nq/uvvYy5Yts0sfe8SIEXjrrbeoj11BFPiuYkpZOBwe7Yeo8A6gUwM8anwRYi8cx5XpVigAaOEjh7tMgEcFGqtpPGQCtPCRg1+GOb7Lis/nY9u2bTh79iyOHDmCTZs2Yfny5dizZw8aNGhQpm2MHTsW/v7+WLFiBXx8fKDT6dC9e3eTK9QATCp2QF+hxsTE4MCBAzh69CjWrVuHBQsWYPz48WUu//PPPw+RSIT9+/dDKBRCo9GYjUC3xMvLC15eXggNDYWLiwsGDhyIGTNmwNvbG7///rsxXfHGSXFCoRCRkZFISEgoc1kJIYRUPZq+pG6SCfkIcuUjyNV8GhXGGLKL9IHxlHyVcToVQ4A84/E0Kom5KiTmqkzf/PhWdwcR78mDNuWmwfF8pabEoDcAqHUMuUotBb4JAEDh9h9wugLIcv6CU+qPyOFJoZLX7lv3CakpytPHBoBzD/Nx56lndgCAjgF3spS4ll6IVvUcbFlEm/SxR40aBT8/P7v0sXv27El97EqgwHcV04q8oRU4g6/JgagwnipYQmoJPo/DxNbe+OCY9bnGJrT2tmnQ24DjOLRp0wZt2rTBm2++ibZt22Lfvn2YNGkSAODq1asoLCw0Vqrnzp2DXC5HvXr1kJmZiTt37uDDDz9Eu3btAACnT58uc95+fn4YPXo0Ro8ejWXLlmHLli0WK2WRSASt1vwWY4FAgKFDhyIuLg5CoRD9+/c3q/xLY7h6rlKpIBAIEBQUVOp7tFotrl+/ju7dae5GQgixt+wiDS4mK3AhRVHi9CUt6znguebBUOU+Mplnk9RuHMfBVSqAq1SARp7mbQCNjiHj8bzihodtGgLk6YVaZBWoka/SIT9TiTuZ5sERQsqN45Dv0Q88bSEk+RfhnPI9suq9Ao205GkCCCG2xRjD9xczwAGwVOtzAL6/mIGWvnKb3+1V2T727du3sWLFCupj10IU+K5qHAeVLBzS3NMQFdygwDchtUiHBo6Y09kPX/2TajLy20MmwITW3ujQwNHmeZ47dw7Hjx9HTEwMPDw8cO7cOWRmZiIsLMyYRq1WY+bMmZg+fToePHiAVatWYdy4ceDxeHBxcYGrqys2b94MLy8vJCUlYdmyZWXKe8GCBejevTuCg4ORk5ODEydOIDQ01GJaf39/KBQKHDt2DJGRkZBKpcbKd/jw4cZbp37++ecS8zxw4AAyMjLQvHlzyOVy3LhxA0uWLEGbNm1Qv359q+9bs2YNWrVqhcDAQOTm5uLzzz9HUlISRowYUaZ9JYQQYjvqx9OXnDdOX2IarLQ2fQnHcXCXi5Cca6eCE7sQ8Dj4OIrg4ygyWc5xHHx9fRF/PwkpeUqkKtRIyy/+4E19gFyppYskpAI4HnK9h4DTFUJccBMuyV8jy+9VaMW+9i4ZIc8MjU7//AhrZ3EGIKNADY2O2fQBybboY7u5uVEfu5aiwHc1UMoaQpp7GmLFDeR7MIDmKSSk1ujQwBFt/R1wNb0AWYVauEr5iPCUVclIbwBwdHTE33//jQ0bNiA/Px9+fn7GytIgOjoaQUFBGDRoEFQqFQYMGIDY2FgAAI/Hw2effYYFCxagR48eCA4OxuLFizFkyJBS89bpdJg/fz6Sk5Ph4OCArl27Wp07rE2bNnj55ZcxefJkZGVlITY2Fm+99RYAIDg4GFFRUcjOzkarVq1KzFMikeD777/HokWLoFKp4Ovri969e2Pq1Kklvi87OxuzZs1Ceno6nJ2d0bRpU+zatQsNG5Z9fjlCCCEVQ9OXkKokFfIQ6CpBoJVpVC6mKLDwYOnPYSHEDCdAjs9IuDzcCFHRPbg83IQs/9egE7rZu2SEPBOEfB5W9gos8eHEzhI+hDZuM9iij71+/XrMmzeP+ti1EMdq4H2F+/fvx+7du5GdnY2AgACMHz/e6hWRRYsW4erVq2bLW7Zsiblz55Y5z/T0dLO5eWyF0ynhEb8YHLR41CAWOrEXfH19kZycXCdu6zSMzqD9qZme9f3Jzc2Fk5NTNZSsYoRCYbnOPTNmzEBubi42btxYhaWqOKFQCJVKhejoaIwePdp461htVd7Px9r3TSgUwtPT05ZFe6ZVZZ1dVeraubii6Djo1cbjUNbpS1r4ytHCRw4Xaenja2rjcagKdBz0ynoc7mQWIXZfQqnbW/1CIELczIPnJaH62rZqan3NaQvhmvQlBKoUaAVuyPKfBJ2g4v0F+g3bDh1L26nKY1nT+9jlVZY+dnn7hbbGGHsm+9i26F/XuBHfJ0+exLfffouJEyciLCwMv/76K5YuXYq1a9fC2dnZLP3MmTOh0TxpeOfl5WHWrFno0KFDdRa7RIwnhloaCFHhHYgKbqJI7GXvIhFCSJXIyMjAjh07kJaWhmHDhtm7OIQQQiqootOXEEJITcf4UmTXGwfXxPXgazL1I7/9XgXjl2/OXEIIqQ6PHj3Crl27qI9dQTUu8L1nzx706NED3bp1AwBMnDgR586dw6FDhzBgwACz9A4Opk97PXHiBMRiMdq3b18dxS0zpSxcH/hW3ECRa7S9i0MIIVUiIiICbm5uWLFihdWnQxNCCKl5aPoSQsizRCdwQpbfK3BN/AICVQqck79Bdr3xAE9U+psJIaQaNWvWjPrYlVCjAt8ajQbx8fEmAW4ej4emTZvi5s2bZdrGwYMH0bFjR0gklm9rU6vVJkPqOY4zThZflaNU1A6NgEd7ISqKB8fUVZ5fdTLsB+1PzUT7U7esXbvW3kUoUVpaWo28pbU6PavfTUJI7fNk+pICXEhW2GT6EkKqmpOYDyGPg1pn/dZ9IY+Dk5hfjaUitZFO6IbseuPhmrQeoqJ7cE75Hjm+LwMcnesIeZbU9D52UlKSvYtQq9WoM3pubi50Op3ZFQwXFxc8fPiw1Pffvn0bDx48wOTJk62m2blzJ7Zv3258HRQUhOXLl1f5XG6M+UCb4gFOmQEv8SMADeDj41OleVY32p+a7Vndn8LCQgiFwiouTeXU9PKV17O8PyKRCL6+vlVYGkIIqTiavoTUBZ5yIT7vH1ziw9GcxHx4yutWe4RUDa3YB9m+Y+H68P8gLrgJp9TtyPX+L8DRHS2EEFIX1KjAd2UdPHgQDRo0sPogTAAYOHAg+vbta3xtaMynp6ebzBVeFRwkoZAqM6BI/AuO7i2RkpJSJx7YwHEcfHx8aH9qqGd9f1QqVY0egWzvh2TY2rO+PyqVCsnJyWbLBQIBPSyLEFLtaPoSUld5yoUU2CY2o5EGIMdnJJyTv4Uk/yJ0fCnyPfoDdOGPEEJqvRoV+HZycgKPx0N2drbJ8uzs7FLnsSkqKsKJEydKnehdKBRaHb1X1UFBpSwc0py/IFJcB2PM+FdX0P7UbLQ/hFQP+l4SQuwpp0iDiykFxmA3TV9CCCGlU8nDkev9XzilxkGW8xcYTwaFe097F4sQQkgl1aiWrkAgQHBwMK5cuYK2bdsCAHQ6Ha5cuYJevXqV+N6//voLGo0GnTt3ro6iVohKGgzGCcDXZAMFDwHQiBpCCCGEEFJxNH0JIYTYhtKxOfJ1hXBM3wV51kHo+DIUunSyd7EIIYRUQo0KfANA37598emnnyI4OBihoaHYu3cvlEolunbtCgBYt24d3NzcMGLECJP3HTx4EG3atIGjo6MdSl1GPBFU0iCIC26BZV4EBC3tXSJCCCGEEFKL0PQlhBBSdQqd24PTKuCQ+SccM/ZAx5dB6Uj9dkIIqa1qXOC7Y8eOyM3NxQ8//IDs7GwEBgZi3rx5xqlOMjIyzEapPHz4ENevX8c777xjhxKXj0oWrg98Z10GPKkCJYQQQkjVSFeo6eFvdQRNX0IIIdWnwLU7eNoCyHJOwil1O3J4Eqjkje1dLEIIIRVQI1vFvXr1sjq1yaJFi8yW1atXDz/88EMVl8o2VLJwAHvAcm6AcysC44ntXSRCSCmYjuFRhgbKQgaxlIO7hwAc79m6TfzkyZMYOnQorl69CmdnZ3sXhxBSinSFGpN/iYdaZ33OeSGPw+f9gyn4XQPR9CWEEGJHHId8jz7gdIWQ5p2Hc8oWZNcbD7U0yN4lI4TUIdTHrh41MvBdl2lFHtAI3SFQP4Kw8DaU8kh7F4kQUoLkRBWunCtEUeGT4JFEyqFJKyl8/UV2LFn1ioqKwvnz5+Hk5AQAiIuLw6JFi3Dt2rVKb9vPz89s2WeffYYXX3zR6nuGDBmCU6dOmS3v3r07vvvuu0qXiZDaLlepLTHoDQBqHUOuUkuB7xqg+PQlF1MUuJxK05cQQggA3L9/H0eOHEFMTAwaNGhQfRlzPOR5DQZPWwRxwTU4J3+DbL9XoRHXq74yEFLHpaeoceV8IZq0lMLT59lrj1Ifu3pQ4NsOVPJwCLJPQqS4QYFvQmqw5EQVzp4oMFteVMhw9kQBojqhzgS/1Wo1hELrjQ2RSAQvL68qy3/16tXo1q2b8bWh8rfmq6++glqtNr7OyspCz5490bdv3yorIyGE2FJWgQpH7ubQ9CWEEGIFYwwnT55EVlYWTp48ifr161fv3S0cHzk+w+HycBNERXfh8nATsvwmQSvyqL4yEFJHMcZw7VIR8nN1uHapCB7egjp39xr1sWsGGipiBypZIwCAqOAGwEoejUUIsR3GGDSasv2p1TpcOVdY4vaunCuEWq0r0/ZYOX7re/bsQY8ePRASEoLIyEgMGzYMBQX6APyMGTMwfvx4rF69Gk2bNkV4eDjefvttqFQq4/sPHTqEAQMGoHHjxoiMjMTo0aORkJBgXP/gwQP4+flh165dGDx4MIKDg/HTTz8hMTERY8aMQUREBEJDQ9GtWzccOHAAgP42LD8/P+Tk5ODkyZOIjY1Fbm4u/Pz84Ofnh1WrVmHNmjXo0qWL2f707NkTK1asKHGfnZ2d4eXlZfyTSCQlpnd1dTVJf/ToUUilUvTr16+sh5kQAuBedhGSclXILtJAraU2SVVSa3W4lKLAN+fTMOPXeDz36XGsOvEQB+NzkFmogYjPoaWvHONbeeGj3oHYNCgUMzrWQ9cgZwp6E0KeSQkJCUhLSwMApKWl4f79+9VfCJ4QOb6joRb5gqfNh8vD/wNPk1P95SCkhipPH7v4X0qSGjlZ+mfR5GRpkZKkLvc2qrOPffDgQbv1sbt37262P9THLjtqRduBWhoE8ETga3LBV6VAK/a1d5EIeSZotcC+HbZrqBYVMuz/KbdMaV8Y7AxBGc64qampmDp1KubPn48XXngB+fn5+Pvvv00q9ePHj0MsFmP79u148OABYmNj4erqijlz5gAACgoK8Oqrr6Jx48ZQKBRYuXIlJkyYgN9//x083pPrncuWLcOCBQvQpEkTiMVizJo1C2q1Gjt27IBMJsPNmzchl8vNyhgVFYX33nsPK1euxNGjRwEAcrkcOTk5WL16NS5cuIAWLVoAAK5cuYJr165hw4YNJe73/PnzMXPmTAQEBODll1/GsGHDynXFf9u2bXjxxRchk8nK/B5C6ppcpRa3HxXi1qMiXEjOL9N7PjqVYvJaxOcgF/EhF/IgF/HhIOJBLuRDJuIZl8kfL5OLnrx2ePxaWIem36jsw0Fp+hJCCKk4xhj+/PNP42uO43Dq1Ck0aNCg2keFMr4E2fXGwTVpPQTqR3B5uBFZfpPA+NTuJMRWfWxLd1qXpjr72AqFgvrYtRQFvu2BJwTn0hgs8yLEBTdQQIFvQshjaWlp0Gg06N27N/z9/QEAjRubPkVeKBRi9erVkEqlCA8Px8yZM7FkyRLMnj0bPB4Pffr0MUlvuHJ98+ZNNGrUyLh8woQJ6N27t/H1w4cP0bt3b2N+AQEBFssoEong6OgIjuNMbs2Sy+Xo1q0b4uLijJVyXFwc2rdvb3VbADBz5kxER0dDKpXiyJEjmDdvHhQKBV555ZUyHDHg/PnzuH79OlauXFmm9KRs9u/fj927dyM7OxsBAQEYP348QkNDraY/deoU4uLikJ6eDh8fH4wcORKtWrUyrv/0009x5MgRk/c0b94c8+fPr7J9qMuUGh3iM4tw81ERbj0Odqfkq0t/41NcJHyotAwFah0AQKVlUBVqkFXyDS9WificWYBcVixQ7iDio16qDprCvCfpiqWvKYHfij4cNKdIg4spBaVOX9KyngOeax4MVe6jco1WIoSQZ8X9+/dRWPikMmKMGUd9l9SurCpM4Ijseq/ANfELCFRpcHn4NbL9XgHjiau9LISQ8rFFH7tfv34m04BUZx+7a9eu1MeuBAp82wnn1hws8yJEipsocO1q7+IQ8kzg8/VXhcviUboGp48qSk3Xtosc7p6ln0r5/DJli4iICERHR6NHjx6IiYlBTEwM+vTpAxcXF5M0UqnU+Lp169ZQKBR4+PAh/P39ER8fj5UrV+L8+fPIzMyETqcPaCUlJZlUys2bNzfJe/z48Zg7dy6OHDmCzp07o3fv3oiIiChbwR8bNWoUZsyYgYULF4LH42Hnzp1YtGhRie958803jf9v0qQJCgoK8Pnnn+OVV15BUlISunbtalz/xhtvYNq0aSbv37p1Kxo3boyWLVuWq6zEupMnT+Lbb7/FxIkTERYWhl9//RVLly7F2rVrLT5x/MaNG/joo48wYsQItGrVCsePH8eHH36I5cuXmzyIqkWLFpgyZYrxtaAsQzQItDqG+zlK3CoW5L6XrYSlmGw9RyHC3KVwlfLx87WsUre9oFt9hLhJoNUxFKp1UKi1UKh0yFdpUaDWQaHSQmH4V/VkvfnyYoFzrRZZRdZHSgPpVtcIedyTkeSPA+IyoT5gbjbSvHiA/fFrEZ+zyUjAsj4cNLNAjeQ8lTHQHZ+lNEkj4nOI9JKhpa8czX1kCHARg+P0ZXSXi5BctpuGCCHkmcIYw6lTp8BxnMnFQXuO+gYAndAV2X7j4Zq4HkLlAzgnb0Z2vTEA9+w9lI8Qg/L0sYHHv+9DCuRka4HiTS0OcHbho0M3eZl/39Xdx162bJld+tgjRozAW2+9RX3sCqIep51wrs0AAMKie+C0hWB8aSnvIIRUFsdxZboVCgC8vAWQSDkUFVoPfEikHLy8BeB4tmt48/l8bNu2DWfPnsWRI0ewadMmLF++HHv27Cnzk+zHjh0Lf39/rFixAj4+PtDpdOjevbvJFWoAJhU7oK9QY2JicODAARw9ehTr1q3DggULMH78+DKX//nnn4dIJML+/fshFAqh0WjMRqCXpmXLlli7di2USiW8vb3x+++/G9cVb5wA+mldfvnlF8ycObNceZCSGebAMzwMZeLEiTh37pxx/vin7d27Fy1atED//v0BAC+99BIuX76M/fv349VXXzWmEwgEZp8hMcUYQ2q+2jiS+/ajItzOLDKbIgPQjx4O85AizF2CMHcpQt0kcBTrewB3MovKFPg24PM4OIj5cBCXsQfxFK2OoVCjD4TrA+bmwfF8tRYFKh20PCEe5RUgv1gwvUClA4M+mJxdpEV2iYFz6wSGwLkhQG5tehYLQXMHEb/cgfN5f96HRme6jKYvIYSQyrl//75xbu/i7D3qGwC0Im9k1xsLl6T/g6jwNpxSf0CRUxtozn4MoesLUEmt3x1HSF1Unj42AKQla4xze5tg+rm+szK08PK17cUkW/SxR40aBT8/P7v0sXv27El97EqgwLedcFJPaISeEKjTISq8DaVDU3sXiRBSDMfj0KSVtMS5xpq0kto06G3Mm+PQpk0btGnTBm+++Sbatm2Lffv2YdKkSQCAq1evorCw0Fipnjt3DnK5HPXq1UNmZibu3LmDDz/8EO3atQMAnD59usx5+/n5YfTo0Rg9ejSWLVuGLVu2WKyURSIRtFrzBotAIMDQoUMRFxcHoVCI/v37m1X+pfn333/h4uICsVh/62hQUJDVtLt374ZKpcKgQYPKlQexTqPRID4+3iTAzePxjLfyWXLz5k2zp303b94cZ86cMVl29epVTJgwAXK5HE2aNMFLL70ER0dHq2VRq9UmjUmO44zfp9r21HdDeZ8ud3aRBrcy9KO4bz4ezZ1nYV5pqZBnDHCHuUvQ0F0Kd5nA6nFwlggg5HGlTtXhLLG+jfIQ8Dk48nlwFJfctOQ4Dj4+PkhJSTEZxadjDEVq/chxY0BcpTUdYf44eP7ktT6wXvA4eK5jgEbHkFOkRU6FA+eAXMiHkF+2Y6LRPZ6+pJ7D41HdcriW4UGU1r4Pzxo6Dnp0HPToOBDgyWjvkthz1DcAaCQNkOM7Ci4Pv4Ek/zJEBfGATgG59jeo/EMA+g4TYhFjDNcvF5WY5vrlInj62KZ9Wlxl+9i3b9/GihUrqI9dC1Hg245U8nAIstMhUtygwDchNZCvvwhRnYAr5wpNRn5LpPqguK+/yOZ5njt3DsePH0dMTAw8PDxw7tw5ZGZmIiwszJhGrVZj5syZmD59Oh48eIBVq1Zh3Lhx4PF4cHFxgaurKzZv3gwvLy8kJSVh2bJlZcp7wYIF6N69O4KDg5GTk4MTJ05YndPZ398fCoUCx44dQ2RkJKRSqbHyHT58uPHWqZ9//rnEPH///XdkZGSgVatWEIvFOHr0KD755BO89tprZSrztm3b8Pzzz8PNza1M6UnpcnNzodPpzK78u7i44OHDhxbfk52dbTYFirOzM7Kzs42vW7RogXbt2sHLywspKSnYunUr3n//fSxdutTkgTDF7dy5E9u3bze+DgoKwvLly+Hp6VmxnbOzApUGSWoxribn4WpKLv5NzkVyrnnjX8jnEObpgEhfJ0T6OCHC1wkBbjLwytEB8AXw00QvZBdan/fbRSqEj1PJT3evKj4+PjbdHmMMBWot8oo0yFdqkKfUPP6/2vj/POXjdY//rzCkU2qQX6SBljFodEBOCQ+0fNr7/SLxn3CvCnfObH0cais6Dnp0HPToODzbtFot8vNLfkBzfn4+tFqtXadMU8vCkOszDE4pW8DT6adHFCoTISq4BZW8od3KRUhNptMBhQW6EtMUFeqg05V9GpOysEUf283NjfrYtRQFvu1IJW8EWfZxiApuAkwHcHQrLCE1ja+/CD71hHiUoYGykEEs5eDuYdvpTYpzdHTE33//jQ0bNiA/Px9+fn7GytIgOjoaQUFBGDRoEFQqFQYMGIDY2FgA+pG5n332GRYsWIAePXogODgYixcvxpAhQ0rNW6fTYf78+UhOToaDgwO6du1qde6wNm3a4OWXX8bkyZORlZWF2NhYvPXWWwCA4OBgREVFITs72+ThhpYIhUJ8/fXXWLRoERhjCAwMxMKFCzFy5MhSy3v79m2cPn0aW7duLTUtsb9OnToZ/9+gQQMEBATgjTfewL///oumTS1f/B04cKDJSHJDcDE9PR0ajcbie2oKjY7hXpb+4ZM3H09Z8iDHfF5uDoC/swih7lI0fDySO9BVDGHx6TFUuUhNqdhk0CXNuMgUQHLpjzKwKWsjvm1JDkDOB3zkj19AgNKavIwxFGmYcZT5zYxCfPJXSql5STUKpKSUnu5p1XEcagM6Dnp0HPRqwnEQCAS19uJqXSEQCDBs2DCTB1sCQF5eHvbt2wedToe2bdvWiOeEKOVNoBW4QKDJBgAwcJBn/g6VLIxGfRNiAZ/PoctzjlAWWQ9+iyU88Mt4511Z2aKPvX79esybN4/62LWQ/WuLZ5haEggdJwJfmweBMhkaiZ+9i0QIsYDjcfDwqp6H1oSFheH7778vNd3MmTOtzrnVpUsXHD582GRZUlKS8f/169c3eW2wZMkSq/l17NjR7D0ffPABPvjgA7O0jDGkpqZi9OjRJe0CAKBbt27GeaTLKzQ01OJ+kMpxcnICj8czGa0N6Ed1W5uf28XFBTk5OSbLcnJySpzP29vbG46OjkhJSbEa+BYKhRAKLf/2alJwSMcYkvPUxgdP3npUiPhMpcVpRjxkApMpS0LcJJCLzIe01KT9qwqMsRq3jxIBB4lAAHcIoLYwp7olDJX7rGricbAHOg56dBz06DgQR0dHs6nQvLy8EBUVhdOnT+PMmTNo1KgRRCLb331ZHqKCW8agNwBwYBAqk2jUNyElkMp4kMqqd9CnLfrYMTEx1MeupSjwbU88AdSyUIgVVyEquEGBb0JIrZeRkYEdO3YgLS0Nw4YNs3dxSAUIBAIEBwfjypUraNu2LQD9SIUrV66gV69eFt/TsGFDXL582eQhK5cuXTK5ffBpjx49Qn5+PlxdXW27A1akK9TILWEKCycxH57ysl3gyizUz8t981ERbj8qxK3MIihU5iNX5CIewtz0Qe6GHlJERwRAnZdJAR1CCCGkAqKionD9+nXk5ubizJkzJneTVTvGIM/8HQwcODyp1xlAo74JITb16NEj7Nq1i/rYFUSBbztTysIhVlyFuOAGCty6l/4GQgipwSIiIuDm5oYVK1aUONqX1Gx9+/bFp59+iuDgYISGhmLv3r1QKpXGeeXWrVsHNzc3jBgxAgDQu3dvLFq0CLt370arVq1w4sQJ3LlzB6+++ioAoKioCD/++CPatWsHFxcXpKamYvPmzfDx8UHz5s2rfH/SFWpM/iW+1Ac9ft4/2Cz4rVBpcTuzyDiS+1ZGER4Vmk+zIuRxCHaToKG7BKGPpyzxdRSaPKzNw0GM5Dzb7hupGk5ifpkeDuoktuEElIQQQkokEAgQExOD3bt34/z582jUqBHc3d3tUhZRwS0IleajIjmARn0TQmyqWbNm1MeuBAp825lKpq8MBUUPwGkVYHy5nUtECKnJ1q5da+8ilCgtLQ1qtfWH6ZHaoWPHjsjNzcUPP/yA7OxsBAYGYt68ecaGVkZGhsnD/MLDwzFt2jRs27YNW7duha+vL2bNmoUGDRoA0M+Ld//+fRw5cgQKhQJubm5o1qwZhg0bZnUqE1vKVWpLDGACgFrHkFmgRlah5kmQ+1EREnNVZml5HFDfSYwwDwnCHge5G7iIIaiiuf9J9fOUC/F5/2Cb3SVACCHENoKCghAUFIS7d+/iyJEjGDhwYIUfMFxhVkZ7G1eDRn0TUpvU9D52XZt6pLpR4NvOdEIXaEQ+EKhSICq4BaVjC3sXiRBCCEGvXr2sTm1i6YEsHTp0QIcOHSymF4lEmD9/vi2LVyXm/nEflqZ29pILH8/LrQ9yB7tJIBXSA6nrOk+5kALbhBBiZ+kpalw5X4gmLaXw9NGfk7t06YL79+8jMTERN2/eRHh4eDWXSgueJsdi0BvQj/rmqx8B0IJCLoQQYl90Fq4BlLKGEKhSIC64QYFvQgghxE60TD+K1xDkNjyA0llCzSVCCCGkujHGcO1SEfJzdbh2qQge3gJwHAdnZ2e0adMGf/31F44fP47AwECIxeLqKxgnQJb/VPC0Cv1LjoOHhwcyMjIgyToOaf556HgSgDF9FJwQQojdUE+uBlDJwyHPPgqR4hbAdABHo8gIIYSQ6jY/xg9t/Byq/5ZpQkiNUqDQQaU0f2CtgUjMg0xO7XVCqlpKkho5Wfopp3KytEhP0cDLVz/qu1WrVrh27RpycnLw999/o0uXLtVaNp3QBTqhCwB94Jtz9IUmX4x8rxchKrwDgSYbsuyjKHDrUa3lIoQQYooC3zWAWhIAHU8Mnk4BgTIJGkl9exeJEEIIeea4y4QU9CbkGVeg0OHQ3lzorMe9weMB3Xo7UfCbkCrEGMOls4VPFnDA9ctF8PTRj/o2POjyl19+wcWLFxEREQEPDw/7FfgxxhMj36MPnFO3Qp51GEWOLaETutm7WIQQ8syi1lpNwPGhkoYBAMSKG3YuDCGEEEIIIc8mlVJXYtAbAHQ6lDginBBSeekpGqiUxebQZk9GfRsEBgYiJCQEjDEcPnwYjJX8IOvqonRoCpU0FBzTwDH9F/2UJ4QQQuyCAt81hEqufyCHqIAC34QQQgghhBBCnk2MMVy/XGQ+P/bjUd/FA9xdunSBQCDAw4cPcf369eotqDUchzzP/mDgQ1xwA6KCa/YuESGEPLMo8F1DqGQNAQBCZSI4Tb6dS0MIKU6n0yExMRE3btxAYmIidKUNBauDTp48CT8/P+Tk5Ni7KISUm5OYDyGv5ClMhDwOTmJ+NZWIEEIIIdakp2j0c3s/PVDawqhvR0dHtG3bFgBw/PhxKJXKaiypdVqRJwpcOwMAHNN3AzqVnUtECKlpqI9dPWiO7xpCJ3CCWlwPQuVDiAtuosiplb2LRAgBcPv2bRw9ehT5+U8uSDk4OKBLly4IDQ21Y8mqV1RUFM6fPw8nJycAQFxcHBYtWoRr1yo3giUuLg6xsbEW1128eNHqXI1qtRrr1q3Djz/+iJSUFAQHB2P+/Pno1q1bpcpD6iZPuRCf9w9GrlJrNY2TmA9PubAaS0UIIYSQpxlHe5eg+FzfANCyZUtcu3YNWVlZ+OuvvxATE1MdRS2VwrUbJHkXwNdkQ551GAr35+xdJEJqlPv37+PIkSOIiYlBgwYN7F2cakd97OpBge8aRCVrCKHyIUQFNyjwTUgNcPv2bezdu9dseX5+Pvbu3YvevXvXmeC3Wq2GUGg96CcSieDl5WXzfPv3729Wkb755ptQKpUlPqBoxYoV+Omnn7BixQqEhobi8OHDmDBhAnbt2oUmTZrYvJyk9vOUCymwTQgpkVbLkHSPRmUSYk86HVBYUPLdlUWF+rn4+Y9v1OLz+YiJicHPP/+MS5cuISIiAp6entVQ2lLwRMjz6AuXlM2QZR1FkWNLaEU1oFyE1ACMMZw8eRJZWVk4efIk6tevX+ceMk997JqBpjqpQVQywzzftwBmfVQaIaRiGGNQq9Vl+lMqlThy5EiJ2zt69CiUSmWZtleeh+3s2bMHPXr0QEhICCIjIzFs2DAUFBQAAGbMmIHx48dj9erVaNq0KcLDw/H2229DpXrSUT906BAGDBiAxo0bIzIyEqNHj0ZCQoJx/YMHD+Dn54ddu3Zh8ODBCA4Oxk8//YTExESMGTMGERERCA0NRbdu3XDgwAEAprdhnTx5ErGxscjNzYWfnx/8/PywatUqrFmzBl26dDHbn549e2LFihUW91UqlcLLy8v4x+fzceLECbz00kslHqMdO3bgjTfeQI8ePRAQEIAxY8age/fuWL9+fZmPMyGEEAIAOh3D/XglDu7NRfxNCnwTYk98Pocuzzmic08Hkz8PH/2YPQ8vATr3dASfbxoga9CgAcLCwsAYw6FDh2rMgy5V8ggoZQ3BQQuH9N30oEtS55Snj138Lz4+HmlpaQCAtLQ0xMfHl3sb1dnHPnjwoN362N27dzfbH+pjlx2N+K5B1JL60PGk4OkKIShKhEYaYO8iEVKnaDQafP755zbbXn5+fpkrgcmTJ5d4tdcgNTUVU6dOxfz58/HCCy8gPz8ff//9t0mlfvz4cYjFYmzfvh0PHjxAbGwsXF1dMWfOHABAQUEBXn31VTRu3BgKhQIrV67EhAkT8Pvvv4PHe3K9c9myZViwYAGaNGkCsViMWbNmQa1WY8eOHZDJZLh58ybkcrlZGaOiovDee+9h5cqVOHr0KABALpcjJycHq1evxoULF9CiRQsAwJUrV3Dt2jVs2LChTMfpxx9/hFQqRZ8+fUpMp1QqIRaLTZZJJBKcPn26TPkQQgghjDEkJ6px43IR8vP0I0xFYkBVM6YIJuSZJZXxIJWZjtFr0kKKw/vzkJGmgVrFIJWZv69z585ISEhASkoKrl27hoiIiGoqcQk4Dvme/SG6vxbiwlsQK65A6dDU3qUixGZs1cf+9ddfy/2e6uxjKxQK6mPXUhT4rkk4PlSyMEjyL0FccIMC34Q8g9LS0qDRaNC7d2/4+/sDABo3bmySRigUYvXq1ZBKpQgPD8fMmTOxZMkSzJ49Gzwez6xCM1y5vnnzJho1amRcPmHCBPTu3dv4+uHDh+jdu7cxv4AAy+cgkUgER0dHcBxncmuWXC5Ht27dEBcXZ6yU4+Li0L59e6vbetq2bdswYMAASKXSEtN17doVX375Jdq1a4fAwEAcP34ce/fufSYfPEoIIaR8GGNIT9Xg+qUi/QP0AAhFHMIai+FdT4gjv+WhtOrk3h0VnF35de62bEJqKkdnPnz9hUhOVOPW1SK07mgeOHJwcEC7du1w/PhxHD9+HMHBwZBIJHYorSmt0B0FLl0gzzoIh/Q9UMkagvHEpb+REGITtuhj9+vXD2q12pi+OvvYXbt2pT52JVDgu4ZRycIhyb8EUcENevgFITYmEAgwefLkMqVNSkrCL7/8Umq6/v37w8/Pr0x5l0VERASio6PRo0cPxMTEICYmBn369IGLi4tJmuKVVuvWraFQKPDw4UP4+/sjPj4eK1euxPnz55GZmWmsqJKSkkwq5ebNm5vkPX78eMydOxdHjhxB586d0bt373KPlBk1ahRmzJiBhQsXgsfjYefOnVi0aFGZ3nv27FncunULH3/8sXFZUlISunbtanz9xhtvYNq0afjf//6HWbNmISYmBhzHISAgAMOGDUNcXFy5yksIIeTZkpmhwfVLhXiUrg948wVASLgYweESCIX6IHa33k5QKS138pIT1bh9TYn78SoIRRwaN5NQ8JuQahIWIUFyohoPH6jRMFcLRye+WZrmzZvj6tWryMzMxKlTp2rMQ9kUrl0hyTsPviYLssyDUHi8YO8iEWIT5eljA/qLzzt27EBGRobJiGuO4+Dh4YHBgweXuV6t7j72smXL7NLHHjFiBN566y3qY1cQBb5rGKWsIQBAqHwIniYXOoGTnUtESN3BcVyZboUC9PMEOjg4ID8/32oaBwcHNGjQwOTWpsri8/nYtm0bzp49iyNHjmDTpk1Yvnw59uzZU+YnXY8dOxb+/v5YsWIFfHx8oNPp0L17d5Mr1ADMrviOGDECMTExOHDgAI4ePYp169ZhwYIFGD9+fJnL//zzz0MkEmH//v0QCoXQaDSl3lJlsHXrVkRGRqJZs2bGZd7e3vj999+Nrw2NE3d3d2zcuBFFRUXIysqCj48P3n///WfyaeCEEEJKl5utxfXLhUh9qAEA8HhAYKgYoY3FEEtM63GZnAeZ3HLd7uImgFTKw+VzhbhzXQmOAxo1peA3IdXB2ZUPHz8hUpL0o75btTcf9c3n89G1a1f89NNPuHz5MiIjI6vk4XHlxhMiz7M/XJK/gSz7OIqcWkEr8rZ3qQiptPL0sQHg3r17SE9PN1vOGEN6ejqSk5PLPJK5rGzRxx41ahT8/Pzs0sfu2bMn9bErgR5uWcMwgQPUYv2tF6KCm3YuDSHPLh6PZ/FBjcV16dLFpkFvA47j0KZNG8ycORO//fYbhEIh9u3bZ1x/9epVFBYWGl+fO3cOcrkc9erVQ2ZmJu7cuYPp06ejc+fOCAsLQ05OTpnz9vPzw+jRo7FhwwZMmjQJW7ZssZhOJBJBqzV/CK9AIMDQoUMRFxeHuLg49O/fv9RbqgD9nGm7d+/G8OHDzbYXFBRk/HN1dTVZL5FI4OvrC41Gg7179+K55+hOGUIIIU8o8rU495cCR37L0we9OaBBkAjd+zghsqXULOhdFoFhYjRppa/bbl9T4saVohrzID1CLNm/fz+mTp2KkSNHYt68ebh9+3aJ6X/99VdMnz4dI0eOxOTJk/H111+bPOTNnsIi9FOEJN1XIz/PvC0KAP7+/ggPDweAGvagy0ZQyiPAQQfH9F/oQZfkmcMYw6lTp0pMc+rUqSr5zVa2j3379m3qY9dSNOK7BlLJwiFUJkKkuIEipyh7F4eQZ1ZoaCh69+6No0ePmoz8dnBwQJcuXRAaGmrzPM+dO4fjx48jJiYGHh4eOHfuHDIzMxEWFmZMo1arMXPmTEyfPh0PHjzAqlWrMG7cOPB4PLi4uMDV1RWbN2+Gl5cXkpKSsGzZsjLlvWDBAnTv3h3BwcHIycnBiRMnrO6jv78/FAoFjh07hsjISEilUmPlO3z4cOOtUz///HOZ8v7ll1+g1WoxaNCgMqU/d+4cUlJSEBkZiZSUFKxatQo6nQ5Tpkwp0/sJIYTUbUWFOtz8twj341XG2JJvfSEaNZHAwcL0COUVFCYGY8C/5wtx66p+5Hd4k9I7oYRUt5MnT+Lbb7/FxIkTERYWhl9//RVLly7F2rVr4ezsbJb++PHj2LJlCyZPnoyGDRsiOTkZn332GTiOw5gxY+ywB6Zc3ATwridA6kMNbl0tQst25qO+ASA6Ohrx8fFITU3Fv//+iyZNmlRzSS3L8+gLUcEtiArjIc6/CKVjC3sXiZBqo9VqS7yjGgDy8/Oh1WrLPI1JWdiij+3m5kZ97FqKAt81kFLeEPKsAxAV3gKYFuAq3zgnhFRMaGgogoOD8fDhQygUCuNV36oY6Q0Ajo6O+Pvvv7Fhwwbk5+fDz8/PWFkaREdHIygoCIMGDYJKpcKAAQMQGxsLQD9S/bPPPsOCBQvQo0cPBAcHY/HixRgyZEipeet0OsyfPx/JyclwcHBA165drc4d1qZNG7z88suYPHkysrKyEBsbi7feegsAEBwcjKioKGRnZ6NVq1Zl2u+tW7fihRdesNgBs0SpVGLFihW4f/8+ZDIZunfvjo8//rjM7yeEEFI3qZQ63LmuRPwtJXSPB015+gjQqKkELm627foENxSDMYarF4pw818lOI5Dw0j7P0iPkOL27NmDHj16GOe6njhxIs6dO4dDhw5hwIABZulv3LiB8PBwREdHAwC8vLzQqVMn3Lp1qzqLXaKwCAlSH+Yj6Z4aDSO1kDuY95flcjnat2+PY8eO4eTJkwgJCSnTCMmqphO6QuHaDQ6Zv8MhYy9UskZgfDpvkGeDQCDAsGHDTEZWP00qldo06A3Ypo+9fv16zJs3j/rYtRDHasp9P3aWnp5uNjdPVeE4Dr6+vkhOTrZ8CwfTwePu++DpFMjymwi1NLhaylVRpe5PLUP7U7OVd39yc3Ph5FRz58oXCoXlOvfMmDEDubm52LhxYxWWquKEQiFUKhWio6MxevRoTJo0yd5FqpTyfj7Wvm9CoRCenp62LNozrTrrbFupa+fiiqLjoEfHQc+Wx0GjZoi/pcSd60XQPD49uLrz0biZFO5eVTvW5/b1Ily7WAQACG8qQcOI8gWx6PugVxOOQ12rrzUaDUaNGoXY2Fi0bdvWuHzdunUoKCjA7Nmzzd5z/PhxbNiwAe+88w5CQ0ORmpqKDz74AJ07d7Y6alCtVpvUyxzHQSqVIj09HRqNxvY7BuCvI3lIS9agQbAILdpaHvWt0+mwZcsWPHr0CE2aNEGPHj2qpCwcx8HHxwcpKSll++7qNHC9vxYCdQYKXDpB4dmvSspVG5X7WBKrqvJY5uTk1Og+dnmVpY9d3n6hrTHGnsk+dm5ursXAu0AgKHN9TSO+ayKOB5U8DJK8CxApbtb4wDchhBhkZGRgx44dSEtLw7Bhw+xdHEIIIXWcVstw/44KN68WQaXUd+ydnHlo1EwKL19BtTx0MrSRBGDAtUtFuHG5CBwHhDWmEZzE/nJzc6HT6YwPLjNwcXHBw4cPLb4nOjoaubm5ePfddwHopybo2bNnibfK79y5E9u3bze+DgoKwvLly6v0IkKHLs7YFZeAxAQVors2gKOzyGK6oUOH4osvvsC///6LLl26VOlD2nx8fMqcVicdC92VlZBln4JjcC9wDrX74XG2Vp5jSUpWFceysLCwXA+0rOl4PF6ZHtJpr33OyMjAzz//jLS0NIwaNapOHPuy7oNIJIKvr2+l8qLAdw2llIVDkncB4oIbUKCXvYtDCCFlEhERATc3N6xYscKsk0UIIYTYCtMxJN5T48aVQhQW6APeMgceGjWRoF4DYbUEvIsLbSwBY8D1y0W4fkkf/A5tRMFvUvv8+++/2LlzJyZMmICwsDCkpKRg06ZN2L59u9Xb+gcOHIi+ffsaXxt+f1U54hsc4OEtQEaqBieO3EfzNpZHfYvFYjRu3BjXrl3D9u3bMWzYMJtPWVixkbUecHJoCnH+ZRRd3YBs/0kAVzVTKdYmNOLbdqryWKpUqlp392VJdDodGGMl7pM9R3wX72PL5fJaf+zLcyxVKhWSk5PNltOI7zpAJQsDAweBKgU8dTZ0Qhd7F4kQUgOsXbvW3kUoUVpaWq2viAkhhNRcjDGkJKlx/XIR8nN1AACxRD+3doNgEXi86g14FxcWoQ9+37iin/qE44CQcAp+E/txcnICj8dDdna2yfLs7GyrAxTi4uLQpUsX47QgDRo0QFFREb788ksMGjTIYtBYKBRaHb1XlcHLhpESZKTm4/5dFcIiJJDKLAeOO3XqhDt37iAtLQ2XL19Gs2bNqqQ8jLFy7W+eRx8IFTcgLLoHce45FDm1rpJy1UblPZbEOjqWpavpfeykpCR7F8GuKvv9pUuKNRTjy6GR1AcAiApu2rk0hBBCCCGE2Fd6ihrH/8zH2RMFyM/VQSji0Li5BN37OCEwVGzXoLdBw0gJGkaKAQBXLxQh/kaRnUtEnmUCgQDBwcG4cuWKcZlOp8OVK1fQsGFDi+9RKpVmd0xU1UPdK8vdUwB3LwGYDrh9zfpvTSaToUOHDgCAU6dOoaCgoLqKWCKdwBkFbvoLDA6P9oHTWn/gHyGEkIqpmTUYAaCf7gQAxAU37FwSQgghhBBC7CPrkQanDuXjryMKZGdqwRcAYRFi9OjjhNBGEggE9g94F9cwUoKwCH3w+98LRYi/qbRzicizrG/fvjhw4AAOHz6MxMREbNiwAUqlEl27dgWgf9Dlli1bjOlbt26NP/74AydOnEBaWhouXbqEuLg4tG7dukYGwBs+/q3dj1ehsEBnNV3Tpk3h6ekJpVKJkydPVlfxSlXg0gkakRd4WgXkmb/buziEEFLn0FQnNZhKFg5k/gFhwW2AaQCOPi5CCCGEEPJsyMvR4vrlIqQk6afQ4vGAgBARwiIkEEtqXgDOgOM4hDfRT3ty+5oS/54vBMcBQWFiexeNPIM6duyI3Nxc/PDDD8jOzkZgYCDmzZtnnOokIyPDZIT34MGDwXEctm3bhszMTDg5OaF169YYPny4nfagZO5eArh58JGZocWd60Vo0kpmMR2Px0PXrl3x448/4urVq4iIiEC9evWqubQWcHzkebwI14dfQZrzN4oco6CR+Nm7VIQQUmdQJLUG04h9oeU7gK/Nh7AwAWpZqL2LRAghhBBCSJUqyNfixpUiJN57/MwIDqgfKELDSAlk8pob8C6O4zg0aioBGHD7uhJXzumD34GhFPwm1a9Xr17o1auXxXWLFi0yec3n8zF06FAMHTq0GkpWeRynn+P/ryMK3ItXIbSxBBKp5fOEr68vIiIicPXqVRw+fBgvvfRSjRjFrpYFo8ihOST5F+GY/jOy/CfTgy4JIcRG6Gxak3E8/ahvAGKa55sQQgghhNRhRYU6XP6nAAf35RmD3r7+QnTt5YgWbWW1JuhtwHEcGjWTICRcH+y+/E8h7t2haU8IsTUPbwFc3fnQaYE7N0r+jXXs2BFisRgZGRm4dOlSNZWwdPkevaHjiSFUJkKSe9bexSGEkDqjdrUen0EquT7wLVLQPN+EEEIIIaTuUat0uHapEAd/zUXCbRWYTh/I6tzTAVGd5HB04tu7iBXGcfoHcAY31Ae/L52l4Dch5XEhWYGpu+NxIVlhNQ3HcQiLlAAA7t1WQllkfa5vmUyGjh07AgD++usvKBTWt1uddAInKNx6AgAcHu0Hp60Z5SKEkNqOAt81nEoaCgYeBOo08NSZ9i4OIc8mpoOwIB7ivAsQFsQDzHpjuq46efIk/Pz8kJOTY++iEEIIqSM0GobzpzPw5+5c3L6mhFYLuLjx0aGrHB26OsDFrW7MyshxHCJaSBAUJgKgD37fj6fgNyGlYYzhuwvpSMxV4bsL6WCMWU3r5SOAsysfWi0QX8qo78jISHh5eUGlUuH48eO2LnaFFTq3h1rkA56uEA6PfrN3cQghVYz62NWDAt81HONLoZY0AACIC2jUNyHVTZx/Be4JK+D68Cs4p8bB9eFXcE9YAXH+FXsXrVpFRUXh/PnzcHJyAgDExcWhcePGNtn2u+++i169eiEoKAg9e/a0mObq1asYOHAggoODERUVhc8++6zU7X7zzTf4z3/+g/DwcISHh6Nfv344ePCgSZqioiLMmzcPkZGRCAsLw8SJE5Genm6T/SLE3goUOmRnaqz+FSievYt4pGbQaRkSbilxYE8OTp9Ig1rN4OjMQ5toOaL/4wAPb6G9i2hzHMchsqUUgaH64PfFM4V4cFdl51IRUrMdupuL25lFAIDbmUU4X8qo74aPR33fva2EUmm9juPxeOjWrRsA4MaNG0hKSrJhqSuB4yPf80UAgDT3DARF9+1cIEKqlrDgNtzurYGw4La9i2IX1MeuHhT4rgWeTHdC83wTUp3E+VfglPI9eFrTK7A8bQ6cUr6vU8FvtVpd4nqRSAQvLy9wHFcl+b/00kvo16+fxXV5eXkYMWIE/P39sW/fPrz77rtYtWoVNm/eXOI2fX19MXfuXOzbtw979+5Fp06dMH78eNy48eQi4qJFi/DHH39g/fr12LFjB1JSUjBhwgSb7hsh9lCg0OHQ3lwc+yPf6t+hvbkU/CbViukYHiSocGhfHi6fK4SyiMHRSYiW7WWIec4RPn7CKqtnagKO49Ck1ZPg94XTBUhMoOA3IZYwxvDt+TTjax4HfH8xo8RR3971BHBy4UOrAe7eLHnUt7e3N5o0aQIAOHz4MLRarW0KXklqaSAKHVsDABzTdz2Td5qSZwRjcHi0HwJ1Ghwe7QdK+G3XVtTHrhl9bAp81wLKxw+4FBXeAXQl/3AIISVgDNCpyvanLYJD+m4AwNPVkOG1Q/puQFtUtu2VoyLfs2cPevTogZCQEERGRmLYsGEoKCgAAMyYMQPjx4/H6tWr0bRpU4SHh+Ptt9+GSvWk43zo0CEMGDAAjRs3RmRkJEaPHo2EhATj+gcPHsDPzw+7du3C4MGDERwcjJ9++gmJiYkYM2YMIiIiEBoaim7duuHAgQMATG/DOnnyJGJjY5Gbmws/Pz/4+flh1apVWLNmDbp06WK2Pz179sSKFSus7u/ixYsxduxYBAQEWFz/008/Qa1WY9WqVQgPD8eLL76IV155BV9++WWJx/G5555Djx49EBwcjJCQEMyZMwdyuRznzp0DAOTm5mLbtm1YuHAhoqOj0axZM6xZswZnz57FP//8U+K2CanpVEoddKX0lXU6fTpCqhpjDClJahz5PQ8X/i5AgUIHsYRD09ZSDBsbivqBYnC8uhvwLs4Q/A4I0Qe/z1PwmxCLzicrkFX0JBitY2Ud9a2fT//uTSVUqpLruA4dOuD/2bvv8LgKK/H733unz2jUZcuWXCRZxXJvGDe5BTDG1NACoYRASMK7GyDABtiwZBeWhRAgCWR/u3HKsoHgrOkGjImbbGyMe7dkWa6Srd6m1/ePsQeEi2akkUaSz+d55nmQdMu5F1kz99xzzzEajTQ0NLBz587YBB4DtrQFBFQjOnc1ppZN8Q5HiAuL5hr7ay+9fT86d+hpC527Cr19f/Tb6cFr7FWrVsXtGnvevHlnHY9cY0eufzTO6+f8+kz8mkQ0/lb0zsN4LAXxDkmIvinoZUDlv8RkUwqg8bcy4PAvIlq+NvcXoOg7XK6mpoYHHniAJ598kiuvvBKbzcamTZvaVbesX78eg8HA0qVLOX78OA8//DApKSn87Gc/A8DhcPCDH/yAkSNHYrfbefHFF7n33ntZsWIFqvrV/c7nnnuOp556itGjR2MwGHj00Ufxer28/fbbmM1mysvLsVgsZ8U4efJkfvGLX/Diiy9SWloKgMVioaWlhZdeeokdO3Ywfvx4APbs2cP+/ftZvHhxROfpXLZu3crUqVPR6786f7Nnz+a1116jubmZ5OTkDrfh9/tZtmwZDoeDSZNCVTS7du3C6/Uya9as8HIjRowgKyuLrVu3hpcTQgjRefU1Xg7sdtHUEEpg6XQKI0YaGJ5vQKdT0WgujoT31ylKKOkfDMKxSg/bNtlJSW3BkhjvyIToHYLBIG/srEdVQgnvM85UfU8YZDlvhWRmlg5rkkpbS4DD5W4KR5vOux+TycSMGTNYuXIlmzZtoqCggISEhFgfTtSC2gTsaZdjrfsAS+MKXAmjCWqt8Q5LiHOL0TV28qn/jXqdnrzGttvtco39DX3lGrvXJb6XL1/Ohx9+SHNzM8OGDeOee+5hxIgR513ebrfz17/+lS+//BKbzUZGRgZ33XUXEydO7MGou5mi4LEUYmrdjN5RJolvIfqx2tpafD4fCxcuJDs7G+CsPl86nY6XXnoJk8lEYWEhjzzyCM888wyPPfYYqqpy1VVXtVv+zJ3r8vJyioqKwt+/9957WbhwYfjr6upqFi5cGN7f+e4O6/V6rFYriqIwYMCA8PctFgtz585lyZIl4TflJUuWcOmll553W5Goq6tjyJAh7b6XkZER/tmF3pT379/PNddcg9vtxmKxsHjxYgoKCsLr6vV6kpKSztq29PkWQoiuaW70sX+Xi/oaHwAaDeQUGBhRZECnl4dOFUVh7ORQ8vv4YQ+rPqli0jQLg4b0v/7mQkRr+0l7uLf313296nvi4HMnqM/0+t66wUFluZvcAiM6/flvsBUXF7N3715OnTrF+vXrWbBgQcyOoyuciVMxtm5F564ioWE5bQNvindIQvRZsbjGvvrqq9u1LunJa+w5c+bINXYX9KrE94YNG3j99de57777yM/P56OPPuLZZ5/llVdeOeukAfh8Pp555hkSExN5+OGHSU1Npb6+HrPZHIfou5fb/FXiG87do0cI0QFFF7orHAGd8zApJ//c4XJNg+7Ga8qJaN+RKC4uZubMmcyfP5/Zs2cze/ZsrrrqqnZvPMXFxZhMX1WvTJo0CbvdTnV1NdnZ2VRWVvLiiy+yfft2GhsbCZzud1BVVdXuTXncuHHt9n3PPffw+OOPs3btWmbNmsXChQspLi6OKO4zvvvd7/Lggw/yL//yL6iqyrvvvsvTTz8d1TaitWnTJr773e+Gv37++ee54YYbAMjLy2PFihW0tbXx0Ucf8eCDD/L222+H35iFEELEVlurnwO7XZw6Ebo4VFQYlqsnv9iI0SQJ769TFIVxU0Lv58cPe9i60c5EzAwe0nH1mhD91ZlqbwU4VxMDhY6rvgdl60hIVLG1Bjh80B0eenkuiqKEk0rl5eWMGjXqrGRQXCgqbRnXknLiPzG1bcOVOAWvaXi8oxLibFFcYwMQDJJS9d9oPSdRvvavPIiCTz+IpqwfQKQ9r3v4Gvu5556LyzX2bbfdxk9/+lO5xu6kXvXp80zPnblz55Kdnc19992HXq9n9erV51x+1apV2Gw2Hn30UYqKihgwYADFxcUMHz68ZwPvAV5zHkE0aL0NaDz18Q5HiL5JUUDVR/TymvPxa5LO+YEbQh/E/dokvOb8yLYZ4Zu3RqPhrbfe4i9/+QsFBQX86U9/oqSkhGPHIp/qfvfdd9Pc3MwLL7zAsmXLWLZsGXD2cI2vv7FD6A11w4YNfPvb3+bAgQMsXLiQP/7xjxHvF+CKK65Ar9ezfPlyPvvsM3w+31kV6NHKyMigvr79370zd4szMjIYO3YsK1asCL8uv/zy8HJ6vZ6cnBzGjh3L448/TnFxcfiRsIyMDDweDy0tLWdt+8zdbiH6u4r9LlxO6fMtus5hD7Bjk4M1y9vCSe/s4TrmXWllzCSzJL3PQ1EUxk8xkz8yiWAQtm10cPKE9PwWFy9fIEi9w3vBz+D1Di++wPl7+yqKQkFxKNldWe7G571wH+ABAwYwZswYoHcNuvQZh+BKnAKcGXTZO+ISop0orrFR9ehdR9F5qtslvQEUgug81ehdRyPfXg9eY3/3u9+N2zX2ZZddJtfYXdBrPoH6fD4qKyvDbzgAqqqGHx04l61bt5Kfn88f/vAH7rvvPn7605/yzjvvhO+8nIvX68XhcIRfTqcz/DNFUXrsFe3+0JjwmkKPMRic5T0aa3ccT29/yfH07lc0x9NpiootYxFwdrXJma9t6YtCpWwxpigKU6ZM4ZFHHuHTTz9Fp9PxySefhH++b9++dn+7tm3bhsViYfDgwTQ2NnLo0CF+8pOfMGvWLPLz889607mQrKws7rzzThYvXsz999/Pm2++ec7l9Hr9OS8KtFotN910E0uWLGHJkiVcc801Z735R2vSpEls2rSp3YeK0tJS8vLySE5OxmQykZOTE35dqDdjIBAIDykZO3YsOp2O9evXh39eUVFBVVVVl3qPxfT3UIhudvKEj5UftbJ3hxO3SxLgInpuV4A92xys/riV40c8EAz12J2zwMqEqRbMCZp4h9jrKarCnMsHkzVMTzAIWzc4OFUlA+3FxUmnUXlxwXBeuvKr1y+vGEaSIfS35Dtj0vnVlcPRaS78GXzwEB0Wq4rXE+RwhbvD/U6bNg2TyURTUxM7duyIxaHEhC3tcgKqGa3nFKaWjfEOR4iuCQaxNK4gyLmvj4IoWBpXRDW0MlJdvcauqKiQa+zz6Ilr7K7oNa1OWltbCQQCZ/WRSU5Oprq6+pzr1NTUUFdXx8yZM3n88cc5deoUixcvxu/3c9NN5+6B9e6777J06dLw1zk5OTz//PNxufOQmZkZ1fIB3xQChyux+o6QPOjGboqq86I9nt5Ojqd3i/R4nE4nOl3n+mUGUiZg12gx17yH4vvqjS2oTcYx8FoCiWOIRSfOr8e3detW1q1bx5w5c0hPT2fbtm00NjYycuRIdDodqqri9Xp57LHHeOihhzh+/Di/+tWv+P73v4/BYCAjI4PU1FTefPNNBg8eTFVVFc888wwQutOt0+nQakN/+rVabbt9//M//zPz5s0jLy+PlpYWNm7cSEFBQbt1dDodOp2O4cOHY7fb2bhxI6NGjcJkMoXbTN15553MmDEDCD3J09H5r6ysxG63U19fj9vt5sCBAwAUFhai1+u5+eabefnll3n00Uf5h3/4Bw4cOMAf//hH/vVf//WC237mmWeYP38+WVlZ2Gw23nnnHTZu3MiSJUvQ6XSkpaVx22238a//+q+kp6djtVp5/PHHmTx5Mpdeeuk5//90RK/XM2jQoIiXF6K7XKAGoJ0zA8Aqy9wcPeQmJ99AXpEBvfRgFh3weoIcKnNRWe7GH2rjTfoALUVjjaSk9ZpLjD5DVRUmTDUTDAapPuZlywY7k6dbyMySnt/i4pNh0ZFhaf+7f83IVP53Rx1fnGjjljFpHW5DURXyi43s2OSgssxNzggDWt35ixEMBgMzZ87ks88+Cw+6tFrjP1AyqLFgS1tAYt07WBr+jjthLAGtTMIVfZUf1ddyVrX3GQpBVF8L4CeW6cpt27axfv16Zs+e3e4aOz8/P7yM1+vlkUce4Sc/+Un4Gvt73/seqqqSnJxMamoqf/nLXxgwYABVVVU899xzEe37qaeeYt68eeTm5tLS0sLnn39+3jmG2dnZ2O121q1bF77GPpPg/s53vsOcOXMAeO+99zrc7+HDh7Hb7dTW1uJyudizZw8ABQUF6PV6rr/+el5++WV++tOf8sADD3DgwAH+8Ic/dNhC5bnnnmPu3Lnha+z33nuPjRs3hpP5iYmJ3HrrrfziF78gOTkZq9XKP//zPzNp0iRJfHdGMBgkMTGR+++/H1VVyc3NpbGxkQ8++OC8ie/rr7+eRYsWhb8+U4lXV1eHz+frkbgVRSEzM5NTp061myLbEY1/MKlAoHk/tVWnH//oBTp7PL2VHE/vFu3xeDyesx4/iobXVIRj2GPonEdQ/a0ENImh/nqKCl3Y7hk6na5dfCaTiQ0bNvBf//Vf2Gw2srKyeOqppygpKcHr9RIIBJg5cybDhg3jmmuuwePxcN111/Hggw+Gt/Paa6/x1FNPMXv2bHJzc/m3f/s3brzxRvx+P16vN/y3zufztdu31+vlZz/7GSdPniQhIYE5c+bw9NNPt1vH6/Xi9XqZMGECd9xxB/fddx9NTU08/PDD/PSnP0Wn0zFkyBAmT55Mc3MzY8eO7fD8P/TQQ2zc+FUFy/z58wH44osvGDJkCCaTiTfffJMnn3ySyy67jJSUFB588EG+853vXHDbtbW1PPDAA9TW1mK1Whk5ciRvvvkmM2bMCK/31FNPAaHea263mzlz5vDv//7v4Z9/8/9PRzweDydPnjzr+1qtVtqniB518njHv7eqCpfMtGBrC3Bgt4uWJj8V+90cqXCTV2gkp8CA7gJJAnFx8vmCHDnopuKAG68n9D6cnKqhaKyRjIGSpO2KM8lvgg6qj3vZusHO5BkWBg6W8yrE5SOSWbK7nsNNbvbVOhk1sOO5XllDdZTvVXHYAhw95Cav6Py9vgGKiorYu3cv1dXVrFu3rt2AunhyJU7C1LoZnfs4CfUf05p5a7xDEqJzFC1N2Q+g+u3nXSSgTQAltqlKq9XKpk2bWLx4cbtr7Hnz5oWXmTlzJjk5Odxwww3ha+yHH34YCHWj+K//+i+eeOIJ5s+f3+4auyOBQIAnn3zyrGvsc5kyZQp33HEHP/rRj9pdYwPk5uaGr7EnTpzY4X4fffTRdtfYV1xxBfDVNXZiYmL4GvvKK68kJSWFhx56qF1f73Opr6/nJz/5yVnX2CUlJeFlnn76aVRV5Qc/+EG7a+x4UYK9JBPm8/n47ne/y8MPP8wll1wS/v6rr76Kw+HgscceO2udf/mXf0Gr1fLzn/88/L3t27fz3HPP8eabb4YrFCNRV1fXpeRYNBRFYdCgQZw8eTK6RGQwSNrRF9D4mmkedBceS1HH6/SATh9PLyXH07tFezytra0kJvbeqohoE6sPPvggra2tUfcF6yk6nQ6Px8PMmTO58847uf/+++MdUpdE+//nfL9vOp1OEt8x1JPv2bHSk3+L7W1+1ixvIxCAojFGMjLP/XlIb1AxW0KV3cFgkJpqHwd2O2lrCZWL6/QKI4oMDM83oNXGJgHe396TOqsvnodAIMixSg8H97lwOUMxJySqFI0xkpml61Rbp754HrrDN89DIBA83evbi6rClJkWBgzq/8nv3vD7IO/XsRXr9+vfbTrFpxXNXDokgcdLsiNa51ilm52bnegNCvMXJXb4flZfX89f//pXgsEg1157LcOGDetwHz3xu6t1VZFy4jUUgjQNvhevOa9b9hNvveHvQH/Rneeyt19jRyuSa+xorwtjLRgMXpTX2LG4vu41z7FqtVpyc3PD5fcQujOyZ8+e804GLSws5NSpU+16ep88eZKUlJSokt59hqLgNhcCoHeUxTkYIYQ4W319PX/605+ora3llltuiXc4Qlx0gsEgu7c5CQQgfaCWESMNJKdqz/k6k/SG00/TZOmYfYWVidPM4b6o+3e5WLmsNdTOwi8XoBejYDDIiaMeVn/Sxu6tTlzOICazwvhLzMy5wsqgbL3MMogxVVWYOM1MZraOQAA2r7dTe6pv3ewTojssKkoBYNNxG6faIhsCmz1cj8mi4nEHOXao417f6enpjBs3DoC1a9f22FPhHfEZs3AmTQXODLrsHXEJIbpfQ0ODXGN3Qa9JfAMsWrSIlStXsmbNGk6cOMHixYvDZfEQqv7+ehP4yy+/HJvNxp///Geqq6vZtm0b7777briEvz/yWEKJb4O9rFsa/gshRFcUFxfz8ssv88ILL5w1s0EI0f2qj3upO+VDVWHMJFPUCUlFUcgaqmfOAivjLzFjPp0s2LvdyaqPWjlS4SYgCfCLQugpAC+ln7ax/QsHDlsAg1Fh9EQTcxcmMiRHj6JKwru7qKrCpEvNDMzShpPfdZL8Fhe5oUkGxg+yEAQ+Km+KaB1VVcgfaQCg4oAbv6/j97CpU6diNptpbm5m+/btXQk5puyplxPQJKD11mFu/jze4QghesjYsWPlGrsLelVZ9PTp02ltbeVvf/sbzc3NDB8+nCeeeCL8P7a+vr7dBVx6ejpPPvkk//M//8Ojjz5KamoqV155Jdddd118DqAHeEx5BNGg8TWh8dbh1w+Id0hCiB70yiuvxDuEC6qtre1zLSiE6C+8nlCCGiC/2EiCVdPpbamqwpAcPVnDdBw/7KF8nwuXI8jurU4qDrgpKDaQPVyPKonPfqm+1seBXU6aGvwAaHUwoijU9z1WbW9Ex1SNwuRpFrZssFNT7ePL9XamzrKQLr3UxUXsmsIUdpy08/dDLXxnbDpmXcfvdUOG68PvY8cOe8jJN1xw+TODLlesWMHmzZspLCzsFW0dghoTtrQrSaz9PyyNK3EljCOgS453WEL0eb39GruqqireIfRpvSrxDbBgwQIWLFhwzp+dqwF8QUEBzz77bDdH1YuoejymXAzOg+jtZTgl8S2EEEII4MBuJ25XEItVJa/owhf1kVJVhWF5oST3mf7OTnuAnZudVOx3UzDaSNYQnVT+9hPNjT4O7HZRdyr0CL2qgdx8A3lFBvSGXvWg6EVD1ShMmm5hy+d2ak/62LTOztQSC+kDJPktLk4TBlsYbNVT3eZhVWULiwpTO1xH1SjkjzSGbt7udzE0V49Gc+H3rcLCQvbu3UtVVRWlpaUsWrQoVofQJS7rBIytm9G7jpBQ/xGtg26Pd0hCCNGrySfYPshjCfU8N0ifbyGEEEIAzQ0+jlSE+p2OnWTq8II+WhqNQk6+gXlXJVI8zojeoGC3Bdj+hYO1n7Zx8oRHhlD1YbZWP1s22Fn3mY26Uz4UBYbl6Zl/VSIjx5kk6R1nGo3C5BkWBgzSEvDDl6V2Gmqlv6+4OKmKwtWne30vK2siEOF7z5AcPUaTgssZ5PjhjvuDK4rCnDlzUFWVyspKjhw50pWwY0dRaMu4liAqRvse9PbyeEckhBC9mnyK7YM8pwdc6pxHUAIdD+gQ4mL39QG4QnQX+T0T8RIIBNm5JdTiJGuYrlvbIGi1CnlFRuZflUjhGCM6nUJba4AtnzsoXWGjptorCfA+xOkIsPNLB2uWt3HyeKhNVdYwHXMXWhk72YzRJJcKvcWZ5HdGpha/Hzats9FQJ8lvcXGam5OERa9yss3L1ip7ROtoNAojiowAVOx3RTSvIi0tjfHjxwOwZs2aXjPo0m/IxJk0DYCE+g9k0KWIC/m8J7pbrH7H5NNsH+TXpePTpaLgR+c4FO9whOjVzGYzbW1tkpQU3SoQCNDW1obZbI53KOIidKTCQ2uzH51OYdR4U4/sU6tTKCg2Mn+RlfxiAxottDb7+XKdnfV/t1F3ShLgvZnbFWDP6YGlxw57CAZh4GAts6+wMvFSC5aEzveHF91Ho1GYMsNC+kAtfh9sKrXRWC8JL3HxMelULs9LBuCDssaI1xuaq8dgVHA6ghw/0nHVN8All1yCxWKhtbWVrVu3dibcbmFP+xZ+jRWttwFzU2m8wxEXGYPBgNPpjHcYop9zOBwYDF1v39jrenyLCCgKHnMh2paNGBxleBKK4x2REL2WVqvFYrFgs9niHco56fV6PJ7IPnj3BRfz8VgsFrRaeVsVPcvpCHBgd+jCY+Q4IwZjz9Y06PQqRWNM5BQYOHTAzeGDbpob/Xyx1k5ahobCMSbSMuTfRW/h9QapLHNxqMyN/3S+NG2AlqIxRlLT5f9TX6DRKkyZaWHzOjv1tT42rbVx6ewEUuT/n7jILCxI4f0Djew65eBIk4vhKcYO19FoFfKKDOzb4aJiv5shOR0Padbr9cyaNYvly5ezZcsWioqKSEpKitVhdFpQNWJLv4qkmrewNK3GZR1PQNdxv3MhYsFgMGC322lpaUFRLo45L/3tOjeeIjmXwWAQrVYrie+LmcdciLllI3pHGQSDcJH8sRGiM7Raba+YxP5NiqIwaNAgTp482S8qI+V4hOh5e7c78fsgJU3D0Fx93OIwGFSKx5nILTBQsd/F0UMeGur8bFhlIyNTS+FoIylp8rEzXvy+IEcq3Bzc78brCf09S0rRUDTWSMZA7UVz0dpfaLUKU2ZZ+HJdqNf3F6Wnk9/yb0xcRAYk6Lh0iJUNx9r4sKyJf7h0UETrDcszULHfjcMeoOqohyE5HSdV8vPz2bt3L8ePH2ft2rVcc801XQ0/JtwJY/G0foneWYm1bhktg++Md0jiImKxWOIdQo+R68LYice5lFYnfZTHlEtQ0aLxtaDx1MQ7HCGEEEL0sJpqLydPeFEUGDvZ3CuSl0aTyuiJZuZdlciwPD2KAnWnfKz/u40v19loaZK2DD0pEAhy9JCbVR+3sm+nC68niMWqMmm6mVmXJTAgU9crfm9E9LRahUtmWUjL0ODzwhdrbTQ3yr8vcXG5pjA05HLt4VZaXJH9/mtPV30DHNznJhDoOPGiKAqzZ89GVVWOHDlCZWVl54OOpfCgSw0Gx3709v3xjkgIIXodSXz3VaoOjykPAIOjLM7BCCGEEKIn+XxBdm8LtTjJLTCQmNy7ejKbzCpjJ5uZt9DKkOF6UKCm2sfaT9v4bNlx2lr88Q6xXwsGg1Qd87DmkzZ2bXHicgYxmRXGTTExZ4GVwUP0kvDuB0LJ7wRSzyS/19gl+S0uKkUZJvJSjXgDQT6taI54veF5BnR6BbstQPUxb0TrpKamMmHCBADWrl2L1xvZet3Nrx+AI3kmANa6DyHQO+ISQojeQhLffZjHXACA3i6JbyGEEOJicnCfC6c9gNGsUDCq476m8WJO0DB+qpm5C6xkDdUBUHmwjdWftLLtCzu2NkmAx1IwGKSm2kvpChvbNjqw2wLoDQqjJpiYuzCRobmGDvvZir5Fq1OYOiuBlHQNXm+QL9ba5ckKcdFQFIVrikJV3x+XN+P1R/bYvFankFcYqvou3+ciGEHVN4QGXSYkJNDW1saWLVs6F3Q3sKfOw69NQuNrwtK0Jt7hCCFEryKJ7z7MbSkCQOc6iuJ3xTkaIYQQQvSEthY/hw64ARgz0YxW1/sTmQmJGiZOszBnQSI5I6wAVB31suaTNnZ+6cBhD8Q5wr6voc7HhlU2vlxnp7XZj1YHhaONzL8qkdwCAxpN7/89EZ2j1SlMLUkgJU2D1xNk4xo7LU1yU0lcHGYMTSTFqKHJ6WPDsdaI1xuef7rquy1A9YnIqqR1Oh0lJSUAbN26lebm5s6EHHuqHlv6IgDMTWvReOrjHJAQQvQekvjuwwK6VHy6DBQC6J0V8Q5HCCGEEN0sGAyya4uDYBAGZmnJzNLFO6SoJCZruPzqIZRcbmXAIC3BIBw77GHVx63s3urA6ZAEeLRamnxsKrWxYZWNxno/qgbyigzMvyqRglHGPnFjRHSd7nTyOzn1TPLbRmuzJL9F/6fTKFxZEKr6/uBAU8TD0nQ6hdyC01Xfe10Rr5eXl8fQoUMJBAKsWbOm1wy6c1tG4Tbno+Anof4D6CVxCSFEvEniu4+TdidCCCHExeP4YQ+N9X40Ghg9wRzvcDotOVXL1JIEZsxPIH2glmAAjlR4WPVRK3u3O3G7JAHeEVubn60b7ZSusFF70oeiwLA8PfMWJlI8zoTeIB/zLzY6vcKlsyX5LS4+V+Qno1MVKhpdHKh3RrxeTr4erQ5srQFORlj1rSgKc+bMQVVVjh07xqFDhzobdmwpCrb0a04PujyIwb433hEJIUSvIJ+I+zi3pRAAvaNM7uoKIYQQ/ZjbHWDfzlBrs8LRRsyWvv8xLjVdy7Q5CUybayE1XUMgAJXlblYua2X/LicetyTAv8npCLBzs4M1n7SFh7JlDdUx90orYyebMZn7/u+F6LxQ8ttCUooGjzuU/JZhsqK/SzZqmZ2TCMCHB5oiXk+nV8NV3wejqPpOTk5m0qRJAJSWllJZWclLL73EsWPHoow8tvz6dBwpswFIqF8GAU9c4xFCiN5APhn3cV5TDkFFh8bfhtZzMt7hCCGEEKKb7N/pwusJkpikknP6Qr2/SB+gY/q8BKbOtpCcqsHvh4r9blZ+1ErZHidej9zcd7sD7N3hZNVHrRyr9BAMwoBBWkoutzJxmgWLVRPvEEUvodOrXDrbQmJyKPm9YbWNtlZJfov+7erCULuTjcfbqLNHVr0NkJNvQKuF1pYAp6oiX2/y5MlYrVZsNhsrV66ktraWDRs2xL31iT1lNn5tChpfC5bGVXGNRQghegNJfPd1ihaPeQQg7U6EEEKI/qqh1sfxw6HKrTGTzahq/+vbrCgKAzJ1zPxWAlNmWkhMVvF5oXxvKAF+cL8Ln/fiS4D7vEHK97pYtayVyjI3gQCkZmhCNwpKEkhKkYS3OJveoDJtTujfkccdZONqGzZJfot+bHiKkTEDzQSC8HF55FXfeoPK8Pwzvb7dUfQI1zF7dqi62uFwAFBTUxP3qm9UPW0ZVwNgbl6HxlMb33iEECLOJPHdD7jNX2t3IoQQQoh+JeAPsmtr6KJ6aK6e1HRtnCPqXoqikJmlo+RyK5Omm0lIVPF6ghzY5WLlR60cKnPh9/X/BLjfH+RQmet01bsLny80HPSSEgvT5yaQltG/fw9E1+kNKpfOSSAxScXtClV+29ok+S36r6uLQlXfn1Y04/JF3iort9CARgutzX5qT/oiXm/48OHo9frw14qisHHjxrhXfXssI3GbR6IQwFongy6FEBc3SXz3A57TiW+d6xiK3xHnaIQQQggRS4fK3NhaA+gNCiPHGeMdTo9RFIXBQ/TMucLKhKlmzAmhytV9O1ys+riVIwfd+P3972I+EAhyrNLNqo9b2bfDhccdxGJVmTTNTMnlCQwcpENR+l/Fv+gehtPJb+vp5PfG1TbskvwW/dTkwQlkJuiwewKsrmyJeD2DQWX4iDNV35H3+j5+/Dgez1d9tIPBILW1tfGv+gbaMhYRVLTonYcw2HbFOxwhhIgbSXz3AwFdMj79QBSC6B0H4x2OEEIIIWLEbvNTvi800HLUeBN6/cX30U1RFbKH65l7pZVxU0yYzAouZ5Dd25ys/riVY5VuAoG+nwAPBoNUH/ewZnkbOzc7cTmCGE0KYyebmLPAyuChekl4i04xGFWmzUkgIVHF5QxVftttkvwW/Y9GVVh0utf3srImAlFUOucVGlA10Nzop+5Ux1XfwWCQjRs3nvV3ubdUfQd0qdhT5gCQUP8RSsAV13iEECJeLr6rp35K2p0IIYQQ/UswGGTPNicBP6QP0JI1TBfvkOJKVRWG5hqYuzCRMRNNGIwKTkeQnZudrPmkjRNHPAT7YAI8GAxSe9LLus9sbN3gwN4WQKdXKB5vZN5ViQzLM/TLnu6iZxmMKtPnSvJb9H/z85IwaVVOtHrYcdIe8XoGo8rwvMirvo8dO0Ztbe1Zy/Wmqm9Hcgk+XRoafxuWxpXxDkcIIeJCEt/9xJl2JwZHOQQj72cmhBBCiN7p5AkvtSd9qCqMmWSSat/TNBqF4fkG5l+VSPF4I3qDgt0WYPsmB2s+baP6uCfulXaRaqz3sXG1jU2ldlqa/Gi1UDDKyPxFieQVGtFo5P+5iJ0zld8Wq4rLEWp74rBL8lv0L2adhm+NSALgwwORD7kEyCsKVX03Nfiprzl/1feZau8L6Q1V36g6bOnXAGBq3oDGfSq+8QghRBxI4ruf8JqGEVAMqH47WndVvMMRQgghRBd4vUH2bncCMGKkgYRETZwj6n00WoW8QiPzr0qkaIwRnV7B1hpg6wYHpSvaOFXljX/S4Txamn0sf/8Y6//eRkOdH1WF3AID8xYlUjjaiE4nCW/RPYymUOW3xaridATZsNqOwy5FM6J/WVSQggJsO2nneIs74vWMJpVhuaFhlReq+vb7/dhstgtuy2az4ffH/8aSx1KAyzL69KDL92XQpRDioiPj4PsLRYPHPAKjfS96Rzk+45B4RySEEEKITirb7cTlDGJJUBkx8uIZaNkZWp1CfrGR4SMMVJa7qCxz09ocYPN6O8mpGgrHGMkYqO0VFfN2m5+y3S6qjnkBUBQYkqOnYJQRk1nqUUTPMJpCld8bV9uw2wJsXG1j+rwE+R0U/UamVc8l2QlsOmFjWVkTP7okM+J184qMHD3kobHeT0Odj/QBZ7cZ02q13HLLLTidoRvUiqKQnp5OeXk5n376KQBz5sxBq+0d6RZb+lUYHGXoXUcwtm3HlTgx3iEJIUSPkU83/YjHcrrdiV36fAshhBB9VXOjj8MVHiDU4kTaXURGp1coHG1i/qJERow0oDk9pGzTWjsbVtuor+14WFl3cTkD7NriYPXHbeGkd15BInOvTGTcFLMkHEWPM5lVps1NwJyg4rAH2LDahtMhld+i/7i6KDTkcnVlC23uyCuvTWaVoeGq7/NXi1utVgYMGBB+ZWVlUVRUxKhRowDYvHkzgUDv+DcV0CVjT50PQELDJyh+Z5wjEkKIniOfsvuRM32+te4TKP4LP3olhBBCiN4nGAiya4sTgpA1VEdG5sU90LIz9AaVkWNDCfDcAgOqCo11fjautrFxjY2m+p5LgHvcAfbtdLLyo1aOHvIQDEJGppbZV1j51lXZ0sJGxJXJHGp7YraoOE5XfkvyW/QXoweYyUkx4PYH+ayiOap184qMKCo01PpoqIvuPWPatGno9Xrq6urYt29fVOt2J0fyDHy6Aah+G5bGz+IdjhBC9BhJfPcjAW0iXv0gFILoHQfjHY4QQgghonTkkCc05FAHxeNN8Q6nTzMYVUZNMDHvqkSGj9CjqFBf42P9ShubSm20NHVfAtznDVK+18XKj1o5dMBNwA8paRqmz03g0tkJJKX0jsffhThT+W2yqKG2J2tsuJyS/BZ9n6IoLCoMVX0vK2/CF4i8t7XZojJk+Fe9vqNhNpuZOnUqEBpw6XZH3mO8Wyla2jJOD7ps+QKtS+aCCSEuDpL47mek3YkQQgjRN7mcAQ7sCj1+PHKsCaNJPqbFgsmsMmaSmXkLrQzN0aMoUHvSR+kKG1s+t9PWErvhY35/kMpyNys/aqVsjwufFxKTVC6ZZWHG/ATSBkjCW/Q+ZovK9LkWTGYFe1uo7Ykkv0V/UDI8kSSDhgaHjy+Ot0W1bn6xAUUJ3TBtjPJJobFjx5KSkoLT6WTTpk1RrdudvOY8XAljUQieHnQp/86FEP2fXFHFiD8QZHeNndIjreyuseOP4o5yLJ1pd6J3lMsbmRBCCNGH7N3uxOeD5FQNw073FxWxY7ZoGHeJmTlXWskaFmohc/KElzXL29i20Y6trfMJ8GAgyPHDblZ/3Mre7U487iDmBJWJl5opucLKwMG6XjFcU4jzMVtCTyQYTye/N66x4XbJtYTo2/QalQUFyQB8eKApqnXNFg3Zp6u+D+6Lrupbo9FQUlICwK5du2hsbIxq/e5kS7+KgGJA5z6OsW1rvMMRQohuJ2UnMbDxWBu/31pDg+OrO8FpZi33TRrItKHWHo3FaxxCQDWiBpxoXcfxmYb16P6FEEIIEb3ak16qj3tBgbGTTSiqJEm7S4JVw8RLLeSP9FO2x8XJE16qjoXOf/ZwPQWjDJgtGhz2AB73+RN/eoOKyaxw8oSXsj0ubK2hZY0mhfxiI0Nz9ajy/1H0IeaEUPJ7wyobttZQ5ff0uQkYjFIrJfquK/NTeHtvAwfqnZTXOylIj7yNWH6xgRNHPNSe9NHc4CM5LfL0ybBhw8jJyeHw4cOUlpZy7bXX9ooboAFtIva0b2Gt/4iE+uW4LcUENZZ4hyWEEN1GEt9dtPFYG/+x7uz+WA0OH/+xroqfzcrq2eS3osFjzsdo243BUSaJbyGEEKKX8/uC7N4aanGSm2+Q/s89xJqkYfIMCy1NPsr2uKip9nH8sIcTRz0MztZx8oSXwAUKXhUVEqwqbS2hhXR6hfyRBoaPMKDRxj+5IURnWM4kv1eHkt8b19iYNkeS36LvSjFpmTkskTWHW/mwrImfRpH4tiRoyBqm48QRL+X7XFwyKyGqfc+aNYujR49y7NgxDh8+TG5ubrThdwtn0jRMrVvRek6R0LCCtgHXxzskIYToNvIJpgv8gSC/31pzwWUWb63p8bYn7dqdCCGEEKJXO7jfhcMewGhSKBxtjHc4F52kFC2XzEpg5rcSyMjUEgxA1bELJ70h1FGurSWARhuqCpx/VSJ5RUZJeos+z2LVMG1uAgajQltLgC/W2HBf4OkHIXq7qwtTAfj8aCsNDm9U6+YXG0GBmmpf1EORk5OTmTBhAgDr1q3D5+u+ocpRUTThQZfG1s1oXcfjHJAQQnQfSXx3wb46R7v2JudS7/Cxr87RQxGFuM0FAOjcVai+6IZ4CCGEEKLntLX6qTjgBmD0RBNanSRN4yUlTculsxOYPi+BxOTIPiIPHqJl/lWJFI0xodPL/zvRfyR8Lfnd2hLgizX2C7b+EaI3G5FmpDjDhD8In5Q3R7VuglVD1tDQXIjyve6o9z1lyhTMZjMtLS3s3Lkz6vW7i9eUg9M6QQZdCiH6PUl8d0GTM7IhSJEuFytBrRWvIQuQqm8hhBCitwoGg+ze4iAYgIGDtWRm6eIdkgDSMrSMm2KOaNm8IqO0gBD9ljXxa8nvZj8bJfkt+rCri1IAWF7RjNsX3e9xfnHoaaxTVV5am6O7ttfr9cyYMQOAL7/8ErvdHtX63cmWdiUB1YjOXYWp9ct4hyOEEN1CPql3QYpJE9PlYumrdidlPb5vIYQQQnTsxBEvDXV+VE2o2rs3DL0SQoivsyZqmDYnAb0hlPz+Yq0dj0eS36LvmZptZYBFS5vbT+mR1qjWtSZqGDzkdNX3PlfU+y4qKmLgwIF4vV42bNgQ9frdJai1Yk+9HABLw6coPlucIxJCiNiTxHcXFGeYSTNfeABVullLcUZkVUOx5LacSXwfhGDPVpwLIYQQ4sI87gD7doYGWhaOMmK29PxNciGEiIQ16avkd0uTn01r7Xgl+S36GI2qcFVhqOr7wwNNBIPRzeE6U/V98riXtpborq8VRWH27NkA7N+/n1OnTkW1fndyJk3FaxiMGnCR0LA83uEIIUTMSeK7CzSqwn2TBl5wmXsnDUSj9nwFl8+QTUA1owZc6FzHenz/QgghhDi//btceNxBrEkquYWGeIcjhBAXlJgcSn7r9ArNjaHKb683usShEPH2rbxkjFqFoy1udtVEN4crMVnDoOxQ1ffBTlR9Z2ZmUlRUBMDatWujTrx3G0WlLeNaAExtW9E5j8Q3HiGEiDFJfHfRtKFWfjYr65yV3/dNHsC0odY4RAUoKh5zPgB6u7Q7EUIIIXqLhjofxyo9AIydZEaNww1yIYSIVij5bQknvzetteGT5LfoQxL0GublJgHw4YHGqNfPLw7dqK465qWtNfqnqmfMmIFOp6OmpoYDBw5EvX538RmH4kycAkBC3fvyxLgQol+RxHcMTBtq5ffX5vHMt4bw0xmDKUoPPQZ1uCn6qc+x9FW7E0l8CyGEEL1BIBAaaAkwNFdPasaFW6aJ+NAbVNQOPiWramg5IS4mSSnacPK7qcHPF6WS/BZ9y6LCVAC2VNmpbvVEtW5SipaBWaH37YpOVH1bLBamTAklmD///HM8nuj2351saVcQUE3oPKcwtXwR73CEECJm5NN6jGhUhTEDLZQMT+TuiQMAWHO4lQaHN24xecwFBFHQeU6h+lriFocQQgghQg6VuWlrDaA3KIwca4x3OOI8zBaVuQsTmXVZwnlfcxcmYrbIR2lx8UlK0XLpbAs6nUJTvZ9NkvwWfUhWop7Jgy0EgWXlTVGvX3C61/eJY17sbdFXRo8fP56kpCQcDgebN2+Oev3uEtRYsKUtAMDS8BmqL7oBoEII0VvJp/VuMDLDTHGGCV8gyIcHon8zjZWgxoLPkA2A3l4etziEEEL0PcuXL+eBBx7g9ttv54knnqCiouKCy2/cuJEHH3yQ22+/nZ/+9Kds27btvMv+93//NzfffDMfffRRrMPu1dpaPJTvCQ20LB5nkmrhXs5sUUlO1Z73JUlvcTFLTg0lv7U6aKz3s2mdDZ9Pkt+ib7i6KFT1vfJQC3ZPdMnr5FQtAwZpIQgH90f/hLdWq2XWrFkAbN++nebm5qi30V1ciZPxGrJRg24S6j+JdzhCCBET8om9m9xQnAbA8oPN2KJ8M40laXcihBAiWhs2bOD111/nxhtv5Pnnn2fYsGE8++yztLSc++mhsrIyfv3rXzNv3jyef/55pkyZwi9/+UuOHTt7uPKXX37JwYMHSUlJ6e7D6FWCwSDrV5/C74e0DA3Zw3XxDkkIIbokOU3LpbMTQsnvOj9frrNL8lv0CeMyzQxJ0uPyBfj7oeifjC4Ydbrq+4gHhy36a/2cnByGDh1KIBBg3bp1Ua/fbRSVtozrCKJgtO1A56iMd0RCCNFlkvjuJpOyLAxN0uP0BVhe3hy3ODzmM4nvCgj64haHEEKIvmPZsmXMnz+fuXPnkp2dzX333Yder2f16tXnXP7jjz9m/PjxXHPNNWRnZ3PrrbeSm5vL8uXL2y3X2NjIH//4R/7xH/8Rrfbi6m19qsrLscM2FBXGTDajKDLQUgjR96Wkabm0JAGtFhpqfWxeb8cvyW/RyymKwjWnq76XlTXhD0T3O5uSpiUjU0uwk1XfiqJQUlKCqqocPnyYo0ePRr2N7uIzZuFMmgqAtV4GXQoh+j5JfHcTVVG4/nTV94dljXj8gbjE4TMMJqBJQA260Tl7zxuqEEKI3snn81FZWcmYMWPC31NVlTFjxlBefu62WeXl5e2WBxg3bhwHDx4Mfx0IBPjtb3/LNddcw5AhQyKKxev14nA4wi+n0xn+maIofebl98HuraGBlvkjjSQmaeMeUzxffe3/n5wHOQ9yHi78Ss3QcekcKxot1NeEkt8Bf+eOJ97nQVw8Zg9PxKpXqbV7+bLKFvX6Z6q+jx/x4LBHnxxOTU1l7NixAJSWluL3954Esz31cgIaC1pPLebmz+MdjhBCdMnFVW7Vw0qGJ/LGzjrqHT5WVbawID8Oj3UrKm5zAaa2begdZXjNeT0fgxBCiD6jtbWVQCBAcnJyu+8nJydTXV19znWam5tJSkpq972kpKR2fSvff/99NBoNV155ZcSxvPvuuyxdujT8dU5ODs8//zwZGRkRb6M32LD2FC5nkMQkHbPmDUerlbqDzMzMeIfQK8h5CJHzENKXz8OgQZCa6uDjd49SV+Nj52YvV1wzpFN/7/ryeRB9h0GrckV+Ckv3NrDsQCPThlijWj81XUv6QC31NT52b3Wy5fMKRo7Vkz4w8hTL1KlTKSsro6mpiV27djFhwoRoD6NbBDUmbGlXkli7FHPjSlzWcQS0SR2vKIQQvZAkvruRVlW4dmQqf9hay3v7G7ksLxmN2vOVBB5zIaa2bRgcZdhZ2OP7F0IIcXGrrKzk448/5vnnn4+qou76669n0aJF4a/PrFtXV4fP1zfad7U0+di9vQ2AmfMGUV9fSzB48bYBUBSFzMxMTp06JedBzoOch9P6zXlQYeosC1+stXHiqJ0Pl1YwZWYCGk1kf/d7w3nQarV97uaq6LwrC5J5d18De2qdVDa6yE01RrV+QbGR+hobNdVeAPbv8jPzWwkRf9YxGAxMmzaNVatWsWnTJgoLCzGbzVEfR3dwWSdgbN2M3nWUhPqPaM28Ld4hCSFEp0jiu5tdlpfMkt31nGzz8sXxNmYMS+zxGDzmfIIoaD21qN4mArqLa6CYEEKIyCUmJqKqartqbQhVdX+zCvyM5OTkswZftrS0hJffv38/ra2t/PjHPw7/PBAI8Prrr/Pxxx/z2muvnXO7Op0One7cQyD7QnIoGAiyc7MDgjB4qI4hwxM4ebKtT8Te3YLBoJwH5DycIechpD+ch9QMLZeUWNhUaqf2pI/N621MnmGJOPkN/eM8iL4h3axj+lAr64628WFZIz+ZNjiq9dMGaLEmqbS1hNqaNjf6qTvlY8CgyAdYFxcXs3v3burq6vjiiy+YN29eVDF0G0WlLeNaUo+/itG2G5ejHI+5IN5RCSFE1ORZ225m0qksLAglmt/e1xiXD3FBjQmvcRgAese5+7MKIYQQEKp2y83NZc+ePeHvBQIB9uzZQ0HBuS94CgoK2L17d7vv7dq1i/z8fABKSkr45S9/yQsvvBB+paSkcM011/Dkk09238HE2dFKD82NfrQ6GD2hd1RwCSFEd0sfoGPqLAuqBmpP+ti6wU7AL4ls0TtdfXrIZemRNpqd0T1NFgwGCXxjlNeB3a6orvlVVaWkpASAPXv2UFtbG1UM3clvGIQz6VIAEuo+gGDfeNpOCCG+ThLfPWBRYQp6jcKhRhe7ahxxieHM3VmDvSwu+xdCCNF3LFq0iJUrV7JmzRpOnDjB4sWLcbvdzJkzB4BXX32VN998M7z8woUL2blzJx9++CFVVVX87W9/49ChQyxYsAAAq9XK0KFD2720Wi3JyckMHhxddVVf4XIG2L8rNIyzaIwJo0k+cgkhLh7pA3VcMjOU/K6p9rFloyS/Re9UmG6iMN2ILxBk+cHmqNatO+XD3tY+893SFKr6jkZWVla4uKC0tLRXPfFgT70Mv8aK1tuAuWldvMMRQoio9cpWJ8uXL+fDDz+kubmZYcOGcc899zBixIhzLrtmzRp+97vftfueTqfjjTfe6IlQI5Jk1PKtvCQ+Lm/mnb0NjB+U0OMxeCyF0LgCvbMCAl5QI3/8SgghxMVl+vTptLa28re//Y3m5maGDx/OE088EW5dUl9f365/ZWFhIf/4j//IW2+9xV//+lcGDRrEo48+ytChQ+N0BPG3b4cTnxeSUjQMz9PHOxwhhOhxGZk6psy0sHmdnZoqH1s3Opg03Ywah5lHQlzI1YWplNVX8/HBJr49KhWdpuOb1cFgkAO7XaAA38hTH9jtIiNTG9VckxkzZlBZWUl1dTUHDx4871N2PS2oMWJLX0hSzRIsTatxWcdL61QhRJ/S6xLfGzZs4PXXX+e+++4jPz+fjz76iGeffZZXXnmFpKRzTxI2mUz8+te/7uFIo3PdyFSWH2xmxykHhxqcDBrUs/v36Qfh11jR+NvQuY7gNef3bABCCCH6lAULFoQrtr/p6aefPut706ZNY9q0aRFv/3x9vfuDulNeqo55QYGxk00okuQRQlykBpxJfq+3c6rKy7aNDiZOk+S36F2mDbWStk1Lg9PHuqNtzMs9d97h6+pO+Whp8p/zZ2eqvqPp9W21Wpk8eTJffPEF69evJycn57xzTnqaO2EcntbN6J2VWOuX0TLojniHJIQQEet1z90uW7aM+fPnM3fuXLKzs7nvvvvQ6/WsXr36vOsoikJycnK7V28zMEHPzKGhwZbv7Gvs+QAUJVT1jbQ7EUIIIbqL3x9k99ZQi5OcEXqSU3tdjYEQQvSoAYN0TJ5hQVXh5Akv279wEAj0nlYOQmhVhYWFoSrmDw90PJcrXO19AdH2+gaYOHEiVqsVm83G1q1bo1q3WykKbRnXEETFYN+H3n4g3hEJIUTEetXVmM/no7Kykuuuuy78PVVVGTNmDOXl5x/K6HK5+PGPf0wwGCQnJ4fvfOc7DBky5JzLer1evF5v+GtFUTCZTOH/7k43jEqj9Ggrnx9r5USTA2037++bPOZCTK1b0DvKUJSrY7bdM+etu89fT5Hj6d360/H0p2MBOR4hACr2u7DbAhhNCoVjTPEORwgheoWBg0PJ782f26k+7gXFwYSpUvkteo/LRySzZHc9lU1u9tU6GTXw/EOpAwFwOgLn/TmEfh4IgEYTeQxarZaZM2fyySefsHXrVoqLi0lMTIx8A93Irx+II3kmluZSrHUf0GDKk/apQog+oVclvltbWwkEAmdVbCcnJ1NdXX3OdQYPHsyPfvQjhg0bhsPh4IMPPuCf//mfeemll0hLSztr+XfffZelS5eGv87JyeH5558nIyMjpsdyLoMGwaX7WvjiSCN/2XKcn11W2O37/LpgRhL+mrfQeuvJTFZRTANjuv3MzMyYbi/e5Hh6t/50PP3pWECOR1y8bK1+Kva7ARg1wYROJwkdIYQ4Y+BgHZOnW9jyuZ3qY14UQslvaQcleoNEg4a5OUl8WtHMB2WNF0x8azQKJZdbcbtCyW9FUUhPT6euro5tG+3YbUEyMrVoNNH/bo8YMYKsrCyqqqpYv349Cxcu7PQxxZojdR5G2040viYsTWuxp30r3iEJIUSHelXiuzMKCgraDX4oKCjgoYce4rPPPuPWW289a/nrr7+eRYsWhb8+U8lXV1eHzxfd9OXOuHpEAl8caWTZnpNcN8JCkjGKW8AxkGQcht5ZSfOR9biSp8dkm4qikJmZyalTp3rVBOrOkuPp3frT8fSnYwE5ngvRarU9coNVxE8wGGpxEgjAgEFaBmVLFZQQQnxTZpaOSdPNbN3goOqYF0VxMP4SSX6L3mFRUQqfVjSz6biNGpuHgQnnH05tMquYzKHOsYqikDHQhC+gY9wlFjasslF11EteoY+klOhSLoqiMHv2bP76179SUVHB8ePHz/s0e08LqgZs6VeRdOpNzM1rcSVOwK87u9hQCCF6k17V4zsxMRFVVWlubm73/ebm5oj7dmu1WnJycjh16tQ5f67T6TCbzeHXmTYnELpo7e7XqAEmCtKMuH0BPjzQ0CP7/PrLYw5VmevtB2K63Z46fz31kuPp3a/+dDz96VjkeC68HdG/VR31Ul/rQ9XAmIkmaZEjhBDnMShbz8RpZhQFThz1snOzU94rRa8wNMnA+EEWgsBHZU2d2kZahpasoaGb37u3de53Oz09ndGjRwNQWlpKIHDhtio9yW0Zjcc0AiXoI6HuA5B/u0KIXq5XJb61Wi25ubns2bMn/L1AIMCePXvaVXVfSCAQ4NixY6SkpHRXmF2iKAo3jArdFf2ovAmH99yToLuL2xw6j3pnJQQ8PbpvIYQQoj/yeALs3REaaFlQbMSc0LNPcwkhRF8zeMhXye/jRzyS/Ba9xjWnh1x+dqil09fqI8eZ0Gigqd5P1TFvxyucw6WXXorBYKChoaFdfiTuwoMuNRgc5ejt++IdkRBCXFCvSnwDLFq0iJUrV7JmzRpOnDjB4sWLcbvdzJkzB4BXX32VN998M7z80qVL2blzJzU1NVRWVvKb3/yGuro65s+fH6cj6NjUbCtDU8zYPQE+q2jp0X379QPxa5NQgr5Q8lsIIYQQXbJ/pwuPO0hCokpeoSHe4QghRJ8weIieCZeaQYHjhz3s3OyQ5LeIuwmDLQy26nF4A6yq7Ny1usmskl9sBGD/Tic+b/S/1yaTiUsvvRSAL774ApfL1alYuoNfn4EjpQQAa/0yKagTQvRqvS7xPX36dO644w7+9re/8dhjj3HkyBGeeOKJcKuT+vp6mpq+euzIZrPxX//1Xzz00EM899xzOJ1OnnnmGbKzs+N0BB3TqAp3XDIUgPf3N+L19+AHPEX5qt2Jo7zn9iuEEEL0Q431Po5Vhi74xk4yo3ZikJUQQlyssobqmTA1lPw+Vulh3cr+MSdE9F2qonB1Uajqe1lZE4FO/j7mFhowW1RcziAH93cuaT1mzBjS0tJwuVx88cUXndpGd7GnzMGvTUbja8bStDre4QghxHn1yuGWCxYsYMGCBef82dNPP93u67vvvpu77767+4OKsYXFmfxnaQUNTh+lR1qYn5fcY/t2WwoxtX6JwV6GLT0I0odUCCGEiFogEGTXFgcAQ3L0pA3olR+rhBCiV8sepocgbN/kYP/uJpxOA6MnGmVWgoibuTlJ/GVnHSfbvGytsjMlOyHqbWg0CqMmmNi83k5lmZuhOXos1uhaoamqSklJCe+++y67d+8OJ8J7BVVPW/rVJJ/6X8xN63BZJ+DXD4h3VEIIcZZeV/F9sdBrVa4uSgXgnX2Nnb6T3BleUx5BNGh8jWi89T22XyGEEKI/OVzupq0lgE6vMHKcMd7hCCFEn5U9XM/4qWYAjlS42dPJoYBCxIJJp3LZ6cK0D8oaO72dgYO1ZGRqCQQIzwKJ1pAhQ8jLyyMYDLJ27dpe9e/CYxmJ21yIgh9r3Ycy6FII0StJ4jtGgoEg9bVeqo56qK/1Egx0/Ed/QX4yZp3KiVYPm6tsPRBlSFA14DXlAKB3lPXYfoUQQoj+wmEPULYn9Ohy8TgjBoN8pBJCiK4YmmNg9uWDAThS4WHvdkl+i/i5qiAFVYFdpxwcbXZ3ahuKEqr6VhSoqfZRU925QZczZ85Eo9Fw4sQJKit70ZyuM4MuFS16ZwUG2+54RySEEGeRq7QYOHnCw9+XtbJxtZ1tXzjYuNrO35e1cvLEhYc8WPQaFuQnA/D23sYe/WDntoT6fBvskvgWQgghorVnuwO/H1IzNAzJ0cc7HCGE6BeKRiUzbkqo8vvwQQ/7drgk+S3iYkCCjkuHWAH48EDnq76tiRpyCkKDr/dudxLoxHyvpKQkJk6cCMC6devw+XydjifWArpU7ClzAEio/wgl0LmbBEII0V0k8d1FJ0942PK5A5ez/RuYyxlky+eODpPfVxelolUVyuqd7Kvr3ONPnXFmwKXOeVjenIQQQogonKryUlPlQ1FCAy2lD60QQsTOsDwDYyebAKgsd7N/pyS/RXxcUxgacrnmcCstrs4nmwtGGTEYFey2AJUHO3ftPXnyZCwWC62trWzfvr3TsXQHR3IJPl0qGn8r5saV8Q5HCCHakcR3FwQDQfZsu3Cyes825wXbnqSatMzLTQTgnb0NMY3vQvy6dPzaFBT86JyHemy/QgghRF/m8wbZvS000DKvyIA1KbpBVUIIITo2LM/AmEmh5PehMjcHdknyW/S8ogwTealGvIEgn1Y0d3o7Op3CyLGhWSDle124nIFObEPHzJkzAdi8eTNtbW2djifmVB229GsAMDd/jsZdE+eAhBDiK5L47oKGet9Zld7f5HIGaai/8N3h60amoQBbqu2d7h8WNUUJtzvR28t7Zp9CCCFEH1e+14XLEcRsUckvloGWQgjRXYaPMDB6Yij5XXHAzYHdkvzurOXLl/PAAw9w++2388QTT1BRUXHB5e12O4sXL+YHP/gBt912Gz/5yU/Ytm1bD0XbeyiKwjVFoarvT8qb8XaiTckZ2cP1JKdq8Ptg/67OPeldUFDAoEGD8Pl8bNiwodOxdAePpRCXZRQKAax178ugSyFEr6GNdwB9mbuDpHeky2Ul6rl0iJWNx9t4Z18DD00fHIvwOuQxF2Ju+QKDowxbMAjyqLYQQghxXi1NfirLQzeoR080odXK+6YQseTz+XA4HPEOIy6cTicez4VbJF4Mvnke0gbClJIg9rYA4OBUtQtzgtqlFlNmsxmt9uK5DN6wYQOvv/469913H/n5+Xz00Uc8++yzvPLKKyQlJZ21vM/n45lnniExMZGHH36Y1NRU6uvrMZvNcYg+/mYMTeTP22ppdPrYcKyV2Tlnn7NIKIrCmIkm1v3dxokjXobl+UhNj+73UFEUZs+ezVtvvUVZWRljxoxh8OCeyR1Ewpa+CIOjHL3rMAbbDtzWCfEOSQghJPHdFQZTZB+4Ilnu26NS2Xi8jXVHWvnuuAwyLLquhtchjymXoKJF42tG46nFbxjY7fsUQggh+qJgMMjurQ6CQRiUrWPg4O5/nxbiYuLz+bDb7VitVlT14nsoVafT4fV64x1G3J3rPCQmgjslgNMRag9h0KsYTZ37HQkEArS1tWGxWC6a5PeyZcuYP38+c+fOBeC+++5j27ZtrF69muuuu+6s5VetWoXNZuPf/u3fwudowIABPRlyr6LTKFxZkMKbu+r5sKyJkuGJnb7xkpymZUiOnuOHPezZ5mTWZQlRb2vAgAEUFxezb98+SktLueWWW3rNrJGALhl7yjwSGj8lof5jPOaRBDXydJwQIr4ujnf7bpKWrsVoUi7Y7sRoUkiL4E5ufpqJMQPN7K5x8P7+Ru6d3ANJaFWPx5SLwVGOwVGGQxLfQgghxDkdq/TQ1OBHq4VRE0zxDkeIfsfhcFy0SW/RMYNRJRgElzMQ7o/cmeS3qqpYrVZsNhuJiYmxDrPX8fl8VFZWtktwq6rKmDFjKC8/d7vLrVu3kp+fzx/+8Ae2bNlCYmIiM2bM4Lrrrjvvv0+v19vuhoWiKJhMpvB/93ULClL4vz0NHGxwUd7goiijffX7mWOM5FhHjjNx8oSHliY/xw97GZZniDqeGTNmUFFRQW1tLfv27WP06NFRb6O7OFNnYWzbhtZbh6XpM+wZ10S1fjTnUlyYnMvYkXMZO/E4l5L47gJFVRg90cSWz8//SOboiSYUNbL/oTcUp7K7xsGKimZuHpNOoqH7B2Z5zIWhx5EcZThSSrp9f0IIIURf43YF2L/TBUDhGBMmsyTmhOgOkvQWF3Im0X0m+R0IBNEbzv07oyig0Zz7Guxi+j1rbW0lEAiQnJzc7vvJyclUV1efc52amhrq6uqYOXMmjz/+OKdOnWLx4sX4/X5uuummc67z7rvvsnTp0vDXOTk5PP/882RkZMTsWOJpEHDlKBsf7D7JiiNO5o7NO+dymZmZEW1vynQjG9fWULbHzYTJQzAYo7/uv+yyy/joo4/YtGkTs2bNwmjsPZXVAdP3COx+AXPzRqy5C1AShkW9jUjPpeiYnMvYkXMZOz15LiXx3UWDsvVMngF7tjnPqvxOy9AwKFsf8bYmDLKQk2LgcJObj8ubuHVMeqzDPYvHXACAznkEJeAiqPaeN0whhBCiN9i7w4nXGyQpRUPOiMjf14UQQsSW0RSq/Ha7AnjcQTxu/3mXtSZpzpv8FucXDAZJTEzk/vvvR1VVcnNzaWxs5IMPPjhv4vv6669n0aJF4a/PVPLV1dXh8/l6JO7uNn+okQ92w6ryWnZVHGvXmlRRFDIzMzl16lREA1jTBgZJSFSxtfopXXmE0ROj75+ek5NDSkoKTU1NvP/++5SU9KYitlSsCWMx2nbh2reY5uwfghLZDadoz6U4PzmXsSPnMnZidS61Wm3EN1cl8R0Dg7L1ZA7W0VDvw+0M4vEE2LPNRUO9H1urn4TEyO7gKorCDcVp/Orzaj4qa+L6kakYtN1bkeDXp+PTpaH1NqB3VOBO6D2PSQkhhBDxVl/jpepo6PHtsZMjf4pLCCFE99DpFdyujpeT3AQkJiaiqirNzc3tvt/c3HxWFfgZycnJaLXadpXxWVlZNDc34/P5ztkbXafTodOde/ZFf0kSDU82hFuTflTWyF0Tzu57HgwGIzpeRYHRE0x8sdbO4YNuhubqsSZFV/WtqiqzZs3igw8+YOfOnYwePZqUlJSottGdbOkL0dsPoHMdw9C6FVfi5KjWj/Rcio7JuYwdOZex05Pn8uJ5zqubKapC+gAdWcP05OQbGThYC0Eo3xvBp7KvmTHUysAEHa1uP38/1NJN0bbnMRcCoHeU9cj+hBBCiL7A7w+ya6sTgOEj9CSnSr2AEKK9G2+8kaeeeiquMTz44IPcc8894a97Q0yxtGHDBrKysmhpifza6LIrZvCHPyzuxqj6Bq1WS25uLnv27Al/LxAIsGfPHgoKCs65TmFhIadOnSIQCIS/d/LkSVJSUi6agaDnc3VRKLG8oqIZly/QwdIXlpGpIzNLRzAIe7Y7O5UAGj58OMOHDycQCFBaWtqleGItoE3CnvotABLql6P4z98eVgghupMkvrtJ4ehQy5CqY15am8//CN43aVSFa4tSAXhvfyP+QPffAfFYTie+7eVSGiGEEEKcduiAG3tbAINRoWiMDLQUQvQNv//973nsscfiHYboJRYtWsTKlStZs2YNJ06cYPHixbjdbubMmQPAq6++yptvvhle/vLLL8dms/HnP/+Z6upqtm3bxrvvvssVV1wRpyPoPSYPTiAzQYfNE2B1ZdeL1IrHG1FVqK/xcarK2/EK51BSUoKqqhw9epTDhw93OaZYciZPx6cfiBqwY2lYEe9whBAXKUl8d5OkFC2DskOPe5VFWfX9rbwkkgwaau1e1h9t7Y7w2vEYcwgqOjT+VrSeU92+PyGEEKK3s7X5Obgv9P49eoIJnV5anAgh+oaUlBQSEhLiHYboJaZPn84dd9zB3/72Nx577DGOHDnCE088EW51Ul9fT1NTU3j59PR0nnzySQ4dOsSjjz7Kn/70J6688kquu+66+BxAL6JRFRYVhqq+l5U1Eehi0ZglQUNekQGAvdud+H3Rby85OZnx48cDsG7dOvz+yIvuup2ioS3jWgBMrV+idR2Pc0BCiIuRJL670Zmq71MnvDQ3Rj7Uw6BVw2+o7+5v7P6+N6oOjyk0mVpvl3YnQgghLm7BYJDdW50EApCRqWXQkHP3LRVCCAC/38+TTz5JUVERo0eP5oUXXmj3+X3p0qVceeWVFBQUMH78eB544AHq6+vDP29ubuaHP/whY8aMIS8vjxkzZrBkyZLwz6uqqrj//vsZOXIko0aN4nvf+x7Hj58/gfTNVidTp07lN7/5DQ8//DAFBQVMmTKFv/zlL+3WiXYfZ9qPrFmzhssvv5y8vDxuuukm6uvrWbVqFbNnz6awsJAHHngAp9MZXs/tdvPzn/+csWPHkpuby3XXXceOHTvabXvlypXMnDmTvLw8brzxxnPGsXXbZu6460YmTi5g/rcu5d+f+xccDmmlcD4LFizgd7/7HW+++Sb//u//Tn5+fvhnTz/9NA888EC75QsKCnj22Wd54403+O1vf8sNN9zQruf3xWx+XhImrcqJVg87Ttq7vL0RI40YTQpOR5BDZe5ObWPKlCmYzWaam5vP+vcUb15TDi7reBSCWOveh2DXWsQIIUS05N0rRgKBACdOnKCsrIwTJ04QCASwJmnIGnq66ntPdFXfVxakYNQqHG5ysz0Gb6gdCbc7kT7fQgghLnLVx7zU1/hQNTBmkglFkWpvIXpaMBgk6HbF5xVl0cn//d//odFoWLZsGf/6r//Kf//3f7drHeHz+Xj00Uf57LPP+MMf/sDx48d56KGHwj//5S9/SXl5OX/5y19Ys2YNzz33XHhIndfr5fbbbychIYF33nmH9957D4vFwu23347H44k4xv/6r/9i7NixfPrpp9x11108/vjjVFRUdHkfv/rVr3j22Wd5//33qa6u5oc//CGLFy/mtdde4/XXX2ft2rX88Y9/DC//7LPP8vHHH/PKK6+wfPlyhg8fzu233x6uOK6qquK+++7jsssu49NPP+W2227jueeea7fPo0ePcP8P7+Syb13Ju29/yosvvsq27Zt59t/7T19z0XuZdRq+NSIJgA8PNHWwdMe0WoXi8aF2agf3u3DYo08MGwwGpk+fDsCXX36J3d79+YNo2NIWElAN6NxVGFs3xzscIcRF5uKeThEjFRUVlJaWYrPZwt9LSEigpKSEgtE5VB33UnvSR1O9j5T0yE651aDh8hHJfHCgibf3NTJxcPc+rug2F2IFdK5jKH4nQY30MhVCCHHx8XoC7N0Rqk7MLzZiSdDEOSIhLlIeN4H/7+a47Fp99W9gMEa8/ODBg/nFL36BoiiMGDGCAwcO8Pvf/57bb78dgFtvvTW87LBhw/i3f/s3Fi5ciN1ux2KxUFVVxZgxYxg3bhwAQ4YMCS//wQcfEAgEePHFF8M34V566SVGjhzJxo0bmT17dkQxzps3j7vvvhuABx54gN///vds2LCBESNGdGkfjz32GFOmTAHgO9/5Ds899xwbNmxg2LBhAFx11VVs2LCBBx54AIfDweuvv87LL7/MvHnzgFDS/9JLL+Wtt97iRz/6EX/+858ZNmwY//Iv/wIQPp+vvfZaeJ+vvfYqi666jjvv+P7pc5rD4z/7BXd/72ae+vkzGKL4fydEZywqSGHZgSa2nbRzosXNkOSu/c4NHqLjSIWGxjo/+3Y6mTzdEvU2Ro4cye7du6mpqWHjxo1861vf6lJMsRTQWrGnXo61/kMSGj7FnTCKoEbaMQkheoZUfHdRRUUFH3/8cbukN4DNZuPjjz/mVM1hhgzXA3Agyqrva4pS0Siwp8ZBeb2z4xW6IKBLwacfgEIAveNgt+5LCCGE6K3273LhdgVJsKrkFRriHY4Qog+YOHFiuydDJk2axOHDh8O9dnft2sVdd93FlClTKCgo4Nvf/jYQqm4GuPPOO3nvvfe47LLLeOaZZ9i8+auKyH379nHkyBEKCgrIz88nPz+fUaNG4Xa7OXLkSMQxFhcXh/9bURQyMjJoaGjo8j6+vt2MjAxMJlM46X3me2fauhw5cgSv1xtOlAPodDrGjx/PwYOh64/y8nImTJjQbh+TJk1q9/X+/ft57/2lTL5kZPh1/w/vCD2BWyU9hEX3y7TquSQ7lLhdVtb1qm9FURg9wQwKnDzupb4m+kGXiqJQUlIChP5N19TUdDmuWHImTcWrH4QacJJQ/2m8wxFCXESk4rsLAoEApaWlF1ymtLSUm2+8gxNHPNTX+Gio9ZE+MLJeoRkWHbNzEllV2co7+xr4WUl2LMI+L4+5EK2nFr2jDLd1bLfuSwghhOhtmhp8HD0Ueqx/zGQTGo20OBEibvSGUOV1nPYdKw6Hg9tuu405c+bw6quvkpaWRlVVFbfddlu4jci8efPYunUrn376KevWrePWW2/lrrvu4qmnnsJutzN27Fh++9vfnrXttLS0iOPQattf9imKQiAQaqnQlX18c7s6XfvrnK/vJ1YcDju333473/vePWf9bPDgLPR6DaoK0pJadKeri1LYdMLGqsoWvjt+AIO6uL2kFA3D8/QcqfCwZ7uTksu1qGp0n0MGDRpEUVERBw4cYO3atdx00029p13b6UGXqVX/D1PbFpyJk/GZhnW8nhBCdJF8HOiC6urqsyq9v8lms9HcWsPQ3DNV386o+gZeXxz6sPnFcRsnWjs37CJSbvOZPt/lMnRCCCHERSUQCLJrS+jpquzhOtIHyEBLIeJJURQUgzE+rygTRdu3b2/39bZt28jJyUGj0VBRUUFTUxOPP/44U6dOZcSIEe0GW56Rnp7OzTffzG9/+1uefvpp3njjDQDGjBnD4cOHSU9PJycnp90rMTGx8yf4a3piHwDDhw9Hr9e3q2j3er3s2LGDgoICIDRU8ZvD+bZt23ZWvBUVBxkxIvesl9lsQKvtJYk+0a+NHmAmJ8WA2x9kRUVzTLZZONqITq/Q1hII34iP1vTp09HpdJw6dYoDBw7EJK5Y8ZmG4bROBjg96NIf54iEEBcDSXx3QaRDI+x2O/nFRlQVGuv81NX4It7H0CQDU7ISCALv7WvsZKSR8ZqGEVD0aPw2tO6T3bovIYQQojc5fNBNa7MfnV6heJzMuRBCRK6qqoqnn36aiooK3nvvPf74xz/y/e+H+k9nZWWh1+v505/+xNGjR1mxYgWvvPJKu/V/+ctf8sknn3D48GHKysr4+9//Tn5+PgA33HADKSkpfO9732PTpk0cO3aMDRs28POf/5zq6uqYxN8T+wAwm83ccccdPPPMM6xevZry8nIeffRRXC5XuA/6XXfdxeHDh/m3f/s3KioqePfdd/nb39pX/v/4xz9my5YtPPnkk+zZs4fKyko+/fRTnnzyyZjFKkRHFEVhUWFoCO27++q56Q9fsONk14ZK6g0qRWNC/cLLdrtwu6MvRktISGDy5FByecOGDVENwe0JtvQrCKgmdJ6TmFo2xTscIcRFQBLfXWCxRDZ0wmKxYDKrDMsLVX2X7Y6u6vvbxakArD7cSoMj+n5fEVO0eMyhD9l6R++6OyyEEEJ0F6cjQNnpORzF44wYjPLxSAgRuRtvvBGXy8WiRYt48skn+f73v893v/tdINQq5OWXX2bZsmXMnTuXV199lZ///Oft1tfpdDz77LN861vf4oYbbkCj0fC73/0OAJPJxDvvvENWVhb33nsvc+bM4ZFHHsHtdmO1WmMSf0/s44wnnniChQsX8o//+I8sWLCAI0eO8MYbb5CcnAxAdnY2//3f/83y5cu5/PLL+d///V9+9rOftdtGcXExb7/9NpWVldxwww1cccUV/PKXv2TgwIExjVWIjpQMTyRRr9LqDnCk0cHrO2qjus4/l2G5ehKTVbzeIGW7o5sRdsaECRNITEzEbrezZcuWLsUTa0FNAra0KwCwNK5A9bXFOSIhRH+nBLv6l7mfqKurw+uNLqkcCAT485//fMF2JwkJCdx9992oqorLGWDlR60E/LDg2iHoTbaI3xh/tuIo++ucXD8ylbsnDogqzmgYW74kse5dvIYhNA35cUTrKIrCoEGDOHnyZJff6HsDOZ7erT8dT386FpDjuRCdTkdGRkaMIhOdec++kM3r7Zyq8pKSrmHGvIRu6YfZ3/59dJachxA5DyFfPw8tLS0xbavR1+h0upj+Xeureuo8tLa2nvP3Td6vYyvW79e90a8+r6L0yFfJ23+Zm83EwQld2mZDnY8Nq0I5hpLLE0hKiX4026FDh/joo49QVZXvfve74ZtLvUIwQMqJ36FzV+G0TqBt4M3hH8n7Y+zIuYwdOZexE6tzGc37tZQ0dYGqquHJyedTUlKCenqyitGkkpMfGpazZWNdVP+Tbzhd9b38YDM2T/f1wvJYQn2+te4TKP6uPaolhBBC9HanqrycqvKiKDB2krn3DIESQgghRK8WDAY53vxVKxEFeGNnfZcTY2kZWrKGhmaN7N4W3dPiZ+Tm5jJkyBACgQDr16/vUjwxp6i0ZVxHEAVT23Z0zsPxjkgI0Y9J4ruLRowYwcKFC0lIOPuubkJCAjk5Oe2+l1dkQKOF+loXJ09Efvd7clYCQ5L0OH0Blh9s7mrY5xXQJuHVZ6IQRO842G37EUIIIXqSwx6gudHX7tVQ52PXltBN3qG5ehKTNXGOUgghhBB9xfaTdg43u8NfB4GKRhfbu9jrG2DkOBMaDTTV+6k6Fn3VvKIolJSUoCgKlZWVHDt2rMsxxZLPmI0z8RJABl0KIbqXJL5jYMSIEdx9993hHnOLFi3CYDBgs9nYuXNnu2UNBpW8gtMDK/Y4CQYiu3urKgo3FKcB8OGBRjz+6AddRMpjDlV9G+xl3bYPIYQQoqc47AFWf9zKus9s7V4bVtlwn26fefywB4e9+95bhRBCCNF/BINB3thZj/qNB8ViVfVtMqvkF4fyBvt3OvF5o99eWloaY8eOBaC0tBS/v3cll+1plxNQLWg9NZiaN8Q7HCFEPyWJ7xhRVZXs7GwKCwvJzc1l5syZAGzatOmsHuC5RQb0BpW2lgDVxyO/eztrWCJpZi3NLj+rK1tjGv/XnWl3oneUQ1CSAEIIIfo2jztAoIO3s0AgtJwQQgghREe2n7RT0ejim3Vssaz6zi00YLaouJxBDu7v3KDLqVOnYjQaaWxsZPfu3V2OKZaCGjO29AUAWBr/jupriXNEQoj+SBLf3aS4uJjMzEy8Xi/r1q1r9zO9XmXcpFD1dtleF4EIq751GoVri0K9vt/d34A/wvWi5TUOJaAaUQMOtO4T3bIPIYQQQgghhBCirzlT7X2hqSCxqPrWaBRGTTABUFnmxtYWfcW20Whk2rRpQKgoz+FwdCmmWHNZJ+I1DkUNekio/zje4Qgh+iFJfHcTRVGYM2cOiqJw8OBBjh8/3u7noyekotcr2NsCVB31nGcrZ7t8RDIJepWTbV6+ONHW8QqdoWjwmPMBaXcihBBCCCGEEEKc4QsEqXd4uVBa+2SbB18MCtUGDtaSkaklEIB9O5yd2saoUaNIT0/H7XbzxRdfdDmmmFJU2jKuJYiC0bYLU+NafFseRyfzxoQQMSKJ7240YMAAxowZA8CaNWva9dTS6zXkjQz17Crf64646tukU1lYkALAO3sbu3wX+Xw85oJQnA5JfAshhBBCCCGEEAA6jcqLC4bz0pWh18tXDud/75zCy1cOZ87wRADMOvWCifFIKUqo6ltRoKbaR0119IMuVVVl9uzZAOzZs4e6uroYRBY7PsNgnEmhqnRLw2fgqMZS/yl0U65DCHFxkcR3N5s2bRomk4mmpia2b9/e7mc5+QYMRgWHPcDxw5FXfV9VmIJeo1DR6GJ3Tfc8qnQm8a1zV6H4uqmyXAghhBBCCCGE6GMyLDryUo2hV5qJooFW8tJM3H/JQFJNWuocPt7b1xiTfVkTNeQUGADYu91JwB99QjgrK4v8/NBT3WvXru22ArrOsqdehl81ouADQOc+gV6qvoUQMSCJ725mMBjCgy6//PJL2tq+SiJrtQojwlXfLvwRvoElG7XMz00C4O0YvZl+U0CbiNcwGACDvOEIIYQQQgghhBAXZNZp+N7EAQD8394GamyRF7hdSMEoIwajgt0WoPKgu1PbmDlzJlqtlurqag4e7F3X+EHVQFA1ffU1CpbGFVL1LYToMkl894CioiIGDx6Mz+ejtLS03c+G5ekxmhRcziDHDkX+pnjdyFRUBXactFPZ2LkJzx3xmAsBaXcihBBCCCFEX7FhwwaysrJoaWmJdyhCXJRmDbMyZqAZjz/IH7bWxmSbOp3CyLGhxHD5XhcuZyDqbVitViZNmgTA+vXr8Xqjb5vSXfSOg2h9TeGvFYLo3FVS9S2E6DJJfPeArw+6PHToEEeOHAn/TKNRyC8OVX0f3O/C54vsjmamVc+MoVYA3tnXEPOYAdzhxHc5BKOfIC2EEEL0BnqDitrBJx5VDS0nhOib6uxeDjW6zvuqs/eeBE93mzx5Mtu3bycxMdRreMmSJYwcObLL221sbOT2229n4sSJ5OTkMHnyZJ588sl2T7Sey5IlS8jKymr3ys3N7XI8QvRWiqLwg8kD0Siw6YSNLVW2mGw3e7iO5FQNfh/s39W5QZcTJ07EarVis9nYunVrTOLqsmAQS+MKgijtvw1S9S2E6DJtvAO4WKSnpzNu3Dh27NjBmjVrmDx5cvhnQ3P0VBxw47QHOFrhJq/IGNE2byhOY93RNj4/1sZ32zxkWvUxjdlnHEJANaEGnOhcx/Gahsd0+0IIIURPMFtU5i5MxOM+f3WU3qBitkjiW4i+qM7u5UcfVOK9wLB4narwn9fkkmHR9WBk3cPr9aLTnf849Ho9AwYMiPl+VVXl8ssv57HHHiMtLY3Dhw/z5JNP0tzczGuvvXbBda1Wa7snXxVFucDSQvR9Q5MNXF2Uynv7G/n9lhrGZprRa7r2OUNRFMZMNLHu7zZOHPEyLM9Hanp0KR2dTsfMmTP55JNP2Lp1K8XFxeGbZPGidxxE56466/sKhKu+PZaCng9MCNEvyBVeD5o6dSoWi4WWlpZ2H/xUjUJBcWhYRcUBNz5vZHc0c1ONTBhkIRCE9/Z3Q69vRQ0PuZR2J0IIIfoys0UlOVV73pckvYXou1rd/gsmvQG8gSCt7tg/wbhs2TLmz59PXl4eo0aN4pZbbsHhCA2ff/DBB7nnnnt46aWXGDNmDIWFhfzTP/0THs9X7Q1Xr17Nddddx4gRIxg1ahR33nlnu6dDjx8/TlZWFu+//z7f/va3yc3N5Z133uHEiRPcddddFBcXM2LECObOncvKlSuB9q1ONmzYwMMPP0xra2u42vpXv/oVL7/8MvPmzTvreC677DJeeOGFcx5rcnIyd911F+PGjSM7O5tZs2Zx1113sWnTpg7Pk6IoDBgwIPzKyMiI5jQL0SfdMiaNVJOWUzYv78ZoNldympYhOaGCtz3bnJ0aUjlixAiysrLw+/18/vnnMYmr085T7f11CXXvSdW3EKLT5CqvB3190OXq1avb9d3LHq7HkqDicQc5HMWwihuKUwFYWdlCs8sX24ABt+V0uxO7JL6FEEIIIUTPCAaDuHyBiF5uX2S9bt0Rbi/SRFJNTQ0PPPAAt9xyC2vWrGHp0qVceeWV7dZfv349Bw8eZOnSpbz22mt88sknvPTSS+GfOxwOfvCDH7BixQqWLFmCqqrce++9BALtj+m5557j+9//PmvWrGHOnDk88cQTeDwe3n77bVauXMkTTzyBxWI5K8bJkyfzi1/8AqvVyvbt29m+fTs//OEPueWWWzh48CA7duwIL7tnzx7279/PLbfcEtHxnzp1ik8++YRp06Z1uKzdbueSSy5h8uTJfO9736OsTK4tRP/39UGXS2M46HLkWCNaHbQ0+Tl+OPptKopCSUkJiqJw8OBBTpw4EZO4OseP6mtB4fx/dzW+JrTueMYohOjLpNVJDysoKGDv3r2cOHGC0tJSFi1aBICqKhSMMrJ9k4NDB9wMH6FHp+/4vsSYgWby04wcbHDxUVkTt4+LbfWEx5xPEAWd5ySqr5WANr6PQQkhhBBCiP7P7Q9yy5LymG7z8c+ORbTcklsKMGo7bsVRW1uLz+dj4cKFZGdnA5zVS1un0/HSSy9hMpkoLCzkkUce4ZlnnuGxxx5DVVWuuuqq8HJerzdcHV5eXk5RUVF4O/feey8LFy4Mf11dXc3ChQvD+xs2bNg5Y9Tr9Vit1nDF9RkWi4U5c+awZMkSxo8fHzruJUu49NJLz7utM3784x/z6aef4nK5uOyyy/jlL395weXz8vL41a9+xciRI2lra+P//b//x7XXXsuqVasYPHjwBdcVoq+bNczKigozu2scLN5ay5Ozs7u8TYNRpWCUkX07XOzf5WJQti6i3MHXZWRkMHr0aHbv3k1paSm33norakcDUbqDoqUp+wFUvz30paKQnp5OfX09waCfhPpl6F3HSDr1Jo1D/j+CmrNv8AkhxIVIxXcPOzPoUlVVKisrOXz4cPhnWUN1JCSqeL1BKssjq/pWFCVc9f1xeRNOb/TTnS8kqEnAZ8gCTg+5FEIIIYQQQlBcXMzMmTOZP38+P/jBD3jjjTdobm4+axmTyRT+etKkSdjtdqqrqwGorKzkxz/+MZMnT6awsJCpU6cCUFXVvt/tuHHj2n19zz338Otf/5prr72WF198kX379kUd/2233cb777+Py+XC4/Hw7rvvcuutt3a43tNPP82nn37Kn/70J44ePcovfvGLcMz5+fnh129+8xsgVHV+0003MXr0aKZNm8bixYtJS0vjL3/5S9QxC9HXKIrCD6aEBl1+GcNBlzn5BhISQ0+Ml+2N/Inxr7v00ksxGAzU19ezd+/emMTVGQFdMj5jVvilWIef/u8htAy6G58uDY2vmaRTf4Vg7FtWCSH6N6n4joO0tDRmzpxJaWkpa9euZciQIWi1WhRVoXC0ka0bHFSWucnJN6A3dHxvYmq2lcFWHdVtXlZUNHPtyNSYxuu2FKJzn0BvL8OVOLnjFYQQQgghhOgCg0ZhyS2RDTOrbHRFVM393GVDyU3teIi8QRPZ4EWNRsNbb73Fli1bWLt2LX/60594/vnnWbZsGUOHDo1oG3fffTfZ2dm89NJLpKenEwgEmDdvHl6vt91yX0+eQyhpPXv2bFauXElpaSmvvvoqTz31FPfcc09E+4VQP2+9Xs/y5cvR6XT4fL5wBfqFnOnTPWLECJKTk7n++ut58MEHGThwICtWrAgvl5ycfM71dTodo0aNatfLXIj+bGiSgWuKUnk3hoMuVVVh9AQTX6y1c+Sgm2G5eqxJmqi2YTKZmDp1KqWlpWzcuJH8/HyMxo7/RvakoMZES+Z3STnxn+idh0ho+BRb+sKOVxRCiNOi/mu7ePFiDh06FP7a5/OxYcMGWltbz1p2165d4QoA0d78+fNJSEigtbWVLVu2hL8/KFtHYrKKzweHDkR251ajKlxfnAbA+wca8fpjO/jBYz7d59txUO6wCiGEEEKIbqcoCkatGtHLoI3sksYQ4fYUJbLE95k4p0yZwiOPPMKnn36KTqfjk08+Cf983759OJ3O8Nfbtm3DYrEwePBgGhsbOXToED/5yU8oKSkhPz+/3QygjmRlZXHnnXeyePFi7r//ft58881zLqfX6/H7z/4Mr9Vquemmm1iyZAlLlizhmmuuOSvB3pEzvcg9Hg9arZacnJzwKyUl5Zzr+P1+Dhw40K71ihD93c1fG3T5TowGXWZk6sjM0hEMwp7tnRt0OWbMGFJTU3G5XBENqo0HvyGTtoE3AWBuXoehbUd8AxJC9ClRJ74/++wzTp48Gf7a6XTy61//mmPHzq6yaGlp6dRjdxcDg8FASUkJAFu3bg0/FqkoCoWjQx84Dx9043ZF1rpkTk4iKUYNDQ4f646efROiK3yGLAIaC2rQjc55NKbbFkIIIYQQoi/atm0bv/nNb9i5cydVVVV8/PHHNDY2kp+fH17G6/XyyCOPUF5ezsqVK/nVr37F9773PVRVJTk5mZSUFP7yl79QWVnJ+vXrIy4aeuqpp1izZg3Hjh1j9+7dfP7554wYMeKcy2ZnZ2O321m3bh2NjY3tEvHf+c53+Pzzz1mzZk2HbU5WrlzJkiVLOHDgAMePH+fvf/87P/vZz5gyZQpDhgw573ovv/wya9eu5ejRo+zevZt/+Id/oKqqittuuy2iYxWiPzDrNNxzetDl2zEcdFk83oiqQn2Nj1NV3o5X+AaNRhPOS+zatYuGhoaYxBVr7oTR2FPmAJBY+w5ad3Vc4xFC9B3S4zuORowYwZAhQ/D7/axduzZ8h3bgYC3JqRr8fji4P7Kqb71G5eqiUIuTt/c2EOjE3d7zUlTc5tCjpnqHTGAXQgghhBC9R6JBg069cJW2TlVINETXBqAjVquVTZs2cccddzBr1ixeeOEFnnrqKebNmxdeZubMmeTk5HDDDTfwox/9iMsvv5yHH34YAFVV+d3vfsfu3buZPXs2Tz/9NP/8z/8c0b4DgQBPPvkkc+bM4fbbbyc3N5d///d/P+eyU6ZM4Y477uBHP/oRY8aM4Xe/+134Z7m5uUyePJkRI0YwceLEC+7TaDTyxhtvcP311zNnzhyefvppLr/8cv7nf/7ngus1Nzfz6KOPMmfOHO644w7a2tp4//33KSiIrJWNEP3FzGFWxg404/EHWby1NibbtCRoyCsyALB3uxO/L/o8wNChQ8nNzSUYDFJaWtqpyvGeYE+9DLe5ACXoJenkX1BOD8QUQogLkR7fcXRm0OUbb7zB0aNHqaysJC8vL1T1PcbIprV2jla4ySs0YDJ3fI9iQX4yS/c2cKLVw+YqG1OzrTGL1WMuxNS2HYOjDDtXxmy7QgghhBBCdEWGRcd/XpNLq/v8LfkSDRoyLLqY7jc/P5833nijw+UeeeQRHnnkkXP+rKSkhDVr1qDT6cJ9vb8+2HLIkCFnDboEeOaZZ867v+nTp5+1zn/8x3/wH//xH2ctGwwGqamp4c477+zwOGbMmMEHH3zQ4XLf9Itf/ELaXwrBV4Muf/LRYb48YWPzCRtTshO6vN0RI40cP+zB6QhyqMxNwajo+3TPmjWLI0eOcPz48XBeotdRVFoH3krKiVfRehtJOvUWzYPvBiW2NzWFEP2LVHzHWUpKSri6orS0NPyBN2OgltR0DYEAVOx3RbQti17DgvxkAN7ZG5u+YWd4zPkEUdB6alC9zTHdthBCCCGEEF2RYdGRl2o87yvWSe/+oKGhgT/96U/U1tZyyy23xDscIS4KQ04PugT4/dYa3L7IWpteiFarUDw+1C714H4XDnv020xKSgrnJdatW4fP5+tyXN0hNOzyDgKKHr2zAkvDio5XEkJc1Hpl4nv58uU88MAD3H777TzxxBNUVFREtN7nn3/OzTffzAsvvNDNEcbWlClTsFqttLW1sXnzZoBw1TfA0UpPxG9eVxelolUVDtQ72VfriFmMQY0ZrzE0nV7anQghhBBCCNG3jR07lpdffpkXXniB5OTkeIcjxEXj5jFppJm01Ni8vBujQZeDh+hIy9AQ8MO+nc6OVziHyZMnY7FYaG1tZfv27TGJqzuEhl3eCICluRRD2644RySE6M061epk7dq1lJeXA4QrlJcvX86XX37ZbrmvD8GM1IYNG3j99de57777yM/P56OPPuLZZ5/llVdeISkp6bzr1dbW8r//+7+MHDky6n3Gm06no6SkhI8++oht27YxcuRIUlJSSB+gI32glvoaHwf3uhh3ibnDbaWatMzNSeSzQy28s6+B4gEdrxMpj7kQvesoBkc5rqSpMduuEEIIIYQQ/c0rr7wS7xAu6FwtVIQQ3c+s03DPpAH8cn01b+9rYE5OIplWfZe2qSgKoyeaWbuijZPHvdTXeEkfGN2TLnq9nhkzZrBixQq2bNnCyJEjSUjoeiuW7uBOGIM9eTaW5rUk1i6lSZ+BzzAo3mEJIXqhTlV879q1i08//ZRPP/2UVatWAbB58+bw9868du2K/s7bsmXLmD9/PnPnziU7O5v77rsPvV7P6tWrz7tOIBDgt7/9LTfffDMDBgzozCHFXW5uLsOGDSMQCLBmzZrwQInC0aGq7+NHPNjbzt+38OuuL05DATZX2TnaHNlwzEh4LIUA6BwVEOydjz4JIYQQQgghhBC92YyhVsZmxnbQZWKyhuF5oQT6nu1OAoHoh1QWFhaSmZmJ1+vl888/j0lc3cWedjluU/7pYZf/i+KP3RPvQoj+I+qK7yVLlnRHHAD4fD4qKyu57rrrwt9TVZUxY8aEK8zPZenSpSQmJjJv3jz2799/wX14vd5wlTqE7oyaTKbwf/eEM/v5+v7ODLr8y1/+wvHjxzl06BD5+fmkZegYMEhL7Ukf5XvdTJxm6XD72UkGLh1iZePxNt7d38hD0wfHJG6/YTB+jRWNvw296whec/55j6cvk+Pp3frT8fSnYwE5HiGEEEIIISKhKAo/mBwadLm5ysaXJ9q4JNva5e0WjjZSdcxLW0uAo4c85OQboo5r9uzZLFmyhLKyMsaOHcugQb20klpRac28ldTjr6HxNZJ46i1aBt8NSq/s6CuEiJNOtTrpLq2trQQCgbN6zCUnJ1NdXX3OdQ4cOMCqVasi7uv97rvvsnTp0vDXOTk5PP/882RkZHQ67s7KzMxs9/WgQYOYM2cOK1euZP369UydOhWDwcDMucm88+ZhThz1MH32EFLSOn7zun+2hY1/2ULpkVYevmwUmYnRT3Y+F3/beII160jhBJpBJRc8nr5Ojqd360/H05+OBeR4hBBCCCGE6MiQJAPXjkzlnX2NLN5ay7hMCwZt15K2eoNK0Rgju7c6KdvtYvBQHQZDdNscOHAgxcXF7Nu3j7Vr13LLLbf02kKQoMZM86DvknriPzE4D2JpWIE9fUG8wxJC9CIxTXy3trayY8cOmpqaGDx4MJMmTUJVu+9um9Pp5Le//S33338/iYmJEa1z/fXXs2jRovDXZ/6A19XV9djkYkVRyMzM5NSpU+GWJmcUFRWxefNmWltb+eCDD5g5cyYAmVk6TlV5Wb/6GJNndNxnKxUYM9DM7hoHv197gHsnD4xJ7HplKEmAt3Ybtea5HR5PXyTH07v1p+PpT8cCcjwXotVq43KDVQghhBBC9F43j05n7eHW8KDLW8emd3mbw3L1HD3kprU5QNluF2MnRz/3a9q0aRw8eJDa2lr2799PcXFxl+PqLn7DIFoH3EhSzV+xNK/FZxiM2zo23mEJIXqJqBPf69evZ9WqVTz44IPtks3l5eU8//zz2Gy28PdGjBjBz3/+c4zGyKqNExMTUVWV5ubmdt9vbm4+56Txmpoa6urqeP7558PfO5OcuPXWW3nllVfOqtTT6XTodOce8tDTiZpgMHjWPjUaDbNnz+bDDz9k+/btFBUVkZaWRuFoI6eqvFQf99Lc6CMpRdPh9m8oTmV3jYMVFU3cPDoNq6HjdTriMY0giIrWW4fiaSCgS73g8fRlcjy9W386nv50LCDHI4QQQgghRCRMOpXvTxrAC+urWbo3RoMu1dCgyw2rbBw95GFYnp6klOhSPxaLhalTp7J+/Xo2bNhAXl4eBkN0bVN6kts6Fru7CktzKYm1S2nUD8BvkKc2hRCdGG75+eef4/f72yW9g8Egv/3tb3E4HNx444380z/9E5dddhkVFRV88MEHEW9bq9WSm5vLnj17wt8LBALs2bOHgoKCs5YfPHgwL774Ii+88EL4NWnSJEaNGsULL7xAenrX75bGQ05ODjk5Oe0GXSYmaxg8JJSwL9vrjGg7EwZZyEkx4PIF+bi8KSaxBTVGvMZhABjsZTHZphBCCCGEENbYAKkAAQAASURBVEIIcTGaPtTKuEwz3kCQxVtrYrLNtAwtWUND+YPd25ydKuIYN24cycnJOBwONm/eHJO4upM97Qo8phEoQS/JMuxSCHFa1Invo0ePMnLkyHbfKysro7a2lssuu4ybbrqJiRMncu+99zJx4kQ2bdoU1fYXLVrEypUrWbNmDSdOnGDx4sW43W7mzJkDwKuvvsqbb74JgF6vZ+jQoe1eFosFo9HI0KFD0Wp7VQvzqJSUlKDRaKiqqgoP9iwYbQQFaqp8NDd03JZFURSuHxmqyF5W1oTbF4hJbB5LIQB6hyS+hRBCCCGE6E02bNhAVlYWLS0t8Q5FCBGBM4MutSpsrrLz5Ym2mGx35DgTGg001fupOuaNen2NRkNJSWiu15mWtr2aotKS+R382pTQsMuatyAYmxyIEKLvijrx3dLSwoABA9p9b9euXQBMnz693ffHjh1LbW1tVNufPn06d9xxB3/729947LHHOHLkCE888US41Ul9fX3v/4MbA0lJSUyZMgUItZdxu91YEzVkDwvdtT2wxxXRdmYOS2SARUer28/fD8Xmw6/bfDrx7ayEQPRvoEIIIYQQvV1bWxu1tbXnfbW1xSYxIWLDYQ/Q3Og778thv3iSH5MnT2b79u3hJ3SXLFlyVuFSZ2VlZZ31ev/99y+4zo033njO9e64446YxCREf5CdZOCaolDR2uKttTEpWjOZVfKLQ21n9+904vNGX/U9fPhwhg0bRiAQYN26dV2OqbsFNWZaBt1BUNFhcBzE0vhZvEMSQsRZ1CXRVqu1XR9vgAMHDoTblHxdZ3tALViwgAULzj2J9+mnn77gug888ECn9tkbTZw4kf3799PS0sKmTZsoKSmhYJSRqqNe6k75aKzzkZpx4f+FGlXhupGp/PeWGt7b38iC/GQ0atcmMvv1A/Frk9D4WtA7K/EmFHVpe0IIIYQQvUlbWxuvv/46fr//vMtoNBruvPNOrFZrD0YmzsVhD7D641YCF8gTqSrMXZiI2RJ13U+v4/V6zzuzCEJPxX6zUCmWXnrpJebOnRv++ustMM/l97//PV7vV8UyTU1NXHbZZSxatKjbYhSiL7p5dDprj4QGXb6zr4HvjO36YPTcQgPHKj047AEO7ncxcqwp6m2UlJTwxhtvcOTIEY4cOcLw4cO7HFd38hkG0Trg2yTVvIWlaU1o2GXCmHiHJYSIk6g/+Q0bNowNGzaELwQaGxspKytj1KhR6PXthzDU1NSQmpp6rs2ICGi12nCLl507d1JfX48lQcOQnNB5jrTq+1t5SSQaNNTavXx+LAbVSYqCxxzquS7tToQQQgjR3zidzgsmvQH8fj9OZ2RzV0T38rgDF0x6AwQCoeVibdmyZcyfP5+8vDxGjRrFLbfcgsMR6iv74IMPcs899/DSSy8xZswYCgsL+ad/+ic8Hk94/dWrV3PdddcxYsQIRo0axZ133smRI0fCPz9+/Hi4qvrb3/42ubm5vPPOO5w4cYK77rqL4uJiRowYwdy5c1m5ciXQvtXJhg0bePjhh2ltbQ1XWv/qV7/i5ZdfZt68eWcdz2WXXcYLL7xwwWNOSkpiwIAB4ZfRaLzg8ikpKe2WLy0txWQycfXVV0d6moW4KJwZdAnw9t5GTrZ5OlijYxqNwqgJoWR3ZZkbW9uF39vOJSUlhXHjxgFQWlra4ftjb+C2jsOePAsAa81SNO5TcY5ICBEvUSe+r7/+eg4fPsw//dM/8Z//+Z/8/Oc/x+fznfOO/datW8nLy4tJoBerYcOGkZeXRzAYDA+6zC82oqrQUOujvqbjViMGrcqiwhQA3tnX0KnBFt8UbnfiKO/ytoQQQgghhPi6YDCIzxfZK9IcjN9PRNuL9LNyTU0NDzzwALfccgtr1qxh6dKlXHnlle3WX79+PQcPHmTp0qW89tprfPLJJ7z00kvhnzscDn7wgx+wYsUKlixZgqqq3HvvvQS+kcl/7rnn+P73v8+aNWuYM2cOTzzxBB6Ph7fffpuVK1fyxBNPYLFYzopx8uTJ/OIXv8BqtbJ9+3a2b9/OD3/4Q2655RYOHjzIjh07wsvu2bOH/fv3c8stt1zwuJ988klGjx7NVVddxVtvvRX1tcVbb73Ftddei9lsjmo9IS4G04d8bdDlltgMuhw4WEtGppZAAPbt6NwN20suuQSTyURzczM7d+6MSVzdLTTsMg816CHp1P+i+OVmtRAXo6hbnRQVFfHggw+ydOlS1q9fT0ZGBj/84Q8ZO3Zsu+X27NlDbW0tN9xwQ8yCvViVlJRw9OhRqqurOXDgACNHjmRorp4jFR4O7HYxY4AWRblw+5KFBSm8s6+Bw01utp+0M3FwQpdi8ppHEESD1tuAxlMPDOrS9oQQQggheotYFAmIrvH74ZO3YzucccMqW8cLAVd+OwltBFdJtbW1+Hw+Fi5cSHZ2NsBZvbR1Oh0vvfQSJpOJwsJCHnnkEZ555hkee+wxVFXlqquuCi/n9XrD1eHl5eUUFX3VTvDee+9l4cKF4a+rq6tZuHBheH/Dhg07Z4x6vR6r1YqiKO3an1gsFubMmcOSJUsYP348EOoFfumll553WwCPPPIIM2fOxGQysXbtWp544gnsdjvf//73Oz5hwPbt2zlw4AAvvvhiRMsLcbE5M+jyJx8fZkt1aNDlJdlda6mlKKGq77XL26ip9lFT7WXg4PO3SzoXg8HA9OnTWblyJV9++SVFRUW9/+aVoqEl8zukHn8NrTc07LJl0F2g9P2WV0KIyHXqX/y0adP41a9+xRtvvMErr7zSrsfbGaNHj+b1118/a+CliJ7VauWSSy4Bvhp0mV9sRNVAU4OfulO+jrdh0HDZiGQA3tnX2OWYgqoBr2k4AHr7gS5vTwghhBAiXlwuF0eOHOGLL77gvffe45133ol3SKIPKC4uZubMmcyfP58f/OAHvPHGGzQ3N5+1jMn0VU/dSZMmYbfbqa6uBqCyspIf//jHTJ48mcLCQqZOnQpAVVVVu+2caTNwxj333MOvf/1rrr32Wl588UX27dsXdfy33XYb77//Pi6XC4/Hw7vvvsutt956wXUeeughpkyZwujRo3nggQf40Y9+xH/+53+GY87Pzw+/fvOb35y1/l//+ldGjhzJhAkToo5XiItFdpKBa08Puvz9ltgMurQmasgpCM1g27vdScAf/Q3e4uJiBgwYgMfjYcOGDV2OqScENRZaBn339LDLchl2KcRFKOqKbxEfEyZMYP/+/TQ1NbFx40bmzJnD8DwDleVuDux2kZHZcdX3tUWpfFzWxO4aBwcbnOSnRT/Y4uvc5kL0zkPS51sIIYQQfUYgEKChoYFTp06FX01NTfEOS3yDRhOqvI5ES5M/omru6fMSSErRRLTvSGg0Gt566y22bNnC2rVr+dOf/sTzzz/PsmXLGDp0aETbuPvuu8nOzuall14iPT2dQCDAvHnz2g2DBNolzyGUtJ49ezYrV66ktLSUV199laeeeop77rknsuAJ9fPW6/UsX74cnU6Hz+cLV6BHasKECbzyyiu43W4GDhzIihUrwj9LTk5ut6zD4eCDDz7gkUceiWofQlyMbh4TGnRZa/fy9r4GbovBoMuCUUaqjnqw2wJUHnQzoujC/fm/SVEUZs+ezf/93/+xb98+xowZw8CBA7scV3fzGQbTOuAGkmqWnB52mYU7YXS8wxJC9JCoE9+VlZVR7yQ3NzfqdUR7Go2GOXPm8O6777J79+7QIJuR6RytdNPS5Kem2kdm1oUfV8qw6CgZnsjqw628vbeRn5VkdSkmj6UQGj5G5ziE/9Q6dA4Fj3G4PDokhBBCiF7DbreHE9wnT54Mt6f4puTkZDIzM8nMzESv17dL4J3Pxo0bWbBgAQaDoTtCv6gpihJRuxGIJlENWu2FC0WipSgKU6ZMYcqUKTz00ENccsklfPLJJ9x///0A7Nu3D6fTGU5cb9u2DYvFwuDBg2lsbOTQoUP88pe/ZObMmXi9Xr788suI952VlcWdd97JnXfeyXPPPcebb755zsS3Xq8/5zA6rVbLTTfdxJIlS9DpdFxzzTVnJdg7snfvXpKTk8P/BnJycs677IcffojH45FWmEJEwKhVuWfSAF5YV807exuZm5PEIKu+S9vU6RRGjjWx40sH5XtdZA/TYzRFd+0+aNAgCgsLKSsro7S0lBtvvLHDArzewG0dj8Ndhbl5Pdaa/8Ony8Bv6P1JeyFE10Wd+H788cej3smSJUv+f/buOz6O+lr4/2e2F616L1Zxt9x7r9gGY4htmrGDEwg1PCkXSH43JCHkhoQHEiC5IblPEm4gBFcMhpjijntvuMhdkq3edyWtytbfH0KKhSVZssqupPN+vfYFuzs7c2a03tk98/2e0+bXiBslJCTQv39/Ll26xM6dO7nvvvtI7q/n8rlaLpyuJir25qO+lwwJ44uMcg5mVZBdXkt84K3/UNPUFuBFQcGD9+JbBANudRCVEQvlCqoQQgghupzL5aKoqKjRaO6KioobltPpdERFRRETE0N0dDRRUVGNEn6FhYWt2t7Vq1dZuXIlc+fOJSEhocP2Q3QPx48fZ+/evcyYMYPw8HCOHz9OaWkp/fv3b1jG6XTy3HPP8YMf/ICsrCxee+01Hn74YVQqFcHBwYSEhPDee+8RGxvL1atXefnll1u17RdeeIHZs2eTkpKCzWZj37599OvXr8ll4+Pjsdvt7Nmzh9TUVIxGY8P7/cEHH2TmzJkAfPTRRy1uc8uWLRQXFzN69Gj0ej27d+/mj3/8I08++WSrYl6zZg3z588nNDS0VcsL0dtNTrAwMtrEyfwq/na0gJ/PjG93kjk+SUvmZTXWUjfnTlUzasKNTXFvZsqUKaSnp5OXl8eFCxca9SPwZ5Vht6OpzUNXfYWg/H9SFv80XnX7ZsELIfzfLZU60el0jBo1ipEjR6JSyejerjRt2jQyMzPJz88nLS2N/gMHk3m5lnKbh7xsJ7EJLV8F7hOsZ1ycmSM5dj5KK+X/TLy1ppT6yjMEFqy64XGV20Zg/krKo5dL8lsIIYQQncbr9VJeXt4oyV1UVITH07gWqqIohIWFNSS4o6OjCQ0NbTF5YDQaUavVTY6SradSqTCbzVRUVLBhwwZGjhzJ5MmT0bR2mLLoMDq9CpUKPC2UwVWp6pbrSBaLhUOHDvHWW29RWVlJXFxcQ0K63tSpU0lOTmbJkiU4HA4WLVrEM88881VMKv785z/zwgsvMGPGDFJSUvjVr37Fvffee9NtezwefvrTn5KXl0dAQAAzZ87kxRdfbHLZcePG8dBDD/HUU09RVlbGM888w7PPPgvUzcwdO3YsVquV0aNHt7hNrVbLO++8w4svvojX6yUpKYlf/OIXLF++/KbxXr58mcOHD7N69eqbLiuEqKMoCo+Ni+IHn2ZwLNfO4ZxKJnRAo8tho43s2VZJdqaTxL4uQsPbdt4KCAhg7NixHDhwgH379pGSkoJO177R6F2iodnlm2icJQQWrMUWs0JmrAvRwyneNrat37ZtG/v27ePcuXMEBAQwceJEpk6d2m2u8jWnqKjohlp6nUVRFGJiYsjLy6ONhx/49+gSg8HAihUruHrZy8WztQQEqpg534KiavkqcFphFT/Zeg2NSuFvi/oSamzjDzSvh7DMV1G5bTS1JS/g0QRRkvjjbnkSae/fx9/I/vivnrQvIPvTEq1WS0RE+2szijpdec7uKD3t38etas9xcDgcFBQUNEp0V1dX37Cc0WhsKFlSn+y+lR/kFRUVTa7/+u0YDAb27t3L6dOnAQgJCWH+/PlERka2uG55P9S5/jjYbDYCAwNveV1Vdg+O2uYz3zq9CpO5a7+X/vCHP6S8vJy///3vN11Wq9X65HPN6/UydepUVqxY0VCexZe66jiUl5c3+X6T83XH6o7n61vR2Z/p/zxZxPqzJUSaNby5MAW9pv2fZScPV5GV4SAoRM20uQFtHknucrl47733KC8vZ+zYsUyePLndMUHXnB81NTmE5Pw/FK8Le8gs7GHzOmU7vibfNTqOHMuO01HHsi3n6zYPSbntttu47bbbKC0tZe/evezbt4+tW7cSHh7OlClTmDJlComJiW0OWrTeiBEjSEtLo7S0lP379zNt6iwyLjmoLPeQc81JfFLLP+6GRJoYFG7kfHE1G8+X8q1RLf84+zptdSZqt63Z5xVA7bKhrc7EaZL67kIIIYRoG6/XS2lpaaMkd0lJyQ3LqVQqIiIiiImJaRjNHRgY2CH1Ri0WCxbLzUfWzZo1i+TkZLZt20ZZWRnr1q1jwoQJjBkzRmZGdiGTuesT291dSUkJH3/8MYWFhTzwwAO+DkcI0Yz7hoaxM8NGod3F+rMlLB/R/oszg4cbyMt2YCtzk5XhoE9K20qgajQapk2bxqeffsqJEydITU0lKKh1DYl9zWWI+6rZ5TrMZV/g1MfhCEj1dVhCiE5yy3MxQ0NDufvuu7n77rvJzs5uSIJ//PHHxMfH89BDDzFy5MgODFXUq290+eGHH3LmzBlSU1PpOzCI86druHi2htg+WlQ3GfW9JDWU3+zKYdMlK/emhmHWtbIrEKByl3fockIIIYTo3aqrqxsluQsKCnA4HDcsZ7FYGo3mjoiI8IvSIklJSSxfvpwdO3Zw5coVDhw4QEZGBvPmzSM4ONjX4QnRpOHDhxMaGsqrr74q71Mh/JhBo+I7YyJ5ZU8uG9JKmZ3S/kaXeoOKAakG0k7WcO5UDTHxWrS6tl08TElJISEhgaysLPbu3cudd97Zrpi6Uq1lFFU1OZhs+wgsWEeZ7ru4ddLsUoieqEN+KcTHx7N06VImTZrEO++8Q1paGpcvX5bEdyeKj49v6Kb8xRdfsGTxfaRfrMVe6SE78+ZXbMfFBZAQpCPL5mDTJSv3pIa1etsedeumobZ2OSGEEEL0Hm63m4KCAvLy8hoS3TbbjTPJNBpNwyju+pvZ3PYmXF3FaDSyYMECzp8/z65du8jPz2f16tVMmzaN1NTUDhmFLrqX3//+974OoUU5OTm+DkEI0UqTEiyMjDFzMs/eYY0uk/vruZZeN3P8wtlaho5qW6NHRVGYPn06q1at4sqVK2RlZXWrRs+V4XegceShq04nKO+flMX/H7xqg6/DEkJ0sHYnvgsLCxtGe2dnZxMVFcWSJUsauoOLzjN16lQyMjIoLCzkwsU0+g3uT9rJulHfcYk61OrmT4QqRWHx4FD++2A+G8+XctegEHTq1l3hdRqTcKuDWq7xrbbgNCbd0n4JIYQQoueoqKi4oQGly+W6YbmQkJBGSe6wsLBuVypEURQGDx5MXFwcW7duJScnhx07dpCens6cOXP8OnEvhBDCfymKwuNjo/j+p+l1jS6zK5mQ0L5GlyqVwtBRRg7uspN5qZbEFB2WoNbPBAcICwtj+PDhfPnll+zatYtly5Z1n3N3Q7PLP13X7PKhbtmnTAjRvFtKfNtsNvbv38/evXu5fPkywcHBTJo0iaeeeop+/fp1dIyiGWazmYkTJ7J7927279/P8mV9uXJeobrKS1a6g6T+LY/6np4UxMpTxZRUudiZUc68fsGt27CiojJiIYH5K/FCo+T3v+97UTzVeNXyA08IIYToLZxOJ0VFReTn5zeM6Lbb7Tcsp9frb2hAaTD0nFFWgYGBLFmyhBMnTrB//34yMzNZuXIls2fPlu/KQgghbklcoI5Fg8NYf7aEt44VMDLG3O5GlxHRWqLjtOTnODlzopqJM8xtHkk+YcIELly4QGlpKadPn2bEiBHtiqkredUB2KK/SUjO/0NfdR5z6XbsYXN9HZYQogO1OfH90ksvcfbsWQwGA+PHj+eBBx5g6NCh3eeqXg8zfPhw0tLSKC4u5uCh/fQfMo0zx6u5dK6GhGQdak3zJy2tWuEbg0L5+/FCNqSVMCclCPVNaoPXqw0YSnn0cgKKPmnU6NKjtoDXjdpdSVDeP7HGfgdU2nbvpxBCiK61adMmNm7ciNVqJTExkUceeaTFhN2BAwdYu3YtRUVFREdHs3z5ckaPHt3w/Lp169i/fz8lJSVoNBpSUlJYunQp/fv374rdEZ3A6/Vis9kalSwpKSnB4/E0Wk5RFMLDw4mOjiYmJoZhw4bhdDp9FHXXURSF0aNHk5iYyObNmykuLuazzz5j8ODBzJgxw9fhCSGE6IY6o9HlkJEGCvOcFBe4yM9xEhPftvrhBoOBiRMnsnPnTg4ePMiAAQMwGttWNsWXXIY4KiIWE1j4PuayHTj1sdLsUogepM2J79OnT6PT6ejbty/l5eV8/vnnfP75580urygKP/7xj9sVpGieSqVi5syZrF+/nrS0NAYPHoLBZKamysvVK7WkDGx59NTcfkGsPVNMboWTQ9kVTO7T+rrctQFDqTUPQVeTSahFTWmFG4chCbWjiJCc/4eu5iqBhe9THrVUpgsJIUQ3sn//ft59910ee+wx+vfvz6effsqvf/1rfv/73xMUFHTD8hcuXOAPf/gDy5YtY/To0ezdu5ff/va3vPLKK/Tp0weA2NhYHnnkEaKionA4HHz66ae89NJL/PGPfyQwUHpCdAe1tbUUFBQ0KltSU1Nzw3Jms7nRaO7IyEi02rqL4IqiEBERQV5eHl6vt6t3wSfCwsK4//77OXToEMeOHePcuXNkZ2fz4IMPdqvEgBBCCN8zaFQ8OiaK/7snhw87qNGlOUBN30F6LqXVcvZENZHR2hYH0DVl6NChnDlzpm5A3sGDzJo1q10xdbWawNFoanMw2fYTWPA+ZboI3LpIX4clhOgAbU58h4eHA5CXl9eq5aWRT+eLjY1l8ODBnDt3jl27djJ5/GJOH6vl0rla+vTVo2nhpGXSqlnQP4T3z5bwYVopkxIsbfubKSqcpr6oImNwuvPA68Wtj8IW/U2Cc9/GUHkatyYEe/gdHbCnQgghusInn3zCnDlzGn60PPbYYxw/fpwvvviCRYsW3bD8Z599xsiRI7n77rsBWLp0KadPn2bTpk08/vjjQF1fiuutWLGCHTt2cPXqVYYNG9ZkHE6ns9HIYEVRGhKF3e37RX28XRl3eXl5k4npegaDodmLDh6Ph5KSkkZJ7tLS0huWU6vVREZGNozmjo6OJiAgoNn99MVx8AdarZapU6eSnJzMli1bKC8v529/+xujR49m4sSJaDQd0m++2+mt7wfhH+R9J7qriQkBjIoxc6IDG132G2wgK8NBdZWXKxdqGZDatvJjKpWK6dOn8+GHH3LmzBmGDh1KRET7R6N3pcrwBWhq89DVZHzV7PJpaXYpRA/Q5m/Zf/rTnzojDtFOU6ZMIT09neLiYqyVFzCZU6iye8i8VEu/wS1/WC8cFMLH50u5VFLD6YIqhke3vy6309SXisglddOFrLvxaIOpDprU7vUKIYToXC6Xi/T09EYJbpVKxbBhw7h48WKTr7l48SILFy5s9NiIESM4cuRIs9vYtm0bJpOJxMTEZmPZsGED69evb7ifnJzMK6+80u1+SF0vOjq6S7ZjtVr505/+1GQTyXoajYbnnnuO4OBgKioqyMrK4tq1a1y7do3s7GwcDscNrwkNDaVPnz4kJCTQp08fYmJibilp21XHwd/Ul3rZuHEjR48e5dixY+Tk5PDAAw8QExPj6/B8Jjo6mqqqqoaZAb1Vb9//el1xHHQ6Xa/+Nye6N0VReOy6RpeHsiuZ2M5GlxqNwpCRRo4fqOLSuRrik3SYzG2btR0fH0+/fv24fPkyu3fvZsmSJd3rApOixha9jNDsN9E4iwksWIct5psye12Ibq53Di/pgUwmE5MmTWqoqzVnZhLnv4TL52tJ7KdHq23+hBNs0DAnJYjPL1n5MK20QxLfUDddSOUqI6B0GwFFG3FrgnGYB3fIuoUQQnSO8vJyPB4PwcHBjR4PDg4mNze3yddYrdYbSqAEBQVhtVobPXbs2DF+//vf43A4CA4O5mc/+1mLZU4WL17cKKFe/+OpqKioxYSuP1IUhejoaPLz87ukxEdhYeFNj5HL5WLVqlVYrVbKy8tveF6n0xEVFdWobInJZGq0TFFRUZvi6urj4K+mTp3KkCFDeP/998nPz+fNN99k0qRJjBo1qlf1zbn+/eBwOHpF7ffmaLXaDtv//fv3c99995GWltZkeSp/1pHHoSUOh6PJGcwajaZbX1wVvcf1jS7/91gBozqg0WVsgparl9WUFLlJ+7KasZPbnheYOnUqGRkZ5OTkcPny5W7Xy8WrqW92+Rf0Vecwle2gKvQ2X4clhGiHNie+n3vuuTYtrygKv/3tb9u6GXELhg4dytmzZykqKiLj6mECLBOprPCQcfHmU5UWDQ5l82UrJ/LspJfWkBLaMVN6qkJmo3ZaMVYcJSh/NWVxj+MyxHfIuoUQQnQvqamp/Pa3v6W8vJzt27fzxhtv8Jvf/KbZxIxWq2125F93TZp6vd4uib2127h27VrD/4eGhjYkuGNiYggJCbkhCdtRsXfVcfBnQ4YM4Zvf/Cbbtm0jIyODvXv3kp6ezrx583pd3fuOeC9UVFRQXV3d7PNGoxGLpX0jIruLsWPHcuLEiYb30dq1a3nxxRc5d+5cu9a7du1annnmmSaf+/LLLxtKYn6d0+nkzTffbLjQk5KSwk9/+lOf1wDu7Z9Bovu7b2gYuzqw0aWiKAwdbWLXlgryspwUFzgJj2rbDIzAwEDGjBnD4cOH2bt3L8nJyd2unJfLEE9FxCICC9cTULodlz4Wh3mIr8MSQtyiNn8CtVS38XpWq7XZkWGic6hUKmbNmsW6des4f+E8M6YOpLIiiCsXakjqr0Ona/4KcLRFx5Q+FvZcrWBDWinPTo3tmKAUhYrIRahcNvTVlwjK+wdl8d/Fow3pmPULIYToUIGBgahUqhtGa1ut1htGgdcLDg7GZrM1esxms92wvMFgaEisDhgwgO9///vs2LGDxYsXd+AeiLYYNmwY/fr1IzIyEr1e7+tweh2TycTChQtJS0tj9+7d5ObmsnLlSmbMmMHgwYO71xRxH6qoqODdd9/F7XY3u4xarWbFihU9IvntdDpbLAei0+mIjOz4pmx33333Dcnq//iP/6C2trbZpDfAq6++yocffsirr75Kv3792LlzJ48++igff/wxQ4cO7fA4hegtDBoV3xkbxf/dXdfoclZyELGB7Wt0GRisJqmvjszLDs6cqGb6PA0qVdvORWPGjCEtLY2KigqOHTvGhAkT2hWTL9QEjvmq2eUBAvPXUZbwXWl2KUQ31ea5MC+++CK/+MUvmr394Ac/IDExkaKiIlQqFTNmzOiMuEUzoqOjSU1NBeDMub0EBILLCekXam/62iVDwgDYe62cgsob63reMkVNecwynLpo1O5KgnPfRnE3PyJHCCGE72g0GlJSUjhz5kzDYx6PhzNnzjBgwIAmXzNgwABOnz7d6LFTp07ddHqr1+vt1aUN/EFqaioJCQmS9PYhRVFITU1l2bJlxMTE4HQ62bZtG59++ilVVVW+Dq9bqK6ubjHpDeB2u1scEX6r6psB9+3bl9TUVB544IGGv9sPf/hDHnnkEV5//XWGDRvGwIED+f/+v/+vUf38+qbB/fr1IzU1lRUrVpCZmdnwfFZWFnFxcXz88cfcc889pKSk8OGHH5Kdnc23vvUthgwZQr9+/Zg1axbbt28H6kqdxMXFYbPZ2L9/P8888wzl5eXExcURFxfHa6+9xhtvvMHs2bNv2J+5c+fy6quvNrmvRqORyMjIhptarWbfvn0sXbq0xWP0wQcf8L3vfY85c+aQmJjIt771LWbPns1f/vKXth5uIcTXTIyva3Tp8nj529GCDpnJMHCoAa1OocLm4eqVtucF6hs6Q12Zu4qKinbH5AuV4XfiMCSj8tYSlPceiqf5huFCCP/VYUUErVYr77zzDt/73vfYvHkzkydP5o033uC73/1uR21CtNLkyZMxGAyUlJSgMl4GIP1iLbU1nhZflxJqYGSMGY8XPjpX2qExeVUGbLHfxq0OROMsIijvn+DtXvVZhRCit1i4cCHbt29n586dZGdn89Zbb1FbW8vMmTMBePPNN1m1alXD8gsWLODLL79k48aN5OTksG7dOq5cucLtt98OQE1NDatWreLixYsUFRWRnp7On//8Z0pLS5k0SRofCwF1dfHvueceJk+ejEqlIj09nZUrV5KRkeHr0Hyi/sJYa26trfnvcrlatb7WJo4KCgp4+umneeCBB9i5cyfr16/njjvuaPT6vXv3cunSJdavX8+f/vQnPv/8c15//fWG56uqqnj88cfZsmULa9euRaVS8eijj+LxNP7e/vLLL/Od73yHnTt3MnPmTJ5//nkcDgcffPAB27dv5/nnn8dsvrEe79ixY/nlL3+JxWLhxIkTnDhxgieffJIHHniAS5cucfLkyYZlz5w5w7lz53jggQdatf/vv/8+RqORO++8s8Xlamtrb7i4ZjAYOHz4cKu2I4RonqIoPD42Co1K4XheXaPL9tLpVQwaVlf69MLpGmprW84jNKV///7ExsbicrnYu3dvu2PyCUWNLfpB3JogNM4iAgveB2/bj4UQwrfaXWzJarXy0UcfsX37dlwuF9OmTeOee+4hKiqqI+ITt8BoNDJ58mR27NhB2rkjDOiTQFWlnivnaxky0tjia+8ZEsrJPDvbrthYOiycIEPH1ePyaIKwxn6bkOy/oKvJILBgPeVR90uXZCGE8DOTJ0+mvLycdevWYbVaSUpK4vnnn28oXVJcXNyoBMPAgQP5/ve/z5o1a1i9ejUxMTH86Ec/ok+fPkBdKa7c3Fxee+01KioqsFgs9O3bl1/+8pckJCT4YheF8EsqlYqxY8eSmJjI5s2bKS0tZePGjaSmpjJt2jR0uvZNYe9OXC4X//M//9Oh61y/fn2rlnvqqadaLCVSr76J7IIFC4iPr+thM3hw40buWq2W119/HaPRyMCBA3nuued46aWX+PGPf4xKpWpIGtc3dawfHX7x4kUGDRrUsJ5HH32UBQsWNNzPzc1lwYIFDdtLTExsMkadTofFYkFRlEblT8xmMzNnzmTt2rWMHDkSqKvhPXHixGbX9XVr1qxh0aJFGI0t/76YOXMmf/3rX5kwYQJJSUns3buXzz777IbkvhDi1sQG6lg8OJT3z5bw1tGOaXSZmKLj6pVayq0eLpyuYfhY081fdB1FUZg+fTpr1qzh0qVLDB8+nLi4uHbF5AtejQVb9HJCcv6K3p6GqewLqkLn+DosIUQb3HJW8+sJ7+nTp3PPPfd0Sj050XapqamcPXuWgoICKhzHUTOJjMu1pAzUYzA2fxIcFmWiX6iBy6U1fHKhrN0NMr7OrY/BFrOc4Nx3MFR+iVsbgj1sfoduQwghRPvdfvvtDSO2v+7FF1+84bFJkyY1O3pbp9O1uTm2EL1ZREQES5cu5cCBA5w4cYKzZ8+SlZXF/PnziYmJ8XV44itDhgxh6tSpzJkzhxkzZjBjxgzuvPPORv0NhgwZ0igxPGbMGOx2O7m5ucTHx5Oens7vfvc7Tpw4QWlpaUMyOCcnp1Hie8SIEY22/cgjj/CTn/yEXbt2MW3aNBYsWMCQIW1rvrZs2TKeffZZfvGLX6BSqdiwYUOTn+9NOXr0KJcuXeK///u/Gx7LyclpmBkE8L3vfY/vf//7/Nd//Rc/+tGPmDFjBoqikJiYyAMPPMDatWvbFK8Qonn3DQ1jZ4aNoioX758p4Zsj29noUlXX6HL/jkquXnGQ2FdHUEjb0keRkZEMHTqUM2fOsGvXLpYuXXpD0+zuwGVIuK7Z5bavml0OvvkLhRB+oc2J77KysoaEt9vtZsaMGSxZskQS3n5GURRmzZrFmjVruJZ1if6JfXHVRHL5XA1DRzd/tVZRFJakhvLqnlw+u1jGkiFhGLUde3JymvpTEbmYwMIPMJftxK0JoSZofIduQwghhOjNjEYjarX6ps3+bjZSU/iORqNh2rRpJCUlsXXrVsrLy1m/fj1jxoxhwoQJqNVqX4fYqTQaDU899VSrli0qKmrVaO57772XiIibJ4M0mtb9RFKr1axZs4ajR4+ya9cu3n77bV555RU++eSThhkvN/Ptb3+b+Ph4Xn/9dcLDw/F4PMyePfuG/gdf/7e6bNkyZsyYwfbt29m9ezdvvvkmL7zwAo888kirtgt19bx1Oh2bNm1Cq9XicrluWrak3urVq0lNTWX48OENj0VFRbFly5aG+/UXAMLCwvj73/9OTU0NZWVlREdH85vf/KbVx0gIcXP66xpdbjhXyuyU9je6DIvQENdHS841J6ePVzNldkCbmy5PnDiRixcvUlxcTFpaWrdtaFvX7DIbk+0ggQVrKYt/GreuYwcJCiE6R5sT39/73vdwOp0kJSWxePFiIiMjqayspLKy+VpSKSkp7QpS3JrIyEiGDRvG6dOnKSg7RKjhTq5ecdB3kAGjqflk9sR4C7EWLbkVTrZctvKNwaEdHltN4FjUzjLMZTuwFH2MRxOEwzyww7cjhBBC9EYWi4W77rqLjz76CJVKxeLFi28o3WA0GrFYLD6KULRWQkICy5cvZ9euXZw/f56jR49y9epV5s2bR1hYmK/D6zSKorSq3Ai0PlGt0Whavc7WUhSFcePGMW7cOP7jP/6D8ePH8/nnn/PEE08AkJaWRnV1dUPi+vjx45jNZmJjYyktLeXKlSv89re/ZerUqTidzjbVvY6Li2PFihWsWLGCl19+mVWrVjWZ+NbpdE1eBNNoNNx3332sXbsWrVbL3Xff3aqLYXa7nY0bN/KTn/zkhvUlJyc3+zqDwdDQwPWzzz5j4cKFrdhLIURrTYwPYHSMmeN5dv56tIBfzIpvc6L66waPMJKf46Ss2E3OVSfxSW1LpptMJiZOnMju3bvZv38//fr1w2AwtCsmX6kMvxNNbT66mkyC8v5JWcJ38aq6574I0Zu0OfFdP/ogMzOTN954o1WvkWlsvjNp0iQuX75MeXkZgaYLKJ7BXDxbw4hxzY/6VqsUFg0O48+H8/n4fCkLBoSgVbfvhNkUe+htqFxlGCtOEJi/Cmv8E7j0sR2+HSGEEKI3ys/PB6BPnz7dsq6m+De9Xs+8efNITk7miy++oKioiDVr1jB58mRGjhzZ7sSGuDXHjx9n7969zJgxg/DwcI4fP05paSn9+/dvWMbpdPLcc8/xgx/8gKysLF577TUefvhhVCoVwcHBhISE8N577xEbG8vVq1d5+eWXW7XtF154gdmzZ5OSkoLNZmPfvn3069evyWXj4+Ox2+3s2bOH1NRUjEZjQ4L7wQcfbChP8tFHH7Vq2//6179wu90sWbKkVcsfP36c/Px8UlNTyc/P57XXXsPj8fDd7363Va8XQrSOoig8NjaK732awYk8OwezK5mU0L4L3EaTiv5DDJw/XUPal9VEx2nRaNt2zqkfjFdWVsbhw4eZPn16u2LyGUWDLXoZoVlvNjS7tEUvl55lQvi5Nie+WzvlUPgHg8HAlClT2LZtG/nFJ4gJ7kNWBvQbrMcc0PwU2Vkpgaw6VURJlYs9V8uZnRLU8cEpChWRS1C7ytFVXyEo9x3K4r+LRxvc8dsSQgghepkrV64A0LdvXx9HIjpK//79iY2NZdu2bVy9epU9e/aQkZHB3Llze/XofV+V9rFYLBw6dIi33nqLyspK4uLiGhLS9aZOnUpycjJLlizB4XCwaNEinnnmGaCumemf//xnXnjhBWbMmEFKSgq/+tWvuPfee2+6bY/Hw09/+lPy8vIICAhg5syZzdbnHjduHA899BBPPfUUZWVlPPPMMzz77LNA3czcsWPHYrVaGT16dKv2e/Xq1dxxxx0EBbXu90FtbS2vvvoq165dw2QyMXv2bP77v/+71a8XQrRebKCOJUNCWXemhP/9qtGloZ2NLlMG6rmW7qDK7uHSuRoGD2/bZ6larWb69Ol8/PHHfPnll6SmpnbbGUtejQVbzHJCsuubXe6kKnT2zV8ohPAZxev1en0dhD8oKiq6oZZeZ1EUhZiYGPLy8uiKw+/1elm/fj15eXmEBiURZJhOQpKOkRNa7sy8/mwJ/zxZREKQjv++MxlVM6OJ2rs/iruakJy/oHEU4NJFURb3BF6172qOdvXfp7PJ/vivnrQvIPvTEq1W26q6sqJ1uvKc3VG6+t9HRUUFb7/9Noqi8J3vfAeTqeVzflfpaZ8Tt6q9x8Hr9XLmzBn27NmDy+VCp9Mxc+ZMBg4c2K1Gf19/HGw2G4GBgbe8roqKCqqrq5t93helfX74wx9SXl7O3//+95suq9VqffK55vV6mTp1KitWrGgoz+JLXXUcysvLm3y/yfm6Y3XH8/Wt8LdzW63Lw//5JJ1Cu4t7U8N4qJ2NLgHyc5wc2WtHpYIZt1sIsLS9z8TGjRvJyMggISGBRYsWNXm+8rdj2RxD+VECCz/Ai4ItZgUO86Cbv6iLdZdj2R3Isew4HXUs23K+ljkZvYCiKMycORNFUSi1ZVJdm0vWVQeV5c2PigG4vX8wRo2KLJuDoznN13BvL6/aiDXm27jVFjSOAoLyV4LX1WnbE0IIIXq69PR0AGJiYvwm6S06jqIoDBs2jGXLlhEVFYXD4WDLli1s2rSJmpoaX4fnExaLhcjIyGZvvXlEfHNKSkp4++23KSws5IEHHvB1OEKIDqLXqPjOmCgAPjpXSk65o93rjIrVEBGtweOBtJPNX2RsybRp01CpVGRlZZGRkdHumHypJnAsVYETUPASWLAWtaPY1yEJIZohie9eIiIioqHrurX6MF6Pm4tnW/5hFKBTc3v/YAA+TCvt1Pg82mBssd/Go+jQVV/BUvghyJU0IYQQ4pbUlzmRBuM9W3BwMPfddx8TJ05EpVJx6dIlVq5cydWrV30dmugGhg8fzhtvvMGrr75KcHCwr8MRQnSgCfEBjIk14/J4+evRgnaPUlUUhdRRRhQFCnJdFOS2fSR/cHAwo0aNAmiYsdSdVUYsxGFIROWpISj/nyieWl+HJIRogiS+e5GJEydiMpmoqS3HVpVGzjUn5daWR33fNSgEjUrhXFE15wqrOjU+lz6W8uhleFFhrDiBuXRbp25PCCGE6Imqq6vJyckBJPHdG6hUKsaPH899991HSEgIdrudjz/+mJ07d/aKEgP+7Pe//32rypz4Sk5ODqdPn2bx4sW+DkUI0cHqG11qVAon8+wczGr/DG5LoJqUAXoAzp6oxuNuezJ93LhxmM1mbDYbJ0+ebHdMPqVoKI9ejlsdiMZRiKXgfRm8J4QfksR3L6LX65k6dSoANvspnO5KLtxk1HeYScvM5Lr6dx908qhvAId5IBUR3wDAXLYDQ/nRTt+mEEII0ZNkZmbi9XoJCwuTUZy9SFRUFEuXLmXEiBEAnDp1itWrV5Ofn+/jyIQQQvhCjKWu0SXAW8cKqHF52r3O/qkG9AYFe6WH9EttH+Gs0+mYPHkyAEeOHKGysvNKqnYFz1fNLr2oMdjPYirb6euQhBBfI4nvXmbgwIHExsbi8boprThKfrYTa2nLU4wWDwlFAY7kVHLN2vnTd2qCxmMPmQmApXAD2qpLnb5NIYQQoqeor+/dt29fH0ciuppWq2XGjBksWrQIs9mM1Wrl/fff5+DBg7jdLc/yE0II0fPcmxpGpFlDcZWL98+UtHt9Wq3C4OFGAC6eraGmuu3J9EGDBhEVFYXT6WT//v3tjsnXXIY+/x68V7oVnf28jyMSQlxPEt+9jKIozJo1C0VRqKq9RlVtDhfOtDzqOz5Qz4SEAAA2nGv/ybI17KHzqAkYgYKHoLyVqGvzumS7QgghRHfmdDob6jtLmZPeq0+fPixfvpwBAwbg9Xo5fPgw69evp6yszNehCSGE6EJ6jYpHGxpdlnRIo8v4JC3BoWrcLjh3qu2NLhVFYcaMGQCcP3++R8xMqgkaR3XgeGl2KYQfksR3LxQWFsbIkSMBKKk4TH5uLWXFLY/6XjIkDIBdGeUU2bugXqSiUB51Lw5DMipvLcG576By2Tp/u0IIIUQ3du3aNVwuFxaLhYiICF+HI3zIYDBw++23M3/+fPR6PQUFBaxevZovv/yy3U3OhBBCdB/jGxpd0mGNLoeNrhv1nZ3ppPQmuYSmREdHM3jwYAB27drVI85LFRF3Xdfs8j1pdimEn5DEdy81YcIEzGYzLncFNvsZzt9k1PfAcCNDI424vfCv851f6xsARYMt5iFc2kjU7nKCct9B8bQcpxBCCNGbXV/mRFEUH0cj/MHAgQNZtmwZCQkJuFwudu3axccff9zt66oKIYRona83ujyQVdHudQaHaUhI1gFw5nj1LSWuJ0+ejFarpaCggHPnzrU7Jp9TNJRHL8OttqBxFGApWC/NLoXwA5L47qV0Oh3Tpk0DwGY/Q15OGSWFrRv1veWylYrarqkT6VUbscZ+G7c6AK0jn8C8VeCVGpVCCCHE13k8HjIyMgApcyIas1gsLFq0iBkzZqBWq7l27RorV67k4sWLvg5NCNEFNm3axNNPP83y5ct5/vnnuXz5cqtet2/fPu6//35effXVTo5QdLbrG13+77HCDml0OXi4AY0WbGVusjLaXkLFbDYzfvx4APbv309tbfcfIe3RBGKLrm92eQZT2S5fhyREryeJ716sf//+xMfH48VNScURzp9p+Urt6FgzScF6alxePr/YdTUiPdoQbDHfwqto0VdfwlL4kVw5FUIIIb4mNzeXmpoaDAYDsbGxvg5H+BlFURgxYgQPPvggkZGR1NbWsmnTJjZv3twjkg3i3/bv309cXBw2m5QJFHXvh3fffZd7772XV155hcTERH7961/f9P1RWFjIP//5z4ZyFKL7q2t0qe2wRpd6g4oBqQYAzp2qweloezJ9xIgRBAUFUVVVxdGjR9sdkz9wGROpiLgbAHPpFnT2Cz6OSIjeTRLfvZiiKMycOROVSkW1I5usrEyKC5of9a0oSsNV4k8ulFHbAVeJW8tliMcW/SBeFIwVRzGVfdFl2xZCCCG6g/oyJ8nJyahU8hVPNC00NJT77ruP8ePHoygKFy5cYOXKlWRlZfk6tHZROa1oanKavamcVl+H2GXGjh3LiRMnCAwMBGDt2rUdlrz8+c9/zu23305ycjJz585tcpm0tDQWL15MSkoKY8eO5c9//vNN1/uPf/yD2267jZSUFAYOHMhdd93Fjh07Gi1TU1PD888/T2pqKv379+exxx6jqKioQ/arJ/vkk0+YM2cOs2bNIj4+nsceewydTscXXzT/e8rj8fDHP/6R+++/n8jIyC6MVnQmvUbFo2Pr/p4fnSshu7z9Fz2T++sJCFThqPVy4SblU5ui0WiYPn06ACdOnODs2bO8/vrrXLt2rd2x+VJN0Pjrml2uQe1s/4UGIcStkV9FvVxoaCijRo0CoLTiMGlfVrY46ntqYiCRZi22Wjfb07t2FInDPJjKiLsACCjdiqH8eJduXwghhPBXXq+XK1euAFLmRNycWq1m4sSJ3HvvvQQFBVFZWcmGDRvYvXs3Llfbm5T5msppJezaa4Rmv9nsLezaaz0m+e10ttxoXqfTERkZ2Wl1/pcuXcpdd93V5HMVFRUsW7aM+Ph4Pv/8c37+85/z2muv8d5777W4zpiYGH7yk5+wbds2PvvsM6ZMmcIjjzzChQv/Hin54osvsnXrVv7yl7/wwQcfkJ+fz6OPPtqh+9bTuFwu0tPTGTZsWMNjKpWKYcOGtVjqaP369QQGBjJ79uxWbcfpdFJVVdVwq66ubnhOUZRecesu+zoh3sLYrxpd/u1oYbvjVqtVDB1tAiDzsoOKck+b15GcnExiYiIej4fdu3dTWFjI/v37u80xbe5WGXE3TkOfumaXef9E8Tq6PIbufgz96SbH0r+OZVto2rS06JHGjx/P+fMXsNsruZp9ksK8qUTFaptcVq1SWDQ4lL8eLeCjc6XM7xeMRt11zbOqgyahcloxW3djKfwQtyYIp6lvl21fCCGE8EfFxcVUVFSg0Wjo06ePr8MR3URMTAzLli1j7969nD59mpMnT3Lt2jXmzZvXrUZ5qtx2FG/LCXvF60LltuPRBnfotj/55BPeeOMNMjMzMRgMDB06lLfffhuTycQPf/hDysvLGx5zOBwsWrSIX/3qV+h0dU3hvvjiC/7whz9w4cIFVCoVY8aM4b/+679ISkoCICsri4kTJ/LnP/+Zd999lxMnTvDyyy8zZcoUfvrTn3LkyBEcDgcJCQn87Gc/Y86cOezfv5/77ruPtLQ0zp49yzPPPANAXFwcAM888wwqlYqNGzfeMKp67ty5zJ07lx//+MdN7u+vfvUrAEpKSppsRvfhhx/idDp57bXX0Ol0DBw4kLNnz/LXv/6Vb37zm80ex3nz5gGg1WpxOp3853/+J//85z85fvw4AwcOpLy8nDVr1vDmm28ydepUAN544w1mzJjBsWPHGDNmTGv/ZL1KeXk5Ho+H4ODgRo8HBweTm5vb5GvOnz/Pjh072lTXe8OGDaxfv77hfnJyMq+88goRERG3FHd3FR0d7esQWuWnC4J54O3DnMyzc75Cw+yB7fu8j4mB/KwsMq9UcOmMmzvviWtzYuqee+7hjTfewOGoqxVeUFBAZWUlAwYMaFdsvuYNfwb3iV+gcRQQafsE1eCn23xs2qu7vC+7AzmWHacrj6UkvgVarZYZM6bz2WefYbWf5ctj/Zkb0/zJ6ra+Qaw5XUxBpZN91yqYkRzUpfHaw+ajdpVhqDxNUP57lMU9iVsf1aUxCCGEEP6kfrR3nz590GqbvngtRFO0Wi2zZs0iOTmZbdu2UVpayrp165gwYQJjxozxXdkcrxe8LY9s/veybVjO04oGbIoWWpGYKCgo4Omnn+anP/0pd9xxB5WVlRw6dKjR7Mm9e/ei1+tZv349WVlZPPPMM4SEhPCf//mfAFRVVfH4448zbNgwbDYbv/vd73j00UfZsmVLo2P/8ssv88ILLzB06FD0ej0/+tGPcDqdfPDBB5hMJi5evIjZbL4hxrFjx/LLX/6S3/3ud+zevRuoayhns9l4/fXXOXnyJCNHjgTgzJkznDt3jrfeeuvmx6gZx44dY8KECQ2JfYAZM2bwpz/9CavVekMCtilut5tPPvmEqqqqhoT2qVOncDqdTJs2rWG5fv36ERcXJ4nvDlRdXc0f//hHnnjiiYZSOa2xePFiFi5c2HC//ndkUVFRt5xF0laKohAdHU1+fn6Ls6f9hRpYMiSUNaeL+e228ySbnBg07fus7ztY4VoG5GTZOX7kGrEJupu/6DperxeDwdAwW0BRFD799FMCAgK6PFHc0TSRDxKc/TcoPoItbQ3VoTO7ZLvd7X3pz+RYdpyOOpYajabVF1cl8S0A6Nu3L/HxfcjOvsbVnIPkZd9FbIK+yWX1GhV3Dgxh9aliPkwrYXpS678UdQhFRXnkfahcFehqMgnOe4ey+KfwaLo4DiGEEMJP1Nf37ttXZkGJW5OUlMTy5cvZsWMHV65c4cCBA2RkZDBv3rxWJSs7nNdJZPovOnSVoTl/adVyhSm/BOXmSZvCwkJcLhcLFiwgPj4e4IZa2lqtltdffx2j0cjAgQN57rnneOmll/jxj3+MSqXizjvvbFjO6XTy+uuvN5ShGDRoUMN6Hn30URYsWNBwPzc3lwULFjRsLzExsckYdTodFosFRVEajeI3m83MnDmTtWvXNiS+165dy8SJE5tdV2sUFRWRkJDQ6LH6H6ZFRUUtvpfOnTvH3XffTW1tLWazmbfeeqthtGdRURE6nY6goMYDbiIiIqTOdwsCAwNRqVRYrdZGjzd3EaKgoICioiJeeeWVhsfqExNLly7l97//fZOj9LRabbMXXXtTksjr9Xab/V0yJJQd6TYK7U7Wnipixaj2jfo2mVX0HaTnUlotZ09UERmtQa1pfcL66tWrjUrkeL1eCgoKuHr1ars+k/yB05BIRcRdBBZ9hLlkMy5dDA5z141k707vS38nx7LjdOWxlBrfAqi76jJ79kwURUW1I5cjBy/i9TT/JlwwIAS9WiGjrJYNaSVsPpfP6Xw77hZe06FUWmwx38SlDUftshKU9w8UT/ubcwghhBDdjc1mo7i4GEVRGsojCHErjEYjCxYsYO7cueh0OvLz81m9ejVnzpyRH3pNGDJkCFOnTmXOnDk8/vjjrFy58oYE45AhQzAajQ33x4wZg91ubygzkZ6ezne/+13Gjh3LwIEDmTBhAgA5OTmN1jNixIhG9x955BH+8Ic/8I1vfIPf/e53pKWltTn+ZcuW8fHHH1NTU4PD4WDDhg0sXbq0zetpi0OHDtG/f/+G24cfftjwXN++fdmxYweffPIJK1as4Ic//GGLdajFzWk0GlJSUjhz5kzDYx6PhzNnzjRZQiI2Npbf/e53vPrqqw23MWPGkJqayquvvkp4eHhXhi860fWNLj8+X9ohjS77DTZgMClUV3m5cqH16/N6vRw4cKDJkd0HDhzoEeefmsDxVAeOk2aXQviAX4743rRpExs3bsRqtZKYmMgjjzxCv379mlz20KFDbNiwgfz8fNxuN9HR0dx1110NnYFF6wUHBzN61GiOHT9KdsEhrmWkkNj3ximTAIF6NcOiTBzNtfPOiSI4UTfSIsyk4bExUUzqY+n0eL1qM7bYbxOS/T9oa3MJzF+NLeYhUNSdvm0hhBDCX9SP9o6Li2uUYBPiViiKwuDBg4mLi2Pr1q3k5OSwY8cO0tPTmTNnTpPlNDonEG3dyOtW0NTmtmo0d2ncE7j0sa3admuo1WrWrFnD0aNH2bVrF2+//TavvPIKn3zySatr7X/7298mPj6e119/nfDwcDweD7Nnz76hgeXX/20vW7aMGTNmsH37dnbv3s2bb77JCy+8wCOPPNKq7QINFzg2bdqEVqvF5XI1jEC/VRERERQXFzd6rH5EdkREBPHx8WzZsqXR8vV0Oh0pKSk4nU6GDx/OyZMneeutt3j11VeJiIjA4XBgs9kajfouKirqdXWk22rhwoX86U9/IiUlhX79+vHZZ59RW1vLzJkzAXjzzTcJDQ1l2bJl6HS6G9679f/mpX9EzzM+LoCxsWaO5tr525ECXpyd0K6yIhqNQuoII8cOVHHpXA3xSTpM5puPtbx27RqFhYVNPldYWMi1a9e6/ahvFIWKiLvR1Oajrc0iKO89SuOfAlXbSsIIIdrO70Z879+/n3fffZd7772XV155hcTERH79619js9maXD4gIIAlS5bw0ksv8dvf/pZZs2bx5z//mZMnT3Zt4D3E+AnjMBosuD1V7Nt3GE8zI7gPXKvgaK79hsdLqlz83z05HLhW0dmhAuDWhmGNWYFX0aKvuoCl6F91NSGFEEKIXqK+vndKSoqPIxE9SWBgIEuWLGHq1KmoVCoyMzNZuXJlw/ut0ylKXUKgNbdWJqpRtK1cX+sTP4qiMG7cOJ577jk2b96MVqvl888/b3g+LS2t0fT948ePYzabiY2NpbS0lCtXrvCDH/yA6dOn079//2Z/8zQlLi6OFStW8NZbb/HEE0+watWqJpfT6XS43e4bHtdoNNx3332sXbuWtWvXcvfdd7f74tmYMWM4dOhQo8T97t276du3L8HBwRiNRpKTkxtuAQEBza7L4/E0NLobPnw4Wq2WvXv3Njx/+fJlcnJypL73TUyePJmHHnqIdevW8eMf/5jMzEyef/75hlInxcXFlJWV+TZI4ROKovDo2Ci0KoWT+VXsz2r/b/iYBC1hEWo8bkj7svqmy9eP9m5JTxn1jaLBFrMctzoAjSOfwML1krsQogv43YjvTz75hDlz5jBr1iwAHnvsMY4fP84XX3zBokWLblg+NTW10f0FCxawa9cuzp8/31CvTrSeVqtl5szpfL7pU4qtZzl/ZghDhjduHOn2ePnbsYIW1/PWsQLGxwegVnV+IwqXoQ+2qAcIyl+Jsfwwbm0IVSEzO327QgghhK9VVVWRl5cHSOJbdDxFURg9ejR9+vRhy5YtFBcX8+mnnzJ48GCmT5+OXt90P5je4vjx4+zdu5cZM2YQHh7O8ePHKS0tpX///g3LOJ1OnnvuOX7wgx+QlZXFa6+9xsMPP4xKpSI4OJiQkBDee+89YmNjuXr1Ki+//HKrtv3CCy8we/ZsUlJSsNls7Nu3r9kZsvHx8djtdvbs2UNqaipGo7Ehwf3ggw82jPz96KOPbrrdjIwM7HY7hYWF1NTUNJTQGDBgADqdjsWLF/PGG2/w7LPP8vTTT3P+/Hn+93//lxdffLHF9b788svMmjWLxMRErFYrH330EQcOHGhI5gcGBrJ06VJ++ctfEhwcjMVi4Wc/+xljxoyRxHcr3H777dx+++1NPnezv83TTz/dCREJfxFj0XFPaihrTpfwv8cKGR0TgFF76+MjFUVh6GgTu7ZUkJflpLjASXhU8xcn3W43lZWVLa7TarXidrvRaPwufdVmHk0Q5dHLCc75G4bK07j08VSFSLUCITqTX31yuFwu0tPTGyW4VSpVQ4OXm/F6vZw5c4bc3FyWL1/e5DJOp7PRCARFURq++HVVt+D67fhrd+IBA/tx7GgfCouvceDQbgYNvRe1+t8nv3NFVZRUtdydu7jKxbmiaoZFd810WKdlKHb3QgKKNhJQshmPNoRay8hbWpe//33aSvbHf/WkfQHZHyF8ISMjA6/XS0REBIGB0uRZdI7w8HDuv/9+Dh06xLFjxzh37hzZ2dnMmzePuLg4X4eHR23Gq2hQvM1/P/UqGjzqjv1earFYOHToEG+99RaVlZXExcU1JKTrTZ06leTkZJYsWYLD4WDRokU888wzQN3vnD//+c+88MILzJgxg5SUFH71q19x77333nTbHo+Hn/70p+Tl5REQEMDMmTObTWCOGzeOhx56iKeeeoqysjKeeeYZnn32WaDugtnYsWOxWq2MHj36ptv90Y9+1Gh05vz58wE4ePAgCQkJBAYGsmrVKn76059yxx13EBISwn/8x3/wzW9+s8X1FhcX84Mf/IDCwkIsFguDBw9m1apVjcpXvvjii6hUKh5//PGGUh2/+c1vbhqzEKJlS4aE8UVGOQWVTtadKeZb7Wx0GRisJqmvjszLDs6cqGb6PA2qZgbEaTQaHnjggYaZMYqiEB4eTnFxMWfPnuXUqVN4PB7sdvsNzW27K6cxicqIu7AUfYy5ZBNOfQxOU/+bv1AIcUsUrx/NGSktLeXJJ5/kpZdeatRs47333iMtLa3ZLzZVVVU88cQTuFwuVCoV3/nOdxp94bzeunXrWL9+fcP95OTkRl2rRZ2CgmJ+//s38HrdTJtyN3feNbnhuc3n8vnZJzdvoPPSwiHMH3xj1+/O5L6yCm/OZlA0qIf9CCV4UJduXwghROcrKiq6of6tv1MUhZiYGPLy8jp0uu7GjRvJyMhg4sSJjB8/vsPW21k66zh0N935OOTk5LB161bKy8sBGD16NBMnTrylkXjXHwebzdauizcqpxWV+8YyfPU8ajMebfAtr/9W/PCHP6S8vJy///3vN11Wq9X65HPN6/UydepUVqxYwRNPPNHl2/+6rjoO5eXlTb7ftFqt1AzvQN3xfH0ruvNner3D2RX8elcOGhX8YUEy8UHtm9HjqPWw47MKnA4vQ0cbSe7fuvVdfyzdbjcffvghubm5xMTEcM8996BS+V213lvj9WIp/BBjxVE8KiOlCf8Hjza0QzfRE96X/kKOZcfpqGPZlvO1X434vlUGg4Hf/va31NTUcPr0ad59912ioqJuKIMCsHjxYhYuXNhwv34kX1FRES5Xy6OYO4qiKERHR5Ofn+/X/2gG9B3FhctHOXBwK4NTYzEa605WSk3zPyqup9RUNky/7jLGGQSas9Hbz+I883usCU/h1rXtinV3+fu0luyP/+pJ+wKyPy3RaDTyQ1p0OIfDwbVr1wApcyK6TlxcHMuWLWP37t2kpaVx/Phxrl69yvz58wkPD/dZXB5tcJcntru7kpISPv74YwoLC3nggQd8HY4QwofGx1sYF2fmSI6dvx4t4JftbHSp06sYNMzA6WPVXDhdQ2wfLXp925LWKpWKefPmsXLlSvLy8jh69Gi3uMjfKvXNLh35aGuzCcr7J2XS7FKITuFXl8sCAwNRqVRYrdZGj1ut1obmG01RqVRER0eTlJTEXXfdxcSJE5utUafVajGZTA236xu4eL3eLrt19fZu5TZzzji0GgsudzXbtuxveHxwhJEwU8vXTMJNGgZHGLs+bhRsUQ/g1Ceg8lQTlPM2OMt75N9H9sf3cci+yP60ZT1CdLRr167hdrsJDAwkLCzM1+GIXkSn03Hbbbdx5513YjQaKSkpYc2aNRw7dgyPx+Pr8EQrDR8+nDfeeINXX321xd9aQoje4dExdY0uv8yvYv+19je6TEzRERiswun0cuF0zS2tIzAwsKEPwaFDhygoaLnXWLei0mKL+SYedQBaRz6BhR9Is0shOoFfJb41Gg0pKSkNTVKgrn7dmTNnGpU+uRmPx9MrplR1Nr1ey+iRUwFIzzxNQUExAGqVwmNjolp6KY+OieqSxpZNUmmxxq7ApQ1F7SojOO8f4HH4JhYhhBCik1y5cgWAvn37Si164RN9+/Zl+fLlJCcn4/F42LdvHx9++GFDGZTe7ve//32rypz4Sk5ODqdPn2bx4sW+DkUI4Qeiv2p0CfC/xwqpdrbvQqaiqmt0CXD1igNb2a3NsB80aBD9+/fH6/WyefPmHpXr8WiCsEUvw4sKQ+UpjNa9vg5JiB7HrxLfAAsXLmT79u3s3LmT7Oxs3nrrrYbmJQBvvvlmQ3dvgA0bNnDq1CkKCgrIzs5m48aN7Nmzh2nTpvloD3qWcRP6YTH1Abxs3fJFw8jFSX0s/Oe0uCZHfitAZEDznZu7glcdgC3mYTwqE9raHILy14BXRiAJIYToGdxuN5mZmUBd8lEIXzGZTCxcuJA5c+ag1WrJzc1l5cqVpKWlyYwXIYToZpYMCSMqQEtJtYt1Z4rbvb6wCA1xfepyA6ePV9/SeUFRFGbNmoXZbMZqtbJ3b89KDjuNyVSG15XjDSj5HG3VZR9HJETP4nc1vidPnkx5eTnr1q3DarWSlJTE888/3zD9rri4uNGoptraWt566y1KSkrQ6XTExcXxve99j8mTJzezBdEWKrXCpIlT2bpjLaVleZxLu8CQ1LqGkZP6WBgfH8C5omq8hgCUmko+v1jK3muV/L/D+bwyPxGVD0eguXXhWGNWEJL7FvqqcwQUb6Qy/G6QUXFCCCG6uZycHGprazEajURHd20jaSG+TlEUUlNTiY+PZ8uWLeTl5bFt2zYyMjKYNWsWJpPJ1yEKIYRoBb1GxWNjonhpVzYfnytldkoQCe1sdDl4hJH8HCdlxW5yrjqJT2p7HWuDwcC8efPYsGEDp0+fJikpieTk5HbF5U+qgyaiqc3BWHGMoPxVndLsUojeyu8S3wC33347t99+e5PPvfjii43uL126lKVLl3ZBVL3XgCFhnDw5gsLS4+zes4e+/ZLR6+tOfmqVwrBoMzEx0eTl5RFj0XI0t4qLJTVsv2Jjbr9gn8buMiZSHnU/gfmrMdkO4taEUh0iswGEEEJ0b+np6QAkJyejUvndBD7RSwUFBXHPPfdw/PhxDh48yJUrV8jLy2POnDmtSlB4PB55P4tOJ3XohWjZuPgAxsUFcCSnkr8eLeC/2tno0mhS0X+IgfOna0j7sproOC0abdvXl5CQwMiRIzl58iTbtm1j+fLlPefCqqJQEfGNr5pd5hCU9x5l8U9Ks0shOoB8sxQ3pVIpTJo8Bq06EIejmv37Dza7bJhJy7Lh4QD842QRFbXurgqzWbUBw6gMuwMAS8ln6CtP+zgiIYQQ4tZ5vd5G9b2F8CcqlYqxY8fywAMPEBoaSlVVFRs3bmTHjh04HM33XDGZTFRUVEhSUnQqj8dDRUVFz0mWCdFJHh0TiValcCq/in0d0OgyZaAek1lFbY2XS+durdEl1FUICAsLo7q6mm3btvWskloqLbbo+maXeQQWfijNLoXoAH454lv4nz5JBuKiJpKZu4XTp08xdOgQIiIimlz2zoEhbLti5ZrNwT9PFvHdCb6fgl0dPBW1qwyT7QCBBeuwqi04jUm+DksIIYRos8LCQux2O1qtloSEBF+HI0STIiIiWLp0KQcOHODEiROcOXOGrKws5s2bR0xMzA3LazQazGYzlZWVPojW93Q6XYsXBnqLrjgOZrMZjUZ+BgvRkmiLjntTw1h9upi/HytkTGwARu2tj5tUqxVSRxk5stdO+oVaEpJ1BFjUbV6PRqNh/vz5rFmzhszMTM6cOcOwYcNuOS5/49EGY4teRnDOWxgqv8Spj5MZ60K0k5zxRasoKoWxE1Io+iwRe+1VvvhiJ/fdd2+TU540KoUnxkXz023X2HLZytx+QfQPM/og6usoCpXhC1G7rOjt5wjK+ydl8U/i1jWdvBdCCCH8Vf1o78TEREneCL+m0WiYNm0aSUlJbN26FZvNxvr16xkzZgwTJky44f2r0WgIDAz0UbS+oygKMTEx5OXl9azRi20kx0EI/7J4SChfZNjIr3Sy7kwx3xoV2a71RcVqiIjWUJTvIu1kNeOnBdzSesLDw5k8eTJ79+5lz549xMfHExIS0q7Y/Elds8s7sRRvJKDkc1z6WJwmmeEnxK2SUiei1WLitfSJm4CiaMjPz+PcuXPNLjs0ysTMpEC8wP87XIDb4wdfXhUVtqilOPXxqDxVBOe+g+LunaOKhBBCdF/19b1TUlJ8HIkQrZOQkMDy5csZNGgQXq+Xo0ePsm7dOkpKSnwdmhBCiGboNSoeGxsFwMfnSsmy1bZrfYqiMHSUEUWBglwXBbnOW17XqFGjiI+Px+VysWXLFtxu35dY7UjVQZOotoxCwUtQ/ipUzjJfhyREtyWJb9FqiqIwbFQYwebhAOzdu4+amubrc317dCQmrYrLpTVsvWLtoihvQqXDGrMCtyYEtauU4Nx3wSPTSoUQQnQPZWVllJaWolKpWtUsUAh/odfrmTdvHnfccQcGg4GioiJWr17N3r17ZXSvEEL4qbFxdY0u3V7465GCdn9eBwSqSRmgB+DsiWo87ltbn6IozJ07F71eT0FBAUeOHGlXXH5HUaiIWIxTH4fKU0VQ/nuStxDiFkniW7RJVKyGPvFD0aqDqKmpZv/+/WRnZ3Py5Emys7MbNSQKMWoaGl3+82QR5TUuX4XdiFdjwRr7MB6VEW1tFoEF68ArjZSEEEL4v/rR3nFxcej1eh9HI0Tb9e/fn+XLl5OYmIjb7eaTTz7hww8/pKKi/c3ThBBCdLzHxkaiUyucKuiYRpf9Uw3oDQr2Sg/pl259FLnFYmHWrFkAHDlyhLy8vHbH5lcaml2a0dbmEli4QZpdCnELJPEt2kRRFAYPNxMWOAGAM2fO8MEHH7BmzRo++OAD3nnnHS5fvtyw/IIBISQF66l0eHj3ZJGvwr6BWxeBLeYhvKgx2M8SUPyZr0MSQgghbqq+vnffvlLrUXRfZrOZu+++m1mzZqHVasnOzmblypVcuHBBRn8LIYSfiQrQcU9qGAD/e6yQKmf7yopotQqDh9f1ALt4toaa6lsfhDZgwAAGDhyI1+tl8+bNPa5JsEcbjC1qGV5UGCpPYrTt83VIQnQ7kvgWbRYRpcEU0HQ9rsrKSj777LOG5LdapfDEuLq6YFuv2LhQXN1lcd6M05hMedR9AJhs+zBa5SQihBDCf9ntdvLz8wGp7y26P0VRGD58ON///veJiorC4XCwefNmNm3a1GIpPSGEEF1vyZBQogO0lFa7WHe6/f0Z4pO0BIeqcbvg3Kn25QhmzpyJxWKhvLyc3bt3tzs2f+M0pVAZvgCAgOLP0VZd8XFEQnQvkvgWbeb1eskvPtziMrt3724oezIk0sTslEAA/nIk3z8aXX6l1jKCyrDbAQgo/hRd5VkfRySEEEI0LSMjA4CoqCgCAgJ8HI0QHSMiIoL777+fiRMnoigKly5dYuXKlVy9etXXoQkhhPiKTv3vRpf/Ol/KtQ5odDlsdN2o7+xMJ6XFt14Wtb6HBEBaWlqjGeg9RXXQ5K+aXXoIyl8tzS6FaANJfIs2y83Npara3uIylZWV5ObmNtz/1shIzFoVV0pr2XzZ2skRtk1V8HSqAifUdUwuWIOm+pqvQxJCCCFuUF/mREZ7i55GpVIxfvx47r//fkJCQrDb7Xz88cfs3LkTp7PpWYZCCCG61ti4AMbH1zW6/FsHNLoMDtOQkKwD4Mzx6natLy4ujjFjxgCwY8cOKisr2xWb32lodhmLymP/qtmlnB+FaA1JfIs2s9tbTno3tVywUcPyEREAvPdlEVY/aXQJgKJQGXEXtaaBKF4XQXn/wFtd4OuohBBCiAa1tbVkZWUBUt9b9FxRUVEsXbqUESNGAHDq1ClWr15NQYF8LxNCCH/w6Jh/N7rce7X9jS4HDzeg0YKtzE1WRvvqc0+cOJGIiAhqamrYtm1bz+sZUd/sUlXX7NJSJM0uhWgNSXyLNjMZTbe03O39g0kJ0WN3eHj3hP80ugRAUVMe/WDdFVS3HfeZ11DcrUvwCyGEEJ3t6tWreDweQkJCCA0N9XU4QnQarVbLjBkzWLRoEWazGavVyrp16zh06BBud/saqgkhhGifqAAd937V6PLvx9vf6FJvUDEg1QDAuVM15GU7WPuPyxTlt300s1qtZv78+ajVaq5du8apU6faFZs/8mhDsEU/iBcVxooTGG37fR2SEH5PEt+izfS6SNSqlpPfapUJvS7ya48pPDEuGoDt6TbOFVZ1Woy3wqvSY4v5Fm5NMFQXEJT7rkwfEkII4RfS09MBKXMieo8+ffqwfPlyBgwYgNfr5dChQ6xfv56yMqlrKoQQvrT4ukaXazug0WVyfz0BgSoctV6+PFKFtdTBuVO3VvokNDSUqVOnArB3715KStofn79xmvpSGX4HAAHFn6GtSvdxREL4N0l8izZz1iqEWca1uExowFictcoNjw+KMHJb3yAA/nK0wK8aXQJ4NIHYYh8GtQltzVUCC98Hr8fXYQkhhOjFXC5XQ2NLSXyL3sRgMHD77bczf/589Ho9BQUFrF69mlOnTvW8KexCCNFNXN/ocmMHNLpUqRSGjqprdOmorftst5a6Kcq/tfKow4cPJzExEbfbzebNm3vkbKHqoCnUBIysa3ZZsAqV0+rrkITwW5L4Fm2mNyqYDYlEBs1oduS3021Db7wx8Q2wYmQEAToVGWW1fH7J/0btuPVRqFK/jxc1hsrTmEs2+TokIYQQvVh2djZOpxOz2Ux0dLSvwxGiyw0cOJBly5aRkJCAy+Vi586dfPzxxz2veZlotYqKCgoLC5u9VVS0v/awEKJ5Y+MCmPBVo8u/dkCjy/AoDRrtdQ8ocP50zS2tV1EUbrvtNgwGA8XFxRw8eLBdsfklRaE8cjFOXQwqtzS7FKIlGl8HILqfsHANBqMCJGLSJ1DjLMTtrkatNuJy2Smu2IfVfgqnewAQc8Prgwwavjkigv93pICVXxYztU8gwUb/eiuqggdjjbqXwIK1mK178GhCqA6e5OuwhBBC9ELXlzlRlKYvKgvR01ksFhYtWsSXX37Jvn37uHbtGqtWrWLWrFn079/f1+GJLlRRUcG7777b4ihOtVrNihUrsFgsXRiZEL3Ld8ZEciLPzumCKvZcrWB6UuAtr6so34Xr+rytt67hZVG+i8gYbbOva47ZbGbOnDl8+umnHDt2jMTEROLj4285Pr+k0mGLeYjQrDfR1uZgKfqIish7Qb4rCtGIjPgWbaaoFIaOrpuKpCgqjLpoAozJX/03BbM+CfCydetWnM6mrzrO6xdM31ADVU4Pb58o7Lrg26A2cBSVofMACCjeiM5+zscRCSGE6G28Xq/U9xbiK4qiMHLkSB588EEiIiKoqanh888/Z/PmzdTWtm+qveg+qqurb1q6wO12U11d3UURCdE7Xd/o8u12NLr0er2cP10DTeRrb3XUN0Dfvn0ZMmQIAFu3bu2R54l/N7tUMFYcx2g74OuQhPA7kvgWtyQmXsfYKaavRn7/m96gIjxoAmqVCavVyt69e5t8vVql8OS4KBRgZ0Y5Zwv8q9FlvaqQmVQHjkPBS1D+ajQ12b4OSQghRC+Sn59PVVUVOp2u541UEuIWhYaGcv/99zNu3DgUReHChQusXLmSrKwsX4cmhBC9Skc0uizKd2Erc0MT+e36Ud+3avr06QQGBlJRUcHOnTtveT3+zGnqR2VYfbPLT9FWZ/g4IiH8iyS+xS2Liddx28JAJs8KYM4dcUyeFcC8uwMZMzGEiMDJAJw+fZrMzMwmXz8g3Mi8fsEA/OVIAS4/a3QJgKJQEfENak39UbxOgvP+gcpZ6uuohBBC9BL1o72TkpJQq9U+jkYI/6FWq5k0aRL33nsvQUFBVFZWsmHDBnbv3o3LdetJEuHfvF5vjxy1KUR3pVOrePz6RpfWtv37bBjt3YLTx6puedS3Tqdj/vz5DRdJL1y4cEvr8XfVwVOpCRhR1+wyfyUqpxVt1SVcR3+CtuqSr8MTwqck8S3aRVEphEdp6TcoiPAoLYpKIT5Jx4jRyQSaBgOwZctWqqqaHtH9zZERWHQqrtpq+eyi/zW6BEBRUx69/KvGEZUE576D4rKjrUpHX3ESbVU6eD2+jlIIIUQP4/V6uXLlCiBlToRoTkxMDA8++CBDhw4F4OTJk6xZs4bCQv8spSduzuv1UllZSXZ2NmfPnmX//v189tlnrF69mr/85S9s2LDB1yEKIa4z5rpGl3852rZGlx4PVFe1/Fu6yu6lqODWGzfGxMQwbtw4AL744oue2fxWUSiPXPLvZpd572Eu3gRVuZiLN0M7m48K0Z35V0dB0WMMSDVQbhvP0ZO51NTY2LJlO9/4xsIbmnIF6tWsGBXJnw7ls+rLYqb0sRBmanvzis7mVemxxX6LkOz/QeMsIjzzZRT+XcPMrQ6iMmIhtQFDfRilEEKInqSsrAyr1YpKpSIxMdHX4Qjht3Q6HbNnzyY5OZnt27dTWlrKunXrmDBhAmPGjEGlkrE+/sbj8VBRUYHVasVmszXc7HY7xcXFN63hLYTwL/WNLs+0sdGlWq0wfZ6F2pq65LeiKISHh1NcXIzX4yXtyxpKilwc21/F5FlqgkJubfbbuHHjuHr1KgUFBWzdupXFixf3vIbhKh22mG/WNbt05DQ8rK3NRld1CYd5gA+DE8J3JPEtOoWiKIyeGEhZ2QzOp3/CtWsZnDp1lhEjbkwM39Y3iC2XrVwqqeGdE0U8OyXWBxHfnEcTRFXQVAJKPm2U9AZQuW0E5q+kPHq5JL+FEEJ0iPrR3gkJCej1eh9HI4T/S05OZvny5ezYsYMrV65w4MABMjMzmTt3LsHBwb4Or9dxuVyUl5c3Sm7X/39FRQUeT/OjPBVFITAwkKCgIIKDgwkKCmq4ORwO3n///S7cEyHEzUQF6LgvNYyVp4r5+/FCxsaZMWlbl6Q2mlQYTXUXKBVFISLKiMujwev1MmG6mYO7KyktcnNodyVT5wRgCmh78lutVjN//nxWrVpFdnY2J06cYPTo0W1ej7/zaEOxRT1IcN7fG3qFelEwl27BYeoPPS3ZL0QrSOJbdBq1WmHGbX0oXT+KwtJj7Nmzm4SEeEJDgxstp1IUnhwXzXObMtmdWc68fkEMizL7JuiWeD2YrE0361So68URUPwJteYhoMjIIiGEEO1TX9+7b9++Po5EiO7DaDSyYMECzp8/z86dO8nLy2P16tVMmzaN1NTUnjfCz8ccDkejhPb1/19ZWdnia9VqdUMyuz65nZKSgtvtJiAgoNm+BlLGRgj/tGhIKDsybORVOFl7uoSHR0e2e51qjcL4qWb27aikwubh4C47U+YEoDe0/fd2cHAw06dPZ8eOHezfv5+EhAQiIiLaHaO/UfCifO2+tjZHRn2LXksS36JT6Q0q7lg4nrVrsqhxFPKvjzbz0LfuveGLbL8wA7f3D+bzS1b+cqSA3y9IRqPyrx8m2upM1G5bs88rgNplQ1udidMktViFEELcuoqKCgoKCoC6UaxCiNZTFIXBgwcTFxfH1q1bycnJYceOHaSnp3PbbbdhMpl8HWK34fV6qampaTa5XV1d3eLrdTrdDcnt+ltAQECjCxGKohATE0NeXl6LNYKNRiNqtbrFcihqtRqj0dj2HRZC3LL6Rpe//CKbf50vZXZKEInB7Z+xptWpmDA9gH3bK7BXeji8x86kmQFotG3PF6SmppKRkUFGRgabN29m6dKlaDQ9KC3m9WIu3YIXBYV/f47KqG/Rm/Wgf+HCXwUFa5k7by6ffLqO8soCtnx+mDsWTrphueUjIth3rYIsm4ON50tZPCTMB9E2T+Uu79DlhBBCiOZkZGQAdQ2ZzGY/nAUlRDcQGBjIkiVLOHHiBPv37yczM5P33nuPOXPmyEyK63i9Xux2e7PJbYfD0eLrjUZjs8lto9HY4aPsLRYLK1asaDHpbjQasVgsHbpdIcTNjY6ta3R5KLuSvx7J56Xb+nTIZ4DRpGLCjAD2ba/EWurm6H4746eaUanbtm5FUZgzZw4rV66ktLSU/fv3M3369HbH5y90VZfQ1ubc8LiM+ha9mSS+RZdITglj1PApHP9yJ5fSjxJ/sg/DRsY1WsaiV/OtURH88WA+a04XMy0pkHA/anTpUbeuQUdrlxNCCCGaU1/fOyVFZhAJ0R6KojB69Gj69OnDli1bKC4u5tNPP2XIkCFMmzat19TPr28m2VRyu7y8HJfL1eLrAwICmk1u++IYWiwWSWwL4acaGl0WVrep0eXNWALVTJhu5sAXlRTluzh5pIpRE0xtTqybTCZuu+02Nm7cyMmTJ0lKSqJPnz4dEqNPNTPau+FpwFyySUZ9i15HEt+iy0yZPozsnKsUFmewd/82IqMeICrG0GiZ2SlBbLls40JxNW8fL+RHU+OaWVvXcxqTcKuDULltNHWa8FLXANNpTOriyIQQQvQkNTU15OTUjdaRUalCdIzw8HDuv/9+Dh06xLFjx0hLSyM7O5u5c+cSF+c/3zfbo76ZZFPJ7bY0k2wqud2jSgEIITpVVICO+4aGsfLLtje6vJmQMA1jppg5ssdOzlUnBkMNQ0a2vaxRcnIyw4YN4/Tp02zdupXly5djMBhu/kK/5kblsjWZ9Ia60qwaRwGKpwqvWmYTit5DvsGILqMoCncvmsM/3lmJ02Vj8+e7uee+OZgt/z4J1jW6jOLZTZnsvVrBvH52RkT7yYeyoqIyYiGB+SvxQpPJb3vIHGlsKYQQol0yMzPxeDyEhoYSHBzs63CE6DE0Gg1TpkwhKSmJrVu3Ul5ezgcffMCYMWOYMGFCt0ju1jeTbCq53ZZmkl9PblsslmabSQohRFstHhzKjvS6RpdrThXzyJioDlt3VIyWEeNMnDxcxZULtegNCn0HtT1pPXXqVLKzsykrK2PHjh3ccccd3bsBsqKhLP5pVG573V1FITw8nOLiYhRnKYEFH6Dy1hBY8D62mIdAkc980Tv4/7c70aOYTCbm3z6XTz75F9bK82zbnMAddw9Ep/t3sjgl1MAd/YP59KKVv37V6FLbxtpdnaU2YCjl0csJKPqkUaNLLyoUPOirzlMTOFamDgkhhLhl6enpgIz2FqKzxMXF8eCDD7Jnzx7S0tI4duwYV69eZd68eYSHh/s0tuubSTaV3L5ZM0mtVtsooX39/3+9maQQQnQW7XWNLjdeKGNO3+AOaXRZLyFZR22Nh3Onakj7sga9QUV8kq5tMWq1zJs3j/fff5/Lly9z/vx5Bg8e3GEx+oJHG4xHGwzUJb4VSwyuSj1efSxWTSAhOW+hr7qApegjKiKWSN5C9AqS+BZdLiUliSFDhpGWdprs/L0c3BXJ1NmhjRpTLBsRwd5rFWSXO/jX+VLuSfWfRpe1AUOpNQ9BW52Jyl2ORx2IV6UnJPt/0NvT0FeepNYyytdhCiGE6IZcLhdXr14FpL63EJ1Jr9dz2223kZyczI4dOyguLmbNmjVMmjSJfv36UVtb2+xr29s48fpmkvW32tpa8vPzsVqtN20maTAYmk1ud0YzSSGEuBWjYwOYmBDAwayObXRZr+8gPbU1XtIv1nLycBU6vUJkTNt6hEVFRTFhwgQOHDjAzp07iY2NJSgoqMNi9CcuQx9s0UsJynsPY/lRPOog7GG3+TosITqdJL6FT8yYMZXs7CzKy61cSt+LJfA2Ro7/d2OKAJ2ab4+K5A8H8lh7upjpSYFEmP2n0SWKCqepcULCHjqbgNKtWIo24jT2xaORJpdCCCHaJisrC6fTSUBAAJGRkb4OR4ger2/fvsTExLB9+3YyMjLYt28f+/bta/E1arWaFStWtJj8vr6Z5NdHbttstps2kzSbzc0mt3tLQ04hRPf3ndFRHM+ta3S5O7OcGckdl1RWFIUhIw3U1njIuebk6H47k2YGEBLWtjTXmDFjyMzMJC8vjy1btnDPPfegUvXM8qUO8xAqIr5BYNFHmMu249YEURM0ztdhCdGpJPEtfEKr1XLHHfNZt+597LVXOXfuPAGBqfQf/O/aXLOSA9l62UpaUTX/e6yQ/5zu342HqkJmoLenoa3NwVK4AVvMCpk6JIQQok2uXLkC1I32llGbQnQNk8nEwoULOXv2LLt3775pUtrtdlNdXY3RaGxoJvn15HZ5eflNm0laLBaCg4MJDg4mISEBlUrV0GCyO9QbF0KIm4kM0HL/0DDe+7KYt48XMi4+oMMaXULdZ+nI8SZqa+0UF7g4vMfOlDkBBFhavw2VSsW8efNYtWoVeXl5HDt2jHHjem4yuCZoAmqXDXPZF1iKPsKjseAwD/J1WEJ0GvlGJXymblrReA4ePEhJxWFOn4jCHBBJbEJdbS5FUXhiXBT/8XkmB7IqOJ5byejYAB9H3QJFTXnkvYRmvYm+6jyGiuPUBI7xdVRCCCG6CY/HQ0ZGBiD1vYXoaoqiMHToUIxGI59++ulNl//Xv/5FVVVVi8t8vZnk9SO3r28mqSgKMTEx5OXl4fV6O2R/hBDCXyz6qtFlboWT1aeK+U4HNroEUKkVxk0xs/+LSmxlbg7urGTqbRYMxtaP2g4KCmLmzJls3bqVQ4cOkZiY2KNn3tlD56JylWOsOEZQ/irK4h7DZUjwdVhCdApJfAufGjt2LJmZmeTn51Ns28fxg3MxmgIbpiclhRi4c2AIG8+X8bejBfz3nSa0av+dduTWR2MPvY2A0s0EFH+Cw9QPj6Zn1ggTQgjRsfLz86murkav1xMbG+vrcITolVpbu7s+6f31ZpLXJ7elmaQQQtQ1unzsq0aXn1wo47YObnQJoNEqTJhuZt/2SuyVHg7tqmTybAtaXes/gwcNGkRGRgaXL19m8+bNLF26FK3Wj8qtdiRFoSJyMSp3OfqqSwTn/oOy+Cdx63zb4FmIzuC/GUTRK9RPK9JqtdQ4CyirSOPwHjtVdnfDMg8OCyfEoCa3wslH50p9GG3rVIVMw6mPR+WpwVL4IcjIHSGEEK1QX+YkOTm5YSSoEMI/3XbbbTz66KM8+eSTPPjggyxYsIApU6YwdOhQ4uPjsVgskvQWQoivjI4NYFJCAB4v/OVIfqfMbtEbVEyYYUZvUCi3eTiytxK3u/XbURSFWbNmYTabKSsrY+/evR0eo19R1JRHL8epj0XlsROU9zaKq9LXUQnR4STxLXwuODiYadOmAWCtPElFZQmHd9txOupOUmadmm+PrptmtO5MCQWVLXe69zlFTXnUvXgVDfqqixgqjvo6IiGEEH7O6/U2qu8thPBv4eHhmEwmSW4LIUQrfWdMFDq1wtnCanZllnfKNswBaiZMN6PRQEmRm+MHq/B6Wp/8NhqN3HbbbQCcPn2azMzMTonTX3hVemwx38atCUHjLCU47x/g8fN8ixBtJIlv4RdSU1NJTk7Gi4eSir3YbE6OHbDj+eokNSMpkKGRRhxuL/97rNDH0d6cWxeFPXQuAAFFn6JyWn0bkBBCCL9WUlJCeXk5arWaxMREX4cjhBBCCNGhIsx1jS4B3jleSJXTfZNX3JqgEA3jpppRqSA/28np49VtGmGemJjIyJEjAdi2bdtN+zl0dx6NBWvsw3hUJrS12QTlrwJv5/xthPAFSXwLv6AoCnPmzMFoNFLrtGKzn6Ao38WZr05SdY0uo1EpcCi7kqM5/j8Fpyp4Kk59AipvLYGFH0jJEyGEEM1KT08HoE+fPj23nqQQQggherVFg0OJtWgpq3Gz+lRxp20nPErLqIkmAK5ecXAprbZNr588eTKhoaFUVVWxY8eOHt942K2LwBqz4qtZ6xewFH0s+QvRY0jiW/gNk8nUMK3Iak+j2pHH1SsOMi7WnaT6BOu5e1AoAH87WoDD7fFZrK2iqCiPug+vokFXfRlD+WFfRySEEMJP1Zc56du3r48jEaJ3MxqNN62xr1arMRqNXRSREEL0HPWNLgE+uVBGZllNp20rNkHH0NF1n9UXztRw9Urrk98ajYb58+ejUqlIT0/n7NmznRWm33AZE7FFPYgXBWP5EUxl230dkhAdQuPrAIS4XnJyMkOHDuXMmTNYq/aj0yzk7EkwBaiJjtPywLAwdmeWk1/p5MO0UpYO8++uw25dBJVh87EUf0pA8Wc4TP3xaEN9HZYQQgg/Ul5eTlFREYqikJSU5OtwhOjVLBYLK1asoLq6utlljEYjFoulC6MSQoieo67RpYUDWRX85UgBv5nbp9P6JST311Nb4+FSWi2njlWj0yvExOta9dqIiAgmT57M3r172b17N/Hx8QQHB3dKnP7CETCEiohvEFj0EQGl2/FogqgJHOfrsIRoFxnxLfzO1KlTCQoKoqbWTo23rjHk8YN2bGUuTFo1j3zV6PKDsyXkV/h/44XqoMk4DEmovI6vSp74+Uh1IYQQXaq+zElMTAwmk8nH0QghLBYLkZGRzd4k6S2EEO3znTGR6NUKaUWd1+iy3sChBvok68ALxw9UUVLkavVrR40aRVxcHC6Xi82bN+N29/za1zVBE7CHzALAUvgROvt5H0ckRPtI4lv4HZ1Ox/z581EUhcLiKyj6a7hdcHiPneoqD1MTLQyPMuFwe3mrGzS6RFFREXkPXkWLrjodY/khX0ckhBDCj9QnvqXMiRBCCCF6g7pGl3Wzt985Xojd0XkJZUVRGDbWSFSsBo8HjuyxU25t3fYURWHevHnodDoKCgo4cuRIp8XpT+yhc6m2jEbBQ1D+KjQ1Wb4OSYhbJolv4Zeio6MZN65uSk12/gF0xmpqqr0c3mPH7YLHx0WhVuBITiWHsyt8HO3NuXXhVIbdDkBA8eeonKU+jkgIIYQ/qK6uJicnB4CUlBQfRyOEEEII0TW+MTiEWIuurtHl6c5rdAmgUimMnmQmJFyN0+nl0O5Kquytm4ltsViYNatuBPSRI0fIy8vrzFD9g6JQEbmEWlN/FK+T4Lx/oHZ07t9IiM4iiW/ht8aNG0dUVBQORy0VtfvR6qDc6ub4QTvxFh3fGFxXK/utY4XUuvy/fEh10EQchmQUr5PAgvVS8kQIIQSZmZl4vV7Cw8MJCgrydThCCCGEEF1Cq1bx+Li6RpefdnKjSwCNRmH8VDMBgSpqqr0c3FVJbW3rfpMPHDiQgQMH4vV62bJlCw6H/5dcbTdFTXn0cpz6WFRuO0F5b6O4Kn0dlRBtJolv4bfUajXz5s1Do9GQm5eDJeIKKhUU5LpI+7KG+4eGE2bSUFDp5IO0El+He3OKivKoe/EoOnQ1GRhtB3wdkRBCCB+7cuUKIKO9hRBCCNH7jIoxMynBgscLfzlSgNfr7dTt6fQqJs4IwGBSsFd4OLzbjsvVum3OnDmTgIAAbDYbe/bs6dQ4/YVXpccW823cmhA0zlKC8/4Bnl6Q9Bc9iiS+hV8LCQlh2rRpAJz88iDJg+uuAqdfrKXgqpPvjKlrdPnh2VLyukGjS482FHv4VyVPSjbLdCEhhOjFnE4n165dA6S+txBCCCF6p+sbXf7jRBH3//0gJ/PsnbY9o6ku+a3VKVhL3Rzbb8fjuXnyW6/XM2/ePADOnj3bMHihp/NoLFhjH8ajMqGtzSYofxV4e36TT9Fz+GXie9OmTTz99NMsX76c559/nsuXLze77LZt23jhhRd4+OGHefjhh/nVr37V4vKi+xk6dChJSUm43W5OntpB/1QtAGeOV9NPa2BktAmnx8vfjnb+FeKOUB04AYexL4rXiaVQSp4IIURvde3aNVwuF4GBgYSHh/s6HCGEEEKILhdh1nL/sLrvQR+fKyGjpIp3TxZ26m97S6Ca8dPMqNRQmOfiyyNVrdpefHw8o0ePBmD79u3Y7Z2XoPcnbl0E1pgVeBUN+qoLWIo+hm6QexEC/DDxvX//ft59913uvfdeXnnlFRITE/n1r3+NzWZrcvm0tDSmTJnCL37xC1566SXCwsJ46aWXKC2V5oE9haIozJkzB4PBQHFxMcXWE8QnafF64fiBKr45KAKNCo7l2jmU3Q1qTikqyiPv+arkyVWM1n2+jkgIIW7QlovQAAcOHOCHP/why5cv59lnn+X48eMNz7lcLt577z2effZZHnroIZ544gnefPPNXn+uTk9PB+rKnCiK4uNohBBCCCF84xuDQgkzaXB/lUu9XFLDiU4c9Q0QGq5h7GQzigLZmU7On2pdjfGJEycSHh5OTU0N27Zt6xaD7zqCy5iILepBvCgYy49gKtvh65CEaBW/S3x/8sknzJkzh1mzZhEfH89jjz2GTqfjiy++aHL573//+8yfP5+kpCTi4uJ48skn8Xq9nD59uosjF53JbDYzZ84cAI4fP054bBmhEWpcTrh63MHi/mEAvHW0oFs0uvRoQ6gMvxOAgNItqB2FPo5ICCH+ra0XoS9cuMAf/vAHZs+ezSuvvMK4ceP47W9/21DGw+FwkJGRwT333MMrr7zCs88+S25uLq+++mpX7pZf8Xg8ZGRkAFLfWwghhBC9m0YFenXjQQDvfVnU6UnlqFgtw8caAbh8vpb0CzdPfms0GubPn49arebq1aucOnWqU2P0J46AIVREfAOAgNJtGMqP+DgiIW7OrxLfLpeL9PR0hg0b1vCYSqVi2LBhXLx4sVXrqK2txeVyERAQ0OTzTqeTqqqqhlt1dXXDc4qidNmtq7fXE/anX79+DBkyBIBt27YyYpwWs0VFdZWXPmUGokwaiqpcrD9b0i32pzZoPA5TfxSvi8DC9Sh4u/XfpytvPWl/etK+yP60vJ7upK0XoT/77DNGjhzJ3XffTXx8PEuXLiUlJYVNmzYBYDKZ+PnPf87kyZOJjY1lwIABPPLII6Snp1Nc3Dt7HeTm5lJTU4PBYCA2NtbX4QghhBBC+MyJPDu5Fc5Gj10prWVXZnmnb7tPip5BwwwAnD1ZQ87Vm/cOCwsLY8qUKQDs3bu3V81irAmagD1kJgCWwo/Q2c/7NB4hbkbj6wCuV15ejsfjITg4uNHjwcHB5ObmtmodK1euJDQ0tFHy/HobNmxg/fr1DfeTk5N55ZVXiIiIuOW4b1V0dHSXb7MzdcX+PPDAA/zhD3+gtLSUk18e5a57vsGGNZnYSt08GBPH76uusuFcKfdP6E9iqKld2+qK/fGGPoX72E/R1mQR5T6JKuHOTtuWvN/8V0/aF5D96e7qL0IvWrSo4bGbXYS+ePEiCxcubPTYiBEjOHKk+VEgVVVVKIqCydT8Z7XT6cTp/PePIEVRMBqNDf/fnVx/IQUalzlRq9U+i6urff049FZyHOrIcagjx6GOHAcheiev18vKL4tRKfD1HpP/fSCPEIOaETFND2zsKP0G66mt8ZBxycGJw1Xo9AoR0doWXzNixAgyMzO5du0amzdv5v777+813+nsofNQuWwYK04QlL+KsrjHcBkSfB2WEE3yq8R3e3300Ufs27ePF198EZ1O1+QyixcvbvTjvP6LVVFRES6Xq0viVBSF6Oho8vPze0Q9qK7enzlz5rB+/XqOHz9OdHQ0YyYncWBnJZV5tSwMDOGT8jJ+/dlpXpydcEtfnLt6fwxhC7AUfoA78wOK3XG49VEdun55v/mvnrQvIPvTEo1G45MLrLfiVi5CW61WgoKCGj0WFBSE1WptcnmHw8HKlSuZMmVKi4lvf7pY3VGio6Pxer1kZmYCMHbsWGJiYnwblA/0tgtKzZHjUEeOQx05DnXkOAjRu5zIs3O5tOkSI24v/GJHNt8aFcGiwaGddmFMURRSRxmprfGSm+XkyD47k2cFEBzafMpMURRuu+02Vq1aRVFREYcOHWLy5MmdEp/fURQqIu9B5apEX32J4Lx/UBb/FG5tmK8jE+IGfpX4DgwMRKVS3fBD2Wq13vAD/Ov+9a9/8dFHH/Hzn/+cxMTEZpfTarVotU1fuevqRI3X6+0RyaF6XbU/MTExjBkzhqNHj7Jjxw6WLVvGiLEmTh6uIrpKzyCVkRN5dvZfK2dyn8Bb3k5X7U+1ZQy6ytPoqy5iKVhHWfxToHT8lWJ5v/mvnrQvIPsjWuZyuXjjjTcAePTRR1tc1h8uVneU6y+kFBQUYLVa0Wg0WCwW8vLyfB1el+lpF8hulRyHOnIc6shxqOMPx6E7XagWoieoH+2tAM39q/cC75wo4lJJDf9nYjQmbeeMqlYUhZETTDgcdooLXBzabWfKnAACLM1vLyAggNmzZ/PZZ59x9OhREhMTiYuL65T4/I6ipjxmOcE5f0Vbm0tQ7tuUxT+JV925o/OFaCu/qvGt0WhISUnhzJkzDY95PB7OnDnDgAEDmn3dxx9/zAcffMDzzz9P3759uyJU4WMTJkwgIiKioZNyfJKW/kP0AExRBRKj6HjrWCE13aDRZd3V0iV4VAa0tTmYynb7OiIhRC92Kxehg4ODb2h8abPZbli+PuldXFzMz372sxZHe0PdxWqTydRwqy9zAv++INGdbvVxX7lyBYDExETUarXP4/LVcejtNzkOchzkOPjfcRBCdC2Xx0txlbPZpDeAUatCrcC+axX8aNNVsstrOy0etVph7BQzgcFqHLVeDu2yU1Pdck6hX79+DB48GIAtW7ZQW9t58fkbr0qPLebbuDUhaJwlBOf+Azw3r5EuRFfyq8Q3wMKFC9m+fTs7d+4kOzubt956i9raWmbOnAnAm2++yapVqxqW/+ijj1i7di1PPfUUkZGRWK1WrFYrNTU378Yrui+1Wt3QSfnatWucOnWKgUMNxCZoUVCYqw7GVeVl3enu0TTNowmiMvwuAMyl21HX5vs4IiFEb3UrF6EHDBjA6dOnGz126tQp+vfv33C/Pumdn5/Pz3/+cywWS+fsQDdQn/hOSUnxcSRCCCGEEL6jVav43e1JvH5H3e2NO5L454pxvHHHvx97c2Eyv5mbSKhRQ3a5g+c+v8qBrIrOi0mrMHGGGZNZRZXdw6HddpzOli+MTZ8+ncDAQCoqKti1a1enxeaPPBoL1tiH8aiMaGuzCcpfDV63r8MSooHfJb4nT57MQw89xLp16/jxj39MZmYmzz//fMOoseLiYsrKyhqW37p1Ky6Xi9dff53HH3+84favf/3LR3sgukpoaChTp04F6jopl5WVMXK8iZAwNTpUzFOHsOl8Gdm27nHFtcYyilrTYBTcBBa+LycLIYTPtPUi9IIFC/jyyy/ZuHEjOTk5rFu3jitXrnD77bcDNJyn09PT+d73vofH42m4UN3dSpa0l9VqpaSkBEVRSE5O9nU4QgghhBA+FWHW0jfUUHcLMzIoykLfMGPDY+EmLYMijLx+RxKpkUaqXR7+7+4c/nmyCPfXu2F2EL1BxcQZZnR6hXKrm6N77bjdzW9Lr9czb948FEXh/PnzzTaE76ncugisMd/Cq2jQV53HUvQxyCwa4Sf8qsZ3vdtvv73hx/LXvfjii43u/+lPf+qCiIS/Gj58OBkZGY06KY+bambPtkqwa5hFCH89UsAv59xao8supShURC5Cey0TbW0uprKdVIXO8XVUQoheaPLkyZSXl7Nu3TqsVitJSUk3XIS+/jN14MCBfP/732fNmjWsXr2amJgYfvSjH9GnTx8ASktLOXr0KAA//vGPG23rF7/4BampqV2zY34gPT0dgLi4OAwGg4+jEUIIIYToHkKMGv5rTh/eOVHIxvNlrD9bwuWSap6dEkugoeNTW2aLmgnTzez/opLiQhcnDlUxZqIJRdV0XiE2NpaxY8dy5MgRvvjiC2JiYnrVDEeXMRFb1FKC8ldiLD+CWxMk+QzhF/wy8S1Ea9V3Ul65ciVFRUUcPnyYSZMmMWGamT3bKoh26agocrP3ajnTkoJ8He5NeTSBVETcRVDBOsylO3CYB+PSx/o6LCFEL9SWi9AAkyZNYtKkSU0uHxkZybp16zoyvG6rvsyJ9CQRQgghhGgbjUrh0TFRDAgz8ubBPE7mV/Hspkz+v2nx9Avr+AEFwaEaxk0xc2iPnbwsJ2f01QwdbWx2UN348eO5evUqhYWFbNu2jUWLFvn/ALwO5AhIpTLibixFHxNQug2PJoiawLG+Dkv0cn5X6kSItqrvpAxw9OhR8vLysASpGTfFjBcv/VVG9h+ppMrZPUqH1AaMpNY8BAUPloL14O1dZQCEEKKnqqysJDc3F5D63kIIIYQQt2p6UiCvzk8kxqKl0O7iP7dcZdsVa6dsKyJay6gJdQ3ZMy87uHyu+VKq9b3INBoNWVlZnDx5slNi8mfVQROxh8wEwFK4AZ39gk/jEUIS36JH6N+/P4MGDcLr9bJ582YcDgcR0VpSRxsBGOIxs2F/2U3W4icUhfKIRXhUJrSOPMylX/g6IiGEEB3g3LlzQN0I+N409VUIIYQQoqMlhRj43e1JjIsLwOnx8seD+fz5UD5Ot6fDtxXXR0fqqLrcwvnTNVxLbz75HRISwrRp0wDYt28fxcXFHR6Pv7OHzqPaMgoFD0H5K9HUZPs6JNGLSeJb9BgzZszAYrFQXl7O7t27Aejb34A5rm5qkSlPzbmMKl+G2GpejYWKiG8AYCrbiaYmx8cRCSGEaK+zZ88CMtpbCCGEEKIjBOjUPD8jjuXDw1GAzZet/GTrNYrszg7fVsoAPf0G6wH48mg1+TnNb2Po0KEkJSXh8XjYvHlzr2vmXte/bAkOYz8Ur5PgvH+gdpb4OirRS0niW/QYer2euXPnApCWltZQR3XW5EBsehcaReHckRoqK7pLyZNh1JiHouAhsPB9KXkihBDdmMPh4PLly4DU9xZCCCGE6CgqReH+YeG8MCueAJ2KSyU1PPt5Jqfy7R2+rUHDDCQk68ALxw7YKS1q+jd6fS8yo9FISUkJBw4c6PBY/J6iwRbzTZz6WFTuSoJy30ZxV/o6KtELSeJb9Cjx8fGMHj0agO3bt2O321FUCrNnWijxOtF6VezaUYHT0fHTnzqcolAR+Q08ajMaRwHm0u2+jkgIIcQtunr1Ki6Xi6CgIEJDQ30djhBCCCFEjzI6NoDXbk8iOUSPrdbNL3ZksSGtBK/X22HbUBSF4WONRMZo8Ljh8F47FbamB9aZTCbmzJkDwIkTJ8jKyuqwOLoLr0qPLeZbuDXBaJwlBOf+AzwOX4clehlJfIseZ+LEiYSHh1NTU8P27dvxer3EBusxDVSwe914auDQXjseT8edADuLVx1ARcQiAExlu9DU9L6TpRBC9AT1s5D69u2Loig+jkYIIYQQoueJtuh4ZV4is5ID8XjhnRNF/HZvLlXOjpv1rVIpjJlsJiRMjdPh5eCuSqqrmh5Yl5KSwtChQwHYsmULNTU1HRZHd+HRBGKNfRiPyoi2Npug/NXg7R6z8EXPIIlv0eNoNBrmz5+PWq0mMzOTM2fOALB4eCjHDRU4vR7KitycPlbdoVd/O0ttwFBqAoaj4CWwYD14Or5emRBCiM7jdrvJyMgApMyJEEIIIURn0mtU/GBSDE+Mi0Kjgn3XKvjRpqtklzffkLKtNBqF8dPMBASqqKmuS347aptOfk+bNo3g4GDsdjtffPFFt8hBdDS3LhJrzLfwKhr0VeexFP0LeuFxEL4hiW/RI4WFhTF58mQA9uzZQ1lZGVq1iqXjw9nhseHxermW7uDKhY47+XWmioi7casD0DgLMZdu83U4Qggh2iAnJweHw0FAQADR0dG+DkcIIYQQokdTFIUFA0L49W2JhBo1ZJc7eO7zqxzIquiwbej0KiZMD8BgVKgs93B4jx2X68ZkrlarZd68eSiKwqVLl7hw4UKHxdCduIyJ2KKW4kXBWH4YU9kXvg5J9BKS+BY91siRI4mPj8flcrFlyxbcbjejYwOIj9dxyFN3wjv3ZQ152f5fY8qrNlMRsRgAk3UPmpprPo5ICCFEa9WXORkyZAgqlXz1EkIIIYToCoMijLx+RxKpkUaqXR7+7+4c/nmyCHcHlT01mVVMnBGAVqtQVuLm+IGmS6pGR0czYcIEAHbu3El5eXmHbL+7cQSkUhl+FwABpVsxlB/1cUSiN5BfX6LHUhSFuXPnotfrKSgo4MiRIwB8Z0wkl1XVnPXUdXk+frAKa2nT3Zj9iSNgCDWWkVLyRAghuhGv10t6ejpQl/gWQgghhBBdJ8So4b/m9OHuQSEArD9bwn99kUV5TcfkACxBasZNM6NSQ0Gui1NHmy6pOnbsWKKjo3E4HGzZsgWPp+nSKD1ddfAk7MEzALAUbkBn750j4EXXkcS36NEsFgszZ84E4MiRI+Tn5xNh1nL/sHAOeirIUxx13Zj32Kmy+/+JpyL8LtxqCxpnEQGlW30djhBCiJsoLCzEbrej1WqlvrcQQgghhA9oVArfGRPFs1Ni0asVTuZX8eymTC6XdEyzybAIDWMmmUGBrAwH50/fuF6VSsW8efPQarXk5uZy/PjxDtl2d2QPm0+1ZRQKHgLzV6GpyfZ1SKIHk8S36PEGDhzIgAED8Hq9bNmyBafTyTcGhRIbqGOLswynzkNtjZfDeypxOv27wYJXbaIisq7kidG6F211pm8DEkII0aL6MidJSUlotVofRyOEEEII0XtNTwrk1fmJxFi0FNpd/OeWq2y7Yu2QdUfHaRk+xgjA5XO1ZFy8sZ9YcHAw06dPB+DgwYMUFhZ2yLa7HUWhInIJDmM/VF4HwXn/QOUs9XVUooeSxLfoFWbOnElAQABWq5U9e/agVSs8PjYKJ14+rC5Go4MKm6fZmlz+xGEeTLVlNApeLIXrweP/NcqFEKK3qk98y2hvIYQQQgjfSwox8LvbkxgXF4DT4+WPB/P586F8nO72zwBP7Ktn4FADAGdOVJN77cbf6kOGDKFv3754PB42b96M09lLS5gqGmwxy3HqYlC5KwnO/TuKu9LXUYkeSBLfolcwGAzMnTsXgDNnzpCRkcHIGDNT+lio8Ho4qqtEpYbCPBdnT1T7ONqbqwxfiFsdiMZZQkDJZl+HI4QQogllZWWUlZWhUqlISkrydThCCCGEEAII0Kl5fkYcy4eHowCbL1v5ydZrFNnbn4TuP0RPUj8dAMcPVVFU0HidiqIwe/ZsTCYTZWVl7Nu3r93b7K68KgO22G/j1gSjcZYQnPuuDOwTHU4S36LXSEhIYOTIkQBs27aNqqoqHhkTiUGjcNRaiSapbrmMS7WcOeHf02y8aiMVkUsAMNn2o61O93FEQgghvq6+qWV8fDx6vd7H0QghhOitNm3axNNPP83y5ct5/vnnuXz5crPLbtu2jRdeeIGHH36Yhx9+mF/96lctLi9Ed6VSFO4fFs4Ls+IJ0Km4VFLDs59ncirf3q71KorC0FFGYuK1eD1wdK8dW1njRppGo7FhYN6pU6fIzMxs1za7M48mEGvsw3hURrS1WQTlrwGv29dhiR5EEt+iV5k8eTKhoaFUV1ezY8cOwowaHhgWDsDKzCJShtRdmd2/K5+CXP+ecuQwD6Q6cCwAgQUfoHhurCEmhBDCd6TMiRBCCF/bv38/7777Lvfeey+vvPIKiYmJ/PrXv8ZmszW5fFpaGlOmTOEXv/gFL730EmFhYbz00kuUlvr3wCAhbtXo2ABevyOJ5BA9tlo3v9iRxYa0ErzeWy+BqqgURk00ERapweWCQ7vt2CsbJ3MTExMZMWIEUHfBqbra/2eedxa3LhJbzAq8igZ91TksRf+Cdhx/Ia4niW/Rq2g0GubPn49KpSI9PZ20tDTuHhRKQpAOW62bPVXl9EnR4fXC0f2V2Mr8+0pjZdiduDVBqF2lmEs2+TocIYQQX7Hb7eTn5wOQnJzs42iEEEL0Vp988glz5sxh1qxZxMfH89hjj6HT6fjiiy+aXP773/8+8+fPJykpibi4OJ588km8Xi+nT5/u4siF6DpRATpemZfIrORAPF5450QRv92bS5Xz1vMBarXCuClmAoNV1NZ4ObjLTm1N4zriU6ZMISQkhKqqKrZv396uZHt35zQmYYtaihcFY/lhTGVNf0YJ0VaS+Ba9TkREBJMmTQJg9+7dVJbbeHxsFACbLlsxJyvEJphwu+Dwnkpqqtvf5KKzeNUGyiPvAcBkO4i26oqPIxJCCAH/LnMSFRVFQECAj6MRQgjRG7lcLtLT0xk2bFjDYyqVimHDhnHx4sVWraO2thaXy9XiuczpdFJVVdVwu37kqqIoveLWm/a1px5Lg1bNDyfH/v/s3XecXfV95//XKbeXudOLps9ICKGOEEgCIRBgDCyxYwdj3GKvwb+YbDa7LsliJyHeOA4uxF4bb7JrZ20SN0KMaaIZBEJIgFAX6qMyml5v7/ec3x93ZqTRFI2k6fN5Ph7zmJlzzz33e7733Pa+3/P58v9dU4yuwluNIb760mmag8lL3qbVpnLdjR6cLpVo2OCdLREy6bP7Z7FYuP322wcG5h06dGhW9OWl/qQ8iwkX3g2Au+cV7KGdU96mmdqX0/lnPPryYugXtbYQs8SKFSs4efIkLS0tvPLKK3zkIx9hfZWXLaeD/PPOdn5y72p++4vjhEMG774ZYe3NbnT94h5ckyXlnE/MuxpH8F28HU/SU/nnmKrUkhVCiKnUH3xLmRMhhBBTJRgMYhgGPp9v0HKfz0dLS8uYtvGLX/yCvLy8QeH5+Z566imefPLJgf9ramp45JFHKCwsvKR2z1QlJSVT3YRZYyr78j+XlXHN/HL+8pn9nAkk+cpLp/mbDy7ipgWXfjzn/VGC3/3mFIHeDHt3pPjghyrRtGy+UFpaSm9vLy+++CJbtmxhxYoV5Ofnj9fuzLzjsvQPydjTmGeex9v+W9TCKtS8pVPdKmAG9uU0Npl9KcG3mJNUVeW2227jF7/4Ba2trezcuZM/XrmcHc1hjnbFeflYB9eud7PllRCB3gy7346yap3zor9ZmizhgjuwRo+ipf24uzYRKvrwVDdJCCHmrEQiwZkzZwAJvoUQQsxcv/vd73jrrbd4+OGHsVqtI6734Q9/mLvuumvg//7PTJ2dnaTT6ZGuNmsoikJJSQltbW1zulTFeJgufVmownc/UMW332zm/Y4oX316Px+9Kp9PLCtEUy8tE1h9g5O3XgvR3Bjhhd8dZ+Ua18BjZf78+ezfv5/m5mb+9V//lT/6oz9CVS+vQMN06ctLYrsej6cFe2g3mfd/SHf5A6Tt5VPWnBndl9PMePWlrutj/nJVSp2IOcvr9bJhwwYA3nnnHdKhHj6+NDvR5Q+3NJCxmlxzvQtVhbbmFIf2xaewtaMzVRvBoo8C4Ai+iyV6bIpbJIQQc9fp06cxDIPc3Fxyc3OnujlCCCHmKK/Xi6qq+P3+Qcv9fv+QUeDne+aZZ/jd737H17/+daqqqkZd12Kx4HQ6B34cDsfAZaZpzomfubSvc6UvfXaNb2ys4O6F2fdyT77fzd++1kgglrqk7eXkaqxa50JRoLkxxYFdUQzDwDRNFEXh1ltvxWq10tbWxo4dO2ZVX170DxAs+kOSjnoUM0lOy89Qkt1T2qYZ25fT8Gc8+vJiSPAt5rSFCxdSX1+PYRi8/PLL3FbrpspnIxBL8W97Oskv1Fm22glAw+EEpxsSU9zikaWcdURzrgPA2/EfKMb0DeqFEGI2a2jIzrdQW1s7xS0RQggxl+m6Tm1tLQcOHBhYZhgGBw4cYMGCBSNe7+mnn+Y//uM/eOihh+TMJTGn6arCf766mC+tK8OmKexpi/KlF09xvPvSPmsXlVhY3pcvnDyWpOHw2Xzh/IF5/ZOkz1mKTqD0E6SspaiZML6Wf0HJRKa6VWIGkuBbzGmKonDTTTfhcrno7e3lne3b+MI12VpDLx3zc6w7RnmVlQVX2QHYvzNGZ1tqKps8qkj+7WT0PLR0AHfXpqlujhBCzDnpdJpTp04BUuZECCHE1Lvrrrt49dVXef3112lqauInP/kJiURiIGD70Y9+xC9/+cuB9X/3u9/xm9/8hj/5kz+hqKgIv9+P3+8nHpdBNWLuWl/t5dsfqKLUY6EjkuYvXz7N7xv8l7St8mori5Zn84VD++KcOXk2/L7iiitYsGABpmny0ksvkUwmx6P5M5ap2gmU/TEZ3Yee6sbX8nMw5nafiIsnwbeY8xwOB7fccgsA+/btwxPv5I5FJZjAP73bTsYwWXCVjXmVFkwT3tsWIehP09WRovl0kq6OFKYxPeo8maqNYPFHAHAEd2CNHJniFgkhxNzS1NREKpXC5XJRXFw81c0RQggxx61du5ZPfepTPPHEE3z1q1/l1KlTPPTQQwOlTrq6uujt7R1Y/5VXXiGdTvPoo4/ywAMPDPw888wzU7QHQkwP1bl2vnt7NdfMc5MyTH74dhs/fqeNVMa46G3VXWGnbqENgL07YrS3ZAfXKYrChg0bcLvdBAIBtm7dOq77MBMZuhd/2WcxVAeWxBly2n8NZmaqmyVmEJncUgigqqqKpUuXsm/fPl555RU+/4U/5fVjHRzvifNKg5/b5+eybLWTaDRMb1eGLS+HObeskN2hsHilg9LykSd9mSwpRy3RnLU4A9vwdPyWXsd/m+omCSHEnHHixAkgW+Zkuk6ILIQQYm65/fbbuf3224e97OGHHx70/2OPPTYJLRJiZnJbNR66cR5PHujml/u6eOm4nxO9cf7ihnkUuiwXta0rl9pJxAyaTqd4b1uENRvc5BXo2O12br31Vp566ikOHDhAdXX1nC+fl7EWESj9NL6Wn2KLHMLT+Qyhwg+BvNcWYyAjvoXos27dOnJzc4lEIrzx8vPc1zfR5b/u6SQYT6NpCpW12WD7/Fr68ZjJe29FaW2aHqfdhPM/QNqSj5YJ4u58bqqbI4QQc4JpmoOCbyGEEEIIMbuoisI9Swr465vKcVtVjnXH+dILp9jXdnH1pxVFYdlqJ0WlOkYG3n0zQiiYHclcUVHBihUrAHj11VeJRqPjvh8zTcpRTbD4Y5goOILv4ux9faqbJGYICb6F6GOxWPjABz6AqqocOHCAOqOdmlwb4aTB43s6MQ2TI/tHr213YFdsepQ9Ua2Eij6KiYI9tBOje89Ut0gIIWa9trY2otEoVquV8vLyqW6OEEIIIYSYICvL3Dz6wWpqcm0EEhn+5rUzPHWwG/P8UXKjUFWFq9e68OVppJImb78RJhbNlk5Zs2YN+fn5xGIxfv/731/UdmerhHsx4YK7AHD3vIw9uHOKWyRmAgm+hThHUVER1157LQBbtrzBpxdmZ1x+pSHAnoYo8djoLzbxmEl3V3rC2zkWKUc1Md86AIxj/w8lI98SCyHERGpoaACgpqYGTdOmuDVCCCGEEGIiFbutPHJbFTfVeDFM+NnuTr6ztYVoauw1qHVdYfV6Fy6PSjxq8s4bYZJJA13X+cAHPoCmaZw6dYoDBw5M4J7MHDHfWiK+GwHwdPwWa+ToFLdITHcSfAtxnlWrVlFVVUUymeTErje5ucYLwEuHei9wzaxI6OInt5go4bzbSFsKIOnH3fnsVDdHCCFmLdM0B4JvKXMihBBCCDE32HSV/7qmlC9cU4yuwluNIb7y4mmagomxb8Omct2Nbmx2hVDQYMebETJpk4KCAtauXQvAm2++OWgi2rkskn8bcfdyFAy8bb9AjzdPdZPENCbBtxDnUVWVe+65B4vFQktLC1erzbgsKqfCY6vffWB3jEP7YiTi0yAAVy2Eiu8BFOyh3VjD7091i4QQYlbq6ekhEAigaRpVVVVT3RwhhBBCCDFJFEXhjgW5fPOWKvIcOk3BJF9+4TTbz4TGvA2nKxt+6xbo6cqw8+0IhmGyfPlyKioqSKfTvPTSS2QyYx9NPmspKsHij5B01KGaSXJaf4aa6pnqVolpSoJvIYaRn5/PjTdmT5/Z8947fLRGo81MEmH0FxlFASMDxw8lePW5IO/vjhGPTW0AnnZUopR/EABv5+9QMhc36YYQQogL65/UsqKiAqvVOsWtEUIIIYQQk21hoYNHP1jNVUUOYmmDf9jSzL/u6SQzxnnAvD6N1de7UVVob06zf2cMgFtuuQWbzUZHRwfvvvvuRO7CzKHoBEo/ScpaipYJ42v5f5J1iGFJ8C3ECBYtWkRtbS2GYRA9sp3aHJ3tmSAmI79orVzjZNU6Jzm5GpkMnDiaDcD3vRclGp66b2bV6g+TthahZsJ4Op+ZsnYIIcRsJWVOhBBCCCFErkPnGxsruXthLgBPvt/NNzafIRgf21xg+UU6K9c4QYHGE0mOHIjj8Xi4+eabAXjvvfdoaWmZsPbPJKZqJ1D2x2R0H3qqC1/Lz8EY25n6Yu6Q4FuIESiKws0334zT6aSnp4cbLY2cMhO8mvGj2Qava3corFrnpKzCSmm5lRtudXPtehd5hRqGAacbkry2KcTutyOEgpMfgCuqlVDxH2GiYg/vwxaWiTGEEGK8hEIhOjo6AAm+hRBCCCHmOl1V+M9XF/OldWXYNIU9bVH++wunON4dH9P1S8utLFnpAODYwQSnjiWYP38+CxcuxDRNXn75ZRKJsdcQn80M3Yu/7LMYqgNL4gw57b8GU8rBiLMk+BZiFE6nk40bNwJw+sgBNhbEOWUmeEnvoWiphqNOoXiZxk13eigtP3tqu6IoFJVaWHezh7U3uyks0TFNaDqd4vUXQrz3VoRA79i+8R0vaXsF0dz1AHg6f4eSCU/q7QshxGzVX+aktLQUp9M5xa0RQgghhBDTwfpqL9+5vZpSj4XOaJq/fPk0v2/wj+m61fU2FlxlB2D/rhgtZ5LceOONeL1egsEgW7ZsmcCWzywZaxGB0k9jKjq2yCHcnc+CObbyMmL2k+BbiAuoqalhyZIlADibduJS05wKJPn7Xc388Egr39zZzAPPnGB74/ATV+QX6lx3o5sbbnVTMs8CQGtTii0vh3lnS5iezskLwCN5G0lbi1EzESl5IoQQ46Q/+K6rq5vilgghhBBCiOmkymfju7dXc808NynD5Idvt/Hjd9pIZS48F9iCq2xU1WUH2O1+O0oooHLrrbcCcOjQIY4dOzahbZ9JUo5qgsUfw0TBGXwHZ+/rU90kMU1I8C3EGFx//fX4fD6ikQjVgYNDLu+OpvmHN5tHDL8BfHk611zvYsPtHuZVWUCBjtY0b70WZttrITrbUpgT/a2kohMs6i95sh9baN/E3p4QQsxy8Xic5uZmQMqcCCGEEEKIodxWjYdunMcnlhagAC8d9/M/XmmkM5Ia9XqKorBkpYOScguGATu2RnA7S1i1ahUAmzdvJhyWM7n7JdyLCRfcBYC752XswZ1T3CIxHUjwLcQYWCwWbrn1VkwUSpJtFMdb8KV6KE604kv1DJxG85Od7RecsdmTo7HyOhc3f9BDZa0VRYXuzgxvvxFh6+/DtDVPbACets8jmrsh25bOp1HSI4f1QgghRnfq1CkMwyA/Px+fzzfVzRFCCCGEENOQqijcs6SAv76pHLdV5Vh3nC+9cIp9bZFRr6eoCiuvc5JXqJFOwTtbwiy5ahWFhYXE43FeeeWViR9AN4PEfGuJ+PpKvHb8Fmv06BS3SEw1Cb6FGKNu1ctJR3Y031WRA1wdfI/F4f1cHXyPdf4tFCba6YqmOdgZHdP2XB6NZdc42Xinl5r5VlQN/D0ZdmyN8MZLIZobk5gXCNEvVSTvJlLWElQjiqfzaal/JYQQl6ihoQGQ0d5CCCGEEOLCVpa5efSD1dTk2ggkMvzNa2d46mD3qOG1pimsvt6FJ0clETfZsTXOTTfdhq7rnDlzhr17907iHkx/kfwPEHcvR8HA2/oL9HjzVDdJTCEJvoUYo95YhojmwgSU8y6zGQmWhPdSmGinN3ZxMwg7nCqLVzq55S4v9Vfa0HUIBQx2bY+y+YUQjScSGJlxDqYVnVBxX8mTyPvYwvJCKYQQFyudTtPY2AhIfW8hhBBCCDE2xW4rj9xWxc21XgwTfra7k+9sbSGaGjlLsFhVrrvRjcOpEAkbHN1nZe2adQC89dZbdHd3T1bzpz9FJVj8EZKOOlQzSU7rz1BTPVPdKjFFJPgWYox8NoX50SPDXtYfhC+IHuZkTxTjEkZQ2+wqVy51sPE/eblisR2LNfuCtndHjFc3BTl5LEEmPX4BeNpWRiTvZgA8nc+gpoPjtm0hhJgLGhsbSaVSuN1uCgsLp7o5QgghhBBihrDpKn92XSn/3zXF6Cq81RjiKy+epimYGPE6dkc2/LZYFQK9GWKBWqoqq8hkMrz00kuk0+lJ3INpTtEJlH6SlLUULRPG1/L/UDKjl5URs5ME30KMkS/lx24khoz27qcAdiPBa/tO8OUXT3OgfWwlT85ntaosuMrOLXd5WbTMjs2uEI+aHNgV49Xngxw/FCedGp8APJq7gZStDNWI4en4nZQ8EUKIi3DixAkgO9pbUUZ6dRBCCCGEEGIoRVH44IJcvnlLFXkOnaZgki+/cJrtZ0aeh8vt1bh2vQtNg672DMV5a7Hb7XR1dfH2229PYuunP1O1Eyj7YzK6Dz3Vha/1cTCSU90sMckk+BZijGKxsQXZHpI09MT52u8b+fs3mmgOXtoTq25RqFtoZ+NdXpZc7cDhVEjETQ7ti/P754IcORAnmTAuadsDFI1g0R9homGLHsIe2n152xNCiDnCMIyB4FvqewshhBBCiEu1sNDBox+s5qoiB7G0wT9saeZf93SSGWHOr9x8navXuVAU6Gy1sKDmBgB27drFmTNnJrPp056he/GX/TGGascSbySn/TdgXmaOImYUCb6FGCOXyzWm9W4riHB7lR1VgXeawvyX507wf99rJ5i4uNrf/TRNobrexs13elm+2oHLo5JKmhx9PxuAH9wbIxG/9CfujK2ESN5GANxdz6KmA5e8LSGEmCtaW1uJx+PYbDbmzZs31c0RQgghhBAzWK5D5xsbK7l7YS4AT77fzTc2nyEYH758SXGphWXXOAEI9ZRSMW8hAK+88gqJxMjlUuaijLWYQOmnMRUdW+Qg7s5n5Gz3OUSCbyHGqKysDLfbfcH1Tp1owNy3ic8XtrKqUCVjwnNHevn/nmng6UM9pDKXFlKrqkJFjY2bbvdw9RonXp9KJg0NhxP8/rkg+3dGiUYubdvR3PWkbPNQjTiejt/Ki4AQQlxAQ0MDADU1NaiqvJ0SQgghhBCXR1cV/vPVxXxpXRk2TWFPW5T//sIpjnfHh12/osbKlcvsAKjJFbicXsLhMK+//jqNjY08+uijAxOxz3UpRw3B4o9houAMvoOz942pbpKYJPJJTYgxUlWV9evXj7rOqlWrKC4uJp1O03BoP3nHXuFTvjPUuQ0iSYN/2dXBnz53km2NQcxLDJcVVaGs0sr62zysvsFFbr6GkYFTx5O89nyQPe9GCYcucnS5ohEs7i95chR7aOcltU0IIeYC0zQH1fcWQgghhBBivKyv9vKd26sp81jojKb5y5dP8/sG/7Dr1l1ho3aBDVW1kGNfh6IoHDlyhFdffZWOjg62bdt2ydnDbJNwLyZccBcA7p6XsAd3TXGLxGTQp7oB53vxxRd59tln8fv9VFVV8bnPfY76+vph1z1z5gy/+c1vOHnyJJ2dnXzmM5/hzjvvnOQWi7mkvr6eO+64gy1bthAOhweWu91u1q9fT319PaZp0tjYyLvvvktraystDYeoVY+wfF4dW5NltIXhkTdbWFTo4LMri1hQ4LiktiiKQnGZhaJSne6ONMcOJujqSHPmZJIzp5KUVViYf6WdnNyxPcwz1mIi+bfi7n4Rd9dzJB31GBbfJbVNCCFms+7uboLBIJqmUVlZOdXNEUIIIYQQs0yVz8Z3b6/m+9tbebcpzA/fbuNoV5z7VxVh0c6OYVUUhUXL7SQSBs2nC8l1L6UntJdgMAhAe3s7jY2NVFVVTdWuTCsx31rUdACXfwuejv/A0N0knQumulliAk2r4Hvbtm08/vjj3H///cyfP5/nn3+eb37zm3z/+98nJydnyPqJRILi4mLWrFnDz3/+8ylosZiL6uvrqa2tpaWlhUgkgsvloqysbOBUd0VRqKqqorKykqamJt59912am5vxnznGEuU4VxdXszU5j4Od8JWXTrO+2sunlxdS6LJcUnsURaGg2EJBsYXerjTHDsVpb0nT0piipTFFyTwLa9bHxrStqO8GbOH3sSTO4On4LYGyz4KiXFK7hBBituovc1JVVYXFcmnP3UIIIYQQQozGZdX4H+vn8eSBbn65r4uXjvs50RvnL26YNyg/UBSF5dc4SSYiGC2L6Q0fwDTPngX+xhtvcN9996Hr0yoCnDKR/A+gpQPYw3vxtv4C/7wHSNtlzp7ZalqVOnnuuefYuHEjN910E+Xl5dx///1YrVY2b9487Pr19fV86lOfYt26dfLBU0wqVVUpLy/niiuuoLy8fNj6roqiUFFRwUc+8hE++tGPUllZiWmaJNpOsrr3LW42D+NKh9lyKsifPHOCf93TSTR1aRNg9sst0Fl9g5v1t3koq8g+JtqaUzz1q5Ns3xyiqyM9+mlOipoteaLo2GLHsAd3XFZ7hBBiNuoPvmtra6e4JUIIIYQQYjZTFYV7lhTw1zeV47aqHOuO86UXTrGvLTJ4PU1h1VoXmq1zUOgN4Pf7+T//5//wwgsvcPjwYeLx4WuGzxmKSrD4oyQddahmkpzWn6Omeqa6VWKCTJuve9LpNCdOnOBDH/rQwDJVVVmyZAlHjx4dt9tJpVKkUqmB/xVFweFwDPw9GfpvZ7Jub6LJ/lzYvHnz+PCHP0xbWxvvvPMOp06dQulp5DoaiXvnsUep5Mn3TV5p8HPf0kJuq/ehqZd++748nVXr3ISDGY4ditN8Oklne5rO9jB5BRrzFzkoKtWH3UfDVkQk/zbcXZtwdz1PyrUAw5J7Obs/rmbT8Tab9gVkf8TcEAwG6erqQlEUampqpro5QgghhBBiDlhZ5ubRD1bzrS3NnOxN8DevneHTywv50JV5A59XNB1C8T2AAgwe8JZOpzl27BjHjh1DURRKS0upra2lpqaG3Nzp83l/0ig6gZJP4mv+ZyzJNnwtP6O3/AuYmmuqWybG2bQJvoPBIIZh4PP5Bi33+Xy0tLSM2+089dRTPPnkkwP/19TU8Mgjj1BYWDhutzFWJSUlk36bE0n258JKS0tZsWIFTU1NvPbaaxw8eBB7sJnraCbsKuX9dBX/+90MLzaE+K8b6llbk3d5oVspzL8CQoEke97r5sj7fnq6MryzJUxBkZ0VqwuoqfcMuQ2z5I/I7D2KGjxOgf9Z1CVfQVGm1Qkis+p4m037ArI/Ynbrn9SyrKxs4ItzIYQQQgghJlqx28ojt1XxTzvaeO1EkJ/t7uRYd5w/va4Ep0WjsbGRzq6OEa+f56shnQkQDPXQ0tJCS0sLW7duxefzUVNTQ01NzaAyrrOdqdkJlH2W3KYfo6c68bU+Tm/Z50GVihKzybQJvifLhz/8Ye66666B//sDv87OTtLp9KS0QVEUSkpKaGtrmxWz68r+XDxN07j11ltZvnw5O3bs4NixY7gjrVxLK35bIcdSNfz5f0RYXuricyuLqM61X/Jt9e/P/KsUymu8NByOc6ohQVdHnFeea8LtVZl/pZ15VVbUc0aZa7l/QG7of4H/IP7DTxP3XTceu37ZZtPxNpv2BWR/RqPr+pR8wSrGX3+Zk7q6uiluiRBCCCGEmGtsusqfXVfKgnwHP9nZzluNIU77E/zl+jK2b98+6nXD4SBleXeSY4ugWFuIJZvo7mnB7/eze/dudu/ejc1mo7q6mpqaGqqqqrDZbJO0Z1PD0L34yz5LbtM/YYk3ktP+awIln4BpNvBPXLppE3x7vV5UVcXv9w9a7vf7h4wCvxwWi2XEeuCTHdSYpjkrwqF+sj8Xr6CggA9+8IOsXr2a9957j6NHj+JLdHJNopMeSz4nUrX8eVuEjbU5fGJZIbmOS3/ImqaJza6waLmD+ittnDia4NSxJOGgwe53ohw5EKduoY2KGiuappC2FBDO/wCerudwdW0i4ZyPYckbx72/PLPpeJtN+wKyP2L2isViA2ehSX1vIYQQQggxFRRF4YMLcqnJtfPIm800BZN89YVT3NAbHPV6phLF7YVIyA2ZBbi1BTjzk6i2dpJGE13dZ0gk4hw5coQjR46gqiplZWUDo8HHM5ubTjLWYgKln8bX8i/YIgdxdz1LuOBukJKXs8K0Cb51Xae2tpYDBw6wevVqAAzD4MCBA9x+++1T3DohJlZ+fj4f+MAHBgLww4cPk5fqJi/VTY+ey47Ddbx5KsBHrirgD67Mw6Zf3rePVpvKwiUO6hbaOXU8wYkjCaIRg/07Yxw7GKf2ChtVdTZiOWuwhQ9gjZ/C2/4k/nmfl28+hRBz1smTJzFNk4KCArxe71Q3RwghhBBCzGELCx08+sFqvrO1mfc7Yli9t1JoZlAYPrD15bq46YM+ImGDtqYUrU0p/D1WSFVgpYLSnGvRbD0YajM9/kYCgV6amppoamrizTffJC8vbyAELykpmVUlUVKOGoLF9+Bt+xXOwNsYeg7R3A1T3SwxDqZN8A1w11138dhjj1FbW0t9fT2bNm0ikUiwYcMGAH70ox+Rl5fHfffdB2SL8zc1NQ383dPTw6lTp7Db7VKTVcxIubm53HrrrQMB+KFDh8hL95IXfA9/1McL79Xx4rEiPrW8iBtrvKiX+Q2kxaIw/0o7NfNtNJ5I0nA4TjxmcnBPnOOHEtQusFFX9RGK2/4X1vhJ7L3b6IkXQSIENg+O4joUTRunvRdCiOmtv763lDkRQgghhBDTQa5D5xsbK/n5rg7cx3Xsysifz420gmGA26NRf6VG/ZV2YlGDtuZsCN7dmcZIFgAF5NmXUZwTBksLwfAZ2jta6Onpoaenh507d2K32weVRLFarZO30xMk4V5CuCCIp+s53N0vYWhe4t6VU90scZmmVfC9du1agsEgTzzxBH6/n+rqah566KGB0ym6uroGTcLX09PDV7/61YH/n332WZ599lkWLVrEww8/PMmtF2L85OTksHHjxoEA/P3338eX9rMitJNALId/faOWZw+X87mri1lc7Lzs29N1hdoFNqrqrDSdSnL8cIJo2ODw/jjHD+usXXgL860v4Ol+Hm//QzAKkaMeOp134KxaftltEEKI6SyVStHY2AhI8C2EEEIIIaYPXVX4z6uKed0T4Ne7u0hmBpdpvH9VMVcWOrDZVTRt8OA5h1OlZr6Nmvk2EnGD9pZsCN7VniaVcENiAQ4WsKAiieZoJxJvoq2tkXg8zuHDhzl8+DCqqlJeXj4wGnwmnxkZ861DTQdx+bfg6fgPMroHRVFIv/e/sOR+kKSjfqqbKC7StAq+AW6//fYRS5ucH2YXFRXxxBNPTEKrhJgaHo+Hm266iWuuuYZdu3axf/9+ctIBlod2E4we5x/b66irqeGPVxZT5r38b1g1TaGqLlvnu+VMimMH44SDBqfP2KivHVriyqmHqEr+htOnkfBbCDGrNTY2kk6n8Xq95OfnT3VzhBBCCCGEGGTDFTlUF9n48ounSBlnlz/yXjN1eTYqfXYqc6xU+WxU5NgocOqDBpfa7CqVtTYqa22kkiYdrdkQvKM1RTJhhUQFKhVUFV2Hw9NNPN1MW/spAoEAjY2NNDY28sYbb1BQUDAQghcXFw+6jZkgkv8BtHQAe3gvOS3/imHJhVQHrsxLJMvrpPb3DDPtgm8hxFBut5v169dz9dVXs3v3bvbt24c3HWJZaA+h94/ztydrWbV4IfcuLcRju/zSI6qqUF5lZV6lhdYzcerDrw67nqKAaUJhdBPhzBIpeyKEmLUaGhqA7KSWM+3NuxBCCCGEmBt6YulBoTeACRzvSXC8JzFoudOiUpFjozLHSqXPRmWOjUqfjVy7hsWqMK/KyrwqK5m0SWd7mtamJO3NaVJJSHVnS6IUupdSVxklbTbT2d1IW1srXV1ddHV1sWPHDpxO50BJlMrKSiwWy6T1xSVTVILFH0XNhLHGGlBTHQBYEk1Yo8dIuhZMcQPFxZDgW4gZxOVycf3117Ny5Ur27NnDnr178aTCXBXaR9e7DTx0qI6NqxZz5xV5WLTLn2hCURR8+hnc1tAo64DLEuLE0WPk1S3AYp09E1wIIQRkJ9s+efIkIGVOhBBCCCHE9GSaJr/Y24WqgHFOtRMFKHZb2FDj5UwgSWMgQUswSTRlcKQrxpGu2KDtuK3qQAie/W2lMt/GinkuDMOkuyNNa1OKtuYUiTj0driABTi1BVy9NANqK72BRhrPnCYajXLw4EEOHjyIpmlUVFRQU1NDdXU1Ho9nUvvnoig6geJPkH/671HNNJD9AsHV/SJJ53wZ9T2DSPAtxAzkdDpZu3btQAC+c/ceXKkI8/37OPzacbbtns/d65axrirn8kcmJkYOvc/VdaaHd/cF8fo08ot08gs18gt1rDYJwoUQM1tzczOJRAK73U5paelUN0cIIYQQQoghdrdGON4TH7LcBNrCKa4ocPDxpYUApDImraEkp/0JGgMJzgQSnPYnaQsnCScNDnbGONg5OBDPsWvZILxvhHhFhZWcjE6g3aC1OUUsYtDdpgHlKGo5yxauw+LsIhQ+Q+OZUwSDQU6dOsWpU6cAKCwspKamhtraWgoLC6fdWZWWxJmB0BuyXyBYkq14W/+NcNEfYOgzt5b5XCLBtxAzmN1u57rrrmPFihXs2bOX93btwpmK4uzey1vPHeW1oiv42IaruaycxuaB6IVXK/M1cSZQR9BvI+jPcPJodrknRyW/UO8Lw3VsdgnChRAzy4kTJ4BsmRNVlecwIYQQQggxvfSP9lbIBt3nU4Bf7O1iRakLRVGwaEp2RLfPNmi9ZMagOZgNxM8E+n8naA+nCMQz7I9H2d8+OCDIc+hUeq3U5NkpSlnRQgrJiEl3hwnkg5JPfcVK3L4I0cQZmppO0dbWRmdnJ52dnbz77ru4XK6BuuAVFRXo+hTHlaaJq+dlTBSU83rUHj2I7dQRYjmriebeiKHnTFEjxVhI8C3ELGCz2bj22tWsWLGcXXv2sWPnThypGI62PfzuicO8smMpf3TDcoq99ovetqO4jshRD049NOzZPKaZPcvnirzdzM8/RIeymiO9q2jrsBEOGoQCBqFAklPHkwC4vX1BeF8YbndIiCSEmL5M0xxU31sIIYQQQojpJm2YdEVTw4bekA3Du6Ip0oaJRRt5ZLVVU6nJtVOTOzg7iKcNzgSyYXhj3yjxRn+Czmianlj2Z885I+Zy0LjK5qRKseNKa/R2GfR2OYAFlOReyaIFaZKZZlrbTtPY2EgkEuHAgQMcOHAAXdcHSqLU1NTgcrkuv4MukjV6DEuiecTLFTI4A9txBN4llnMNUd+NGBbf5DVQjJkE30LMIlarletWr+LqFct4Z9dedu7ahSMVx2h4l8dP7sVXcxUfu/kavA7bhTfWR9E0Op13UJX8zUDI3c/se1XtUlfh006ip7opMbdQ7NtGrHIVfsc6Onq9dHek6e5MEwoYhIMG4WCS0w3ZINzlzgbheX0jwp0uCcKFENNHZ2cn4XAYi8VCZWXlVDdHCCGEEEKIISyayndvryaYyADZEd4FhYV0dXYOhOE5du2S5wKz6yrz8x3Mz3cMWh5NZYaE4Y2BJD2xNNsSIbYRwo1KlWKnWrVTgoVAb4ZArwKUozrKWbpiLR5nD93djZw8eZJwOMzJkycH5tgpLi4eCMELCgomviTKKKO9AUwUMpZ8DNWFNXEaZ+BtHIEdxLyrsiPALbkT2z5xUST4FmIWslgsXH/tKq67ejlv7NjD/j27saVixBp28X9PHqB0/mI+fOM1OOxjC8CdVcs5fRoKo5twWc7W/I6mPXQ678BZtZwe08AWOYiz9w0siaa+J/93yHMvIbr4RtK2MpIJg+7ONN2dGbo70gT9GSJhg0g4SePJbBDucKnkF2oU9AXhDpc67Wp9CSHmjv7R3pWVlVN/yqUQQgghhBAjKHRZKHRZAFAUhdJiD61GGNMcaRz45XNaNK4ocHBFweBAPJzIZIPwc8LwrYEAybhJpWKjWrFTplghptBzWqGHfKKKDwoXkVsVxJZuJd7VjL+7k/b2dtrb23n77bfxeDwDIfi8efMm6P15BjUdGDb0BlAwUYw4/sr/iiXWiKv3VayxEziD7+AIvkfcu5JI7gYMS94EtE1cLPkEJ8Qspus6t6y9hnvv/iD/8h8vcGT/bqyZGF1HdvG/jx2gbtESbl+3CpvtwgG4s2o54cwSOtsbshNe2jw4iutwalp2BUUl4V5MwnUVltgJnP43sEWPYQ/vwx7eR8Ixn2jujVjn1VJabgUglTTo6coMjAgP9GaIRQyaIgZNp1IA2J3KoNIobo82Yf0lhBDn66/vXVdXN8UtEUIIIYQQYmZw2zQWFTlZVOQctDwQT/eF4UnO9CSIdBk4oiqlpg0nGs6oBtFComYerWo9zbl+PGo7BakutHAHoVCIffv2sW/fvoEzMmtqaqiursbpdI7Qmouk6PSWP4iaiWT/VRQKCgro6uoa+BLB0N2g6KSctfidtVhiJ3H1vIo11oAjuAN7cCdxz0qieRvIWPLHp13ikkjwLcQcYLFYuPvGa4ivWc5/bNlF0+F92DNRTh/Yyf8+tI8rFy9lw3UXDsAVTcNZtmD0G1MUUs46As469EQLzt43sIX3Y4sdwxY7Rso2j2jujdmA3KpSXKZSXJb9VjqdMunpyobg3R1p/D0Z4lGT5tMpmk9ng3CbXaG80sDpSZNfqOH2yohwIcTE8Pv9dHd3o6oq1dXVU90cIYQQQgghZrQcu84Su86S4rN1u03TpCuc5tipOF0tacwAONFYpDhZZHUSN0toVBOctISJJdvIS3ZQkOqCVIKGhoaBMzTzi4pZUFdLbW0teXl5l5UTGBbfQM1uRVFQPKWkw7YRR8+nHDX4530eS+wUzp7XsMWO4Qi9hz20i7hnOdHcm8hYCy65PeLSSfAtxBxis+jct3E1wbUr+PUbu+hp2I8zE+XI3p0cObCXJUuXcd2qlTgcjgtvbAzStjKCJR9HTX0Ap/9NHMH3sCSayWn7JWlLPlHfeuKeFaBmg2/dolBUaqGotC8IT5v09gfhnWn83RkScZOGo8GB27DaBo8I9+RIEC6EGB/9o73nzZuH3X7xkwMLIYQQQgghRqcoCoUeC4VLLLAEjIxJV0ea1qYkLU0p7EmVBYqDBaqDjF7AGUeCE5kYvelOfMkOCpOdeDIhujva2d7Rzvbt2zGtLjzF5VRW17C4rpJij21ScoKUo5rAvM+hxxtx9byKLXoUR2gX9tBuEp5lRHJvImMtmvB2iLMk+BZiDvI6LDxw+7W0BJbxyzf2kDzzPu5MhP27d3Jg316WLV3KqqtXjtupQoYlj3DhHxDJ3YgzsA1H4G30VDfezqdw9fyemG8dMe+1mNrgYEnXFQpLLBSWZIPwTNrE35MhEXNw+kQvPd1pkgmT1qYUrU3ZEeEWq0JeoTYQhuf4NBRVgnAhxMXrHz1SW1s7xS25NGrKP3CK5nAMzSWzzwshhBBCiGlF1c4OiFt6tUlPV4bWpiStzSniUahW7FTrdrDkkimcT5ee5Hi0h0hPE7mJTvJS3ajJCOEzRzh45gj7tur4rQUouWXkl1VQle+h0mejMsdKnkO/YCC+pzXCf33hbT67vIBlJWPLSNL2SgJln0WPn8HV8xq26GHsoT3YQntJuJcSybuJjLV4PLpLXIAE30LMYWU5dr5893UcbF/Cr7fsxdZxBE8mxJ7du9i7dy/Lli7h6quvxuXKnoZkGAYtLS1EIhFcLhdlZWWo6thnhTZ1N5H824jm3og9uAOnfytaOoC7+0WcvZuJea8l5luHoXuHvb6mKxQUWygtLWRedZp02sDfkxkojdLblSaVNGlvTtPenAZAt0BeQXY0eH6hTk6uhipBuBDiAqLRKK2trcDMDL7VlJ/8xu+hmOkR1zEVne7KL0n4LYQQQgghpiVFVbKf5Yt0rlphEujNDAx8i4QMtJBCMTaKlVLyq8txFqoELHFOtzTS3dqI6W9FzyQpSLRBWxtG22726D5+by2ky1qIYu8PwW1U5Fip6vs7x66hKAqmafL4ng5Odsd5fE8H3/1A1UWNHE/bKwiUfQY93oyr9zVskYPYw3uxhfeRcC8mknszGVvJBPagkOBbCMGiYhd/+9E1bDl1FU9vP0Be7zG8mSB79uxh3779LF58Ffn5+by7YweRcHjgei63mxvXr6e+vv6ibs9UbcR81xPLuQ57aC9O/xb0ZAcu/xac/reIe1cS9d1Axlo46nY07WyZExaBYZgE+oPwzjQ9nWnSKehoTdPRmg1/NL0vCO8rjeLL1VC1C79wmYZJd1eaRMzE5lDIL9BlJLkQs1h/mZOioiI8Hs8Ut+biqZnIqKE3gGKmUTMRCb6FOI+cLSGEEEJMP4qi4MvT8eXpLFxiJxw0BkLwoD9Dd2f2BzRq8upZu/JKSubp+MOdHDhynMZTJ4mH/OSme8lN9zI/epSI6qTLX8g71kJe1n2YSnZgn8emUZVjxa6rdLc2c23kMEeTC9ndWsDKMvdFtz1tn0eg9FPZedB6XsMeeR97eD/28H7irsVE8m4mYysd5x4TIMG3EKKPoijcWJPDmso1PHPoCn6/6whl4eP40gH27dsHgAmcG/WGw2E2bdrEHXfccdHhd/ZGdeLeq4l7VmCNHsbZuwVr/HTfLMjvkXAtIpp7I2l7xZg2p6oKuQU6uQU69Vdmg/CgP0N3R38QniGVMulsS9PZ1heEa5DbH4QX6vjyNbTzgvDWpiQHdsWIx85OZGF3KCxe6aC03Hrx+y2EmPb6g++6uropbokQYjLJ2RJCCCHE9KcoCp4cDU+OxoKr7ETDGVqbsyF4b1cGf0/259A+8OS4qClfxdoVazGVMKdOneLEiRM0NzfjMqK44qepip/G1CwE7IU0KQV0GfkcSGTANLkmegy3EaE+eoz/uTmPKwocVPrsVORYqegbKT6WkinQNw9a6SeJJFpx9W7GFj6APZL9SbgWEcnbSNpWNgk9OHdI8C2EGMSqqXx0cQG31Pv41d5adhxsYGloNyom5z+NK2TD8N9vfoPa2tqLKnsyeEMqSdcikq5F2VmQe9/I1sCKvI898j5JRy1R340knfPhIk4rUtWz3wjXLcyO2g4G+r4J7gvDU0mTrvY0Xe3pvutAbr42UBolHjfZ/XZ0yLbjMZP33oqyah2zOvyWke5iLkomkzQ2NgIzs8wJpoGW7JjqVggxI8nZEkIIIcTM43Rr1F2hUXeFnXjMoK0vBO/uSBMKGIQCCY6+n8DpViktX8CGG67C6cnQ2NjIyZMnOXXqFPF4HF+kBR8tKIqC6i3kdNyKNxMEwJsJ4kt2c6irgENd8cG3b1EHgvBy79lAvNBlQR0mw8jYSgmW3IeWaM+WQAnvxxY5iC1ykITzSiJ5N5O2l09K3812EnwLIYbls+v8ybWlXJMTY9vLu0ZcTwGSsQhbtrzJokVXUlBQcOkBOH2zIDuq0RJtOP1bsIf2Yo2dwBo7QcpaSizvRsySS5sFWVEVcnJ1cnJ1ahfYME2TUMAYKI3S3ZGdLPPsKVKJC27zwK4YxaU6qnbp+zxdzeWR7v2BfyQQIBZPkVcgk6TOJadPn8YwDHw+H3l5eVPdnAszTbRUF9ZYA5ZoA9ZYA6oRG9NVLdFjpK2FoM7ux7QQQgghhJgb7A6V6nob1fU2kgmD9pY0rc1JOtvSRMMGDYcTNBxOYHcolMybx8pl1dx8s0p7exsnT57k5MmT9Pb2kgl0cG70bAJXRA5xynsDa2vzaA4lORNI0hpKEk0ZHOmKc+S8QNymKZTnWKnw2gbC8IocG8VuC5qqkLEVEyz5OFpyI66ezdjCe7FFD2GLHiLhvCI7AnyMZ8CL4UnwLYQYlT8YvvBKwL59e9m3by8Wi4Xi4mJKSkooLS2lpKQEh8Nx0bebsZUQKr6HSN5tOP1bsQd3YEm2Ymn7NRn/q9g9a4l5Vl5WWKMoCl6fhtenUTM/G4SHQwbdHdn64B1tKVLJ0bcRj5k8/2QQTc/WHNd0BU3r/3u4ZX1/6wq6rtDb2Us4nEDtW6ZpCvrA32eXaRqTGry2NiV57625OdJ9cOCfPf7nSuAvss4tc3Ixk9dMJjUdxBo9jiWWDbq1dGDQ5QY6KqOPWgXw9LyEq3czSdeVxD3L+s6skbeHYg4yM+jJdqzh98e0urP3NdK2CjIWHxlLHoaei6G5L+rMNCGEEEJMLKtNpaLGSkWNlXTKpKMtOxK8vSVFPGZy6niSU8eTWKwKJfNymV9bxJo163i7oZWnN79NeaJpYFsK4DRiLGx+GTNZyq3za6hcWIkvL5/WcJqmQIIzgSSNgQRNgSTNoQSJjElDT4KGnsGD6nRVYZ7Xmg3CvTYqcuxU5HyIipyb8AZfxx7agy16BFv0CAnnfCK5G0k7qia592YH+WQzTkzThOSFR4cCoCgY8RhmIp693kwn+zO9Xeb+JAxtTOsFNC8eM0oqlaKpqYmmprMvED5fDqVFxZSUFFNaXExebu6Yw6QMdkLeWwi71uIM78AZfhc13okn/jSu7leIulcTda/G1C4+XB+O2wbuCqiq0Gg6Y7Jn54WDI4BMGjJpExIX28djG5UJ2TIsmkY2JNf6w/Rz/tbPX35OgD7G6/QP1j+wc/TnswO7ohQXZAbfj7PgsdPakmHnu6khy+dC4C+yMpkMJ0+eBKZXmRMlE8MSO4E11oA1ehw91TnochONlL2SpLOOpKMeFJW8ph9fcLsZzYOWCWEP78Ue3ouhOki4FxN3LyPlqAFl9p3NIgSmgZbqxBJvRk80YYk3oSdbL1ji5Fz2yEGIHBy8WcVCRs8dFIZnLLl9y3IxVacE40IIIcQU0S0KZRVWyiqsZDLZkqetTSnamlOkkiZnTiY5czKJrkOTqVGQDg2Z58wEVCDQ2cq2zla2bduGw+GgsrKSyspKltdV4nIVAJAxTNrCKc4EEn0/SZqC2d/JjMlpf4LT/gQQGti+qkCZZxXL8xbxB3l7WGQ5iC16DFv0GElHPZG8jaQc1ZPXabOABN/jJZnA+NN7xrx68wQ2ZSrI/kxvl7M/83y1vF91JTYjMaTGN2Sf+BOqjfdyrgXAlQmTkw6Ql+qmINmNRhq/P4DfH+DQ0aMAWDMpiqNBSqJ+SqIBiqMBbEbmgm0JASFdwbk0F9c1+eg+cAdfx9n1KtG9vUR2dGOExv6h9UJsuQvh6ocuuN6KvT/AGz5DRrViaFYymo2MaiUzwt8XtY5mG7gdw8j+kIJsz/cbx5DZNFCNNIY2ergbj8HWx9/HlgyimEbfT2aEv43By8n+rZqZ7O2ZRt/vs/8PvX4GxTSH3gYGimH0bXO464zUnszg2+17S/P+9Y+CLW/EYOLArhglZRYpezKLNTU1kUwmcTqdlJSUTF1DjBSW+Gms0eNYYw3oiWaUcx7rJgppWxlJRx0pZx1Je/WgM2D0+Nie+QOlnwYM7KG92ML70TIhHMEdOII7yGgeEu4lxD3LSNsqJLATM5NpoqV70ONNWBLN6PEm9EQzqjn0lC5DtZGxFGI5Z3TXSGKea4A0WqoXLd2Lmg6imCn0VAd6avga+4Ziw7AMDsMzei6GNQ8z7bvMHRVCCCHEWGmaQnGZheIyC4Zh0tN5NgSPx0y8iS5imcCQ6/W/G+51VrGsQKG1tZlYLMaRI0c4cuQIAAUFBQNBeFlZGfO8Hq6r8AxswzBNOiMpzgSSA4F4/+9Y2qApmKQpqPPcqVWU2a7gM2X7uaPgONbYcazNxzmdruCYfj1233zKc6w4LWMbrDhXSfAthBjVIv9Jfl5/G9WJ48N+2wnQainnR+98m/dz69iXW89+Xz0tnmw1LN1IkpMOUJzooDjegaYkSWoWznjyOePJ79uQSX48THE0QGk0QEk0QE4yOmzQTtokuquH6O4e7AtzcF9XgKXIjvuaAlwr84kd9BN5p5t09xjPwBhFXu8R7PFu4rbc4Uc9mgb2RC8lnbsGBVLjyQQM1TJiUG6MFKCrtr5l1uwHeW3o8uy6NgzNiqFasjeoqBcMvfsFcuonZJ+njJHJDqcfRTyWrf1dUGSZpEaJydZf5qS2tnZyy5yYGfREM9ZoA9bYcSzxxiGjT9OWQpLOOlKOOpKOWkzNOeLmDM2FqeijjmA1FR1Dc2NYfITtlYQL7sQSO4k9vBdb+ABaJoQzsA1nYBsZPZe4Zxlx91Iy1hIJwcX0ZJqomWBfyN03kjvRPGzNe1OxkLLNI22bR8peTto2j4wlHz3RSl7Tjy54U7Gca0nb552zwTRayo+a9qOletDSvWdD8VQvWiaEaiZQk23oybYh28s0Qr7qOBuGW/LI6NmR4/3LpBa/EEIIMf5UVaGg2EJBsYXFK016u9M89fTeUa9TnAyjxu+gIt8gTRfxVCuRaDORWDddXV10dXWxa9cuNE2npLiMyspKamqryM/PQ1UUit1Wit1WVs1zD2zTNE26Y2maBgXiDn7UfD3/r3kpnynbz52Fx6nSz1DFr9jVWMx3mpfRmC6nPMdORY6VyhwbFV4r5Tk2PDYJxEGC7/FjtaH+6IkxraooCiUlJbS1tc3YcgDnkv2Z3i53f1Tgj5oj/MvrLhZED2M3zgbKCdXGUedCPrdhMeV/vJFy4ANkv8E8FUiyryPOvvY473fZ6LYWctBzFYpp4MqEqVSDlCkhLLFekrEw3Q4P3Q4PB/OzgbndbqOkqJjSkmJKiospLizEYrEM2p+kadJjmljjDbhCb2FNnMK5JBfnklwS9gVEvOtI2Sovq/+uGqH0BQCKylXrS9Du/c0lbXus940GTHTMahgmRgYyGejqzLB7DCVe6upVXG4V0yT7g4Lb7SEYCGKa2dHppmmevXy4n2HWMUzg3N+XuJ0h2zMusEPnhN6maRBPdZDJxNA0B3ZLEUrflx+J2Mj3lZjZTNMcFHxP8I2hJdv7Spc0YImfQDUGf2GX0bx9QXc9SWcdhp4z5s0bFh/dlV9CzURGXkdzYVh8ZxcoKilndgR5qPBurNFj2QmGI4fQ0r24el/H1fs6aWsRcfcyEu6lZKwFF7vnQowbJR3GkmjqK1eSLVuiZYbOTWKikbaVZoNuezkpWzkZayEo4/iBUNHJWAvIWAsY9l2DkRoahqd7syF5qhfViKIaMdREDEuiZdibMDT32TC8b8S4cc7ocanPL4QQQlye7DxgCoYx8ntogIwRAQxMU0OjGJdejMu7nIw7TizRSizZQizZQiYTo7mlkeaWRra/vRVdc+JxzSMvZx75BfNwuxzY7Co2u4LVlv29wOtgSaETTc8ONDFNk0Aiw5nAlfwu0EVN/C2W2d5npbedld6X2RMs4l+al/FsaynnDlX02bWBCTXLvbaBYDzHrk3beYwmgrw7GieKooDNPuZ1VbsDxWbPpjIznOzP9DYe+7O21o6ir+T/vldGJtiJzUiQUG3o3kI+v6qENZWeQetrQJ3dQV1xDh9eAqmMydGuGHvaIuxri3K0W+Wg6eUggBNs9gQL7BHK1TD2eC8RfxfxeIJTjY2camwc2I+CggLKysq48sorcTgcuN1uFEUhZV+M37cYPd6Is3cLtshBbPGj2OJHSdqrieauJ+m84pJq1ZbVgGI5d7LDrPGY7HA6HWsaZwP2eR6TQweDg/b3fHaHwpUrPINKfiiKQmlpCa2t5rT90mhIOH5OYN7dmWbntiiR+Gm6QzvIGGcn99RUJ/mea3DZq7A55s6bhLmmvb2dSCSCxWKhvLz8wle4SGa8E3tgB5a+SSnPD+gM1Z4tXeKoI+msI2MpvKyR1YbFNzjYvhiKTtJ1JUnXlWAksUUOYw/vxRo5gp7swN3zCu6eV0jZ5mVDcM/SiwrmhbhYSiaGnmjuG8WdHdF9/qSuACYqaWsxafs8UrZy0rZy0rbiMYfCYz9bwnVxO6BayFiLyFiLhlykKAolhT46mw6jpnoGwvCzAXkPqpFAzYRRM+ERS7FkNO95Yfg5AbmeM75BvxBCCDFL6brOLTd/lJ3be0ZcZ9WaPCqqfCQSJom4QbLvdyJuJxH3kkgsIBEzCAR78AebCUWbSSTbSWei9AaP0Rs8RsMZsOkFOGylOKxl2CyFA4Otsu0Aq13FZlMGwvFiWxEZ+0c4aruVUvMtfKmdLPd28L+8r9CULuWpnqt5pb2IzmgGfzyDPx5lf3t0UNs9VpXyvkA8G4zbKPdaKXDqszIQl+BbCDEmayo9rC53c7CzjN5YhlyHxqJCJ9oYah1bNIWrip1cVezkE8sgmspwoD3KvrYoe9siNAZgf9LGfvKASiy5Jle5E1RbwjgTvYS7O4hEInR2dtLZ2cnevdnTjpxOJ6WlpQM/hYVlpEs/iZbsxOl/E3twF9b4Kaytp0hbi4n61hP3LLvoD36l5VZKyix0d6VJxExsDoX8An3W1nlW1Gyo/95b0RHXWbzSMSP3X1GUYXLE7ILSeRaSRiMdgTeGXC9jROkIvME86wbyC5ZMfEPFlGhoaACguroaXb/8t0hKJow12jchZew4mWM9nPs1oalYSNmrSDrrSTrqSNvKpudkkqqVhGcpCc9SlEwMW+R9bKF92ZIsiWYsiWbc3S+QslcT9ywj4V6MebGhoBDnUIwEeqLlbF3uRBN6qnvIeiYKGUvBQKmSbNBdelklQS7pbIlxoOgOMrYS0tbi4S/PxAZGiA8aLd5XWkUxU2iZIFomCPHTQ65vomLo3vPC8HPqjOve6fn8I4QQQkwy0zQ506Bjs+SPuE5jg0ZVLThdKk7XaK+fHqAKwzCJRVM0nm6m8Uwjra2NBEO9JNJdJNJd+CP7UVULTnsJdr0Mu6UM8JAOG0TDAOfPiWYBNuC0XM2S4ndYWLiXcr2V/1L0HJ/wldEQu4GmVC1hw6AnlaY9nqIpmqA5miScNDjUGeNQ5+BScA5dpXwgDLdS0TdKvMhtQZ3BgbgE30KIMdNUhSXFlx9mOC0aq8s9rC7PRkA9sTT72iLs7QvCu6Np9oTs7MEOFOD0XMHSSqixRvAk/SRCvbS0tBCNRmloaBgIq1RVpaioiJKSEkpLl1BetIaC1B4cgXfQk+14O/4dV8/LRH3XE/deg6naRmnlYIqqzKm6zqXlVlatg/07I/iD7QMlP3zeYpZc7bqske7TkWmaxBNxuoPvjrpeT3gHJotRhq9AP6u8+OKLPPvss/j9fqqqqvjc5z5Hff3Idd23b9/Ob37zGzo7OykpKeETn/gEK1euHLj8nXfe4ZVXXuHEiROEw2G+/e1vU11dPQl7Mnb9ZU7q6uou6fqKkcASO4k11oAl2oAl2XreGiopezlJRx1JRz0pR+WMK01gag7i3lXEvatQ0mHs4f3Ywnuxxk9jjZ/EGj+J2fkMSWc9CfcyEu5FmOrYzogTc5NpJNHjjeix/pHczWjJjmHnzsjouaT6SpWkbeWk7WUTcnxd1tkSE8TUHKQ1R/YLsiEXmihGJDtK/JxQXB0oreJHMdPZkDztH377aGQsvkFh+Ln1xg3NLbX9hRBCzAmGAbHo6HUy4zEDwwBtjGPqVFXB5bZy5VU1XHlVDQDhcJjGxsaBn3g8Tjh6hjBnAPB4vJSUVFKYN48cTxmGoZOIm2dHmcdNEgkP7zTdwr6261hS8i5XFu4mz9pCnvU3VEdK2N26jmSgDjc6dTgGUmBFh7RqEidDMJOhN5UmmjGI9Rgc74mz34wSwyBGBk1TKO+rG15xTjBe6raOaSDkud4+GOLEE13ULrZx7ZXuC19hHMysT1tCiFkpz6GzoSaHDTU5mKZJSyjF3rYI+9oi7GuPEkkavN0Bb+MAHBS6q1i8fDV1tig5aT/B7g5aW1uJxWK0tbXR1tbGnj17APB4PFSUXc2q8jA19uNY0gE8Xc/j6nmNWM4aor41mNqFn3ANw6ClpYVIJILL5aKsrAxVnd0joyLxRpq6txAOny3HEE65qY2vB6bPxJamaZJKpUgkEiSTSZLJ5MDfiURi0N+j/R6LWCxCS0vLhJTBmE62bdvG448/zv3338/8+fN5/vnn+eY3v8n3v/99cnKGlrM4cuQIP/jBD7jvvvtYuXIlW7du5Tvf+Q6PPPIIlZXZOvuJRIKFCxeyZs0a/vmf/3myd+mCenp66O3tRVVVqqqqxnYlM40lfgZrX+kSS/wMCoPfJKetJdnyJc568mrW0Nnpn7algC6WqbuJ+dYQ861BTfmxh/dhC+/FkmjBFj2KLXoUs1Mn4VxIwrOMhPMKGOPkuWKWMjPoyfZBI7kzx9vJNc8fxZQt29FfjztbtmSenEkwEkXB1NykNTdpe8XQy00jWyalr2zK2XA8+6Om/ShksqPqU90wdC5QTEUfEoafG5CbqlOCcSGEELOCpimsv81DIp59X99fdrWrq2vgfbzNrqJpl/e653a7WbRoEYsWLcIwDDo7O2lsbOT06dO0tbURCgUJhQ5wjAOoqkpJSQlVVVVU1ldSWFg4kEdk0iaJhJdk/G6OxW8iN7aVQnMHha42bqv/D/zJYg50X8/J7nqSScAEMw0aCi50XOiUjjIoMGUaxILZn/bGNKdIEscggYHDoeJzaxTk6JTmWqnMywbkFm1oVmIYBsffj+M1dI6/H+eaK5yTkqlI8C2EmFYURWGe18o8r5U7FuSSMUxO9MYHRoMf6ojRGU6yOZxkMwBeyr0FLF12NUs9Br5MgN7OdlpbW+nu7iYUCnHwSIiDR0BXvVxdYeOG+ig+WwxX72s4/FuIe1cR9d2AYckbtk3Hjx9ny5bBAbDb7Wb9+vWjjoCdyY4fP86mTZuGLA+Hw2zatIk77rhjXPbdNE3S6fSwAfWFAuxz/57MIDESGX2ik9ngueeeY+PGjdx0000A3H///ezatYvNmzfzoQ99aMj6mzZtYvny5dx9990A3Hvvvezfv58XX3yRBx54AID169cD0NHRMTk7cZH6R3tXVFRgs43wxs800BOt2RHdseNYY6dQzMHT2GX03IHSJUlHLaaePbNFURQU3QH4J3Avpo5h8RHNXU80dz1ashNbeC/20D70VCf2yAHskQMYio2kexGG7SYw88lOnyxmLdNAS3UOTDppiTehJ1uHrZ1taK7sxJO28oGyJYbunYJGz1JKtsyJoXtJM8wXe2YGNR06G4qnelHTPWgpf7a+eDqIYqbRU53oqc5hb8JQrNkwvD8cPzcg13MxtfEdma+m/JNejkZMPtM0IZm48IpTTVEw4jHMRHzWfLk9ZaQvx4/05WWxa2Dv+75dURTycyAVSw/qS3Mcn54UoMiXQ5FvCauWLiGZTNLU0kLjmSYam5oIBIO0tLTQ0tLC9u3bsdttVMybR2V5BZUV5bhdLhxuwO0AbqU7sxZXaDuO8Lv4rO1cX/ofXFtZTNiznpC2kEQCkkmTRJzsCPKESTJx7t8miUR29LtFUbGg4u1v6LkSfT/dEMRknxnnHaKkVRPVYmK1KridKrlulVDEwJvJxtDejM7bh8KsvWri3+9J8C2EmNY0VWF+voP5+Q4+elU+yYxJh+Fg8/tn2NsW4Xh3nKZgkqZgkk2AqqjU5dWwbNFi1uXr5BohOtuzo8BbW1t557TCu6dtLCqJc0NthHJfCmfgbez+d+jIVBL2rcddtHDgm8f+AFjBpCYvicdmEEqonOoxxzUAnk4Mw2DLli2jrrNlyxZqamowDGMggE6lUoRCIdra2ojH4yOOrj4/uB6vN2KqqmK1WrFardhsNmw228DfY/nd1dXF008/fcHbcblm94jDdDrNiRMnBgXcqqqyZMkSjh49Oux1jh49yl133TVo2bJly9ixY8dltSWVSpFKnQ2WFUXB4XAM/H0xLhSSdJw5DGTLnAxs2zTRUl1Yotka3ZboCVRjcO17Q3Nly5Y460g664d8gdbfyv5tzsYJY85n2IqI2W4llncLeqIFW3gvttBetHQAe2g3xoHd5KtOEu4lJDzLSDmq51xt4Vl3PJgmaqoHS6IJvW/yST3ejGoOPZvGUO19ZUrmkbZXkFuxgq7e1JDCJrOkZ8Zkyo8HRce05pK25jLslJ5mGjUVGAjGz60xrqZ60TIhVDOJmmxDT7YNexOG6jinrnhe3yScZ4NyVOuY+0FN+clr/N4FJyDtqfqyhN8zXTKB8af3THUrxqR5qhswi0hfjh/py/Ez2X2pA9V9PwABi4Mznjwa3fk0u/OIx+FYwwmONWQH7+TFw1SEu6kMdVMW8aObBkEg5NBwr8rHeXUeFtrJ7fl33J1xwts6iR8OjtoGE0hrdpLWHBLWHJJWLwmrl6TVS9yaQ9iRT9ieR9LixbC40NRsLXAXWvbKyexPKgzZsU9n3+8bpsnJg0muu9KY8FHfEnwLIWYUm66yujSPCms2MA0nMuzviLK3NVsjvCWU5Fh3nGPdcZ4ErJrCosISltbVcfNaJ7lKlPa+cihPHG7Bp7SxvjZMfWGSEv00hP+VY6fsHApWY3rms3//ARYVx7hzUZAcx9kSBoGYyvMHvWzZsoXa2tpxfbI2DGPgxzTNQf+f/2OaJplMZtDvC6032vYMwyAYDA4a3T6ccDjMj3/843ELrRVFGQigRwqnR7q8/29dv7xZqB0OB263e9R9d7vdlJUNU191FgkGgxiGgc/nG7Tc5/PR0tIy7HX8fv+QEig5OTn4/f7LastTTz3Fk08+OfB/TU0NjzzyCIWFhRe1HTPeTWbH9+C80dnn+sQi+EFXEWuuvhJX+gSm/yCm/yAkzpvNXbOj5FyB4luE4luE5irHehGhbUlJyUW1feYrA1ZhmgYEj2N0vo3ZuQM1FcQRfAdH8B2w5qIUXotadC24a2ZPGDwGM/F4ME0TEj2Y4ZOYoZMQOokZPgXpYb5YUq3grkbxVKN4alHcNWiOoiGPmZLSyWn7dDe9j4dhSqj0MTNJSHRhxrsg3nn2d6IL4l2QCqEaMdREDBLDv45g8YC9kExvIYX2AhRbIdgLUOyFYM9DOWfCUjOUIHNq5NAbQDHTFOU6UDxycAkhhJj5clIxcnqaWdzTTAaFdqeXM+58Gj35dDi89Njd9Njd7C2oQjMylEX8A0G48WYH4R3duFbl4VqVj6XQTu4fVJBad04APszHegWwZOJYYnFcsfYLtjGjWkhYPHS5ymj1lNPlKiPgKCBqz0O15lKiOQbWVRUFrzE5o74l+BZCzGhum8aaCg9rKrLlBDojqWxt8L7SKL3xDHvaouxpy47S9FhVFhf7WFZRxsbVN+DTM7S3t/NG52HmKfupzelhfkGc+QWHOeNvILfKyg21Qz/Me+0GH1/p51e74Le//S12u/2SwmrIjrA99/KZor/9iqIMBNIulwtVVS96tLXFYpnysEtVVdavXz9siZd+69evn/W13aeTD3/4w4NGkvcfI52dnaTTo4ce59LjzeSOEnoDWDS4f40fx/tfH1Sl21Q0UvZKUo56ks560vZyUPpmsQkBoQu/Cexve0lJCW1tbXP4dFMPivs2ius+Qc+Jt7CG9mALv4+a7MVsfpFM84ukLfnZeuDuZWRsxVPd4Akzk44HJR0+O5I73oQl0YSaGfoFoalopK1l2Xrc9uzkkxlr4dnHSwYImBA4+5iZSf0wkWZHPyhAISiF9E3JcvYSI5EdGX7uhJsD5VR6UY04pEKQCmGGsiPXzu+FjObF6CuhYiqWczc/oq6uLtLhsU9kDqDr+kV/uSomkNWG+qMnproVFzQ7HsPTg/Tl+JG+HD/TrS9VoLzvZw0Qj8c509xMY1MTjWeaCEcinPHkc8aTz7ZScDmdVJSXU1leTnVpPnnpvThD72ApgNy7K0j/YT4R73rizsWXdRamClgAN2dHqkN2YN+vn4tiZEzUcz7zT9aobwm+hRCzSqHLwsY6HxvrfJimyZlAkr1t2dHgB9qjhJIG28+E2H4mlF3fqbOs1MWykrWUFt9Ct9qL1v4qOYkDVPhSVPhSmObQ+ZoUBUwT7lgU5HubmzEn+KRsRVFQFAVN01AUBVVVR/0Zyzr9652/zXA4PGJJi3PdfvvtVFdXD4TWiqJQWlpKa2vrtHhDcCnq6+u54447eGPLFiJzqKb7ubxeL6qqDhmt7ff7h4wC7+fz+QgEAoOWBQKBEdcfK4vFgsViGfayiznGxrpujj2JiULaVtY3IWUdSXt1dtTq4A2O+baHa8tMfXyMF0XRSDrnk3DUEyr8ENbIkezEmJFD6Klu9J7XcPW8RtpaQty9jLhn6YhzMMx00+14UDIx9ERzth53Ihtya+nAkPVMVNLW4r7JJ7O1udO2YlCG+Wgxhv2bbv0wVWZrP5iKFcNaTNo6/JdZSiaWLZ2S7iXXkSHcfRot1YOWzpZVUc0kWiaIlgliiZ8e++3O0v6cSxRFAdv41oefCIqioNodKDb7Zb1HENKX40n6cvxM97502OwsyPGxYNFVmKZJb28vp0+fprGxkebmZiLRKIePHuVw32f8wsJC6qo3sLK0lxJjH3q6m5yep3CFthDNvYm4Z/nZgQvj4J33g3gNfUgdu8ka9S3BtxBi1lIUhUqfjUqfjf+0MI+0YXK8O94XhEc40hWjM5rm9w0Bft+Q/WBf5bOxtOQmVhffxNL48xRxbEjofXb74HMY3La6jKRr4QUD5eF+SkpK6OrqumBYPZmjoQ3DoKWl5YIlP+rr62fl6OdOazFv+W4go3ZiMxIkVBuat5ArrcXM/tg7O9qttraWAwcOsHr1aiB7TBw4cIDbb7992OssWLCA/fv3c+eddw4s27dvH/Pnz5+UNo+XDscGlJIbMDXnVDdl7lB0ku6rSLqvQjESWCOHsIf2Yo0eQ0+24e5pw93zEilbBXHPMhLuJTLp4ThRjAR6omVgFLeeaEZPdQ9Zz0QhYykYmHQyZSsnbSsDdfgvpYS4WKbmIK05yNjnoZaWEtHO+QLdNFGMyMAocS3dixZvwhE5MLWNFkIIIaYhRVHIy8sjLy+PFStWkE6naW1tHQjCu7q66OzspLOzk7cBlz2fW65SWVbUhjXVjbfjSVw9rxHJu4m4Z8VlB+CGYXDyYBKPqQ2baZiTMOpbgm8hxJyhqwoLCx0sLHTwsSUFxNMGBzui7O0ri3KyN8Fpf/bn2cNwW14Jfzv/2AW3e0PBLgz1UN+kTb6+iZqyvw1LLhk9F1O1Dxk2rigKRUVFg8qeTAfnlvwwGfzFbP//s7Xkx/bGEP/wZt/UJeeOMI1l+Ic3m/nLG+axptIzNY2bRHfddRePPfYYtbW11NfXs2nTJhKJBBs2bADgRz/6EXl5edx3330A3HHHHTz88MM8++yzrFy5krfeeouGhgYeeOCBgW2Gw2G6urro6cnWzO6vF+7z+S57ZPh40fMXk5bQe8qYqo2EZzkJz3KUTBRb+H3s4b1YYiewJM5gSZzB3fU8KUctcfcyEu6r5EuKsTJS6MnWvpHczdmR3MlOlGEKOmb0PFL9I7nt2ZDbVKf/iEsxSykKpuYmrblJ27N1xvV4swTfQgghxBjouk5FRQUVFdnX0EgkQmNj48BPJBbj6Z0ZXtByWV0VZX1dFCc9eDv+A2f3q0TzbiLuXTn8WX1jkEqbWA1lxIF8iqJgMRRSaRObddhVLpsE30KIOcuuq6wsc7OyzA1AIJ5mf3t0oDRKZ2rsgcqFJm1KmlZCeImSQ1TJIa7kkNB8tPmr6ImqmKoTi65iURWsmopFU7BoClZNwaIq6OrILxYTodNazD73MhZED2M3EgPLE6qNo86FXDPNRj+bpknagLRhjv6TMUkZJhkT0pnsslTfZcmMweO7O0e9nZ/sbGd1uRtNnd2T761du5ZgMMgTTzyB3++nurqahx56aCCg7urqGnQ8XnHFFfzZn/0Zv/71r/nVr35FaWkpX/nKV6isrBxY57333uPHP/7xwP/f//73AfjoRz/KPffcMyn7JWYOU3MSz7mGeM41qOkgtvB+7KG9WBJnsMYasMYaMDufJumcT9yzjKTrSkz14mr5zlpmBj3ZPngkd6INhaFzSGT0nLOjuO3Z3/JlghBCCCHE7ORyubjyyiu58sorMU2Tzs7OgRB826kW3jntZHVllBtqI7htfrydT6G3vUi34zos8zagaheXTtusGms2uvGHM0B2EJ0vNxd/b+/A8Itcj4bNOn6lVc4nwbcQQvTJsetcX+Xl+qrsafTPHsqhPfEmhdYow+WchgkdSSef2nc3RbYoJbYIpbYwpdYwJbYwpbYwJbYIeZY4ViVJPl3k05W9sgmkgb6cNZbRaUu6aE24OZNw05bI/t2WdNOacNOTsmNR1WwQ3heGW/oCcuvA/9m/9fPWy/7dt27feudu49zrW7RsyP5PO9rw24rptBbhS/cOlPzw67mgZC/Pd+oY5uCw2RvW6ewOksoY2VA5c/ayTF8wnRpDON3/d8qAzHmXn3v9s5dNyiFCVzTNwc4oS4pdk3ODU+j2228fsbTJww8/PGTZmjVrWLNmzYjb27Bhw8CIcSEuhqF7ifnWEfOtQ031ZOuBh/ZiSbZhix7GFj2MqVhIuBYSdy8j6brikkelzDimgZbqxBJvztbkjjehJ1tRzKGTvxqqi5Q9W4+7v2yJlI0RQgghhJib+s9ALyoqYtWqVaRSKZqammhsbOSne05R72lhfW0Yjz2GM7mZwKEtHAxUk8i5hoqqWjyesZ0JXV5go7zg7G2WlubT2pqctLPe58inAiGEuHjVeQ7+cedqvjX/dQyTQeG3YWa/rfz+6dXcsaiMEreFZN9o4mDGpDtjsjtjkIqamJkkLiWImyBeJUCOGsSnhcjTQhToIXx6FIeWpsYRoMYxdBIxgISh0pZwD4TjbQn32d9RF91JBwbjX3pEVUxq8pIUWGN0JRX2hkwMFPzxDF95abgJpprGvQ2XSu8bKW9Rz/6t9S/rC/jPXR6MpznRm7jgdntjmUlovRBiOIYlj2juBqK5G9CS7dhDe7GF96KnerCH92MP78dQ7SRcV5HwLCXpqBvXyXmmlGmipXv6RnI3o/eVLVHN5JBVDdV+zkjuclK2cgw9Z+hMzULMQIbmwlT0Yb/g6WcqOoY2+7+kFkIIIcaLxWKhpqaGmpoa4EaCwSA7G09g79jBIu9pcuwZ1tgbCMRO8uZrbo6HyphXUU1lZSXl5eVYLNNz/hcJvoUQYgSLCp38Y6KO/3EM/lvVuxTbogOXdSSdfP/0at5P1PFflxRcUukLRVEoKC2ltbkRNeVHTfvPTtyU7kVN9aKm/GiZIDbVoMoRpMoRHHZbBipRvITJIWh4CZpe/BkPvYaHnrSH7rSbZEYhZRjZgL7/xzD7/jdI9Y3QDicyhFMGN+aeHrLf7Qkn/3h6NW/0VuG2qrit2qAA2WG3YqbT6P1hc3/ArJzz9zk/FlVBOyeYPjeU1vquY1GHXk8/9zra+dtT0BQuujTM/vYIX//9mQuul+uYJSHaHCIhyeyUsRYTyb+NSN6t6Ilm7OG92EL70DJBHKGdOEI7MTQ3cfdiEu5lpOyVoMyQuQlMEzUdGKjH3V+bWzViQ1Y1FCtpW1k26LaXk7aVk7HkzZx9FeIiGRYf3ZVfQs1ERl5Hc2FYfJPXKCGEEGKW8Xq9LFq8HFhONJ0g2LKZ/Ni75Dhi3HVVkGA8zJsnWnjx+T1k0CgrK6OyspLKykoKCwuH/Tze2NjIr371K9atWzdQd3yiSfAthBAj0FSF+68u5h/eTPNmbwXLPB0UWKN0JZ3sDRVhoPKXNxRffr1n1ULGWkDGWkBquMvNDGo60BeKZ8NxNX3u3wFUDNz4ceOnpD/rOCefNVExdO/AxJuGnkvGkktG9/VNwJkzUBpgf3uEV3Zu5VvzXx8y7VmhNcq35r/O/zi2gVuvvn5QyY/saUultLa2TqvJOsdqUaGTfKdOd3TkcLTAqbOoUOrfzjTDhSSGafD0754mnkhw04YNFM2rk5BkplIU0vZywvZywvkfxBI/jS20F3t4P2omjDPwNs7A22R0H3H3UhKeZaStpdNq9LOSDvfV4z4bcmuZ8JD1TDTSttKBgDtlKydjLZSQW8w5hsUnz9lCCCHEJFF1G9bK2wmZt5AK7sTZsxmvPcCdi4LcWB/hzQYn7zamaWpqYtu2bTgcjoEQvLKyEpfLhWmabNu2jY6ODrZt28Y999wzKfOYSfAthBCjWFPp4S9vmMf/3dnO7lDJwPICp87nry5mTeXY6lpdFkXDsORhWPJGCcZD2ZHiQ0JxP1rKj0Imuyzth/gwm0DB0DxkLLms1XJYU3cIYEhtc1XJlnn5UvUO0gW3jPeeTqmzX3Q0j7jO568ehy86xJQ4PyRpbW3lZKeB1eoit2I5hiYj+WcFRSXlqCHlqCFc+J+wRo9jC+/FFj6Ilvbj8m/B5d9C2lJIwr2UuGdZNjiezCZmYliSzRiN7+HtPISeaEJLDy1zZaKSthYPlCpJ2+aRthXPnfrlQgghhBBielF04jnXEvdejT24C1fv67jp5YNXhti4MMmejmJ+/75BNBbjyJEjHDlyBICCggJ8Ph/t7e0AtLe309jYSFVV1YQ3Wd45CyHEBayp9LC63M3Bzii9sQy5Do1Fhc7pE4Aq2kCol3LUDL3cNFAzYdT+Miopf7aUyjl/K2YaLRNEy/SVUhklA1QVKLRGSDX9EMPiw1QdGJo9+ztdhD2SxFDsmKp9YLmp2jFUO6jTs+5Xv/4vOn66s5VyrWVghH9zpozPXV06OV90iAkRCoWIxc6Widi/fz8ApaWldHd343A4xjxBi5ghFI2k6wqSrisIFaawRY9gC+3FFj2MnupE730VV++rpGxl2RDcvWzQlyNqyn/ZpRQUI4GeaOmry50dya2nurPXB2x965koZCyFgyeftJZO++dMIYQQQggxByk68ZzV2QA8tBtXz2as6R5WFzeyqtRJq7qU3a25NJxqprOzk66uLrq6us5eXVHYvn07lZWVEz7qW4JvIYQYA01VBpX1mFGUbJkTQ/eSZphvVE0TJRMeGCVuixzEHt57wc1aUu2Qah+0zOiF0aJDEw1Tc2Co2WC8PxA/f1k2ND8bmJuqA1OzYyrWCT+lf0Peae5a/uzZLwGAjOYlnPefSLB4Qm9bTIxQKMTjjz9OJjN0YtLTp09z+vRpNE3j05/+tITfs5VqIeFeTMK9GMWIYwsfxBbeizV6HEuiBUuiBXf3iyTtVSTcy0jaK8hr/ucL1oXvrvzS2fDbSKEnWwdKlVgSTWjJTpQhRaMgY8lH99UTMvNJ2eaRts3DVG1D1hNCCCGEEGLaUjTi3lXEPSuwh/bg7N2MnupmnvE2pcUOolfcQLf1A+zae4idO3dSl5/gzkUBnj+YQ0NHx6SM+pbgWwgh5jpFwdQ9pHUPaXsFhuYeU/Adzt2IYclBycRRjRiKkcBlg3ikFyUTRzFiqEYcxYijGAmU7JhGlEwYdZjatWNhomCqtr5APBuMm5r9nNC8L0DXzvlbPXf0uX3UMgG28AG8bb8YslzNBPG2/YJgySdIuCX8nmlisdiwofe5MpkMsVhMgu85wFTtxL0riXtXomQi2MIHsIf2Yomfwho/jTV+GhO40NgTxUxjD7yLZoSzI7kTbSgYQ9bL6DnZiSdt5aTt2d/oLkpLS4nN0DkRhBBCCCGEGKBoxL1XE/csxxbeh6tnM3qqE3fPyzjVLbSmc3BY4NYrQhR5Mtx6RYgT222TMupbgm8hhBCDpBzVZLQc1Exg2ODHBAw9h2jezYNGXyuKgre0lOBwQY5poBjJvhD8bCCuZmJ9y+JnQ/LMuYF5DNVIoGRi2dAcE8WIgxFHw39J+2cqlrOjyFXbwMhyU7Fh6wv8z99vpW+/3V3PkXAtkonkhJglTM2VrVOYcy1qOoAtvD8bgieaxnR9t3/zoP8NzdVXj7t8oGyJoQ/9MmWaFMoSQgghhBBi/CgaCc8KEu5l5wTgHVw3L86KYrD1pdDlvhR1+QmOT8Kobwm+hRBCDKaohAvvwtv2iyGjHvvj7HDBXRcX/ipqdhS2Zgd8jD72dgRGqi8Qj/WF5vFzQvNzAvRM/zqJs8szcVQzkW2KmULLpCATuqibVwAtHcASO0XKWXspeyCEmMYMPYeY73pivuuxht/H1/ZvF7xOylZO0lE3MAGloefAJMxOL4QQQgghxLSlqCQ8y4m7lrDrlf/LyqImij1nUwDDgFsWhDjeZZ3wUd8SfAshhBgi4V5MsOQTuDufQ8sEBpYbeg7hgrumptyHasFQLYxeRXwUppEtudI/4vy8ciyW2Enskfcv3Ixzan8LIWYnQ/eNab1Q4YdI2+dNbGOEEEIIIYSYgTKGye4zOh3dXj6zundguapmR33XFyRpCYfJZDLo+sRE1BJ8CyGEGFbCvZiEaxGW2CnUTBBD85JyVM/cMh+Kiqk5shNpDnNx2lo6puDb0Lzj3zYhhBBCCCGEEGIW0XWdj91zD6Vd/4JpKIMmfTdRuOc6C60F90xY6A0SfAshhBiNos6Zsh5jrW2eclRPcsuEEEIIIYQQQoiZJ19rw2m0D1muYOI02snX2kgycYPLZuiwPSGEEGKc9dU2Bzhvas5Lr20uhBBCCCGEEELMRaaJq+dlzBGmdjdRcPW8DOb5n8DHz7Qc8f3iiy/y7LPP4vf7qaqq4nOf+xz19fUjrr99+3Z+85vf0NnZSUlJCZ/4xCdYuXLlJLZYCCHEbDAta5uLy+ZwONA0jUxm5GlVNU3D4XBMYqvEdGZoLkxFRzHTI65jKjqG5prEVgkhhBBCCDGTZFDTgUElTs6lYKKmA0CGiYqop13wvW3bNh5//HHuv/9+5s+fz/PPP883v/lNvv/975OTkzNk/SNHjvCDH/yA++67j5UrV7J161a+853v8Mgjj1BZWTkFeyCEEGIm669tbo2fIs+j0RPKkLRXy0jvGczj8fDpT3+aWCw24joOhwOP5xInThWzjmHx0V35JdRMZOR1NBeGxTd5jRJCiEskA8uEEEJMCUWnt/zBgffUiqJQUFBAV1cXZt8ob0N3gzKHanw/99xzbNy4kZtuugmA+++/n127drF582Y+9KEPDVl/06ZNLF++nLvvvhuAe++9l/379/Piiy/ywAMPDFk/lUqRSqUG/lcUZWCEl6IMP/R+vPXfzmTd3kST/ZneZH+mr9m0LzDL9kfRSLvqUYtKSBttKBN46pWYHB6PR4JtcVEMi0+CbSHEjCcDy4QQQkylc99TK4qC4iklHbYNBN8TbVoF3+l0mhMnTgwKuFVVZcmSJRw9enTY6xw9epS77rpr0LJly5axY8eOYdd/6qmnePLJJwf+r6mp4ZFHHqGwsPDyd+AilZSUTPptTiTZn+lN9mf6mk37ArI/QgghhBDTxUQPLBNCCCGms2kVfAeDQQzDwOfzDVru8/loaWkZ9jp+v3/IN9U5OTn4/f5h1//whz88KCjvH5nY2dlJOj1yHcfxpCgKJSUltLW1Tdo3HBNJ9md6k/2ZvmbTvoDsz2h0XZ+SL1iFEEIIMXdNxsAymB5nVU+lWXXW4xSTvhw/0pfjR/py/ExFX06r4HsyWCwWLBbLsJdNdlBjmuasCIf6yf5Mb7I/09ds2heQ/RFCCCGEmA4mY2AZTK+zqqeSnCU4fqQvx4/05fiRvhw/k9mX0yr49nq9qKo65EXV7/cPebHu5/P5CAQCg5YFAoER1xdCCCGEEEIIIcT4mA5nVU+l2XbW41SSvhw/0pfjR/py/IxXX17MGdXTKvjWdZ3a2loOHDjA6tWrATAMgwMHDnD77bcPe50FCxawf/9+7rzzzoFl+/btY/78+ZPSZiGEEEIIIYQQYrqZrIFl0+ms6qkkZwmOH+nL8SN9OX6kL8fPZPalOim3chHuuusuXn31VV5//XWampr4yU9+QiKRYMOGDQD86Ec/4pe//OXA+nfccQd79+7l2Wefpbm5mSeeeIKGhoYRg3IhhBBCCCGEEGK2O3dgWb/+gWULFiwY9jr9A8vOJQPLhBBCzFTTasQ3wNq1awkGgzzxxBP4/X6qq6t56KGHBr5h7urqGlQE/YorruDP/uzP+PWvf82vfvUrSktL+cpXvkJlZeUU7YEQQgghhBBCCDH17rrrLh577DFqa2upr69n06ZNQwaW5eXlcd999wHZgWUPP/wwzz77LCtXruStt96ioaGBBx54YAr3QgghhLg00y74Brj99ttHHLH98MMPD1m2Zs0a1qxZM8GtEkIIIYQQQgghZg4ZWCaEEGIum5bBtxBCCCGEEEIIIS6fDCwTQggxV027Gt9CCCGEEEIIIYQQQgghxOWQ4FsIIYQQQgghhBBCCCHErCLBtxBCCCGEEEIIIYQQQohZRYJvIYQQQgghhBBCCCGEELOKTG7ZR9cnvyum4jYnkuzP9Cb7M33Npn0B2Z+J2oY4ayb350xu+3iSfsiSfsiSfsiSfsiayn6Q+2B8zbX+nGv7O5GkL8eP9OX4kb4cP5fblxdzfcU0TfOybk0IIYQQQgghhBBCCCGEmEak1MkUiMVi/MVf/AWxWGyqmzIuZH+mN9mf6Ws27QvI/ggxGjmesqQfsqQfsqQfsqQfsqQfxEwlx+74kb4cP9KX40f6cvxMRV9K8D0FTNPk5MmTzJbB9rI/05vsz/Q1m/YFZH+EGI0cT1nSD1nSD1nSD1nSD1nSD2KmkmN3/Ehfjh/py/EjfTl+pqIvJfgWQgghhBBCCCGEEEIIMatI8C2EEEIIIYQQQgghhBBiVpHgewpYLBY++tGPYrFYprop40L2Z3qT/Zm+ZtO+gOyPEKOR4ylL+iFL+iFL+iFL+iFL+kHMVHLsjh/py/EjfTl+pC/Hz1T0pWJKkRohhBBCCCGEEEIIIYQQs4iM+BZCCCGEEEIIIYQQQggxq0jwLYQQQgghhBBCCCGEEGJWkeBbCCGEEEIIIYQQQgghxKwiwbcQQgghhBBCCCGEEEKIWUWf6gbMNk899RTvvvsuzc3NWK1WFixYwCc/+UnKyspGvM7rr7/Oj3/840HLLBYLv/jFLya6uRf0xBNP8OSTTw5aVlZWxve///0Rr7N9+3Z+85vf0NnZSUlJCZ/4xCdYuXLlBLd0bB588EE6OzuHLL/tttv4/Oc/P2T5dLtvDh48yDPPPMPJkyfp7e3ly1/+MqtXrx643DRNnnjiCV599VUikQgLFy7k85//PKWlpaNu98UXX+TZZ5/F7/dTVVXF5z73Oerr6yd6d0bdn3Q6za9//Wt2795NR0cHTqeTJUuWcN9995GXlzfiNi/lmB0vF7p/HnvsMd54441B11m2bBlf+9rXRt3uVNw/F9qXe+65Z9jrffKTn+Tuu+8e9rKpvG/G8tycTCZ5/PHH2bZtG6lUimXLlvH5z38en8834nYv9TEnZqeJeg6YaSbq8TbTjKUfHn74YQ4ePDjoerfccgsPPPDAZDd3wrz88su8/PLLA++/ysvL+ehHP8qKFSuAuXEswIX7YS4cC8P53e9+xy9/+UvuuOMO/viP/xiYO8eEmHkm6rPYXCPvE8aPvMZOHHl9unQX+tw/2f0owfc4O3jwIB/4wAeoq6sjk8nwq1/9ir/7u7/j0UcfxW63j3g9h8PBD37wg0ls6dhVVFTwV3/1VwP/q+rIJwocOXKEH/zgB9x3332sXLmSrVu38p3vfIdHHnmEysrKyWjuqL71rW9hGMbA/42Njfzd3/0da9asGfE60+m+SSQSVFdXc/PNN/Pd7353yOVPP/00L7zwAg8++CBFRUX85je/4Zvf/CaPPvooVqt12G1u27aNxx9/nPvvv5/58+fz/PPP881vfpPvf//75OTkTNn+JJNJTp48yUc+8hGqq6sJh8P87Gc/49vf/jb/8A//MOp2L+aYHU8Xun8Ali9fzhe/+MWB/3V99Kfhqbp/LrQv/+f//J9B/+/evZt/+qd/4tprrx11u1N134zlufnnP/85u3bt4r//9/+O0+nkpz/9Kd/73vf4n//zf4643Ut5zInZayKeA2aiiXq8zTRjfU+4ceNGPvaxjw38P9ueO/Ly8rjvvvsoLS3FNE3eeOMNvv3tb/Ptb3+bioqKOXEswIX7AWb/sXC+48eP88orr1BVVTVo+Vw5JsTMMxGfxeYieZ8wfuQ1dmLI69PlG+1z/2T3o5Q6GWdf+9rX2LBhAxUVFVRXV/Pggw/S1dXFiRMnRr2eoij4fL5BP9OFqqqD2uX1ekdcd9OmTSxfvpy7776b8vJy7r33Xmpra3nxxRcnscUj83q9g/Zl165dFBcXs2jRohGvM53umxUrVnDvvfcOGlnQzzRNNm3axB/+4R9yzTXXUFVVxZ/+6Z/S29vLjh07Rtzmc889x8aNG7npppsoLy/n/vvvx2q1snnz5oncFWD0/XE6nfzVX/0Va9eupaysjAULFvC5z32OEydO0NXVNep2L+aYHU+j7U8/XdcHtc3tdo+6zam6fy60L+c/Jnbs2MFVV11FcXHxqNudqvvmQs/N0WiU1157jc985jMsXryY2tpavvjFL3LkyBGOHj067DYv9TEnZq+JeA6YiSbi8TYTjfU9oc1mG3RMOJ3OKWrxxFi1ahUrV66ktLSUsrIyPv7xj2O32zl27NicORZg9H7oN9uPhXPF43F++MMf8oUvfAGXyzWwfC4dE2LmmYjPYnORvE8YP/IaO/7k9Wl8jPS5fyr6cfYNM5pmotEowAU/2Mbjcb74xS9imiY1NTV8/OMfHxj9MdXa2tr4whe+gMViYcGCBdx3330UFBQMu+7Ro0e56667Bi1btmzZtHyxT6fTvPnmm9x5550oijLietP5vjlXR0cHfr+fpUuXDixzOp3U19dz9OhR1q1bN+Q66XSaEydO8KEPfWhgmaqqLFmyZFo+eUejURRFueAHwYs5ZifbwYMH+fznP4/L5WLx4sXce++9eDyeYdedKfeP3+9n9+7dPPjggxdcd7rcN+c/N584cYJMJsOSJUsG1pk3bx4FBQUcPXqUBQsWDNnGpTzmhLiY54DZYjweb7PBSO8J33zzTd588018Ph9XX301H/nIR7DZbFPRxAlnGAbbt28nkUiwYMGCOXssnN8P/ebSsfCTn/yEFStWsHTpUn77298OLJ+rx4SY+eR94aWT9wnjQ15jx4e8Po2PkT73T0U/SvA9gQzD4Gc/+xlXXHHFqGU+ysoDQxmTAAAfnElEQVTK+JM/+ROqqqqIRqM888wzfP3rX+fRRx8lPz9/Els81Pz58/niF79IWVkZvb29PPnkk/z1X/813/ve93A4HEPW9/v9Q8ov5OTk4Pf7J6nFY/fuu+8SiUTYsGHDiOtM5/vmfP19fDH9HwwGMQxjyCh2n89HS0vLBLTy0iWTSX7xi1+wbt26UYPviz1mJ9Py5cu59tprKSoqoq2tjV/96lf8/d//Pd/85jeHLfkxU+6fN954A7vdPuooV5g+981wz81+vx9d1wd9qw+jP34u5TEn5raLfQ6YDcbr8TbTjfSe8Prrr6egoIC8vDxOnz7NL37xC1paWvjyl788ha0df42NjXzta18jlUpht9v58pe/THl5OadOnZpTx8JI/QBz51gAeOuttzh58iTf+ta3hlw2F58fxOwg7wsvjbxPuHzyGjt+5PVpfIz2uX8q+lGC7wn005/+lDNnzvCNb3xj1PUWLFgw6FuNBQsW8N/+23/jlVde4d57753oZo6qf1IEgKqqqoEDePv27dx8881T2LLLt3nzZpYvXz7qRInT+b6ZS9LpNP/4j/8IMOwkpOeazsfsuSM9Kisrqaqq4r/8l//C+++/P+gbz5lm8+bN3HDDDResXThd7puxPjcLMd5m63PAaOTxljVSP9xyyy0Df1dWVpKbm8s3vvEN2traKCkpmexmTpiysjK+853vEI1Gefvtt3nsscf427/926lu1qQbqR/Ky8vnzLHQ1dXFz372M77+9a9LzWMhhLxPGAfyGjs+5PVp/Iz2uX8q+nZ2Di+aBn7605+ya9cu/uZv/uaiRwbruk5NTQ1tbW0T1LpL53K5KCsrG7FtPp+PQCAwaFkgEJhWNcsBOjs72bdvHxs3bryo603n+6a/jy+m/71eL6qqDvlmze/3T5v7rD/07urq4utf//pF17u80DE7lYqLi/F4PCO2bSbcP4cOHaKlpeWSguupuG9Gem72+Xyk02kikcig9Ud7/FzKY06Ic13oOWCmG8/H20x2Me8J6+vrAWbdMaHrOiUlJdTW1nLfffdRXV3Npk2b5tyxMFI/DGe2HgsnTpwgEAjwF3/xF9x7773ce++9HDx4kBdeeIF7772XnJycOXVMiNlD3hdePHmfMD7kNXZ8yOvTxDn3c/9UHJcSfI8z0zT56U9/yrvvvstf//VfU1RUdNHbMAyDxsZGcnNzJ6CFlycejw8crMNZsGAB+/fvH7Rs3759zJ8/fxJaN3abN28mJyeHlStXXtT1pvN9U1RUhM/nG9T/0WiU48ePj1gnSdd1amtrOXDgwMAywzA4cODAtKhR1R96t7W18Vd/9VeXVAf3QsfsVOru7iYcDo94PE33+wfgtddeo7a2lurq6ou+7mTeNxd6bq6trUXTtEGPn5aWFrq6ukbs60t5zAlxrgs9B8xUE/F4m4ku5T3hqVOnAGbdMXE+wzBIpVJz5lgYSX8/DGe2HgtLlizhu9/9Lt/+9rcHfurq6rj++usH/p7Lx4SYueR94djJ+4SJJa+xl0ZenybOuZ/7p+K4lFIn4+ynP/0pW7du5atf/SoOh2NgpKbT6RwY0v+jH/2IvLw87rvvPgCefPJJ5s+fT0lJCZFIhGeeeYbOzs6LHo08ER5//HFWrVpFQUEBvb29PPHEE6iqyvXXXw8M3Zc77riDhx9+mGeffZaVK1fy1ltv0dDQwAMPPDCVuzGIYRi8/vrr3HjjjWiaNuiy6X7f9D9h9Ovo6ODUqVO43W4KCgq44447+O1vf0tpaSlFRUX8+te/Jjc3l2uuuWbgOt/4xjdYvXo1t99+OwB33XUXjz32GLW1tdTX17Np0yYSicSotc8nY398Ph+PPvooJ0+e5C/+4i8wDGPg8eR2u9F1fdj9udAxO1X743a7+fd//3euvfZafD4f7e3t/Nu//RslJSUsW7Zs4DrT5f650LEGDJxO96lPfWrYbUyn++ZCz81Op5Obb76Zxx9/HLfbjdPp5F/+5V+GlDv68z//c+677z5Wr16NoihjesyJuWM8ngNmg/F6vM10F+qHtrY2tm7dysqVK3G73TQ2NvLzn/+cK6+8kqqqqqlt/Dj65S9/yfLlyykoKCAej7N161YOHjzI1772tTlzLMDo/TBXjgUAh8MxZO4jm82Gx+MZWD5Xjgkx84zHZzEh7xPGk7zGjh95fRo/o33un4rjUoLvcfbyyy8D8PDDDw9a/sUvfnEgqOrq6kJRlIHLwuEw//zP/4zf78flclFbW8vf/d3fDUx2M5V6enr4wQ9+QCgUwuv1snDhQr75zW/i9XqBoftyxRVX8Gd/9mf8+te/5le/+hWlpaV85StfGXVyz8m2f/9+urq6uOmmm4ZcNt3vm4aGhkH1uh5//HEAbrzxRh588EH+4A/+gEQiwT//8z8TjUZZuHAhDz300KA6Su3t7QSDwYH/165dSzAY5IknnsDv91NdXc1DDz00KaNwR9ufP/qjP+K9994D4Ktf/eqg6/3N3/wNV111FTB0fy50zE6k0fbn/vvvp7GxkTfeeINIJEJeXh5Lly7lYx/7GBaLZeA60+X+udCxBrBt2zZM0xwxuJ5O981Ynps/85nPoCgK3/ve90in0yxbtmxITfmWlpaBmeeBMT3mxNwxHs8Bs8F4Pd5mugv1g67r7N+/f+ALzfz8fK699lr+8A//cApaO3ECgQCPPfYYvb29OJ1Oqqqq+NrXvsbSpUuBuXEswOj90NXVNSeOhbGaK8eEmHnG47OYkPcJ40leYyeX9OfYXOhz/2T3o2KapjlhWxdCCCGEEEIIIYQQQgghJpnU+BZCCCGEEEIIIYQQQggxq0jwLYQQQgghhBBCCCGEEGJWkeBbCCGEEEIIIYQQQgghxKwiwbcQQgghhBBCCCGEEEKIWUWCbyGEEEIIIYQQQgghhBCzigTfQgghhBBCCCGEEEIIIWYVCb6FEEIIIYQQQgghhBBCzCoSfAshhBBCCCGEEEIIIYSYVST4FkIIIYQQQgghhBBijrnnnnt44oknproZl+2xxx7jwQcfnOpmiGlIn+oGCCGEEEIIIYQQQoiJ9frrr/PjH/8YgG984xssXLhw0OWmafLFL36R7u5uVq5cyV/+5V9ORTNFn61btxIIBLjzzjvHtP6DDz5IZ2cnAIqi4HA4yM/PZ8GCBdx8883Mnz9/IpsrxLQkI76FEOPm6aef5s///M8xDOOC65qmyac+9Sn+7d/+7aJv5+WXX+ZP/uRPSKVSl9JMIYQQYs6R12ghhBD9LBYLW7duHbL84MGDdHd3Y7FYpqBV4nxbt25l06ZNF3Wd6upq/vRP/5QHH3yQ++67j6uuuoqdO3fyta99jZ///OdD1v+3f/s3PvKRj4xXk6fMF77wBb7//e9PdTPENCQjvoWYQRobG/n3f/93GhoaCAQCuN1uysvLWbVqFR/84AeBs9/iWywWfvjDH5KXlzdoGw8//DChUIjvfe97g9bvp6oqOTk5LF26lI9//ONDrj+SaDTK008/zac+9SlU9cLfqXV2dpJIJKisrBxYtmfPHv7+7/9+0HoOh4OysjI+/OEPs3r1agA2bNjAv//7v/PKK69wxx13jKl9QgghxGTrf4391re+RV1d3UW/5sprtBBCiImwYsUKtm/fzmc/+1k0TRtYvnXrVmprawmFQlPYuvERj8ex2+1T3YxJl5eXx/r16wct++QnP8kPfvADnn/+eUpLS7ntttsGLrNarZPdxAmh6xJviuHJkSHEDHHkyBH+9m//loKCAjZu3IjP56O7u5tjx46xadOmgeC7XyqV4ne/+x2f+9znxrT9e+65h6KiIlKpFMeOHeP111/n8OHDfO973xvTi+HmzZvJZDKsW7duTLd35swZgEEfqk+fPg3AZz/7WVwuF6Zp0t3dzQsvvMA//uM/8t3vfpd58+ZhtVr5/9u796CozvOB419AZbmpRBcQuSgyKiIEh4Qi3l25aMUStN5QqxNjbYyXaS6mcTKtk2gypDIk1TTVGZOaWNFQAiQURLwUjNxEUMFLEhUMiMKIiLAIwu7vD2fPz2UB2agzYp/PP8q7757zngMzzznPe5syZQppaWnMnDkTCwuLHp1TCCGEeBqYG3MlRgshhHicJk6cSGFhIWfOnGHcuHEAtLW1kZeXx9y5c0lPTzf5jk6nIz09ncOHD3Pjxg1sbW158cUXWbx4Mfb29kq9wsJCsrKyKC8v586dOwwaNIgpU6YQHR1t1PlaXV3N3r17uXjxIlqtFgcHB0aPHs2qVauwtbWlpqaG1157jVdffZWpU6catWX+/PnMmzeP+fPnA3DgwAESExOJi4vj3//+NyUlJajVamJjYwHIzs4mLS2NyspK+vXrx/PPP8+SJUsYPHiwckzDALF169axe/duLl26hKOjIzExMQQHB3Pu3Dm++uorKioqGDx4MC+//DL+/v5G7aqrqyMhIYHi4mKamppwcXFh9uzZTJ8+XalTVlbG5s2b2bBhA9evXyczM5M7d+4watQoVq1ahYuLi9Kec+fOKdcLoFar2bFjh3m/bO4nt9euXcurr75KUlISoaGhSnzu6l7Gx8eTmJhIUVERffr0ITQ0lAULFnDz5k12795NWVkZ/fr1Y86cOURGRhqd7969e3zzzTfk5ORw8+ZNBgwYwIQJE1iwYIHRbIL58+cTHh6On58f+/fvp7q6GhcXF5YtW0ZAQIBSr7m5mf3791NYWMitW7ewtbXF09OTmJgYvLy8gPtrfJ87d87o/ty9e5cDBw6Qm5vL7du3UavVaDQaIiMjjZ5PetoO0TtJ4luIXiIpKQlbW1s++OAD7OzsjD67ffu2Sf1hw4Zx+PBhoqKiejQibNy4cYwYMQIAjUaDg4MDKSkpnDx5kpCQkId+/9ixY7zwwgs97jH++eefsbKyws3NTSmrqKjAzs7OJInv4ODArl27KC8vZ+jQoQCEhISQmppKWVkZY8eO7dE5hRBCiKeBuTFXYrQQQojHSa1WM3LkSL7//nsl8V1cXIxWqyUkJKTTxPfOnTv573//y9SpU5k5cyY1NTVkZGRw5coV3nvvPWXE7bFjx1CpVPz6179GpVJRWlrKgQMHaG5uZunSpcD9JPuWLVu4d+8eM2fOZODAgdTV1VFUVERTUxO2tra/6Lri4uJwcXFh0aJF6PV64P579P79+xk/fjwajYaGhgbS09P585//TGxsrNG7dWNjIx9++CETJkxg/PjxZGZmEh8fz7p16/jiiy8IDQ1l4sSJpKamEhcXx9///ndsbGwAqK+vZ9OmTQCEh4fTv39/SkpK+Oyzz2hubjZZpzslJQULCwsiIyPRarWkpqbyySefKLOroqOj0Wq13Lx5k9/97ncAjzSCXaVSERQUxJEjR6isrMTd3b3b+vHx8QwdOpSYmBhOnTpFUlIS9vb2ZGVlMXbsWGJiYsjJyeHLL79kxIgRjBkzBrjfQRIbG8uFCxfQaDS4ublx9epV0tLSuHbtGm+99ZbReS5cuEBBQQFhYWHY2NiQnp7Otm3b+PTTT3FwcABg165d5OXlERERgZubG3fu3OHChQtUVVUpie+O9Ho9sbGxlJWVMW3aNIYNG8bp06f56quvqKurY/ny5Wa3Q/ROkvgWope4ceMG7u7uJklvgAEDBpiUvfTSS3zyySdmjfp+kI+PDykpKdy4ceOhdWtqaqioqOhy040TJ07wzTffcO3aNdzc3HjllVeorKxkyJAhRlOSKioqGD58uMn36+vrAZQXagAvLy/s7e0pLCyUl2ohhBC9mjkx19z6EqOFEEJ0ZsKECezbt4/W1lb69etHTk4OY8aM6XTQ1IULFzhy5Ajr1q1j4sSJSrmvry9bt24lLy9PKV+/fr1RR2tYWBg7d+4kMzOThQsX0rdvXyorK6mpqeGPf/wjwcHBSt158+Y90jV5enqyfv165efa2loOHDjAggULiI6OVsqDgoLYuHEjBw8eNCq/deuW0TX6+/uzYcMGPv74Y95//31lc8ihQ4eyZcsW8vPzldHoCQkJ6HQ6/vrXvyqJ0rCwMOLj4/n6668JDQ01ui+tra189NFHSqy1s7Pjiy++4OrVq3h4eODv789zzz1HU1OTydIlv5Qh2W3ILXTH29ubVatWATBjxgzWrFnDl19+yaJFi4iKigLu/w39/ve/5+jRo0ri+/jx45w5c4bNmzcbbZ7q7u7Orl27uHjxIqNGjVLKq6qqlA4LuP839eabb/L9998TEREBwKlTp9BoNCxbtkz53m9+85tu23/y5ElKS0tZuHCh8juOiIggLi6O9PR0IiIilHP2tB2id5LNLYXoJdRqNZcvX+bq1as9qu/k5MTkyZM5fPgwdXV1Zp+vpqYGoNNEe0cXL14E6LS39bvvviM+Ph4nJydWrFjByJEj+fDDD/nxxx+NplC3tbVx7do1hg4dSkNDAw0NDVRXV5ORkUFKSgoREREMGzbM6NjDhw9Xzi2EEEL0VubEXHPrS4wWQgjRmZCQEFpbWykqKqK5uZlTp04ZJbUflJubi62tLf7+/kocaGhowMvLSxnVbfBgcre5uZmGhgZ8fHxoaWmhqqoKQBnRXVJSQktLy2O7ptDQUKOf8/Pz0ev1hISEGLV74MCBuLi4UFZWZlRfpVIZLQvm6uqKnZ0dbm5uStIbUP5v6IDW6/Xk5+cTGBiIXq83OldAQABarZbLly8bnWvatGlGHcw+Pj7A/8f4J8EwYry5ufmhdR9cnsXS0hIvLy/0er1RuZ2dHa6urkZtzsvLw83NDVdXV6P7YOgI73jP/fz8jBLQnp6e2NjYGHXu29nZ8dNPP5mV1yguLsbS0tJkptrs2bPR6/WUlJSY3Q7RO8mIbyF6icjISLZu3cpbb72Ft7c3o0ePxs/PD19f3y43coiOjiY7O5uUlBRWrFjR7fG1Wi0NDQ3K+qGJiYn07duXwMDAh7bN8ADj5ORkVF5eXs7evXt56aWXWLRokVKu1+vJzMw06rmurKykvb2dgwcPcvDgQaXcysqKpUuXdrpBlrOzM9nZ2Q9tnxBCCPE0MTfmSowWQgjxuPXv3x8/Pz+OHz9OS0sLOp3OaPT1g65fv45Wq2XlypWdft7Q0KD8/+effyYhIYHS0lKTBKtWqwXux6TZs2fz3Xffcfz4cXx8fAgMDGTy5Mm/eJkTw3E7tluv17Nu3bpO63d8jx40aJDJ3hS2trYMGjTIpAygqakJuH/9TU1NZGVlkZWV1em5HrxHgNH64vD/ndmNjY2dfv9xuHv3LoCyPEt3OrbP1taWvn370r9/f5PyBzdDra6upqqqqsu/lY7LtHY8D4C9vb1ybwFiYmLYsWMHf/jDH/Dy8mLcuHFMmTIFZ2fnLttfW1uLo6OjybUalnGrra01ux2id5LEtxC9hL+/P++//z7JycmcPn2aH374gdTUVPr378/q1at54YUXTL7j7OzMpEmTyMrKIioqCkdHxy6P/9577xn9rFarWbt2rUmQ70xjYyNWVlYma44Z1iV/cPoYwJgxY8jMzOx006w1a9Yo7bx9+zb/+c9/2Lt3L97e3owcOdLoOHZ2drS2ttLS0oK1tfVD2ymEEEI8DcyNuRKjhRBCPAkTJ07kH//4B/X19QQEBHQ5k0in0zFgwADWrl3b6eeGZGhTUxN/+ctfsLGxYcGCBTg7O9O3b1+uXLnC3r17lXW3AZYtW8bUqVOVTTY///xzkpOT2bJlS6cJ6Afb0pWOe1nodDosLCz405/+ZLSxpkHH2NhZne7KDddj+HfSpElMmTKl07qenp49OuaTZNi8+sGRzV3prH09abNer8fDw8NoWZIHdUwwP+zewv3ZCT4+PhQUFHD69Gm+/fZbUlJSeOONN5Q16h9VT9oheidJfAvRi3h7e/PGG2/Q1tZGeXk5BQUFpKWlsW3bNj766COjTagM5s6dS05ODsnJyd2O+n755ZcZMmQIWq2Wo0ePcv78eaMdl8117949iouL0Wg0Ji+87e3tACYv1VZWVkyYMMGo593X15fVq1eTkZFh8lJtCEJdPRQJIYQQTyNzY67EaCGEEE9CUFAQO3fu5Mcff2TDhg1d1nN2dubs2bOMHj26242Sy8rKuHPnDq+//rqy5jN0vXyHh4cHHh4ezJ07l4sXL/Luu+9y6NAhFi5cqCThO4647ThStzsuLi7o9XqcnJxwdXXt8ffM1b9/f2xsbNDpdPj7+z+x8zyKu3fvUlBQwKBBg4z25XjcnJ2dqaiowM/P77E+Azg6OhIeHk54eDi3b99m48aNJCUldZn4VqvVnD17lubmZqNR34aZcGq1+rG1TTzdZI1vIXqhPn364O3tzeLFi3nllVdob28nNze307oPjvq+detWl8f09vbG39+f4OBgNm7ciLu7Ox9//LEyHao79vb2tLe3G01lu3HjBi0tLZ2uKXrp0iVUKpXRVLSKigqcnZ1Npps999xzWFtbc/PmTZPjNDU1YW1t3e3DlxBCCPG0MTfmSowWQgjxJKhUKlauXMlvf/vbTmcQG4SEhKDT6UhMTDT5rL29XUlOdzZqtq2tjczMTKMyrVardLQaeHh4YGFhwb1794D7S2g4ODhw/vx5o3oPLrn1MEFBQVhaWpKYmGgyclev1xst0fEoLC0t+dWvfkV+fn6ne3J1XOakp1QqlbI8zKNobW3lb3/7G42NjURHRz/RTunx48dTV1fH4cOHO21HT55dHqTT6UzuwYABA3B0dKStra3L740bNw6dTkdGRoZReVpaGhYWFgQEBJjVDtF7yYhvIXo5w0trd0nt6OhocnJySElJ6dExLS0tWbx4MZs3byYjI0PZtbkrhh7jmpoaZQpXV5uU3L17l+zsbNzd3Y0C7tWrV01Gi8H9h4SWlhYGDhxo8llNTc0T7a0WQgghnjRzY67EaCGEEI/T1KlTH1pnzJgxzJgxg+TkZCoqKvD398fKyorr16+Tm5vLihUrCA4OZtSoUdjZ2bFjxw5lU8GcnByTpHNpaSm7d+8mODgYV1dX2tvbyc7OVhLIBhqNhuTkZD777DO8vLw4f/481dXVPb42FxcXFi5cyL/+9S9qa2t58cUXUalU1NTUUFhYiEajYc6cOT0+XncWL15MWVkZmzZtQqPR4ObmRmNjI5cvX+bs2bN8/vnnZh/Ty8uLEydO8M9//pMRI0agUqm67aAAqKurU/bYuHv3LpWVleTl5VFfX8/s2bNNNgB93CZPnkxubi67du2itLSU0aNHo9PpqKqqIjc3l02bNjFixIgeH6+5uZnVq1cTHByMp6cnKpWKs2fPcunSpS6XUwEIDAzE19eXhIQEamtr8fT05PTp05w8eZJZs2b1aLkX8WyQxLcQvURpaSm+vr4mvbPFxcUA3U7dcnFxYdKkSRw6dAi1Wo2VldVDz+fr64u3tzdpaWnMmjWr2xFbhpfhS5cuKS/VhqlDpaWlRhtkJSUl0djYiLu7u1JWX1/P7du3O31BTk5OBjB6ADK4cuVKlzuPCyGEEL2FOTHX3PoSo4UQQjwOq1atwsvLi6ysLPbt24eVlRVqtZpJkyYxatQoABwcHHj77bfZs2cPCQkJ2NnZMWnSJPz8/NiyZYtyrGHDhvH8889TVFTEoUOHsLa2xtPTk3feeceoo3XevHk0NDSQl5dHbm4uAQEBvPPOO11unNiZqKgohgwZQlpaGl9//TVwf51pf3//hyaRzTFw4EC2bt1KYmIi+fn5HDx4EAcHB9zd3YmJiflFxwwLC6O8vJxjx46RlpaGWq1+aJvLy8vZvn07FhYWqFQqBg8eTGBgIBqNBm9v71/UDnNYWlry5ptvkpaWRnZ2NoWFhfTr1w9nZ2dmzZrFkCFDzDqetbU14eHhnD59moKCAnQ6HS4uLqxcuZKwsLBu27Fx40b279/PiRMnOHr0KE5OTixZsoTIyMhHvUzRi1joZaV2IXqF119/nZaWFoKCgnB1daWtrY0ffviBEydOMGjQIGJjY7Gzs+PYsWN8+umnfPDBB0Y9qdevX2fDhg3odDrc3d3Ztm0bQJf1AfLy8oiLi3toUDG0z8PDg/Xr1ytlW7Zs4cyZM8yYMYPhw4dTUlLChQsXaGhoYPny5cyaNQuAkpIStm7dyvTp05W14O7cucOZM2coLi4mJCSE9evXGyX9L1++zNtvv827776Ln5/fo91cIYQQ4gnoGGPNjbkSo4UQQgghhPjlZI1vIXqJpUuX4uvrS3FxMXv27GHPnj389NNPhIWFsXXr1i534DYwjPo2R1BQEM7Oznz77bfd7p4NMG3aNIqKimhtbVXK1qxZQ2BgIMePH2ffvn306dOH5cuXA8abZhnWQTty5Ajbt29n+/btHDhwAK1Wy+rVq01eqAFyc3MZPHgwY8eONeuahBBCiKeROTHX3PoSo4UQQgghxP8iGfEthHgstFotr732GkuWLGH69OlP9Fz37t1jzZo1REVFKSPShBBCCNE5idFCCCGEEOJ/kYz4FkI8Fra2tsyZM4fU1NQejVR7FEePHsXKyuqJb8whhBBCPAskRgshhBBCiP9FMuJbCCGEEEIIIYQQQgghxDNFRnwLIYQQQgghhBBCCCGEeKZI4lsIIYQQQgghhBBCCCHEM0US30IIIYQQQgghhBBCCCGeKZL4FkIIIYQQQgghhBBCCPFMkcS3EEIIIYQQQgghhBBCiGeKJL6FEEIIIYQQQgghhBBCPFMk8S2EEEIIIYQQQgghhBDimSKJbyGEEEIIIYQQQgghhBDPFEl8CyGEEEIIIYQQQgghhHimSOJbCCGEEEIIIYQQQgghxDPl/wC3nOnW+aTnFgAAAABJRU5ErkJggg==" + }, + "metadata": {}, + "output_type": "display_data", + "jetTransient": { + "display_id": null + } + } + ], + "execution_count": 28 }, { "attachments": { @@ -1322,14 +1318,12 @@ }, { "cell_type": "code", - "execution_count": 15, "metadata": { "ExecuteTime": { - "end_time": "2025-04-10T14:15:38.038348Z", - "start_time": "2025-04-10T14:15:38.033522Z" + "end_time": "2025-10-08T10:07:34.379563Z", + "start_time": "2025-10-08T10:07:34.375504Z" } }, - "outputs": [], "source": [ "def discreteLossPoly(qweights,scaleFactor):\n", " loss = 0\n", @@ -1340,7 +1334,9 @@ " loss += torch.linalg.vector_norm(qVec*(qVec-1/2*pi)*(qVec-1*pi)*(qVec+pi)*(qVec+1/2*pi),1)\n", " loss = loss*scaleFactor # Scale the resulting loss\n", " return loss" - ] + ], + "outputs": [], + "execution_count": 29 }, { "cell_type": "markdown", @@ -1351,1203 +1347,12 @@ }, { "cell_type": "code", - "execution_count": 19, "metadata": { "ExecuteTime": { - "end_time": "2025-04-10T14:16:18.269051Z", - "start_time": "2025-04-10T14:15:38.112473Z" + "end_time": "2025-10-08T10:13:29.243198Z", + "start_time": "2025-10-08T10:07:34.431691Z" } }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Epoch 1, Loss: 2465.390869\n", - "Epoch 2, Loss: 2366.242920\n", - "Epoch 3, Loss: 2260.198486\n", - "Epoch 4, Loss: 2149.479004\n", - "Epoch 5, Loss: 2035.692383\n", - "Epoch 6, Loss: 1920.022095\n", - "Epoch 7, Loss: 1807.730103\n", - "Epoch 8, Loss: 1695.020264\n", - "Epoch 9, Loss: 1582.191895\n", - "Epoch 10, Loss: 1470.960449\n", - "Epoch 11, Loss: 1358.577881\n", - "Epoch 12, Loss: 1245.360962\n", - "Epoch 13, Loss: 1135.626709\n", - "Epoch 14, Loss: 1025.558350\n", - "Epoch 15, Loss: 916.638245\n", - "Epoch 16, Loss: 815.148987\n", - "Epoch 17, Loss: 716.480103\n", - "Epoch 18, Loss: 623.438721\n", - "Epoch 19, Loss: 535.381104\n", - "Epoch 20, Loss: 450.644806\n", - "Epoch 21, Loss: 371.841125\n", - "Epoch 22, Loss: 303.979553\n", - "Epoch 23, Loss: 252.747391\n", - "Epoch 24, Loss: 209.703033\n", - "Epoch 25, Loss: 173.082336\n", - "Epoch 26, Loss: 138.147797\n", - "Epoch 27, Loss: 110.510468\n", - "Epoch 28, Loss: 86.855453\n", - "Epoch 29, Loss: 72.156723\n", - "Epoch 30, Loss: 65.257233\n", - "Epoch 31, Loss: 59.928955\n", - "Epoch 32, Loss: 55.873775\n", - "Epoch 33, Loss: 53.071335\n", - "Epoch 34, Loss: 49.165474\n", - "Epoch 35, Loss: 46.121475\n", - "Epoch 36, Loss: 44.123077\n", - "Epoch 37, Loss: 40.783901\n", - "Epoch 38, Loss: 37.577621\n", - "Epoch 39, Loss: 37.577621\n", - "Epoch 40, Loss: 37.417816\n", - "Epoch 41, Loss: 37.417816\n", - "Epoch 42, Loss: 36.724625\n", - "Epoch 43, Loss: 35.466591\n", - "Epoch 44, Loss: 35.107880\n", - "Epoch 45, Loss: 34.648556\n", - "Epoch 46, Loss: 34.648556\n", - "Epoch 47, Loss: 34.451515\n", - "Epoch 48, Loss: 33.889919\n", - "Epoch 49, Loss: 33.878845\n", - "Epoch 50, Loss: 32.851192\n", - "Epoch 51, Loss: 32.851192\n", - "Epoch 52, Loss: 32.851192\n", - "Epoch 53, Loss: 32.455997\n", - "Epoch 54, Loss: 32.302658\n", - "Epoch 55, Loss: 32.149780\n", - "Epoch 56, Loss: 30.911217\n", - "Epoch 57, Loss: 30.911217\n", - "Epoch 58, Loss: 30.728020\n", - "Epoch 59, Loss: 30.728020\n", - "Epoch 60, Loss: 30.621618\n", - "Epoch 61, Loss: 29.971844\n", - "Epoch 62, Loss: 29.641403\n", - "Epoch 63, Loss: 29.641403\n", - "Epoch 64, Loss: 29.641403\n", - "Epoch 65, Loss: 28.997347\n", - "Epoch 66, Loss: 28.997347\n", - "Epoch 67, Loss: 28.997347\n", - "Epoch 68, Loss: 28.997347\n", - "Epoch 69, Loss: 28.101347\n", - "Epoch 70, Loss: 27.702469\n", - "Epoch 71, Loss: 27.702469\n", - "Epoch 72, Loss: 27.702469\n", - "Epoch 73, Loss: 27.215811\n", - "Epoch 74, Loss: 27.215811\n", - "Epoch 75, Loss: 27.215811\n", - "Epoch 76, Loss: 27.215811\n", - "Epoch 77, Loss: 26.970823\n", - "Epoch 78, Loss: 26.269232\n", - "Epoch 79, Loss: 26.269232\n", - "Epoch 80, Loss: 25.589027\n", - "Epoch 81, Loss: 25.589027\n", - "Epoch 82, Loss: 25.589027\n", - "Epoch 83, Loss: 25.589027\n", - "Epoch 84, Loss: 25.589027\n", - "Epoch 85, Loss: 25.589027\n", - "Epoch 86, Loss: 25.216818\n", - "Epoch 87, Loss: 25.216818\n", - "Epoch 88, Loss: 25.216818\n", - "Epoch 89, Loss: 25.057365\n", - "Epoch 90, Loss: 24.563234\n", - "Epoch 91, Loss: 24.563234\n", - "Epoch 92, Loss: 24.554678\n", - "Epoch 93, Loss: 24.554678\n", - "Epoch 94, Loss: 24.554678\n", - "Epoch 95, Loss: 23.688797\n", - "Epoch 96, Loss: 23.688797\n", - "Epoch 97, Loss: 23.688797\n", - "Epoch 98, Loss: 23.688797\n", - "Epoch 99, Loss: 23.688797\n", - "Epoch 100, Loss: 23.688797\n", - "Epoch 101, Loss: 23.157906\n", - "Epoch 102, Loss: 22.760113\n", - "Epoch 103, Loss: 22.760113\n", - "Epoch 104, Loss: 22.760113\n", - "Epoch 105, Loss: 22.760113\n", - "Epoch 106, Loss: 22.548841\n", - "Epoch 107, Loss: 22.070768\n", - "Epoch 108, Loss: 22.070768\n", - "Epoch 109, Loss: 22.070768\n", - "Epoch 110, Loss: 22.022213\n", - "Epoch 111, Loss: 22.022213\n", - "Epoch 112, Loss: 20.943668\n", - "Epoch 113, Loss: 20.943668\n", - "Epoch 114, Loss: 20.943668\n", - "Epoch 115, Loss: 20.943668\n", - "Epoch 116, Loss: 20.904633\n", - "Epoch 117, Loss: 20.552795\n", - "Epoch 118, Loss: 20.552795\n", - "Epoch 119, Loss: 20.552795\n", - "Epoch 120, Loss: 20.552795\n", - "Epoch 121, Loss: 19.726833\n", - "Epoch 122, Loss: 19.726833\n", - "Epoch 123, Loss: 19.484720\n", - "Epoch 124, Loss: 19.484720\n", - "Epoch 125, Loss: 19.484720\n", - "Epoch 126, Loss: 19.484720\n", - "Epoch 127, Loss: 19.484720\n", - "Epoch 128, Loss: 19.484720\n", - "Epoch 129, Loss: 19.407898\n", - "Epoch 130, Loss: 18.969694\n", - "Epoch 131, Loss: 18.969694\n", - "Epoch 132, Loss: 18.969694\n", - "Epoch 133, Loss: 18.859264\n", - "Epoch 134, Loss: 18.859264\n", - "Epoch 135, Loss: 18.007772\n", - "Epoch 136, Loss: 18.007772\n", - "Epoch 137, Loss: 18.007772\n", - "Epoch 138, Loss: 18.007772\n", - "Epoch 139, Loss: 17.903238\n", - "Epoch 140, Loss: 17.903238\n", - "Epoch 141, Loss: 17.903238\n", - "Epoch 142, Loss: 17.516655\n", - "Epoch 143, Loss: 17.516655\n", - "Epoch 144, Loss: 17.103466\n", - "Epoch 145, Loss: 17.103466\n", - "Epoch 146, Loss: 17.103466\n", - "Epoch 147, Loss: 17.103466\n", - "Epoch 148, Loss: 16.966999\n", - "Epoch 149, Loss: 16.966999\n", - "Epoch 150, Loss: 16.966999\n", - "Epoch 151, Loss: 16.820858\n", - "Epoch 152, Loss: 16.820858\n", - "Epoch 153, Loss: 16.820858\n", - "Epoch 154, Loss: 16.820858\n", - "Epoch 155, Loss: 16.784567\n", - "Epoch 156, Loss: 16.429497\n", - "Epoch 157, Loss: 16.429497\n", - "Epoch 158, Loss: 16.429497\n", - "Epoch 159, Loss: 16.429497\n", - "Epoch 160, Loss: 16.395861\n", - "Epoch 161, Loss: 16.395861\n", - "Epoch 162, Loss: 16.395861\n", - "Epoch 163, Loss: 15.883955\n", - "Epoch 164, Loss: 15.883955\n", - "Epoch 165, Loss: 15.883955\n", - "Epoch 166, Loss: 15.883955\n", - "Epoch 167, Loss: 15.883955\n", - "Epoch 168, Loss: 15.250993\n", - "Epoch 169, Loss: 15.250993\n", - "Epoch 170, Loss: 15.250993\n", - "Epoch 171, Loss: 15.250993\n", - "Epoch 172, Loss: 15.250993\n", - "Epoch 173, Loss: 15.078120\n", - "Epoch 174, Loss: 15.078120\n", - "Epoch 175, Loss: 14.999372\n", - "Epoch 176, Loss: 14.999372\n", - "Epoch 177, Loss: 14.999372\n", - "Epoch 178, Loss: 14.999372\n", - "Epoch 179, Loss: 14.999372\n", - "Epoch 180, Loss: 14.999372\n", - "Epoch 181, Loss: 14.846346\n", - "Epoch 182, Loss: 14.846346\n", - "Epoch 183, Loss: 14.846346\n", - "Epoch 184, Loss: 14.558022\n", - "Epoch 185, Loss: 14.558022\n", - "Epoch 186, Loss: 14.558022\n", - "Epoch 187, Loss: 14.558022\n", - "Epoch 188, Loss: 14.558022\n", - "Epoch 189, Loss: 14.275619\n", - "Epoch 190, Loss: 14.217978\n", - "Epoch 191, Loss: 14.217978\n", - "Epoch 192, Loss: 14.217978\n", - "Epoch 193, Loss: 14.217978\n", - "Epoch 194, Loss: 14.217978\n", - "Epoch 195, Loss: 13.711084\n", - "Epoch 196, Loss: 13.711084\n", - "Epoch 197, Loss: 13.711084\n", - "Epoch 198, Loss: 13.711084\n", - "Epoch 199, Loss: 13.628860\n", - "Epoch 200, Loss: 13.628860\n", - "Epoch 201, Loss: 13.628860\n", - "Epoch 202, Loss: 13.479424\n", - "Epoch 203, Loss: 13.187584\n", - "Epoch 204, Loss: 13.187584\n", - "Epoch 205, Loss: 13.187584\n", - "Epoch 206, Loss: 13.187584\n", - "Epoch 207, Loss: 13.187584\n", - "Epoch 208, Loss: 13.187584\n", - "Epoch 209, Loss: 13.037846\n", - "Epoch 210, Loss: 12.771100\n", - "Epoch 211, Loss: 12.771100\n", - "Epoch 212, Loss: 12.771100\n", - "Epoch 213, Loss: 12.771100\n", - "Epoch 214, Loss: 12.771100\n", - "Epoch 215, Loss: 12.717160\n", - "Epoch 216, Loss: 12.639529\n", - "Epoch 217, Loss: 12.639529\n", - "Epoch 218, Loss: 12.639529\n", - "Epoch 219, Loss: 12.639529\n", - "Epoch 220, Loss: 12.559999\n", - "Epoch 221, Loss: 12.404510\n", - "Epoch 222, Loss: 12.137272\n", - "Epoch 223, Loss: 12.137272\n", - "Epoch 224, Loss: 11.963223\n", - "Epoch 225, Loss: 11.963223\n", - "Epoch 226, Loss: 11.963223\n", - "Epoch 227, Loss: 11.963223\n", - "Epoch 228, Loss: 11.725696\n", - "Epoch 229, Loss: 11.725696\n", - "Epoch 230, Loss: 11.725696\n", - "Epoch 231, Loss: 11.725696\n", - "Epoch 232, Loss: 11.725696\n", - "Epoch 233, Loss: 11.621984\n", - "Epoch 234, Loss: 11.447888\n", - "Epoch 235, Loss: 11.447888\n", - "Epoch 236, Loss: 11.447888\n", - "Epoch 237, Loss: 11.285629\n", - "Epoch 238, Loss: 11.285629\n", - "Epoch 239, Loss: 11.285629\n", - "Epoch 240, Loss: 10.956523\n", - "Epoch 241, Loss: 10.624240\n", - "Epoch 242, Loss: 10.624240\n", - "Epoch 243, Loss: 10.624240\n", - "Epoch 244, Loss: 10.624240\n", - "Epoch 245, Loss: 10.624240\n", - "Epoch 246, Loss: 10.624240\n", - "Epoch 247, Loss: 10.624240\n", - "Epoch 248, Loss: 10.624240\n", - "Epoch 249, Loss: 10.624240\n", - "Epoch 250, Loss: 10.624240\n", - "Epoch 251, Loss: 10.624240\n", - "Epoch 252, Loss: 10.429082\n", - "Epoch 253, Loss: 10.429082\n", - "Epoch 254, Loss: 10.429082\n", - "Epoch 255, Loss: 10.429082\n", - "Epoch 256, Loss: 10.429082\n", - "Epoch 257, Loss: 10.429082\n", - "Epoch 258, Loss: 10.361033\n", - "Epoch 259, Loss: 10.324121\n", - "Epoch 260, Loss: 10.046730\n", - "Epoch 261, Loss: 10.046730\n", - "Epoch 262, Loss: 9.828628\n", - "Epoch 263, Loss: 9.828628\n", - "Epoch 264, Loss: 9.828628\n", - "Epoch 265, Loss: 9.828628\n", - "Epoch 266, Loss: 9.828628\n", - "Epoch 267, Loss: 9.566076\n", - "Epoch 268, Loss: 9.566076\n", - "Epoch 269, Loss: 9.566076\n", - "Epoch 270, Loss: 9.412885\n", - "Epoch 271, Loss: 9.412885\n", - "Epoch 272, Loss: 9.412885\n", - "Epoch 273, Loss: 9.412885\n", - "Epoch 274, Loss: 9.412885\n", - "Epoch 275, Loss: 8.826460\n", - "Epoch 276, Loss: 8.826460\n", - "Epoch 277, Loss: 8.826460\n", - "Epoch 278, Loss: 8.826460\n", - "Epoch 279, Loss: 8.826460\n", - "Epoch 280, Loss: 8.826460\n", - "Epoch 281, Loss: 8.826460\n", - "Epoch 282, Loss: 8.826460\n", - "Epoch 283, Loss: 8.826460\n", - "Epoch 284, Loss: 8.826460\n", - "Epoch 285, Loss: 8.826460\n", - "Epoch 286, Loss: 8.826460\n", - "Epoch 287, Loss: 8.524608\n", - "Epoch 288, Loss: 8.524608\n", - "Epoch 289, Loss: 8.524608\n", - "Epoch 290, Loss: 8.524608\n", - "Epoch 291, Loss: 8.524608\n", - "Epoch 292, Loss: 8.524608\n", - "Epoch 293, Loss: 8.524608\n", - "Epoch 294, Loss: 8.145123\n", - "Epoch 295, Loss: 8.145123\n", - "Epoch 296, Loss: 8.145123\n", - "Epoch 297, Loss: 8.145123\n", - "Epoch 298, Loss: 8.145123\n", - "Epoch 299, Loss: 8.145123\n", - "Epoch 300, Loss: 8.145123\n", - "Epoch 301, Loss: 8.127212\n", - "Epoch 302, Loss: 8.110297\n", - "Epoch 303, Loss: 7.982491\n", - "Epoch 304, Loss: 7.982491\n", - "Epoch 305, Loss: 7.982491\n", - "Epoch 306, Loss: 7.982491\n", - "Epoch 307, Loss: 7.982491\n", - "Epoch 308, Loss: 7.689448\n", - "Epoch 309, Loss: 7.689448\n", - "Epoch 310, Loss: 7.689448\n", - "Epoch 311, Loss: 7.559388\n", - "Epoch 312, Loss: 7.331694\n", - "Epoch 313, Loss: 7.331694\n", - "Epoch 314, Loss: 7.331694\n", - "Epoch 315, Loss: 7.331694\n", - "Epoch 316, Loss: 7.326125\n", - "Epoch 317, Loss: 7.326125\n", - "Epoch 318, Loss: 7.326125\n", - "Epoch 319, Loss: 7.326125\n", - "Epoch 320, Loss: 7.296954\n", - "Epoch 321, Loss: 7.296954\n", - "Epoch 322, Loss: 7.296954\n", - "Epoch 323, Loss: 6.979701\n", - "Epoch 324, Loss: 6.979701\n", - "Epoch 325, Loss: 6.979701\n", - "Epoch 326, Loss: 6.905115\n", - "Epoch 327, Loss: 6.905115\n", - "Epoch 328, Loss: 6.905115\n", - "Epoch 329, Loss: 6.905115\n", - "Epoch 330, Loss: 6.813662\n", - "Epoch 331, Loss: 6.813662\n", - "Epoch 332, Loss: 6.813662\n", - "Epoch 333, Loss: 6.813662\n", - "Epoch 334, Loss: 6.784504\n", - "Epoch 335, Loss: 6.626839\n", - "Epoch 336, Loss: 6.626839\n", - "Epoch 337, Loss: 6.626839\n", - "Epoch 338, Loss: 6.626839\n", - "Epoch 339, Loss: 6.626839\n", - "Epoch 340, Loss: 6.584451\n", - "Epoch 341, Loss: 6.584451\n", - "Epoch 342, Loss: 6.558240\n", - "Epoch 343, Loss: 6.526338\n", - "Epoch 344, Loss: 6.351715\n", - "Epoch 345, Loss: 6.239038\n", - "Epoch 346, Loss: 6.215122\n", - "Epoch 347, Loss: 6.072690\n", - "Epoch 348, Loss: 6.072690\n", - "Epoch 349, Loss: 6.072690\n", - "Epoch 350, Loss: 6.072690\n", - "Epoch 351, Loss: 6.072690\n", - "Epoch 352, Loss: 6.072690\n", - "Epoch 353, Loss: 6.072690\n", - "Epoch 354, Loss: 6.072690\n", - "Epoch 355, Loss: 6.072690\n", - "Epoch 356, Loss: 5.783062\n", - "Epoch 357, Loss: 5.783062\n", - "Epoch 358, Loss: 5.783062\n", - "Epoch 359, Loss: 5.783062\n", - "Epoch 360, Loss: 5.783062\n", - "Epoch 361, Loss: 5.783062\n", - "Epoch 362, Loss: 5.783062\n", - "Epoch 363, Loss: 5.586625\n", - "Epoch 364, Loss: 5.586625\n", - "Epoch 365, Loss: 5.586625\n", - "Epoch 366, Loss: 5.586625\n", - "Epoch 367, Loss: 5.586625\n", - "Epoch 368, Loss: 5.586625\n", - "Epoch 369, Loss: 5.586625\n", - "Epoch 370, Loss: 5.566424\n", - "Epoch 371, Loss: 5.566424\n", - "Epoch 372, Loss: 5.535752\n", - "Epoch 373, Loss: 5.413940\n", - "Epoch 374, Loss: 5.413940\n", - "Epoch 375, Loss: 5.413940\n", - "Epoch 376, Loss: 5.413940\n", - "Epoch 377, Loss: 5.052625\n", - "Epoch 378, Loss: 5.052625\n", - "Epoch 379, Loss: 5.052625\n", - "Epoch 380, Loss: 5.052625\n", - "Epoch 381, Loss: 5.052625\n", - "Epoch 382, Loss: 5.052625\n", - "Epoch 383, Loss: 5.052625\n", - "Epoch 384, Loss: 5.052625\n", - "Epoch 385, Loss: 5.052625\n", - "Epoch 386, Loss: 5.052625\n", - "Epoch 387, Loss: 5.052625\n", - "Epoch 388, Loss: 5.052625\n", - "Epoch 389, Loss: 5.052625\n", - "Epoch 390, Loss: 4.989394\n", - "Epoch 391, Loss: 4.943384\n", - "Epoch 392, Loss: 4.943384\n", - "Epoch 393, Loss: 4.693885\n", - "Epoch 394, Loss: 4.693885\n", - "Epoch 395, Loss: 4.693885\n", - "Epoch 396, Loss: 4.693885\n", - "Epoch 397, Loss: 4.511475\n", - "Epoch 398, Loss: 4.511475\n", - "Epoch 399, Loss: 4.511475\n", - "Epoch 400, Loss: 4.511475\n", - "Epoch 401, Loss: 4.511475\n", - "Epoch 402, Loss: 4.511475\n", - "Epoch 403, Loss: 4.511475\n", - "Epoch 404, Loss: 4.511475\n", - "Epoch 405, Loss: 4.511475\n", - "Epoch 406, Loss: 4.511475\n", - "Epoch 407, Loss: 4.511475\n", - "Epoch 408, Loss: 4.511475\n", - "Epoch 409, Loss: 4.511475\n", - "Epoch 410, Loss: 4.511475\n", - "Epoch 411, Loss: 4.511475\n", - "Epoch 412, Loss: 4.511475\n", - "Epoch 413, Loss: 4.511475\n", - "Epoch 414, Loss: 4.407905\n", - "Epoch 415, Loss: 4.407905\n", - "Epoch 416, Loss: 4.407905\n", - "Epoch 417, Loss: 4.407905\n", - "Epoch 418, Loss: 4.407905\n", - "Epoch 419, Loss: 4.407905\n", - "Epoch 420, Loss: 4.407905\n", - "Epoch 421, Loss: 4.407905\n", - "Epoch 422, Loss: 4.262218\n", - "Epoch 423, Loss: 4.262218\n", - "Epoch 424, Loss: 4.262218\n", - "Epoch 425, Loss: 4.262218\n", - "Epoch 426, Loss: 4.262218\n", - "Epoch 427, Loss: 4.262218\n", - "Epoch 428, Loss: 4.262218\n", - "Epoch 429, Loss: 4.132847\n", - "Epoch 430, Loss: 3.944972\n", - "Epoch 431, Loss: 3.944972\n", - "Epoch 432, Loss: 3.944972\n", - "Epoch 433, Loss: 3.944972\n", - "Epoch 434, Loss: 3.944972\n", - "Epoch 435, Loss: 3.944972\n", - "Epoch 436, Loss: 3.944972\n", - "Epoch 437, Loss: 3.944972\n", - "Epoch 438, Loss: 3.944972\n", - "Epoch 439, Loss: 3.944972\n", - "Epoch 440, Loss: 3.944972\n", - "Epoch 441, Loss: 3.944972\n", - "Epoch 442, Loss: 3.944972\n", - "Epoch 443, Loss: 3.944972\n", - "Epoch 444, Loss: 3.944972\n", - "Epoch 445, Loss: 3.944972\n", - "Epoch 446, Loss: 3.944972\n", - "Epoch 447, Loss: 3.944972\n", - "Epoch 448, Loss: 3.944972\n", - "Epoch 449, Loss: 3.944972\n", - "Epoch 450, Loss: 3.944972\n", - "Epoch 451, Loss: 3.944972\n", - "Epoch 452, Loss: 3.944972\n", - "Epoch 453, Loss: 3.765045\n", - "Epoch 454, Loss: 3.765045\n", - "Epoch 455, Loss: 3.765045\n", - "Epoch 456, Loss: 3.765045\n", - "Epoch 457, Loss: 3.765045\n", - "Epoch 458, Loss: 3.765045\n", - "Epoch 459, Loss: 3.765045\n", - "Epoch 460, Loss: 3.765045\n", - "Epoch 461, Loss: 3.765045\n", - "Epoch 462, Loss: 3.765045\n", - "Epoch 463, Loss: 3.765045\n", - "Epoch 464, Loss: 3.765045\n", - "Epoch 465, Loss: 3.765045\n", - "Epoch 466, Loss: 3.765045\n", - "Epoch 467, Loss: 3.765045\n", - "Epoch 468, Loss: 3.765045\n", - "Epoch 469, Loss: 3.700798\n", - "Epoch 470, Loss: 3.611396\n", - "Epoch 471, Loss: 3.611396\n", - "Epoch 472, Loss: 3.611396\n", - "Epoch 473, Loss: 3.611396\n", - "Epoch 474, Loss: 3.611396\n", - "Epoch 475, Loss: 3.611396\n", - "Epoch 476, Loss: 3.611396\n", - "Epoch 477, Loss: 3.594213\n", - "Epoch 478, Loss: 3.489793\n", - "Epoch 479, Loss: 3.489793\n", - "Epoch 480, Loss: 3.489793\n", - "Epoch 481, Loss: 3.489793\n", - "Epoch 482, Loss: 3.489793\n", - "Epoch 483, Loss: 3.489793\n", - "Epoch 484, Loss: 3.489793\n", - "Epoch 485, Loss: 3.489793\n", - "Epoch 486, Loss: 3.489793\n", - "Epoch 487, Loss: 3.445377\n", - "Epoch 488, Loss: 3.445377\n", - "Epoch 489, Loss: 3.445377\n", - "Epoch 490, Loss: 3.441855\n", - "Epoch 491, Loss: 3.347030\n", - "Epoch 492, Loss: 3.347030\n", - "Epoch 493, Loss: 3.347030\n", - "Epoch 494, Loss: 3.347030\n", - "Epoch 495, Loss: 3.347030\n", - "Epoch 496, Loss: 3.347030\n", - "Epoch 497, Loss: 3.347030\n", - "Epoch 498, Loss: 3.347030\n", - "Epoch 499, Loss: 3.291200\n", - "Epoch 500, Loss: 3.291200\n", - "Epoch 501, Loss: 3.291200\n", - "Epoch 502, Loss: 3.291200\n", - "Epoch 503, Loss: 3.291200\n", - "Epoch 504, Loss: 3.291200\n", - "Epoch 505, Loss: 3.291200\n", - "Epoch 506, Loss: 3.244171\n", - "Epoch 507, Loss: 3.244171\n", - "Epoch 508, Loss: 3.223432\n", - "Epoch 509, Loss: 3.223432\n", - "Epoch 510, Loss: 3.223432\n", - "Epoch 511, Loss: 3.223432\n", - "Epoch 512, Loss: 3.184573\n", - "Epoch 513, Loss: 3.106745\n", - "Epoch 514, Loss: 3.035987\n", - "Epoch 515, Loss: 3.035987\n", - "Epoch 516, Loss: 3.035987\n", - "Epoch 517, Loss: 3.035987\n", - "Epoch 518, Loss: 3.035987\n", - "Epoch 519, Loss: 3.035987\n", - "Epoch 520, Loss: 3.035987\n", - "Epoch 521, Loss: 3.035987\n", - "Epoch 522, Loss: 3.035987\n", - "Epoch 523, Loss: 3.035987\n", - "Epoch 524, Loss: 3.035987\n", - "Epoch 525, Loss: 3.035987\n", - "Epoch 526, Loss: 3.035987\n", - "Epoch 527, Loss: 3.035987\n", - "Epoch 528, Loss: 3.035987\n", - "Epoch 529, Loss: 3.035987\n", - "Epoch 530, Loss: 3.035987\n", - "Epoch 531, Loss: 3.035987\n", - "Epoch 532, Loss: 3.035987\n", - "Epoch 533, Loss: 3.035987\n", - "Epoch 534, Loss: 3.035987\n", - "Epoch 535, Loss: 3.035987\n", - "Epoch 536, Loss: 3.035987\n", - "Epoch 537, Loss: 3.035987\n", - "Epoch 538, Loss: 2.992951\n", - "Epoch 539, Loss: 2.992951\n", - "Epoch 540, Loss: 2.992951\n", - "Epoch 541, Loss: 2.793505\n", - "Epoch 542, Loss: 2.793505\n", - "Epoch 543, Loss: 2.793505\n", - "Epoch 544, Loss: 2.793505\n", - "Epoch 545, Loss: 2.793505\n", - "Epoch 546, Loss: 2.793505\n", - "Epoch 547, Loss: 2.793505\n", - "Epoch 548, Loss: 2.793505\n", - "Epoch 549, Loss: 2.793505\n", - "Epoch 550, Loss: 2.793505\n", - "Epoch 551, Loss: 2.793505\n", - "Epoch 552, Loss: 2.793505\n", - "Epoch 553, Loss: 2.793505\n", - "Epoch 554, Loss: 2.793505\n", - "Epoch 555, Loss: 2.793505\n", - "Epoch 556, Loss: 2.793505\n", - "Epoch 557, Loss: 2.793505\n", - "Epoch 558, Loss: 2.793505\n", - "Epoch 559, Loss: 2.793505\n", - "Epoch 560, Loss: 2.793505\n", - "Epoch 561, Loss: 2.783687\n", - "Epoch 562, Loss: 2.783687\n", - "Epoch 563, Loss: 2.783687\n", - "Epoch 564, Loss: 2.783687\n", - "Epoch 565, Loss: 2.783687\n", - "Epoch 566, Loss: 2.783687\n", - "Epoch 567, Loss: 2.738097\n", - "Epoch 568, Loss: 2.738097\n", - "Epoch 569, Loss: 2.738097\n", - "Epoch 570, Loss: 2.738097\n", - "Epoch 571, Loss: 2.738097\n", - "Epoch 572, Loss: 2.738097\n", - "Epoch 573, Loss: 2.738097\n", - "Epoch 574, Loss: 2.738097\n", - "Epoch 575, Loss: 2.738097\n", - "Epoch 576, Loss: 2.738097\n", - "Epoch 577, Loss: 2.738097\n", - "Epoch 578, Loss: 2.738097\n", - "Epoch 579, Loss: 2.738097\n", - "Epoch 580, Loss: 2.738097\n", - "Epoch 581, Loss: 2.738097\n", - "Epoch 582, Loss: 2.738097\n", - "Epoch 583, Loss: 2.738097\n", - "Epoch 584, Loss: 2.738097\n", - "Epoch 585, Loss: 2.738097\n", - "Epoch 586, Loss: 2.738097\n", - "Epoch 587, Loss: 2.680960\n", - "Epoch 588, Loss: 2.680960\n", - "Epoch 589, Loss: 2.640800\n", - "Epoch 590, Loss: 2.640800\n", - "Epoch 591, Loss: 2.640800\n", - "Epoch 592, Loss: 2.640800\n", - "Epoch 593, Loss: 2.640800\n", - "Epoch 594, Loss: 2.640800\n", - "Epoch 595, Loss: 2.465209\n", - "Epoch 596, Loss: 2.465209\n", - "Epoch 597, Loss: 2.465209\n", - "Epoch 598, Loss: 2.465209\n", - "Epoch 599, Loss: 2.465209\n", - "Epoch 600, Loss: 2.465209\n", - "Epoch 601, Loss: 2.465209\n", - "Epoch 602, Loss: 2.465209\n", - "Epoch 603, Loss: 2.465209\n", - "Epoch 604, Loss: 2.465209\n", - "Epoch 605, Loss: 2.465209\n", - "Epoch 606, Loss: 2.465209\n", - "Epoch 607, Loss: 2.465209\n", - "Epoch 608, Loss: 2.465209\n", - "Epoch 609, Loss: 2.465209\n", - "Epoch 610, Loss: 2.465209\n", - "Epoch 611, Loss: 2.465209\n", - "Epoch 612, Loss: 2.465209\n", - "Epoch 613, Loss: 2.465209\n", - "Epoch 614, Loss: 2.465209\n", - "Epoch 615, Loss: 2.465209\n", - "Epoch 616, Loss: 2.465209\n", - "Epoch 617, Loss: 2.465209\n", - "Epoch 618, Loss: 2.465209\n", - "Epoch 619, Loss: 2.465209\n", - "Epoch 620, Loss: 2.465209\n", - "Epoch 621, Loss: 2.465209\n", - "Epoch 622, Loss: 2.465209\n", - "Epoch 623, Loss: 2.465209\n", - "Epoch 624, Loss: 2.465209\n", - "Epoch 625, Loss: 2.465209\n", - "Epoch 626, Loss: 2.465209\n", - "Epoch 627, Loss: 2.465209\n", - "Epoch 628, Loss: 2.390105\n", - "Epoch 629, Loss: 2.366787\n", - "Epoch 630, Loss: 2.366787\n", - "Epoch 631, Loss: 2.366787\n", - "Epoch 632, Loss: 2.366787\n", - "Epoch 633, Loss: 2.366787\n", - "Epoch 634, Loss: 2.366787\n", - "Epoch 635, Loss: 2.366787\n", - "Epoch 636, Loss: 2.366787\n", - "Epoch 637, Loss: 2.366787\n", - "Epoch 638, Loss: 2.366787\n", - "Epoch 639, Loss: 2.366787\n", - "Epoch 640, Loss: 2.366787\n", - "Epoch 641, Loss: 2.366787\n", - "Epoch 642, Loss: 2.366787\n", - "Epoch 643, Loss: 2.366787\n", - "Epoch 644, Loss: 2.366787\n", - "Epoch 645, Loss: 2.366787\n", - "Epoch 646, Loss: 2.366787\n", - "Epoch 647, Loss: 2.366787\n", - "Epoch 648, Loss: 2.366787\n", - "Epoch 649, Loss: 2.366787\n", - "Epoch 650, Loss: 2.366787\n", - "Epoch 651, Loss: 2.366787\n", - "Epoch 652, Loss: 2.366787\n", - "Epoch 653, Loss: 2.366787\n", - "Epoch 654, Loss: 2.366787\n", - "Epoch 655, Loss: 2.366787\n", - "Epoch 656, Loss: 2.366787\n", - "Epoch 657, Loss: 2.366787\n", - "Epoch 658, Loss: 2.366787\n", - "Epoch 659, Loss: 2.366787\n", - "Epoch 660, Loss: 2.366787\n", - "Epoch 661, Loss: 2.366787\n", - "Epoch 662, Loss: 2.366787\n", - "Epoch 663, Loss: 2.366787\n", - "Epoch 664, Loss: 2.366787\n", - "Epoch 665, Loss: 2.366787\n", - "Epoch 666, Loss: 2.360506\n", - "Epoch 667, Loss: 2.360506\n", - "Epoch 668, Loss: 2.336800\n", - "Epoch 669, Loss: 2.336800\n", - "Epoch 670, Loss: 2.336800\n", - "Epoch 671, Loss: 2.336800\n", - "Epoch 672, Loss: 2.336800\n", - "Epoch 673, Loss: 2.336800\n", - "Epoch 674, Loss: 2.336800\n", - "Epoch 675, Loss: 2.336800\n", - "Epoch 676, Loss: 2.336800\n", - "Epoch 677, Loss: 2.336800\n", - "Epoch 678, Loss: 2.336800\n", - "Epoch 679, Loss: 2.336800\n", - "Epoch 680, Loss: 2.336800\n", - "Epoch 681, Loss: 2.309492\n", - "Epoch 682, Loss: 2.309492\n", - "Epoch 683, Loss: 2.309492\n", - "Epoch 684, Loss: 2.309492\n", - "Epoch 685, Loss: 2.309492\n", - "Epoch 686, Loss: 2.309492\n", - "Epoch 687, Loss: 2.309492\n", - "Epoch 688, Loss: 2.309492\n", - "Epoch 689, Loss: 2.309492\n", - "Epoch 690, Loss: 2.309492\n", - "Epoch 691, Loss: 2.309492\n", - "Epoch 692, Loss: 2.224473\n", - "Epoch 693, Loss: 2.224473\n", - "Epoch 694, Loss: 2.224473\n", - "Epoch 695, Loss: 2.224473\n", - "Epoch 696, Loss: 2.224473\n", - "Epoch 697, Loss: 2.224473\n", - "Epoch 698, Loss: 2.224473\n", - "Epoch 699, Loss: 2.224473\n", - "Epoch 700, Loss: 2.224473\n", - "Epoch 701, Loss: 2.224473\n", - "Epoch 702, Loss: 2.224473\n", - "Epoch 703, Loss: 2.224473\n", - "Epoch 704, Loss: 2.224473\n", - "Epoch 705, Loss: 2.224473\n", - "Epoch 706, Loss: 2.224473\n", - "Epoch 707, Loss: 2.224473\n", - "Epoch 708, Loss: 2.224473\n", - "Epoch 709, Loss: 2.224473\n", - "Epoch 710, Loss: 2.224473\n", - "Epoch 711, Loss: 2.224473\n", - "Epoch 712, Loss: 2.224473\n", - "Epoch 713, Loss: 2.224473\n", - "Epoch 714, Loss: 2.224473\n", - "Epoch 715, Loss: 2.224473\n", - "Epoch 716, Loss: 2.224473\n", - "Epoch 717, Loss: 2.224473\n", - "Epoch 718, Loss: 2.224473\n", - "Epoch 719, Loss: 2.224473\n", - "Epoch 720, Loss: 2.224473\n", - "Epoch 721, Loss: 2.224473\n", - "Epoch 722, Loss: 2.224473\n", - "Epoch 723, Loss: 2.224473\n", - "Epoch 724, Loss: 2.224473\n", - "Epoch 725, Loss: 2.224473\n", - "Epoch 726, Loss: 2.224473\n", - "Epoch 727, Loss: 2.224473\n", - "Epoch 728, Loss: 2.224473\n", - "Epoch 729, Loss: 2.224473\n", - "Epoch 730, Loss: 2.198704\n", - "Epoch 731, Loss: 2.198704\n", - "Epoch 732, Loss: 2.198704\n", - "Epoch 733, Loss: 2.198704\n", - "Epoch 734, Loss: 2.198704\n", - "Epoch 735, Loss: 2.198704\n", - "Epoch 736, Loss: 2.198704\n", - "Epoch 737, Loss: 2.198704\n", - "Epoch 738, Loss: 2.198704\n", - "Epoch 739, Loss: 2.198704\n", - "Epoch 740, Loss: 2.198704\n", - "Epoch 741, Loss: 2.198704\n", - "Epoch 742, Loss: 2.198704\n", - "Epoch 743, Loss: 2.198704\n", - "Epoch 744, Loss: 2.167431\n", - "Epoch 745, Loss: 2.167431\n", - "Epoch 746, Loss: 2.167431\n", - "Epoch 747, Loss: 2.167431\n", - "Epoch 748, Loss: 2.167431\n", - "Epoch 749, Loss: 2.167431\n", - "Epoch 750, Loss: 2.167431\n", - "Epoch 751, Loss: 2.167431\n", - "Epoch 752, Loss: 2.167431\n", - "Epoch 753, Loss: 2.167431\n", - "Epoch 754, Loss: 2.167431\n", - "Epoch 755, Loss: 2.167431\n", - "Epoch 756, Loss: 2.167431\n", - "Epoch 757, Loss: 2.167431\n", - "Epoch 758, Loss: 2.167431\n", - "Epoch 759, Loss: 2.167431\n", - "Epoch 760, Loss: 2.167431\n", - "Epoch 761, Loss: 2.167431\n", - "Epoch 762, Loss: 2.153251\n", - "Epoch 763, Loss: 2.140609\n", - "Epoch 764, Loss: 2.047782\n", - "Epoch 765, Loss: 2.047782\n", - "Epoch 766, Loss: 2.047782\n", - "Epoch 767, Loss: 2.047782\n", - "Epoch 768, Loss: 2.047782\n", - "Epoch 769, Loss: 2.047782\n", - "Epoch 770, Loss: 2.047782\n", - "Epoch 771, Loss: 2.047782\n", - "Epoch 772, Loss: 2.047782\n", - "Epoch 773, Loss: 2.047782\n", - "Epoch 774, Loss: 2.047782\n", - "Epoch 775, Loss: 2.047782\n", - "Epoch 776, Loss: 2.047782\n", - "Epoch 777, Loss: 2.047782\n", - "Epoch 778, Loss: 2.047782\n", - "Epoch 779, Loss: 2.047782\n", - "Epoch 780, Loss: 2.024375\n", - "Epoch 781, Loss: 2.024375\n", - "Epoch 782, Loss: 2.024375\n", - "Epoch 783, Loss: 2.024375\n", - "Epoch 784, Loss: 2.024375\n", - "Epoch 785, Loss: 2.024375\n", - "Epoch 786, Loss: 2.024375\n", - "Epoch 787, Loss: 2.024375\n", - "Epoch 788, Loss: 2.024375\n", - "Epoch 789, Loss: 2.024375\n", - "Epoch 790, Loss: 2.024375\n", - "Epoch 791, Loss: 2.024375\n", - "Epoch 792, Loss: 2.024375\n", - "Epoch 793, Loss: 2.024375\n", - "Epoch 794, Loss: 2.024375\n", - "Epoch 795, Loss: 2.024375\n", - "Epoch 796, Loss: 2.024375\n", - "Epoch 797, Loss: 2.024375\n", - "Epoch 798, Loss: 2.024375\n", - "Epoch 799, Loss: 2.024375\n", - "Epoch 800, Loss: 2.024375\n", - "Epoch 801, Loss: 2.024375\n", - "Epoch 802, Loss: 2.024375\n", - "Epoch 803, Loss: 2.024375\n", - "Epoch 804, Loss: 2.024375\n", - "Epoch 805, Loss: 2.024375\n", - "Epoch 806, Loss: 2.024375\n", - "Epoch 807, Loss: 2.024375\n", - "Epoch 808, Loss: 2.024375\n", - "Epoch 809, Loss: 2.024375\n", - "Epoch 810, Loss: 2.024375\n", - "Epoch 811, Loss: 2.024375\n", - "Epoch 812, Loss: 2.024375\n", - "Epoch 813, Loss: 2.024375\n", - "Epoch 814, Loss: 2.024375\n", - "Epoch 815, Loss: 2.024375\n", - "Epoch 816, Loss: 2.024375\n", - "Epoch 817, Loss: 2.024375\n", - "Epoch 818, Loss: 2.024375\n", - "Epoch 819, Loss: 2.024375\n", - "Epoch 820, Loss: 2.024375\n", - "Epoch 821, Loss: 2.024375\n", - "Epoch 822, Loss: 2.024375\n", - "Epoch 823, Loss: 2.024375\n", - "Epoch 824, Loss: 2.024375\n", - "Epoch 825, Loss: 2.024375\n", - "Epoch 826, Loss: 2.002779\n", - "Epoch 827, Loss: 2.002779\n", - "Epoch 828, Loss: 1.997806\n", - "Epoch 829, Loss: 1.970127\n", - "Epoch 830, Loss: 1.970127\n", - "Epoch 831, Loss: 1.970127\n", - "Epoch 832, Loss: 1.970127\n", - "Epoch 833, Loss: 1.970127\n", - "Epoch 834, Loss: 1.970127\n", - "Epoch 835, Loss: 1.970127\n", - "Epoch 836, Loss: 1.970127\n", - "Epoch 837, Loss: 1.970127\n", - "Epoch 838, Loss: 1.970127\n", - "Epoch 839, Loss: 1.970127\n", - "Epoch 840, Loss: 1.970127\n", - "Epoch 841, Loss: 1.970127\n", - "Epoch 842, Loss: 1.970127\n", - "Epoch 843, Loss: 1.970127\n", - "Epoch 844, Loss: 1.970127\n", - "Epoch 845, Loss: 1.970127\n", - "Epoch 846, Loss: 1.970127\n", - "Epoch 847, Loss: 1.970127\n", - "Epoch 848, Loss: 1.970127\n", - "Epoch 849, Loss: 1.970127\n", - "Epoch 850, Loss: 1.970127\n", - "Epoch 851, Loss: 1.970127\n", - "Epoch 852, Loss: 1.970127\n", - "Epoch 853, Loss: 1.970127\n", - "Epoch 854, Loss: 1.970127\n", - "Epoch 855, Loss: 1.970127\n", - "Epoch 856, Loss: 1.970127\n", - "Epoch 857, Loss: 1.970127\n", - "Epoch 858, Loss: 1.970127\n", - "Epoch 859, Loss: 1.970127\n", - "Epoch 860, Loss: 1.970127\n", - "Epoch 861, Loss: 1.970127\n", - "Epoch 862, Loss: 1.970127\n", - "Epoch 863, Loss: 1.970127\n", - "Epoch 864, Loss: 1.970127\n", - "Epoch 865, Loss: 1.970127\n", - "Epoch 866, Loss: 1.970127\n", - "Epoch 867, Loss: 1.965153\n", - "Epoch 868, Loss: 1.896979\n", - "Epoch 869, Loss: 1.896979\n", - "Epoch 870, Loss: 1.896979\n", - "Epoch 871, Loss: 1.896979\n", - "Epoch 872, Loss: 1.896979\n", - "Epoch 873, Loss: 1.896979\n", - "Epoch 874, Loss: 1.896979\n", - "Epoch 875, Loss: 1.896979\n", - "Epoch 876, Loss: 1.896979\n", - "Epoch 877, Loss: 1.896979\n", - "Epoch 878, Loss: 1.896979\n", - "Epoch 879, Loss: 1.896979\n", - "Epoch 880, Loss: 1.896979\n", - "Epoch 881, Loss: 1.896979\n", - "Epoch 882, Loss: 1.896979\n", - "Epoch 883, Loss: 1.896979\n", - "Epoch 884, Loss: 1.896979\n", - "Epoch 885, Loss: 1.896979\n", - "Epoch 886, Loss: 1.896979\n", - "Epoch 887, Loss: 1.896979\n", - "Epoch 888, Loss: 1.896979\n", - "Epoch 889, Loss: 1.896979\n", - "Epoch 890, Loss: 1.896979\n", - "Epoch 891, Loss: 1.896979\n", - "Epoch 892, Loss: 1.896979\n", - "Epoch 893, Loss: 1.896979\n", - "Epoch 894, Loss: 1.896979\n", - "Epoch 895, Loss: 1.896979\n", - "Epoch 896, Loss: 1.896979\n", - "Epoch 897, Loss: 1.896979\n", - "Epoch 898, Loss: 1.896979\n", - "Epoch 899, Loss: 1.896979\n", - "Epoch 900, Loss: 1.896979\n", - "Epoch 901, Loss: 1.878170\n", - "Epoch 902, Loss: 1.878170\n", - "Epoch 903, Loss: 1.878170\n", - "Epoch 904, Loss: 1.878170\n", - "Epoch 905, Loss: 1.878170\n", - "Epoch 906, Loss: 1.878170\n", - "Epoch 907, Loss: 1.878170\n", - "Epoch 908, Loss: 1.878170\n", - "Epoch 909, Loss: 1.878170\n", - "Epoch 910, Loss: 1.878170\n", - "Epoch 911, Loss: 1.878170\n", - "Epoch 912, Loss: 1.878170\n", - "Epoch 913, Loss: 1.878170\n", - "Epoch 914, Loss: 1.878170\n", - "Epoch 915, Loss: 1.878170\n", - "Epoch 916, Loss: 1.878170\n", - "Epoch 917, Loss: 1.878170\n", - "Epoch 918, Loss: 1.878170\n", - "Epoch 919, Loss: 1.878170\n", - "Epoch 920, Loss: 1.878170\n", - "Epoch 921, Loss: 1.878170\n", - "Epoch 922, Loss: 1.878170\n", - "Epoch 923, Loss: 1.878170\n", - "Epoch 924, Loss: 1.878170\n", - "Epoch 925, Loss: 1.817339\n", - "Epoch 926, Loss: 1.790501\n", - "Epoch 927, Loss: 1.790501\n", - "Epoch 928, Loss: 1.790501\n", - "Epoch 929, Loss: 1.790501\n", - "Epoch 930, Loss: 1.790501\n", - "Epoch 931, Loss: 1.790501\n", - "Epoch 932, Loss: 1.790501\n", - "Epoch 933, Loss: 1.790501\n", - "Epoch 934, Loss: 1.790501\n", - "Epoch 935, Loss: 1.790501\n", - "Epoch 936, Loss: 1.790501\n", - "Epoch 937, Loss: 1.790501\n", - "Epoch 938, Loss: 1.790501\n", - "Epoch 939, Loss: 1.790501\n", - "Epoch 940, Loss: 1.790501\n", - "Epoch 941, Loss: 1.790501\n", - "Epoch 942, Loss: 1.790501\n", - "Epoch 943, Loss: 1.790501\n", - "Epoch 944, Loss: 1.790501\n", - "Epoch 945, Loss: 1.790501\n", - "Epoch 946, Loss: 1.790501\n", - "Epoch 947, Loss: 1.790501\n", - "Epoch 948, Loss: 1.790501\n", - "Epoch 949, Loss: 1.790501\n", - "Epoch 950, Loss: 1.790501\n", - "Epoch 951, Loss: 1.790501\n", - "Epoch 952, Loss: 1.790501\n", - "Epoch 953, Loss: 1.790501\n", - "Epoch 954, Loss: 1.790501\n", - "Epoch 955, Loss: 1.790501\n", - "Epoch 956, Loss: 1.790501\n", - "Epoch 957, Loss: 1.790501\n", - "Epoch 958, Loss: 1.790501\n", - "Epoch 959, Loss: 1.756947\n", - "Epoch 960, Loss: 1.756947\n", - "Epoch 961, Loss: 1.756947\n", - "Epoch 962, Loss: 1.756947\n", - "Epoch 963, Loss: 1.756947\n", - "Epoch 964, Loss: 1.756947\n", - "Epoch 965, Loss: 1.756947\n", - "Epoch 966, Loss: 1.756947\n", - "Epoch 967, Loss: 1.756947\n", - "Epoch 968, Loss: 1.756947\n", - "Epoch 969, Loss: 1.756947\n", - "Epoch 970, Loss: 1.756947\n", - "Epoch 971, Loss: 1.756947\n", - "Epoch 972, Loss: 1.756947\n", - "Epoch 973, Loss: 1.756947\n", - "Epoch 974, Loss: 1.756947\n", - "Epoch 975, Loss: 1.756947\n", - "Epoch 976, Loss: 1.756947\n", - "Epoch 977, Loss: 1.756947\n", - "Epoch 978, Loss: 1.756947\n", - "Epoch 979, Loss: 1.756947\n", - "Epoch 980, Loss: 1.756947\n", - "Epoch 981, Loss: 1.756947\n", - "Epoch 982, Loss: 1.756947\n", - "Epoch 983, Loss: 1.756947\n", - "Epoch 984, Loss: 1.756947\n", - "Epoch 985, Loss: 1.756947\n", - "Epoch 986, Loss: 1.731633\n", - "Epoch 987, Loss: 1.728232\n", - "Epoch 988, Loss: 1.685651\n", - "Epoch 989, Loss: 1.685651\n", - "Epoch 990, Loss: 1.685651\n", - "Epoch 991, Loss: 1.685651\n", - "Epoch 992, Loss: 1.685651\n", - "Epoch 993, Loss: 1.685651\n", - "Epoch 994, Loss: 1.685651\n", - "Epoch 995, Loss: 1.685651\n", - "Epoch 996, Loss: 1.685651\n", - "Epoch 997, Loss: 1.685651\n", - "Epoch 998, Loss: 1.685651\n", - "Epoch 999, Loss: 1.685651\n", - "Epoch 1000, Loss: 1.685651\n", - "Epoch 1001, Loss: 1.685651\n", - "Epoch 1002, Loss: 1.685651\n", - "Epoch 1003, Loss: 1.685651\n", - "Epoch 1004, Loss: 1.685651\n", - "Epoch 1005, Loss: 1.685651\n", - "Epoch 1006, Loss: 1.685651\n", - "Epoch 1007, Loss: 1.685651\n", - "Epoch 1008, Loss: 1.685651\n", - "Epoch 1009, Loss: 1.685651\n", - "Epoch 1010, Loss: 1.685651\n", - "Epoch 1011, Loss: 1.685651\n", - "Epoch 1012, Loss: 1.685651\n", - "Epoch 1013, Loss: 1.685651\n", - "Epoch 1014, Loss: 1.685651\n", - "Epoch 1015, Loss: 1.685651\n", - "Epoch 1016, Loss: 1.685651\n", - "Epoch 1017, Loss: 1.685651\n", - "Epoch 1018, Loss: 1.685651\n", - "Epoch 1019, Loss: 1.685651\n", - "Epoch 1020, Loss: 1.685651\n", - "Epoch 1021, Loss: 1.685651\n", - "Epoch 1022, Loss: 1.685651\n", - "Epoch 1023, Loss: 1.685651\n", - "Epoch 1024, Loss: 1.685651\n", - "Epoch 1025, Loss: 1.685651\n", - "Epoch 1026, Loss: 1.685651\n", - "Epoch 1027, Loss: 1.685651\n", - "Epoch 1028, Loss: 1.685651\n", - "Epoch 1029, Loss: 1.685651\n", - "Epoch 1030, Loss: 1.685651\n", - "Epoch 1031, Loss: 1.685651\n", - "Epoch 1032, Loss: 1.685651\n", - "Epoch 1033, Loss: 1.685651\n", - "Epoch 1034, Loss: 1.685651\n", - "Epoch 1035, Loss: 1.685651\n", - "Epoch 1036, Loss: 1.685651\n", - "Epoch 1037, Loss: 1.685651\n", - "Epoch 1038, Loss: 1.685651\n", - "Epoch 1039, Loss: 1.685651\n", - "Epoch 1040, Loss: 1.685651\n", - "Epoch 1041, Loss: 1.685651\n", - "Epoch 1042, Loss: 1.685651\n", - "Epoch 1043, Loss: 1.685651\n", - "Epoch 1044, Loss: 1.685651\n", - "Epoch 1045, Loss: 1.685651\n", - "Epoch 1046, Loss: 1.685651\n", - "Epoch 1047, Loss: 1.685651\n", - "Epoch 1048, Loss: 1.685651\n", - "Epoch 1049, Loss: 1.685651\n", - "Epoch 1050, Loss: 1.685651\n", - "Epoch 1051, Loss: 1.685651\n", - "Epoch 1052, Loss: 1.685651\n", - "Epoch 1053, Loss: 1.685651\n", - "Epoch 1054, Loss: 1.685651\n", - "Epoch 1055, Loss: 1.685651\n", - "Epoch 1056, Loss: 1.685651\n", - "Epoch 1057, Loss: 1.685651\n", - "Epoch 1058, Loss: 1.685651\n", - "Epoch 1059, Loss: 1.685651\n", - "Epoch 1060, Loss: 1.685651\n", - "Epoch 1061, Loss: 1.666285\n", - "Epoch 1062, Loss: 1.666285\n", - "Epoch 1063, Loss: 1.666285\n", - "Epoch 1064, Loss: 1.666285\n", - "Epoch 1065, Loss: 1.666285\n", - "Epoch 1066, Loss: 1.666285\n", - "Epoch 1067, Loss: 1.666285\n", - "Epoch 1068, Loss: 1.666285\n", - "Epoch 1069, Loss: 1.666285\n", - "Epoch 1070, Loss: 1.650831\n", - "Epoch 1071, Loss: 1.539552\n", - "Epoch 1072, Loss: 1.539552\n", - "Epoch 1073, Loss: 1.539552\n", - "Epoch 1074, Loss: 1.539552\n", - "Epoch 1075, Loss: 1.539552\n", - "Epoch 1076, Loss: 1.539552\n", - "Epoch 1077, Loss: 1.539552\n", - "Epoch 1078, Loss: 1.539552\n", - "Epoch 1079, Loss: 1.539552\n", - "Epoch 1080, Loss: 1.539552\n", - "Epoch 1081, Loss: 1.539552\n", - "Epoch 1082, Loss: 1.539552\n", - "Epoch 1083, Loss: 1.539552\n", - "Epoch 1084, Loss: 1.539552\n", - "Epoch 1085, Loss: 1.539552\n", - "Epoch 1086, Loss: 1.539552\n", - "Epoch 1087, Loss: 1.539552\n", - "Epoch 1088, Loss: 1.539552\n", - "Epoch 1089, Loss: 1.539552\n", - "Epoch 1090, Loss: 1.539552\n", - "Epoch 1091, Loss: 1.539552\n", - "Epoch 1092, Loss: 1.539552\n", - "Epoch 1093, Loss: 1.539552\n", - "Epoch 1094, Loss: 1.539552\n", - "Epoch 1095, Loss: 1.539552\n", - "Epoch 1096, Loss: 1.539552\n", - "Epoch 1097, Loss: 1.539552\n", - "Epoch 1098, Loss: 1.539552\n", - "Epoch 1099, Loss: 1.539552\n", - "Epoch 1100, Loss: 1.539552\n", - "Epoch 1101, Loss: 1.539552\n", - "Epoch 1102, Loss: 1.539552\n", - "Epoch 1103, Loss: 1.539552\n", - "Epoch 1104, Loss: 1.539552\n", - "Epoch 1105, Loss: 1.539552\n", - "Epoch 1106, Loss: 1.539552\n", - "Epoch 1107, Loss: 1.539552\n", - "Epoch 1108, Loss: 1.539552\n", - "Epoch 1109, Loss: 1.539552\n", - "Epoch 1110, Loss: 1.539552\n", - "Epoch 1111, Loss: 1.539552\n", - "Epoch 1112, Loss: 1.539552\n", - "Epoch 1113, Loss: 1.539552\n", - "Epoch 1114, Loss: 1.539552\n", - "Epoch 1115, Loss: 1.539552\n", - "Epoch 1116, Loss: 1.539552\n", - "Epoch 1117, Loss: 1.539552\n", - "Epoch 1118, Loss: 1.539552\n", - "Epoch 1119, Loss: 1.539552\n", - "Epoch 1120, Loss: 1.539552\n", - "Epoch 1121, Loss: 1.539552\n", - "Epoch 1122, Loss: 1.539552\n", - "Epoch 1123, Loss: 1.539552\n", - "Epoch 1124, Loss: 1.539552\n", - "Epoch 1125, Loss: 1.539552\n", - "Epoch 1126, Loss: 1.539552\n", - "Epoch 1127, Loss: 1.539552\n", - "Epoch 1128, Loss: 1.539552\n", - "Epoch 1129, Loss: 1.539552\n", - "Epoch 1130, Loss: 1.539552\n", - "Epoch 1131, Loss: 1.539552\n", - "Epoch 1132, Loss: 1.539552\n", - "Epoch 1133, Loss: 1.539552\n", - "Epoch 1134, Loss: 1.539552\n", - "Epoch 1135, Loss: 1.539552\n", - "Epoch 1136, Loss: 1.539552\n", - "Epoch 1137, Loss: 1.539552\n", - "Epoch 1138, Loss: 1.539552\n", - "Epoch 1139, Loss: 1.539552\n", - "Epoch 1140, Loss: 1.539552\n", - "Epoch 1141, Loss: 1.539552\n", - "Epoch 1142, Loss: 1.539552\n", - "Epoch 1143, Loss: 1.539552\n", - "Epoch 1144, Loss: 1.539552\n", - "Epoch 1145, Loss: 1.539552\n", - "Epoch 1146, Loss: 1.539552\n", - "Epoch 1147, Loss: 1.539552\n", - "Epoch 1148, Loss: 1.539552\n", - "Epoch 1149, Loss: 1.539552\n", - "Epoch 1150, Loss: 1.539552\n", - "Epoch 1151, Loss: 1.539552\n", - "Epoch 1152, Loss: 1.539552\n", - "Epoch 1153, Loss: 1.539552\n", - "Epoch 1154, Loss: 1.539552\n", - "Epoch 1155, Loss: 1.539552\n", - "Epoch 1156, Loss: 1.539552\n", - "Epoch 1157, Loss: 1.539552\n", - "Epoch 1158, Loss: 1.539552\n", - "Epoch 1159, Loss: 1.539552\n", - "Epoch 1160, Loss: 1.539552\n", - "Epoch 1161, Loss: 1.539552\n", - "Epoch 1162, Loss: 1.539552\n", - "Epoch 1163, Loss: 1.539552\n", - "Epoch 1164, Loss: 1.539552\n", - "Epoch 1165, Loss: 1.539552\n", - "Epoch 1166, Loss: 1.539552\n", - "Epoch 1167, Loss: 1.539552\n", - "Epoch 1168, Loss: 1.539552\n", - "Epoch 1169, Loss: 1.539552\n", - "Epoch 1170, Loss: 1.539552\n", - "Epoch 1171, Loss: 1.539552\n", - "stopped early after 1172 epochs, with a loss of: 1.539551854133606\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjEAAAGdCAYAAADjWSL8AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAN8hJREFUeJzt3X90VeWB//vPPj8S8oucAMEE4WiAHBRp+KmodSrFa13LL9+vX9atjm0d8PLj4jdcxNXrqF3YTmWkhZlVsVLnFhRQMh0rohmZ1o6O2KEFvyMDaGmNQ0CgEUxMgJyE5JDk/Nj3j5NsOBAkOdnn7CS8X2uxcn48Z+/nPPtw8snzPPvZhmmapgAAAAYYl9MVAAAASAYhBgAADEiEGAAAMCARYgAAwIBEiAEAAAMSIQYAAAxIhBgAADAgEWIAAMCARIgBAAADEiEGAAAMSB6nK5BqjY2NikQitm+3sLBQDQ0Ntm8XPUP7O4v2dxbt7zyOQep4PB4VFBT0rGyK6+K4SCSicDhs6zYNw7C2zaWn0o/2dxbt7yza33kcg/6D4SQAADAgEWIAAMCARIgBAAADEiEGAAAMSIQYAAAwIBFiAADAgESIAQAAAxIhBgAADEiEGAAAMCARYgAAwIBEiAEAAAMSIQYAAAxIg/4CkHYza48rtvM3avZfK331G05XBwCAKxY9Mb11ukHmjn9RaOfbTtcEAIArGiGmtzovwS4uvw4AgKMIMb3VFWJiMWfrAQDAFY4Q01uueJOZhBgAABxFiOkto7PJTEIMAABOIsT0lqtrOIk5MQAAOIkQ01v0xAAA0C8QYnqrc2KvSU8MAACOIsT0VldPTCzqbD0AALjCEWJ6y9U1nERPDAAATiLE9Ja12B1zYgAAcBIhprdcXXNiCDEAADiJENNbBsNJAAD0B4SY3rIuO8DEXgAAnESI6a2uib2cYg0AgKMIMb3VOZxkMrEXAABHEWJ6y+CyAwAA9AeEmN5iTgwAAP0CIaa3WOwOAIB+gRDTW11zYlgnBgAAR3l6U7iyslJ79uzRiRMnlJGRoUAgoAceeECjRo2yyjz//PPauXNnwutKS0u1atUq6344HFZFRYV2796tjo4OTZo0SYsWLdLw4cOtMi0tLdq8ebP27t0rSZoxY4YWLFignJycpN6obVys2AsAQH/QqxBTVVWlu+66S+PGjVM0GtUvf/lLPf3003rmmWc0ZMgQq9yUKVNUXl5+bieexN289NJL2rdvn5YvX668vDxt2bJFq1ev1po1a+TqHK557rnndOrUKa1YsUKStH79eq1bt05PPPFE0m/WFix2BwBAv9Cr4aQVK1Zo1qxZGjNmjK699lqVl5fr5MmTOnLkSEI5j8cjn89n/cvNzbWeC4VCeu+99zRv3jyVlZWppKREy5YtU01NjQ4cOCBJOn78uD766CM99NBDCgQCCgQCWrJkifbv36/PP//chrfdB9Y6MTGZBBkAABzTpzkxoVBIkhJCihTvsVm0aJGWL1+un//852pqarKeO3LkiKLRqMrKyqzHhg0bJr/fr+rqaklSdXW1srOzVVpaapUJBALKzs7WwYMH+1LlvvN4z92ORJyrBwAAV7heDSedzzRNvfzyy7ruuuvk9/utx6dOnapbbrlFI0aMUH19vV599VWtXLlSq1evltfrVTAYlMfjuSj45OfnKxgMSpKCwaDy8/Mv2uf5ZS4UDocVDoet+4ZhKCsry7ptG2/GuX1EwpLX+yWFkQpdx9PW44oeo/2dRfs7j2PQfyQdYjZu3KiamhqtXLky4fFbb73Vuu33+zVu3DiVl5dr//79mjlz5iW315OhGdM0L/mhqays1LZt26z7JSUlWrNmjQoLCy+73d4wTVPHO2+PHFYgt2+YrdtHzxUVFTldhSsa7e8s2t95HAPnJRViNm3apH379umpp55KOKOoOwUFBSosLFRtba0kyefzKRKJqKWlJaE3prm5WRMmTLDKnD8EdX6Z7npoJGnu3LmaM2eOdb8r7DQ0NChi97CPxytFwqo/cVw6227vtnFZhmGoqKhIdXV1zEtyAO3vLNrfeRyD1PJ4PD3ugOhViDFNU5s2bdKePXv0wx/+UCNHjrzsa86cOaNTp06poKBAkjR27Fi53W4dOHDA6rVpbGxUTU2NvvOd70iKz38JhUI6fPiwxo8fL0k6dOiQQqGQFXQu5PV65b3E0I7tHzJvhhQJy+zo4CwlB5mmyReIg2h/Z9H+zuMYOK9XIWbjxo3atWuXHnvsMWVlZVnzU7Kzs5WRkaG2tjZt3bpVN998s3w+nxoaGvTKK68oLy9PN910k1V29uzZqqioUF5ennJzc1VRUSG/329N9h09erSmTJmi9evXa/HixZKkDRs2aNq0aQlr0jjG65XOSoqEL1sUAACkRq9CzDvvvCNJ+uEPf5jweHl5uWbNmiWXy6XPPvtMv/vd79Ta2qqCggLdcMMNeuSRR6xJtpI0f/58ud1urV271lrs7vHHH7fWiJGkhx9+WJs2bbIWyZs+fboWLlyY7Pu0V9cZSuEOZ+sBAMAVzDAHeV9YQ0NDwllLdog++b+kL07I/dhqqXSirdvG5RmGoeLiYtXW1tKV6wDa31m0v/M4Bqnl9Xp7PCeGayclo3PujclwEgAAjiHEJIPhJAAAHEeISUbXgnc2D1MBAICeI8QkwejqiWE4CQAAxxBikuFlOAkAAKcRYpLRNZxETwwAAI4hxCTDmthLiAEAwCmEmGQwnAQAgOMIMcnoHE5inRgAAJxDiEkGw0kAADiOEJMMhpMAAHAcISYJhpd1YgAAcBohJhmerhV76YkBAMAphJhkWD0xEWfrAQDAFYwQkwzmxAAA4DhCTDIYTgIAwHGEmGRYlx1gOAkAAKcQYpLh9UiSzI52hysCAMCVixCTDC4ACQCA4wgxyfCwTgwAAE4jxCTBsC47wJwYAACcQohJhrVODGcnAQDgFEJMMrgAJAAAjiPEJKNrYi8hBgAAxxBiksHEXgAAHEeISUbXnJhoRGYs5mxdAAC4QhFiktEVYiR6YwAAcAghJhkeQgwAAE4jxCTD7Tl3mxADAIAjCDFJMAzjvDOUWPAOAAAnEGKSZHCGEgAAjiLEJMnwEmIAAHASISZJhnUla4aTAABwAiEmWfTEAADgKEJMks71xBBiAABwAiEmSdacGK6fBACAIwgxSaInBgAAZxFikkSIAQDAWYSYZHUOJ5mEGAAAHEGISZLVE8OcGAAAHEGISRKL3QEA4CxCTJIMb2b8Bj0xAAA4ghCTJHpiAABwFiEmWZydBACAowgxSaInBgAAZxFiknTu7CQuAAkAgBMIMUlisTsAAJxFiEnSuWsndThbEQAArlCEmGTREwMAgKMIMUkyMuIhhssOAADgDEJMks7NiWFiLwAATiDEJOncnBh6YgAAcIKnN4UrKyu1Z88enThxQhkZGQoEAnrggQc0atQoq4xpmnrttde0Y8cOtbS0qLS0VAsXLtSYMWOsMuFwWBUVFdq9e7c6Ojo0adIkLVq0SMOHD7fKtLS0aPPmzdq7d68kacaMGVqwYIFycnL6+p5twdlJAAA4q1c9MVVVVbrrrru0atUqPfnkk4rFYnr66afV1tZmlXnzzTf161//WgsWLNCPf/xj+Xw+Pf300zp79qxV5qWXXtKePXu0fPlyrVy5Um1tbVq9erVisZhV5rnnntOxY8e0YsUKrVixQseOHdO6detseMv2MDwsdgcAgJN6FWJWrFihWbNmacyYMbr22mtVXl6ukydP6siRI5LivTBvvfWW5s6dq5kzZ8rv92vp0qVqb2/Xrl27JEmhUEjvvfee5s2bp7KyMpWUlGjZsmWqqanRgQMHJEnHjx/XRx99pIceekiBQECBQEBLlizR/v379fnnn9vcBEmiJwYAAEf1ajjpQqFQSJKUm5srSaqvr1cwGNTkyZOtMl6vVxMnTtTBgwd155136siRI4pGoyorK7PKDBs2TH6/X9XV1ZoyZYqqq6uVnZ2t0tJSq0wgEFB2drYOHjyYMHzVJRwOK3ze/BTDMJSVlWXdtpNhGOet2Bu2ffv4cl3tTbs7g/Z3Fu3vPI5B/5F0iDFNUy+//LKuu+46+f1+SVIwGJQk5efnJ5TNz8/XyZMnrTIej8cKPueX6Xp9MBi8aBsXlrlQZWWltm3bZt0vKSnRmjVrVFhYmMzbu6z2019IktxmTMXFxSnZB75cUVGR01W4otH+zqL9nccxcF7SIWbjxo2qqanRypUrL3ruwnRqmuZlt9fTMpdKvnPnztWcOXMuqkNDQ4MiNp8GbRiGhnX2xETb21RbW2vr9vHlDMNQUVGR6urqevS5gb1of2fR/s7jGKSWx+PpcQdEUiFm06ZN2rdvn5566qmEM4p8Pp+keE9KQUGB9Xhzc7PVs+Lz+RSJRNTS0pLQG9Pc3KwJEyZYZZqami7a7/nbuZDX65W367TnC6TiQ9a12J3CYT7EDjFNk7Z3EO3vLNrfeRwD5/VqYq9pmtq4caM++OAD/eAHP9DIkSMTnh85cqR8Pp81QVeSIpGIqqqqrIAyduxYud3uhDKNjY2qqalRIBCQFJ//EgqFdPjwYavMoUOHFAqFrO04jom9AAA4qlc9MRs3btSuXbv02GOPKSsry5qfkp2drYyMDBmGobvvvluVlZUqLi5WUVGRKisrlZmZqdtuu80qO3v2bFVUVCgvL0+5ubmqqKiQ3++3JvuOHj1aU6ZM0fr167V48WJJ0oYNGzRt2rRuJ/U6wVrsjhADAIAjehVi3nnnHUnSD3/4w4THy8vLNWvWLEnSPffco46ODr344otqbW3V+PHjtWLFCutMIUmaP3++3G631q5day129/jjj8vlOtcx9PDDD2vTpk1atWqVJGn69OlauHBhMu8xJc6/7MCXzdUBAACpYZiDfECvoaEh4dRrOxiGoauG5unEfbMkSa5/eP1czwxSzjAMFRcXq7a2lvFoB9D+zqL9nccxSC2v19vjib1cOylJCaGFISUAANKOEJMsz3khJtzhXD0AALhCEWKSZLhckrtzShE9MQAApB0hpi84QwkAAMcQYvqia0gpbO+KwAAA4PIIMX1BTwwAAI4hxPSFhxADAIBTCDF9QYgBAMAxhJi+sObEEGIAAEg3QkxfWHNiWCcGAIB0I8T0hSe+TozJ2UkAAKQdIaYPzl0EkuEkAADSjRDTF0zsBQDAMYSYviDEAADgGEJMX3B2EgAAjiHE9AUr9gIA4BhCTF94uIo1AABOIcT0BcNJAAA4hhDTF0zsBQDAMYSYvmBODAAAjiHE9IG12B3DSQAApB0hpi8YTgIAwDGEmL7oDDEmIQYAgLQjxPSFdYo1F4AEACDdCDF94eUUawAAnEKI6QvmxAAA4BhCTF9Yi911OFsPAACuQISYvmCdGAAAHEOI6QtP5zoxTOwFACDtCDF9YNATAwCAYwgxfdF1ijVnJwEAkHaEmL7g7CQAABxDiOkLQgwAAI4hxPQFc2IAAHAMIaYvrJ6YiMxYzNm6AABwhSHE9EVXiJGkKKdZAwCQToSYvvBmnLvNGUoAAKQVIaYvuk6xlpgXAwBAmhFi+sAwjHNBhhADAEBaEWL6itOsAQBwBCGmr6wrWTOxFwCAdCLE9BU9MQAAOIIQ01ddC96FO5ytBwAAVxhCTF/REwMAgCMIMX3F2UkAADiCENNXXQveEWIAAEgrQkxfdQ4nmZydBABAWhFi+oo5MQAAOIIQ01deQgwAAE4gxPQVE3sBAHAEIaaPDA/rxAAA4ATP5Yskqqqq0vbt23X06FE1Njbq0Ucf1U033WQ9//zzz2vnzp0JryktLdWqVaus++FwWBUVFdq9e7c6Ojo0adIkLVq0SMOHD7fKtLS0aPPmzdq7d68kacaMGVqwYIFycnJ6/SZTygox9MQAAJBOvQ4x7e3tuvbaa/X1r39dP/nJT7otM2XKFJWXl5/biSdxNy+99JL27dun5cuXKy8vT1u2bNHq1au1Zs0auVzxzqHnnntOp06d0ooVKyRJ69ev17p16/TEE0/0tsqpZc2J4ewkAADSqdfDSVOnTtX999+vmTNnXrKMx+ORz+ez/uXm5lrPhUIhvffee5o3b57KyspUUlKiZcuWqaamRgcOHJAkHT9+XB999JEeeughBQIBBQIBLVmyRPv379fnn3+exNtMIQ/rxAAA4IRe98T0RFVVlRYtWqScnBxdf/31+ta3vqX8/HxJ0pEjRxSNRlVWVmaVHzZsmPx+v6qrqzVlyhRVV1crOztbpaWlVplAIKDs7GwdPHhQo0aNumif4XBY4fOGdAzDUFZWlnXbTl3bMwwj4ewku/eD7iW0P9KO9ncW7e88jkH/YXuImTp1qm655RaNGDFC9fX1evXVV7Vy5UqtXr1aXq9XwWBQHo8noXdGkvLz8xUMBiVJwWDQCj2XKnOhyspKbdu2zbpfUlKiNWvWqLCw0Lb3dqGioiI1FRSoWVJ2RoaGFRenbF+4WFFRkdNVuKLR/s6i/Z3HMXCe7SHm1ltvtW77/X6NGzdO5eXl2r9//5cOQZmmedltm6Z5yeQ7d+5czZkzx7rfVa6hoUERm+erGIahoqIi1dXVKdrWLkkKNTepvbbW1v2ge+e3f08+N7AX7e8s2t95HIPU8ng8Pe6ASMlw0vkKCgpUWFio2s5f8D6fT5FIRC0tLQm9Mc3NzZowYYJVpqmp6aJtNTc3d9tDI0ler1ferqGdC6TqQ2aapkx3ZxOGO/gwp5lpmrS5g2h/Z9H+zuMYOC/l68ScOXNGp06dUkFBgSRp7Nixcrvd1iReSWpsbFRNTY0CgYCk+PyXUCikw4cPW2UOHTqkUChkBZ1+ozM4mUzsBQAgrXrdE9PW1qa6ujrrfn19vY4dO6bc3Fzl5uZq69atuvnmm+Xz+dTQ0KBXXnlFeXl51loy2dnZmj17tioqKpSXl6fc3FxVVFTI7/dbk31Hjx6tKVOmaP369Vq8eLEkacOGDZo2bVq3k3odxToxAAA4otch5tNPP9VTTz1l3d+yZYsk6fbbb9fixYv12Wef6Xe/+51aW1tVUFCgG264QY888oh1ppAkzZ8/X263W2vXrrUWu3v88cetNWIk6eGHH9amTZusRfKmT5+uhQsXJv1GU4YLQAIA4AjDHOQDeg0NDQmnXtvBMAwVFxertrZWsf/8vWLr/04K3CD3X//Y1v2ge+e3/yD/+PZLtL+zaH/ncQxSy+v19nhiL9dO6iuGkwAAcAQhpq8YTgIAwBGEmL7i2kkAADiCENNX9MQAAOAIQkxfMScGAABHEGL6yuqJ6XC2HgAAXGEIMX3l7brsAHNiAABIJ0JMXzEnBgAARxBi+sqbEf8ZjciMxZytCwAAVxBCTF95zrtydpQhJQAA0oUQ01fnhxjOUAIAIG0IMX3lOe8amsyLAQAgbQgxfWQYxrkgQ4gBACBtCDF2YME7AADSjhBjB06zBgAg7QgxdiDEAACQdoQYO3gZTgIAIN0IMXagJwYAgLQjxNjBS4gBACDdCDF2oCcGAIC0I8TYoTPEmFzJGgCAtCHE2IGeGAAA0o4QYwfr7KQOZ+sBAMAVhBBjBy47AABA2hFibGB4M+I3CDEAAKQNIcYOXDsJAIC0I8TYwZrYy9lJAACkCyHGDpydBABA2hFi7OBlYi8AAOlGiLEDPTEAAKQdIcYOHtaJAQAg3QgxdrBCDBN7AQBIF0KMHTpX7DUZTgIAIG0IMXZgTgwAAGlHiLGDlxADAEC6EWJsYNATAwBA2hFi7MBlBwAASDtCjB3oiQEAIO0IMXbw0hMDAEC6EWLsQE8MAABpR4ixAyEGAIC0I8TYgVOsAQBIO0KMHbjsAAAAaUeIsQPDSQAApB0hxg5dw0nRiMxYzNm6AABwhSDE2KGrJ0aSogwpAQCQDoQYO5wfYlgrBgCAtCDE2MHjOXc70uFcPQAAuIIQYmxgGMa5IMMZSgAApAUhxi7ejPhPzlACACAtCDF24TRrAADSihBjF0IMAABp5bl8kURVVVXavn27jh49qsbGRj366KO66aabrOdN09Rrr72mHTt2qKWlRaWlpVq4cKHGjBljlQmHw6qoqNDu3bvV0dGhSZMmadGiRRo+fLhVpqWlRZs3b9bevXslSTNmzNCCBQuUk5PTl/ebOtacGEIMAADp0OuemPb2dl177bVasGBBt8+/+eab+vWvf60FCxboxz/+sXw+n55++mmdPXvWKvPSSy9pz549Wr58uVauXKm2tjatXr1asfMWinvuued07NgxrVixQitWrNCxY8e0bt26JN5imtATAwBAWvU6xEydOlX333+/Zs6cedFzpmnqrbfe0ty5czVz5kz5/X4tXbpU7e3t2rVrlyQpFArpvffe07x581RWVqaSkhItW7ZMNTU1OnDggCTp+PHj+uijj/TQQw8pEAgoEAhoyZIl2r9/vz7//PM+vuUU4SKQAACkVa+Hk75MfX29gsGgJk+ebD3m9Xo1ceJEHTx4UHfeeaeOHDmiaDSqsrIyq8ywYcPk9/tVXV2tKVOmqLq6WtnZ2SotLbXKBAIBZWdn6+DBgxo1atRF+w6HwwqfN5RjGIaysrKs23bq2l7Cds/ribF7f0jUbfsjbWh/Z9H+zuMY9B+2hphgMChJys/PT3g8Pz9fJ0+etMp4PB7l5uZeVKbr9cFg8KJtXFjmQpWVldq2bZt1v6SkRGvWrFFhYWGS7+byioqKrNv1OTlql1SQm6vs4uKU7RPnnN/+SD/a31m0v/M4Bs6zNcR0uTCdmqZ52df0tMylku/cuXM1Z86ci+rQ0NCgSMTeBegMw1BRUZHq6uqsekdj8Z+NDQ1qqq21dX9I1F37I31of2fR/s7jGKSWx+PpcQeErSHG5/NJivekFBQUWI83NzdbPSs+n0+RSEQtLS0JvTHNzc2aMGGCVaapqemi7Z+/nQt5vV55vd5un0vVh8w0TWvbZudwkhnu4EOdJue3P9KP9ncW7e88joHzbF0nZuTIkfL5fNYEXUmKRCKqqqqyAsrYsWPldrsTyjQ2NqqmpkaBQEBSfP5LKBTS4cOHrTKHDh1SKBSyttPfGJydBABAWvW6J6atrU11dXXW/fr6eh07dky5ubkaMWKE7r77blVWVqq4uFhFRUWqrKxUZmambrvtNklSdna2Zs+erYqKCuXl5Sk3N1cVFRXy+/3WZN/Ro0drypQpWr9+vRYvXixJ2rBhg6ZNm9btpN5+gbOTAABIq16HmE8//VRPPfWUdX/Lli2SpNtvv11Lly7VPffco46ODr344otqbW3V+PHjtWLFCutMIUmaP3++3G631q5day129/jjj8vlOtcx9PDDD2vTpk1atWqVJGn69OlauHBh0m805bp6YljsDgCAtDDMQT6g19DQkHDqtR0Mw1BxcbFqa2ut8dDYL34u89/fkjHnfrnu+bat+0Oi7tof6UP7O4v2dx7HILW8Xm+PJ/Zy7SS7WD0xHc7WAwCAKwQhxi7ezpE55sQAAJAWhBi7cHYSAABpRYixizcj/pMQAwBAWhBi7GLNibF3dWAAANA9QoxdulbspScGAIC0IMTYxcPEXgAA0okQYxdW7AUAIK0IMTbh2kkAAKQXIcYuXHYAAIC0IsTYhRADAEBaEWLswjoxAACkFSHGLpydBABAWhFi7MLZSQAApBUhxi6cnQQAQFoRYuzCZQcAAEgrQoxd6IkBACCtCDF26ZoTE43IjMWcrQsAAFcAQoxdunpiJHpjAABIA0KMXQgxAACkFSHGLl3rxEiEGAAA0oAQYxPDMDhDCQCANCLE2IkF7wAASBtCjJ2snpgOZ+sBAMAVgBBjJ3piAABIG0KMnbyZ8Z8d9MQAAJBqhBg7WT0xhBgAAFKNEGMnb0b8Jz0xAACkHCHGTp0hxgwzJwYAgFQjxNjJy9lJAACkCyHGTl0TewkxAACkHCHGRkZG55yYcLuzFQEA4ApAiLFT18TedkIMAACpRoixk9UTw3ASAACpRoixE3NiAABIG0KMnTJYsRcAgHQhxNiJib0AAKQNIcZOrNgLAEDaEGLs1NkTY3bQEwMAQKoRYuzExF4AANKGEGMja7E7hpMAAEg5QoydMuiJAQAgXQgxdrIm9jInBgCAVCPE2MnLir0AAKQLIcZO1mJ39MQAAJBqhBg70RMDAEDaEGLsxNlJAACkDSHGTl3DSdGIzFjU2boAADDIEWLs1LXYnURvDAAAKUaIsZPXe+4282IAAEgpQoyNDJdL8nQGGc5QAgAgpTx2b3Dr1q3atm1bwmP5+fl64YUXJEmmaeq1117Tjh071NLSotLSUi1cuFBjxoyxyofDYVVUVGj37t3q6OjQpEmTtGjRIg0fPtzu6tovI0OKhBlOAgAgxWwPMZI0ZswYff/737fuu1znOnzefPNN/frXv1Z5ebmKi4v1xhtv6Omnn9azzz6rrKwsSdJLL72kffv2afny5crLy9OWLVu0evVqrVmzJmFb/ZI3U1KrFKYnBgCAVEpJInC5XPL5fNa/oUOHSor3wrz11luaO3euZs6cKb/fr6VLl6q9vV27du2SJIVCIb333nuaN2+eysrKVFJSomXLlqmmpkYHDhxIRXXtxWnWAACkRUp6Yurq6rRkyRJ5PB6VlpbqW9/6lq666irV19crGAxq8uTJVlmv16uJEyfq4MGDuvPOO3XkyBFFo1GVlZVZZYYNGya/36/q6mpNmTKl232Gw2GFw2HrvmEYVs+OYRi2vr+u7XW73a7TrCNh2/eLuC9tf6Qc7e8s2t95HIP+w/YQU1paqqVLl2rUqFEKBoN644039OSTT+qZZ55RMBiUFJ8jc778/HydPHlSkhQMBuXxeJSbm3tRma7Xd6eysjJhLk5JSYnWrFmjwsJCe95YN4qKii567IucHHVIGpabo6zi4pTtG923P9KH9ncW7e88joHzbA8xU6dOtW77/X4FAgEtW7ZMO3fuVGlpqaSL06tpmpfd7uXKzJ07V3PmzLHud+2joaFBkUikx/XvCcMwVFRUpLq6uovqFVF8v6frauWqrbV1v4j7svZH6tH+zqL9nccxSC2Px9PjDoiUDCedb8iQIfL7/aqtrdWNN94oKd7bUlBQYJVpbm62emd8Pp8ikYhaWloSemOam5s1YcKES+7H6/XKe/46LedJ1YfMNM2Lt915/SSzo50Pd4p12/5IG9rfWbS/8zgGzkv5qT7hcFgnTpxQQUGBRo4cKZ/PlzBBNxKJqKqqygooY8eOldvtTijT2NiompoaBQKBVFe377pW7WViLwAAKWV7T8yWLVs0Y8YMjRgxQk1NTXr99dd19uxZ3X777TIMQ3fffbcqKytVXFysoqIiVVZWKjMzU7fddpskKTs7W7Nnz1ZFRYXy8vKUm5uriooK+f3+hMm+/ZWRkSlTYsVeAABSzPYQc/r0af30pz9Vc3Ozhg4dqtLSUq1atcoa37rnnnvU0dGhF198Ua2trRo/frxWrFhhnUkkSfPnz5fb7dbatWutxe4ef/zx/r9GjHTeKdasEwMAQCrZHmIeeeSRL33eMAzdd999uu+++y5ZJiMjQwsWLNCCBQtsrl0adM6JoScGAIDUGgBdGwMMPTEAAKQFIcZuXRN76YkBACClCDF247IDAACkBSHGbsyJAQAgLQgxduu8dpLJnBgAAFKKEGO3DHpiAABIB0KMzYyuq1i3tzlbEQAABjlCjN2GdC7a13bW2XoAADDIEWLsltkZYuiJAQAgpQgxdqMnBgCAtCDE2I0QAwBAWhBi7NYVYiJhmZGIs3UBAGAQI8TYLfPc1bjVTm8MAACpQoixmeHxSB5v/E4bk3sBAEgVQkwqDBkS/8m8GAAAUoYQkwpdQ0ptIWfrAQDAIEaISYWuyb3MiQEAIGUIManAadYAAKQcISYVOkOMycReAABShhCTCgwnAQCQcoSYFDAyGU4CACDVCDGpwJwYAABSjhCTCoQYAABSjhCTCsyJAQAg5QgxqWCdnUSIAQAgVQgxqZCVHf8ZanW2HgAADGKEmBQwcofGb7Q0O1sRAAAGMUJMKuR0hpjWFmfrAQDAIEaISYWc3PjP1jPO1gMAgEGMEJMKXcNJ7W0ywx3O1gUAgEGKEJMKWdmSxxO/3dzkbF0AABikCDEpYBiGlOeL3zkTdLIqAAAMWoSYVMnLj/88Q08MAACpQIhJlaHxEGM2B52tBwAAgxQhJkWMruEk5sQAAJAShJhUGdo1nBR0tBoAAAxWhJhUsXpigk7WAgCAQYsQkyqdE3tNJvYCAJAShJgUMYb64jeYEwMAQEoQYlKla05M02ln6wEAwCBFiEmVYYXxn2eaZIbDztYFAIBBiBCTKjl5kjcjfjt4ytm6AAAwCBFiUsQwDKnr4o/HjzlaFwAABiNCTCoNHylJMv982OGKAAAw+BBiUqmlWZJk/uE/Ha4IAACDDyEmlW6YGv95/Kiz9QAAYBAixKSQMeM267YZanWwJgAADD6EmBQyvjLduh1b/i0HawIAwOBDiEkhY0h2wv3o4v/hUE0AABh8CDEp5trwZsL96OL/IbO50aHaAAAweHicrsBgZxiGXM/8o2LffcB6LPb/zv/yFw0rlHHbnTK+dpeUnSvD601xLQEAGHj6fYh5++23tX37dgWDQY0ePVoPPvigrr/+eqer1StG3lC5fvpPii3/ds9ecLpB5vZ/krn9n5Lf6egSGdeVyfjqHdKwEdKQbMkw4ovwAQAwCPTrEPP+++/rpZde0qJFizRhwgS9++67+tGPfqS1a9dqxIgRTlevV4zsXLlf2C7zi88Ve/Kh1O/w+FGZx4/KfPfNy5e90LAR0umTPSpqfO0umXXHJW+GjKwcmXt3SZlZMv7bfTIKr5IZjcooLJIyMqT84dKQLCkWi983YzJcbpmmSbgCAPRavw4xv/rVrzR79mzdcccdkqQHH3xQf/jDH/TOO+/o29/uYa9GP2NcNUruF7Z/aRmzoU7mscMyf/+29Mkf0lSz8/QwwEiS+bu3z93uutF+VuYbL1v3zQtf1BuFRVLuUMntltwe6eAfJUmf9XY7efnSmaaEh4xb75D50Qfxy0OM8su4dbYUi8n837+N91pdfY3MU/VSdo6MCWUyiq6WeeSglF8gfXZUZuNJub52V7yXK3RGZigknTgmDcmWEbhBGlogZWRK0YgUDseDW+sZyTCkzCxpqE/mH/fKuNovFRRKZ1utVZ6l+FCkGYtKZ5rj1+Jyuy8Ke6Zpxi9rcfU1MlwumeEOKRaTkTkkoUx3IdGMxSSZUsMXMq4a9aXNZ8Zi0mdH4j18nt59bZiRsGS4ZLjd3T93+BPp6mtl5A29/LZCrVI0+qVl7Q7FZt1xqe2sjGtLk9/GiT9Lw0fKGJLV9/rEYn3ehiSZJ7+Q+f4OGXPul+FKnB5pxmKK/d0TMr76f8j1F9+49DYiYRmexOHu2G/fkvnWa3Kt+rmMjExb6ppqZiSs2P/6PyXDkHvD5f/wM9vbbDsOqWCGO2R0XbvPrm22nY3/P87sX8fUME2zT79jUiUSieiBBx7Qd7/7Xd10003W45s3b9axY8f01FNP9Wg7DQ0NCtt8FWnDMFRcXKza2lr10+aL//KTIdV8KvP3/ybzWLV0oib+C/UyjL/4hszfv5P6SqL3usJcR/vFz+UXSE3nTRrPHyY1nU4sk50bvzBpuEMKtXS/j7z8eNDqaJfazsbDV0fHpet0zfj4T5dLOlodvz2mRIpGpdaWxDqMu04yXPHVrKMRqaHu4vc3fmJ8W198Lnm8Uv3n3e934tRzt6s+THxuTEn8fXT9/zTN+L/62vjPkUVSzJQOV8XrlJ0r/XFvvKzhknLz4u13qYUqJ02T/rQ/8X3l5UufHZVO1cdDZ+uZi8spvn6UeeLP8bYdNSZ+PD764FyB0onSiT9L568t5R8nFV4l7Xu/+/pMu0WSIZkx6cP/SNzfTbfL3L9bikSk68pk5OTJ/PQTKXj64u1k5UiR8LnrvknxPyIiYalotOT1SoeqpLIb421ZdzxeZurNMjKzpGhE5n/+/txry26UvF4Zbo/k9sR7asPdfJaKx8Tbouv9XTNexqgxMs+GEttm+q0yDFd8O13vb+bt8c9JLCaZMZltbVL72XN/AGZlS8MK45/pkaNkZA6R+ckfzl2Yd8rMxH1IMm7+uuTxxF8Ti8n8rwPSqXoZN8+S+R//nlh33/D4tnzDZUycEv8MS1IsKkWjMmuPS5e49Ixx6x2Sxyvzd/8afyBziIyyG+P7drklw5BZXytV/yn+fOAGqfrj+O2hvvgfeR6vdLpBxnVl8Tb+97cS9/G1uySXS+af9ksnv5ACk2QML4z/sSbF/4C7Znz8/3k4HA8rfz4c/xxL8c9j8HTC/1Xjlq9LmVkym4Mypt4s182zun1/yfJ6vSosLOxR2X4bYk6fPq2HHnpIf/u3f6sJEyZYj7/xxhvauXOnfvrTnyaUD4fDCWHFMAxlZWWpoaFBkcjlf3H3hmEYKioqUl1dXb8NMU7q+kvYNM34l586L4YZCce/aM40yaz9LP6FV/1x/Es8Ej7Xa5GVI2OUX2qolUomxL98o+H4F8LRQ9IXJ6SDf5TZ3tbzShmu+Bf8+dzu+C/a810z/pJfODKMc78Ue8rj7WwDABiEiq6We+U/XNSb1xcej6fHIaZfDydJ6rZbuLvHKisrtW3bNut+SUmJ1qxZ0+OGSEZRUVHKto3BxezqCbAeiMlsb5PhzYz/ldR2Vma4Iz68YpqKNQdleDNkxmJy5eYperJBrqH58c++YSjW2iLD45HZ0SFjSJbMjrb4X4zRqKKNp+Qe6osPXbhcijUHFT19UobHI3fnkIaRkSGzvV0dRw7KDLXKlZOnjkNVco8YqYzADTIjEUVqj8s82ypP0dVy5eQp/OfDioVa5S4sUvRkvVp3/Eq+B/8fmdGoXNk5MsNhRU/VywyH5b1mnAy3W2Y0qtDOf1X7gX3y/d/fleFyK1JfKxmGXEN9av9oj1y5Q2WG25VxXZlkmp1DFB4pGlO45oiMrGy1H9irjOu+ovCxw2r/04fy+kuUe/c3JVc8WEZPNah1x69khsNyZeco97//Zbw7vbO9pHPfG+Gao3L5ChRrOaPoqXq58vLlHl6o0G9/o8jnn8nlG6bMG6bIcLvlLizS2f/YqY6Df1LmDVPV/sd98pZOVM4d/02h995SR/XHyv7aNzRkxq2KnQ0p1tKs0G//VTl3zFGkoVZe/1jJMBQ+ckitb1cqc/KNypr5Nck01fHpfyljwiSZLWdkxqJq/sUGuQuLlDf3Owp/dlStv3lDkjTkxtvk9Y+Vu/AqyTAU/P/+TpKUWTZD7hEjpZipjAk3SC63DJehs//739W2/z/kvupqZV5fJu+4CYqe/EKx1hZlTpoqM9SqWOsZNf9igyQp939+W+FDn6j94w+VP69crf+2XbGWM/L6x8rIHKLMyTPU/sd9yvzKdJ19P/7Xe/Zf3ClJan59i2KNpzT0/kUysnOkcIciX3yu1nfiQzK+RY+o7aM98pYE5MrJVSzUqjNbNyvrlq/LPbJILW++Iu+46+QdfY28JaVq+Zetip6qV959/5dcuXmKNZ7urE/8OnT588rjn11Tatr4rIZ+Z4lcWVkyw+HOHhBDioRlZA5R8IVn5L12vLxjAzIjYXnHlEgulwzDpY5P/0vhY4flLhih7Fl3KRZqVei3v1H46CFl3fp1ZVz3FSkSkRmLyXC7Fak7ociJGg2ZdrOatvyD9d8444YpGjLtZp3d9Z7MSFhDymbIPSw+XzN6pknRk/XyXjNOzb9Y3+33wtC/ekiKmYqeblDrb95Q3jfny8gcEj8jtfP7IlxzRKHf/kaeq/3K+cY9avnVa4o21MnlG6bs2+9Sx+FP5B1dIvfIq6RwRKHfvaPI5zXxz8jkm5T5lWlSNKrWf9uu6MkvNPQ7S2R4POo4VKWOg3+St6RURlaOvFdfo7b972vItFsVPfWFWv/tX+QeWSzPVcXKnDRdza+8IEnK+tqdyigJyGxvl9wuDZl6szKvvjrZr8Y+67c9Mb0dTqIn5spB+zuL9ncW7e88jkFqDYqeGI/Ho7Fjx+rAgQMJIebAgQO68cYbLyrv9XrlvcR6Kqn6kJmmyQfYQbS/s2h/Z9H+zuMYOK/fhhhJmjNnjtatW6exY8cqEAjo3Xff1cmTJ3XnnXc6XTUAAOCwfh1ibr31Vp05c0avv/66GhsbNWbMGH3ve99L6TwXAAAwMPTrECNJd911l+666y6nqwEAAPoZLgAJAAAGJEIMAAAYkAgxAABgQCLEAACAAYkQAwAABiRCDAAAGJAIMQAAYEAixAAAgAGJEAMAAAakfr9ib195PKl7i6ncNi6P9ncW7e8s2t95HIPU6E27GiaX4AQAAAMQw0lJOHv2rB5//HGdPXvW6apckWh/Z9H+zqL9nccx6D8IMUkwTVNHjx4VnVjOoP2dRfs7i/Z3Hseg/yDEAACAAYkQAwAABiRCTBK8Xq+++c1vyuv1Ol2VKxLt7yza31m0v/M4Bv0HZycBAIABiZ4YAAAwIBFiAADAgESIAQAAAxIhBgAADEhc+KGX3n77bW3fvl3BYFCjR4/Wgw8+qOuvv97pag0oW7du1bZt2xIey8/P1wsvvCApvpDUa6+9ph07dqilpUWlpaVauHChxowZY5UPh8OqqKjQ7t271dHRoUmTJmnRokUaPny4VaalpUWbN2/W3r17JUkzZszQggULlJOTk4Z32b9UVVVp+/btOnr0qBobG/Xoo4/qpptusp5PZ5ufPHlSL774oj7++GNlZGToq1/9qubNmzeor0NzufZ//vnntXPnzoTXlJaWatWqVdZ92j85lZWV2rNnj06cOKGMjAwFAgE98MADGjVqlFWGz//AxdlJvfD+++9r3bp1WrRokSZMmKB3331XO3bs0Nq1azVixAinqzdgbN26VR988IG+//3vW4+5XC4NHTpUkvTP//zPqqysVHl5uYqLi/XGG2/ok08+0bPPPqusrCxJ0gsvvKB9+/apvLxceXl52rJli1paWrRmzRq5XPEOxh/96Ec6deqUlixZIklav369CgsL9cQTT6T5HTvvww8/1MGDB1VSUqKf/OQnF/0STVebx2Ix/fVf/7WGDh2qefPm6cyZM3r++ec1c+ZMLViwIM2tkj6Xa//nn39eTU1NKi8vtx7zeDzKzc217tP+yVm1apW++tWvaty4cYpGo/rlL3+pmpoaPfPMMxoyZIgkPv8Dmoke+973vmdu2LAh4bFHHnnE/MUvfuFQjQamV1991Xz00Ue7fS4Wi5mLFy82Kysrrcc6OjrM+fPnm++8845pmqbZ2tpq3n///ebu3butMqdOnTLvu+8+88MPPzRN0zQ/++wz89577zWrq6utMgcPHjTvvfde88SJE/a/qQHk3nvvNT/44APrfjrbfP/+/eZ9991nnjp1yiqza9cu89vf/rbZ2tqairfb71zY/qZpmj/72c/MNWvWXPI1tL99mpqazHvvvdf8+OOPTdPk8z/QMSemhyKRiI4cOaLJkycnPF5WVqaDBw86VKuBq66uTkuWLNHSpUv17LPP6osvvpAk1dfXKxgMJrSz1+vVxIkTrXY+cuSIotGoysrKrDLDhg2T3+9XdXW1JKm6ulrZ2dkqLS21ygQCAWVnZ3O8LpDONq+urpbf79ewYcOsMpMnT1Y4HNaRI0dS+j77u6qqKi1atEjLly/Xz3/+czU1NVnP0f72CYVCkmT1cvH5H9gYhOuh5uZmxWIx5efnJzyen5+vYDDoTKUGqNLSUi1dulSjRo1SMBjUG2+8oSeffFLPPPOM1ZbdtfPJkyclScFg8KKu9q4yXa8PBoMXbePCMohLZ5t3VyY3N1cej+eKPi5Tp07VLbfcohEjRqi+vl6vvvqqVq5cqdWrV8vr9dL+NjFNUy+//LKuu+46+f1+SXz+BzpCTC8ZhtGjx3BpU6dOtW77/X4FAgEtW7ZMO3futP6KubBNzR5M3eppGY5X99LV5t21/5V+XG699Vbrtt/v17hx41ReXq79+/dr5syZl3wd7d87GzduVE1NjVauXHnRc3z+ByaGk3po6NChcrlcF6XlpqambtM3em7IkCHy+/2qra2Vz+eTpIvaubm52Wpnn8+nSCSilpaWi8p0vd7n8yV0x3e3HcSls819Pt9F+2lpaVE0GuW4nKegoECFhYWqra2VRPvbYdOmTdq3b5/+5m/+JuGMIj7/Axshpoc8Ho/Gjh2rAwcOJDx+4MABTZgwwaFaDQ7hcFgnTpxQQUGBRo4cKZ/Pl9DOkUhEVVVVVjuPHTtWbrc7oUxjY6NqamoUCAQkxceiQ6GQDh8+bJU5dOiQQqEQx+sC6WzzQCCgmpoaNTY2WmUOHDggr9ersWPHpvR9DiRnzpzRqVOnVFBQIIn27wvTNLVx40Z98MEH+sEPfqCRI0cmPM/nf2BjOKkX5syZo3Xr1mns2LEKBAJ69913dfLkSd15551OV21A2bJli2bMmKERI0aoqalJr7/+us6ePavbb79dhmHo7rvvVmVlpYqLi1VUVKTKykplZmbqtttukyRlZ2dr9uzZqqioUF5ennJzc1VRUSG/329NvBs9erSmTJmi9evXa/HixZKkDRs2aNq0aQnrQ1wp2traVFdXZ92vr6/XsWPHlJubqxEjRqStzSdPnqzRo0frZz/7mR544AG1tLSooqJCd9xxh7Kzs9PcKunzZe2fm5urrVu36uabb5bP51NDQ4NeeeUV5eXlWadh0/7J27hxo3bt2qXHHntMWVlZVk9Idna2MjIy0vqdcyW2f6qxTkwvdS1219jYqDFjxmj+/PmaOHGi09UaUJ599ll98sknam5u1tChQ1VaWqr7779fo0ePlnRu4al3331Xra2tGj9+vBYuXGhNxJOkjo4O/eM//qN27dqVsPDU+ev1tLS0WF3IkjR9+nQtXLjwilzs7uOPP9ZTTz110eO33367li5dmtY271rs609/+pMyMjJ022236a/+6q/k9XpT2ALO+rL2X7x4sf7+7/9eR48eVWtrqwoKCnTDDTfoL//yLxPalvZPzn333dft4+Xl5Zo1a5ak9H7nXGntn2qEGAAAMCAxJwYAAAxIhBgAADAgEWIAAMCARIgBAAADEiEGAAAMSIQYAAAwIBFiAADAgESIAQAAAxIhBgAADEiEGAAAMCARYgAAwIBEiAEAAAPS/w+fxah+xypf6QAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], "source": [ "vector_size = 100\n", "encoding_dim = 50\n", @@ -2586,7 +1391,1736 @@ "\n", "plt.plot(losses)\n", "plt.show()" - ] + ], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 1, Loss: 2439.845947\n", + "Epoch 2, Loss: 2340.470459\n", + "Epoch 3, Loss: 2236.799561\n", + "Epoch 4, Loss: 2122.422363\n", + "Epoch 5, Loss: 2010.458496\n", + "Epoch 6, Loss: 1897.715820\n", + "Epoch 7, Loss: 1785.777466\n", + "Epoch 8, Loss: 1671.738525\n", + "Epoch 9, Loss: 1564.405273\n", + "Epoch 10, Loss: 1453.079712\n", + "Epoch 11, Loss: 1339.081909\n", + "Epoch 12, Loss: 1229.797363\n", + "Epoch 13, Loss: 1120.101440\n", + "Epoch 14, Loss: 1009.123352\n", + "Epoch 15, Loss: 904.063660\n", + "Epoch 16, Loss: 801.091858\n", + "Epoch 17, Loss: 703.465393\n", + "Epoch 18, Loss: 611.343750\n", + "Epoch 19, Loss: 523.938049\n", + "Epoch 20, Loss: 440.941895\n", + "Epoch 21, Loss: 365.676727\n", + "Epoch 22, Loss: 299.721832\n", + "Epoch 23, Loss: 248.758850\n", + "Epoch 24, Loss: 208.328842\n", + "Epoch 25, Loss: 171.505035\n", + "Epoch 26, Loss: 138.243866\n", + "Epoch 27, Loss: 111.460709\n", + "Epoch 28, Loss: 88.535843\n", + "Epoch 29, Loss: 73.150146\n", + "Epoch 30, Loss: 67.876450\n", + "Epoch 31, Loss: 62.805340\n", + "Epoch 32, Loss: 60.404129\n", + "Epoch 33, Loss: 56.271294\n", + "Epoch 34, Loss: 52.841766\n", + "Epoch 35, Loss: 51.122406\n", + "Epoch 36, Loss: 47.387039\n", + "Epoch 37, Loss: 46.550011\n", + "Epoch 38, Loss: 43.748047\n", + "Epoch 39, Loss: 41.586536\n", + "Epoch 40, Loss: 41.586536\n", + "Epoch 41, Loss: 41.485538\n", + "Epoch 42, Loss: 40.893818\n", + "Epoch 43, Loss: 40.352543\n", + "Epoch 44, Loss: 39.564987\n", + "Epoch 45, Loss: 39.564987\n", + "Epoch 46, Loss: 38.514050\n", + "Epoch 47, Loss: 37.093689\n", + "Epoch 48, Loss: 37.093689\n", + "Epoch 49, Loss: 37.093689\n", + "Epoch 50, Loss: 36.226479\n", + "Epoch 51, Loss: 36.226479\n", + "Epoch 52, Loss: 36.226479\n", + "Epoch 53, Loss: 35.078220\n", + "Epoch 54, Loss: 35.066738\n", + "Epoch 55, Loss: 34.779591\n", + "Epoch 56, Loss: 33.962105\n", + "Epoch 57, Loss: 33.263214\n", + "Epoch 58, Loss: 33.263214\n", + "Epoch 59, Loss: 33.263214\n", + "Epoch 60, Loss: 32.736511\n", + "Epoch 61, Loss: 32.591034\n", + "Epoch 62, Loss: 32.323044\n", + "Epoch 63, Loss: 31.508858\n", + "Epoch 64, Loss: 30.707037\n", + "Epoch 65, Loss: 30.707037\n", + "Epoch 66, Loss: 30.707037\n", + "Epoch 67, Loss: 30.707037\n", + "Epoch 68, Loss: 30.389999\n", + "Epoch 69, Loss: 29.862667\n", + "Epoch 70, Loss: 29.782005\n", + "Epoch 71, Loss: 29.782005\n", + "Epoch 72, Loss: 28.260361\n", + "Epoch 73, Loss: 28.260361\n", + "Epoch 74, Loss: 28.087576\n", + "Epoch 75, Loss: 27.128717\n", + "Epoch 76, Loss: 27.128717\n", + "Epoch 77, Loss: 26.788252\n", + "Epoch 78, Loss: 26.217323\n", + "Epoch 79, Loss: 25.698807\n", + "Epoch 80, Loss: 25.698807\n", + "Epoch 81, Loss: 25.698807\n", + "Epoch 82, Loss: 24.894756\n", + "Epoch 83, Loss: 24.894756\n", + "Epoch 84, Loss: 23.981773\n", + "Epoch 85, Loss: 23.981773\n", + "Epoch 86, Loss: 23.981773\n", + "Epoch 87, Loss: 23.981773\n", + "Epoch 88, Loss: 23.727919\n", + "Epoch 89, Loss: 23.498949\n", + "Epoch 90, Loss: 23.498949\n", + "Epoch 91, Loss: 23.128922\n", + "Epoch 92, Loss: 23.128922\n", + "Epoch 93, Loss: 22.690033\n", + "Epoch 94, Loss: 22.690033\n", + "Epoch 95, Loss: 22.690033\n", + "Epoch 96, Loss: 22.690033\n", + "Epoch 97, Loss: 22.690033\n", + "Epoch 98, Loss: 22.690033\n", + "Epoch 99, Loss: 22.525082\n", + "Epoch 100, Loss: 22.525082\n", + "Epoch 101, Loss: 22.254074\n", + "Epoch 102, Loss: 22.119522\n", + "Epoch 103, Loss: 22.119522\n", + "Epoch 104, Loss: 21.726025\n", + "Epoch 105, Loss: 21.726025\n", + "Epoch 106, Loss: 21.416628\n", + "Epoch 107, Loss: 21.416628\n", + "Epoch 108, Loss: 21.416628\n", + "Epoch 109, Loss: 21.416628\n", + "Epoch 110, Loss: 21.300343\n", + "Epoch 111, Loss: 21.300343\n", + "Epoch 112, Loss: 21.300343\n", + "Epoch 113, Loss: 21.162266\n", + "Epoch 114, Loss: 21.162266\n", + "Epoch 115, Loss: 20.760273\n", + "Epoch 116, Loss: 20.760273\n", + "Epoch 117, Loss: 20.760273\n", + "Epoch 118, Loss: 20.003157\n", + "Epoch 119, Loss: 20.003157\n", + "Epoch 120, Loss: 20.003157\n", + "Epoch 121, Loss: 20.003157\n", + "Epoch 122, Loss: 20.003157\n", + "Epoch 123, Loss: 19.646603\n", + "Epoch 124, Loss: 19.646603\n", + "Epoch 125, Loss: 19.646603\n", + "Epoch 126, Loss: 19.512775\n", + "Epoch 127, Loss: 19.512775\n", + "Epoch 128, Loss: 19.512775\n", + "Epoch 129, Loss: 19.512775\n", + "Epoch 130, Loss: 19.512775\n", + "Epoch 131, Loss: 19.075298\n", + "Epoch 132, Loss: 19.075298\n", + "Epoch 133, Loss: 19.075298\n", + "Epoch 134, Loss: 19.075298\n", + "Epoch 135, Loss: 19.075298\n", + "Epoch 136, Loss: 19.075298\n", + "Epoch 137, Loss: 18.844391\n", + "Epoch 138, Loss: 18.844391\n", + "Epoch 139, Loss: 18.844391\n", + "Epoch 140, Loss: 18.609493\n", + "Epoch 141, Loss: 18.609493\n", + "Epoch 142, Loss: 18.328037\n", + "Epoch 143, Loss: 18.328037\n", + "Epoch 144, Loss: 18.328037\n", + "Epoch 145, Loss: 18.070698\n", + "Epoch 146, Loss: 18.070698\n", + "Epoch 147, Loss: 18.070698\n", + "Epoch 148, Loss: 18.060085\n", + "Epoch 149, Loss: 18.060085\n", + "Epoch 150, Loss: 17.738070\n", + "Epoch 151, Loss: 17.738070\n", + "Epoch 152, Loss: 16.970411\n", + "Epoch 153, Loss: 16.970411\n", + "Epoch 154, Loss: 16.970411\n", + "Epoch 155, Loss: 16.970411\n", + "Epoch 156, Loss: 16.970411\n", + "Epoch 157, Loss: 16.829151\n", + "Epoch 158, Loss: 16.829151\n", + "Epoch 159, Loss: 16.829151\n", + "Epoch 160, Loss: 16.829151\n", + "Epoch 161, Loss: 16.829151\n", + "Epoch 162, Loss: 16.829151\n", + "Epoch 163, Loss: 16.575798\n", + "Epoch 164, Loss: 16.575798\n", + "Epoch 165, Loss: 16.496714\n", + "Epoch 166, Loss: 16.496714\n", + "Epoch 167, Loss: 16.496714\n", + "Epoch 168, Loss: 16.222853\n", + "Epoch 169, Loss: 16.222853\n", + "Epoch 170, Loss: 15.765739\n", + "Epoch 171, Loss: 15.269122\n", + "Epoch 172, Loss: 15.269122\n", + "Epoch 173, Loss: 15.269122\n", + "Epoch 174, Loss: 15.269122\n", + "Epoch 175, Loss: 15.269122\n", + "Epoch 176, Loss: 15.269122\n", + "Epoch 177, Loss: 15.269122\n", + "Epoch 178, Loss: 15.269122\n", + "Epoch 179, Loss: 15.269122\n", + "Epoch 180, Loss: 15.269122\n", + "Epoch 181, Loss: 15.269122\n", + "Epoch 182, Loss: 15.123279\n", + "Epoch 183, Loss: 15.123279\n", + "Epoch 184, Loss: 15.123279\n", + "Epoch 185, Loss: 15.104627\n", + "Epoch 186, Loss: 15.104627\n", + "Epoch 187, Loss: 15.104627\n", + "Epoch 188, Loss: 14.918290\n", + "Epoch 189, Loss: 14.918290\n", + "Epoch 190, Loss: 14.918290\n", + "Epoch 191, Loss: 14.513721\n", + "Epoch 192, Loss: 14.513721\n", + "Epoch 193, Loss: 14.368317\n", + "Epoch 194, Loss: 14.314247\n", + "Epoch 195, Loss: 14.314247\n", + "Epoch 196, Loss: 14.299948\n", + "Epoch 197, Loss: 14.299948\n", + "Epoch 198, Loss: 14.299948\n", + "Epoch 199, Loss: 14.268100\n", + "Epoch 200, Loss: 14.268100\n", + "Epoch 201, Loss: 14.268100\n", + "Epoch 202, Loss: 14.191451\n", + "Epoch 203, Loss: 14.191451\n", + "Epoch 204, Loss: 13.474537\n", + "Epoch 205, Loss: 13.474537\n", + "Epoch 206, Loss: 13.474537\n", + "Epoch 207, Loss: 13.175595\n", + "Epoch 208, Loss: 13.175595\n", + "Epoch 209, Loss: 13.175595\n", + "Epoch 210, Loss: 13.175595\n", + "Epoch 211, Loss: 13.175595\n", + "Epoch 212, Loss: 13.175595\n", + "Epoch 213, Loss: 13.175595\n", + "Epoch 214, Loss: 13.175595\n", + "Epoch 215, Loss: 13.101907\n", + "Epoch 216, Loss: 12.773389\n", + "Epoch 217, Loss: 12.773389\n", + "Epoch 218, Loss: 12.773389\n", + "Epoch 219, Loss: 12.773389\n", + "Epoch 220, Loss: 12.773389\n", + "Epoch 221, Loss: 12.773389\n", + "Epoch 222, Loss: 12.773389\n", + "Epoch 223, Loss: 12.773389\n", + "Epoch 224, Loss: 12.698215\n", + "Epoch 225, Loss: 12.659022\n", + "Epoch 226, Loss: 12.528459\n", + "Epoch 227, Loss: 12.211843\n", + "Epoch 228, Loss: 12.211843\n", + "Epoch 229, Loss: 12.211843\n", + "Epoch 230, Loss: 12.211843\n", + "Epoch 231, Loss: 12.211843\n", + "Epoch 232, Loss: 11.936987\n", + "Epoch 233, Loss: 11.936987\n", + "Epoch 234, Loss: 11.914872\n", + "Epoch 235, Loss: 11.914872\n", + "Epoch 236, Loss: 11.836770\n", + "Epoch 237, Loss: 11.836770\n", + "Epoch 238, Loss: 11.614438\n", + "Epoch 239, Loss: 11.614438\n", + "Epoch 240, Loss: 11.614438\n", + "Epoch 241, Loss: 11.575880\n", + "Epoch 242, Loss: 11.494206\n", + "Epoch 243, Loss: 11.494206\n", + "Epoch 244, Loss: 11.360946\n", + "Epoch 245, Loss: 11.299414\n", + "Epoch 246, Loss: 11.044796\n", + "Epoch 247, Loss: 10.807917\n", + "Epoch 248, Loss: 10.807917\n", + "Epoch 249, Loss: 10.807917\n", + "Epoch 250, Loss: 10.807917\n", + "Epoch 251, Loss: 10.723539\n", + "Epoch 252, Loss: 10.723539\n", + "Epoch 253, Loss: 10.723539\n", + "Epoch 254, Loss: 10.514595\n", + "Epoch 255, Loss: 10.514595\n", + "Epoch 256, Loss: 10.514595\n", + "Epoch 257, Loss: 10.514595\n", + "Epoch 258, Loss: 10.205370\n", + "Epoch 259, Loss: 10.205370\n", + "Epoch 260, Loss: 10.205370\n", + "Epoch 261, Loss: 10.205370\n", + "Epoch 262, Loss: 10.205370\n", + "Epoch 263, Loss: 10.205370\n", + "Epoch 264, Loss: 10.205370\n", + "Epoch 265, Loss: 10.205370\n", + "Epoch 266, Loss: 10.205370\n", + "Epoch 267, Loss: 10.205370\n", + "Epoch 268, Loss: 10.205370\n", + "Epoch 269, Loss: 10.205370\n", + "Epoch 270, Loss: 9.747085\n", + "Epoch 271, Loss: 9.747085\n", + "Epoch 272, Loss: 9.747085\n", + "Epoch 273, Loss: 9.747085\n", + "Epoch 274, Loss: 9.747085\n", + "Epoch 275, Loss: 9.747085\n", + "Epoch 276, Loss: 9.747085\n", + "Epoch 277, Loss: 9.747085\n", + "Epoch 278, Loss: 9.558474\n", + "Epoch 279, Loss: 9.247209\n", + "Epoch 280, Loss: 9.247209\n", + "Epoch 281, Loss: 9.247209\n", + "Epoch 282, Loss: 9.212681\n", + "Epoch 283, Loss: 9.212681\n", + "Epoch 284, Loss: 9.212681\n", + "Epoch 285, Loss: 9.212681\n", + "Epoch 286, Loss: 9.212681\n", + "Epoch 287, Loss: 9.212681\n", + "Epoch 288, Loss: 9.212681\n", + "Epoch 289, Loss: 8.890486\n", + "Epoch 290, Loss: 8.792526\n", + "Epoch 291, Loss: 8.792526\n", + "Epoch 292, Loss: 8.792526\n", + "Epoch 293, Loss: 8.792526\n", + "Epoch 294, Loss: 8.792526\n", + "Epoch 295, Loss: 8.792526\n", + "Epoch 296, Loss: 8.792526\n", + "Epoch 297, Loss: 8.634327\n", + "Epoch 298, Loss: 8.292239\n", + "Epoch 299, Loss: 8.292239\n", + "Epoch 300, Loss: 8.292239\n", + "Epoch 301, Loss: 8.234873\n", + "Epoch 302, Loss: 8.234873\n", + "Epoch 303, Loss: 8.234873\n", + "Epoch 304, Loss: 8.234873\n", + "Epoch 305, Loss: 8.000028\n", + "Epoch 306, Loss: 8.000028\n", + "Epoch 307, Loss: 8.000028\n", + "Epoch 308, Loss: 8.000028\n", + "Epoch 309, Loss: 7.676709\n", + "Epoch 310, Loss: 7.676709\n", + "Epoch 311, Loss: 7.676709\n", + "Epoch 312, Loss: 7.676709\n", + "Epoch 313, Loss: 7.676709\n", + "Epoch 314, Loss: 7.676709\n", + "Epoch 315, Loss: 7.676709\n", + "Epoch 316, Loss: 7.676709\n", + "Epoch 317, Loss: 7.676709\n", + "Epoch 318, Loss: 7.676709\n", + "Epoch 319, Loss: 7.676709\n", + "Epoch 320, Loss: 7.199249\n", + "Epoch 321, Loss: 7.199249\n", + "Epoch 322, Loss: 7.199249\n", + "Epoch 323, Loss: 7.199249\n", + "Epoch 324, Loss: 7.199249\n", + "Epoch 325, Loss: 7.173595\n", + "Epoch 326, Loss: 7.173595\n", + "Epoch 327, Loss: 7.173595\n", + "Epoch 328, Loss: 7.173595\n", + "Epoch 329, Loss: 7.167144\n", + "Epoch 330, Loss: 7.045437\n", + "Epoch 331, Loss: 7.014702\n", + "Epoch 332, Loss: 7.014702\n", + "Epoch 333, Loss: 7.014702\n", + "Epoch 334, Loss: 6.993644\n", + "Epoch 335, Loss: 6.924361\n", + "Epoch 336, Loss: 6.924361\n", + "Epoch 337, Loss: 6.819543\n", + "Epoch 338, Loss: 6.686841\n", + "Epoch 339, Loss: 6.686841\n", + "Epoch 340, Loss: 6.480909\n", + "Epoch 341, Loss: 6.480909\n", + "Epoch 342, Loss: 6.480909\n", + "Epoch 343, Loss: 6.433177\n", + "Epoch 344, Loss: 6.180445\n", + "Epoch 345, Loss: 6.180445\n", + "Epoch 346, Loss: 6.180445\n", + "Epoch 347, Loss: 6.180445\n", + "Epoch 348, Loss: 6.180445\n", + "Epoch 349, Loss: 6.180445\n", + "Epoch 350, Loss: 6.180445\n", + "Epoch 351, Loss: 6.180445\n", + "Epoch 352, Loss: 6.180445\n", + "Epoch 353, Loss: 6.180445\n", + "Epoch 354, Loss: 5.850489\n", + "Epoch 355, Loss: 5.850489\n", + "Epoch 356, Loss: 5.850489\n", + "Epoch 357, Loss: 5.850489\n", + "Epoch 358, Loss: 5.850489\n", + "Epoch 359, Loss: 5.850489\n", + "Epoch 360, Loss: 5.850489\n", + "Epoch 361, Loss: 5.758992\n", + "Epoch 362, Loss: 5.758992\n", + "Epoch 363, Loss: 5.724028\n", + "Epoch 364, Loss: 5.640059\n", + "Epoch 365, Loss: 5.640059\n", + "Epoch 366, Loss: 5.640059\n", + "Epoch 367, Loss: 5.640059\n", + "Epoch 368, Loss: 5.640059\n", + "Epoch 369, Loss: 5.506968\n", + "Epoch 370, Loss: 5.506968\n", + "Epoch 371, Loss: 5.506968\n", + "Epoch 372, Loss: 5.506968\n", + "Epoch 373, Loss: 5.506968\n", + "Epoch 374, Loss: 5.506968\n", + "Epoch 375, Loss: 5.506968\n", + "Epoch 376, Loss: 5.506968\n", + "Epoch 377, Loss: 5.478847\n", + "Epoch 378, Loss: 5.478847\n", + "Epoch 379, Loss: 5.365033\n", + "Epoch 380, Loss: 5.294523\n", + "Epoch 381, Loss: 5.003458\n", + "Epoch 382, Loss: 5.003458\n", + "Epoch 383, Loss: 5.003458\n", + "Epoch 384, Loss: 5.003458\n", + "Epoch 385, Loss: 5.003458\n", + "Epoch 386, Loss: 5.003458\n", + "Epoch 387, Loss: 5.003458\n", + "Epoch 388, Loss: 5.003458\n", + "Epoch 389, Loss: 5.003458\n", + "Epoch 390, Loss: 4.927073\n", + "Epoch 391, Loss: 4.927073\n", + "Epoch 392, Loss: 4.866551\n", + "Epoch 393, Loss: 4.866551\n", + "Epoch 394, Loss: 4.866551\n", + "Epoch 395, Loss: 4.866551\n", + "Epoch 396, Loss: 4.866551\n", + "Epoch 397, Loss: 4.866551\n", + "Epoch 398, Loss: 4.866551\n", + "Epoch 399, Loss: 4.866551\n", + "Epoch 400, Loss: 4.866551\n", + "Epoch 401, Loss: 4.866551\n", + "Epoch 402, Loss: 4.754226\n", + "Epoch 403, Loss: 4.754226\n", + "Epoch 404, Loss: 4.754226\n", + "Epoch 405, Loss: 4.754226\n", + "Epoch 406, Loss: 4.754226\n", + "Epoch 407, Loss: 4.754226\n", + "Epoch 408, Loss: 4.754226\n", + "Epoch 409, Loss: 4.754226\n", + "Epoch 410, Loss: 4.754226\n", + "Epoch 411, Loss: 4.754226\n", + "Epoch 412, Loss: 4.583399\n", + "Epoch 413, Loss: 4.583399\n", + "Epoch 414, Loss: 4.455765\n", + "Epoch 415, Loss: 4.455765\n", + "Epoch 416, Loss: 4.455765\n", + "Epoch 417, Loss: 4.411344\n", + "Epoch 418, Loss: 4.411344\n", + "Epoch 419, Loss: 4.411344\n", + "Epoch 420, Loss: 4.411344\n", + "Epoch 421, Loss: 4.411344\n", + "Epoch 422, Loss: 4.411344\n", + "Epoch 423, Loss: 4.411344\n", + "Epoch 424, Loss: 4.411344\n", + "Epoch 425, Loss: 4.411344\n", + "Epoch 426, Loss: 4.382695\n", + "Epoch 427, Loss: 4.281729\n", + "Epoch 428, Loss: 4.281729\n", + "Epoch 429, Loss: 4.281729\n", + "Epoch 430, Loss: 4.281729\n", + "Epoch 431, Loss: 4.281729\n", + "Epoch 432, Loss: 4.281729\n", + "Epoch 433, Loss: 4.281729\n", + "Epoch 434, Loss: 4.068294\n", + "Epoch 435, Loss: 4.068294\n", + "Epoch 436, Loss: 4.068294\n", + "Epoch 437, Loss: 4.068294\n", + "Epoch 438, Loss: 4.068294\n", + "Epoch 439, Loss: 4.068294\n", + "Epoch 440, Loss: 4.068294\n", + "Epoch 441, Loss: 4.068294\n", + "Epoch 442, Loss: 4.068294\n", + "Epoch 443, Loss: 4.068294\n", + "Epoch 444, Loss: 4.068294\n", + "Epoch 445, Loss: 4.068294\n", + "Epoch 446, Loss: 4.068294\n", + "Epoch 447, Loss: 4.068294\n", + "Epoch 448, Loss: 4.068294\n", + "Epoch 449, Loss: 3.962374\n", + "Epoch 450, Loss: 3.906739\n", + "Epoch 451, Loss: 3.906739\n", + "Epoch 452, Loss: 3.906739\n", + "Epoch 453, Loss: 3.906739\n", + "Epoch 454, Loss: 3.906739\n", + "Epoch 455, Loss: 3.906739\n", + "Epoch 456, Loss: 3.906739\n", + "Epoch 457, Loss: 3.906739\n", + "Epoch 458, Loss: 3.906739\n", + "Epoch 459, Loss: 3.906739\n", + "Epoch 460, Loss: 3.906739\n", + "Epoch 461, Loss: 3.906739\n", + "Epoch 462, Loss: 3.906739\n", + "Epoch 463, Loss: 3.906739\n", + "Epoch 464, Loss: 3.820003\n", + "Epoch 465, Loss: 3.820003\n", + "Epoch 466, Loss: 3.762543\n", + "Epoch 467, Loss: 3.762543\n", + "Epoch 468, Loss: 3.762543\n", + "Epoch 469, Loss: 3.762543\n", + "Epoch 470, Loss: 3.762543\n", + "Epoch 471, Loss: 3.762543\n", + "Epoch 472, Loss: 3.762543\n", + "Epoch 473, Loss: 3.762543\n", + "Epoch 474, Loss: 3.762543\n", + "Epoch 475, Loss: 3.762543\n", + "Epoch 476, Loss: 3.762543\n", + "Epoch 477, Loss: 3.666696\n", + "Epoch 478, Loss: 3.666696\n", + "Epoch 479, Loss: 3.596893\n", + "Epoch 480, Loss: 3.596893\n", + "Epoch 481, Loss: 3.579938\n", + "Epoch 482, Loss: 3.579938\n", + "Epoch 483, Loss: 3.579938\n", + "Epoch 484, Loss: 3.579938\n", + "Epoch 485, Loss: 3.579938\n", + "Epoch 486, Loss: 3.579938\n", + "Epoch 487, Loss: 3.579938\n", + "Epoch 488, Loss: 3.579938\n", + "Epoch 489, Loss: 3.579938\n", + "Epoch 490, Loss: 3.579938\n", + "Epoch 491, Loss: 3.579938\n", + "Epoch 492, Loss: 3.579938\n", + "Epoch 493, Loss: 3.579938\n", + "Epoch 494, Loss: 3.579938\n", + "Epoch 495, Loss: 3.579938\n", + "Epoch 496, Loss: 3.559615\n", + "Epoch 497, Loss: 3.559615\n", + "Epoch 498, Loss: 3.559615\n", + "Epoch 499, Loss: 3.464828\n", + "Epoch 500, Loss: 3.368389\n", + "Epoch 501, Loss: 3.330733\n", + "Epoch 502, Loss: 3.330733\n", + "Epoch 503, Loss: 3.330733\n", + "Epoch 504, Loss: 3.330733\n", + "Epoch 505, Loss: 3.310033\n", + "Epoch 506, Loss: 3.310033\n", + "Epoch 507, Loss: 3.310033\n", + "Epoch 508, Loss: 3.310033\n", + "Epoch 509, Loss: 3.200604\n", + "Epoch 510, Loss: 3.200604\n", + "Epoch 511, Loss: 3.200604\n", + "Epoch 512, Loss: 3.200604\n", + "Epoch 513, Loss: 3.200604\n", + "Epoch 514, Loss: 3.200604\n", + "Epoch 515, Loss: 3.200604\n", + "Epoch 516, Loss: 3.200604\n", + "Epoch 517, Loss: 3.200604\n", + "Epoch 518, Loss: 3.200604\n", + "Epoch 519, Loss: 3.200604\n", + "Epoch 520, Loss: 3.200604\n", + "Epoch 521, Loss: 3.200604\n", + "Epoch 522, Loss: 3.200604\n", + "Epoch 523, Loss: 3.200604\n", + "Epoch 524, Loss: 3.200604\n", + "Epoch 525, Loss: 3.200604\n", + "Epoch 526, Loss: 3.200604\n", + "Epoch 527, Loss: 3.200604\n", + "Epoch 528, Loss: 3.200604\n", + "Epoch 529, Loss: 3.200604\n", + "Epoch 530, Loss: 3.200604\n", + "Epoch 531, Loss: 3.200604\n", + "Epoch 532, Loss: 3.200604\n", + "Epoch 533, Loss: 3.165439\n", + "Epoch 534, Loss: 3.165439\n", + "Epoch 535, Loss: 3.165439\n", + "Epoch 536, Loss: 3.165439\n", + "Epoch 537, Loss: 3.165439\n", + "Epoch 538, Loss: 3.161124\n", + "Epoch 539, Loss: 3.120400\n", + "Epoch 540, Loss: 3.120400\n", + "Epoch 541, Loss: 3.120400\n", + "Epoch 542, Loss: 3.120400\n", + "Epoch 543, Loss: 3.120400\n", + "Epoch 544, Loss: 3.120400\n", + "Epoch 545, Loss: 3.120400\n", + "Epoch 546, Loss: 3.120400\n", + "Epoch 547, Loss: 3.120400\n", + "Epoch 548, Loss: 3.120400\n", + "Epoch 549, Loss: 3.120400\n", + "Epoch 550, Loss: 3.120400\n", + "Epoch 551, Loss: 3.120400\n", + "Epoch 552, Loss: 3.120400\n", + "Epoch 553, Loss: 2.973244\n", + "Epoch 554, Loss: 2.973244\n", + "Epoch 555, Loss: 2.973244\n", + "Epoch 556, Loss: 2.973244\n", + "Epoch 557, Loss: 2.973244\n", + "Epoch 558, Loss: 2.973244\n", + "Epoch 559, Loss: 2.973244\n", + "Epoch 560, Loss: 2.973244\n", + "Epoch 561, Loss: 2.973244\n", + "Epoch 562, Loss: 2.973244\n", + "Epoch 563, Loss: 2.973244\n", + "Epoch 564, Loss: 2.973244\n", + "Epoch 565, Loss: 2.973244\n", + "Epoch 566, Loss: 2.973244\n", + "Epoch 567, Loss: 2.973244\n", + "Epoch 568, Loss: 2.973244\n", + "Epoch 569, Loss: 2.973244\n", + "Epoch 570, Loss: 2.973244\n", + "Epoch 571, Loss: 2.973244\n", + "Epoch 572, Loss: 2.973244\n", + "Epoch 573, Loss: 2.973244\n", + "Epoch 574, Loss: 2.904862\n", + "Epoch 575, Loss: 2.904862\n", + "Epoch 576, Loss: 2.904862\n", + "Epoch 577, Loss: 2.904862\n", + "Epoch 578, Loss: 2.904862\n", + "Epoch 579, Loss: 2.904862\n", + "Epoch 580, Loss: 2.904862\n", + "Epoch 581, Loss: 2.904862\n", + "Epoch 582, Loss: 2.904862\n", + "Epoch 583, Loss: 2.904862\n", + "Epoch 584, Loss: 2.757260\n", + "Epoch 585, Loss: 2.741392\n", + "Epoch 586, Loss: 2.741392\n", + "Epoch 587, Loss: 2.741392\n", + "Epoch 588, Loss: 2.741392\n", + "Epoch 589, Loss: 2.741392\n", + "Epoch 590, Loss: 2.741392\n", + "Epoch 591, Loss: 2.741392\n", + "Epoch 592, Loss: 2.741392\n", + "Epoch 593, Loss: 2.741392\n", + "Epoch 594, Loss: 2.741392\n", + "Epoch 595, Loss: 2.741392\n", + "Epoch 596, Loss: 2.741392\n", + "Epoch 597, Loss: 2.741392\n", + "Epoch 598, Loss: 2.741392\n", + "Epoch 599, Loss: 2.741392\n", + "Epoch 600, Loss: 2.692649\n", + "Epoch 601, Loss: 2.692649\n", + "Epoch 602, Loss: 2.692649\n", + "Epoch 603, Loss: 2.692649\n", + "Epoch 604, Loss: 2.692649\n", + "Epoch 605, Loss: 2.692649\n", + "Epoch 606, Loss: 2.692649\n", + "Epoch 607, Loss: 2.692649\n", + "Epoch 608, Loss: 2.692649\n", + "Epoch 609, Loss: 2.692649\n", + "Epoch 610, Loss: 2.692649\n", + "Epoch 611, Loss: 2.692649\n", + "Epoch 612, Loss: 2.692649\n", + "Epoch 613, Loss: 2.692649\n", + "Epoch 614, Loss: 2.692649\n", + "Epoch 615, Loss: 2.688591\n", + "Epoch 616, Loss: 2.688591\n", + "Epoch 617, Loss: 2.688591\n", + "Epoch 618, Loss: 2.688591\n", + "Epoch 619, Loss: 2.688591\n", + "Epoch 620, Loss: 2.688591\n", + "Epoch 621, Loss: 2.688591\n", + "Epoch 622, Loss: 2.664326\n", + "Epoch 623, Loss: 2.664326\n", + "Epoch 624, Loss: 2.664326\n", + "Epoch 625, Loss: 2.664326\n", + "Epoch 626, Loss: 2.664326\n", + "Epoch 627, Loss: 2.664326\n", + "Epoch 628, Loss: 2.664326\n", + "Epoch 629, Loss: 2.664326\n", + "Epoch 630, Loss: 2.664326\n", + "Epoch 631, Loss: 2.664326\n", + "Epoch 632, Loss: 2.664326\n", + "Epoch 633, Loss: 2.664326\n", + "Epoch 634, Loss: 2.664326\n", + "Epoch 635, Loss: 2.664326\n", + "Epoch 636, Loss: 2.664326\n", + "Epoch 637, Loss: 2.634864\n", + "Epoch 638, Loss: 2.634864\n", + "Epoch 639, Loss: 2.634864\n", + "Epoch 640, Loss: 2.634864\n", + "Epoch 641, Loss: 2.634864\n", + "Epoch 642, Loss: 2.634864\n", + "Epoch 643, Loss: 2.634864\n", + "Epoch 644, Loss: 2.634864\n", + "Epoch 645, Loss: 2.634864\n", + "Epoch 646, Loss: 2.622445\n", + "Epoch 647, Loss: 2.622445\n", + "Epoch 648, Loss: 2.585854\n", + "Epoch 649, Loss: 2.585854\n", + "Epoch 650, Loss: 2.585854\n", + "Epoch 651, Loss: 2.585854\n", + "Epoch 652, Loss: 2.585854\n", + "Epoch 653, Loss: 2.585854\n", + "Epoch 654, Loss: 2.585854\n", + "Epoch 655, Loss: 2.585854\n", + "Epoch 656, Loss: 2.585854\n", + "Epoch 657, Loss: 2.585854\n", + "Epoch 658, Loss: 2.585854\n", + "Epoch 659, Loss: 2.585854\n", + "Epoch 660, Loss: 2.585854\n", + "Epoch 661, Loss: 2.409049\n", + "Epoch 662, Loss: 2.409049\n", + "Epoch 663, Loss: 2.409049\n", + "Epoch 664, Loss: 2.409049\n", + "Epoch 665, Loss: 2.409049\n", + "Epoch 666, Loss: 2.369016\n", + "Epoch 667, Loss: 2.369016\n", + "Epoch 668, Loss: 2.369016\n", + "Epoch 669, Loss: 2.369016\n", + "Epoch 670, Loss: 2.369016\n", + "Epoch 671, Loss: 2.369016\n", + "Epoch 672, Loss: 2.369016\n", + "Epoch 673, Loss: 2.369016\n", + "Epoch 674, Loss: 2.369016\n", + "Epoch 675, Loss: 2.369016\n", + "Epoch 676, Loss: 2.369016\n", + "Epoch 677, Loss: 2.369016\n", + "Epoch 678, Loss: 2.369016\n", + "Epoch 679, Loss: 2.369016\n", + "Epoch 680, Loss: 2.369016\n", + "Epoch 681, Loss: 2.369016\n", + "Epoch 682, Loss: 2.369016\n", + "Epoch 683, Loss: 2.369016\n", + "Epoch 684, Loss: 2.369016\n", + "Epoch 685, Loss: 2.354630\n", + "Epoch 686, Loss: 2.354630\n", + "Epoch 687, Loss: 2.354630\n", + "Epoch 688, Loss: 2.354630\n", + "Epoch 689, Loss: 2.354630\n", + "Epoch 690, Loss: 2.354630\n", + "Epoch 691, Loss: 2.354630\n", + "Epoch 692, Loss: 2.354630\n", + "Epoch 693, Loss: 2.354630\n", + "Epoch 694, Loss: 2.354630\n", + "Epoch 695, Loss: 2.354630\n", + "Epoch 696, Loss: 2.354630\n", + "Epoch 697, Loss: 2.354630\n", + "Epoch 698, Loss: 2.354630\n", + "Epoch 699, Loss: 2.354630\n", + "Epoch 700, Loss: 2.351091\n", + "Epoch 701, Loss: 2.351091\n", + "Epoch 702, Loss: 2.351091\n", + "Epoch 703, Loss: 2.351091\n", + "Epoch 704, Loss: 2.351091\n", + "Epoch 705, Loss: 2.351091\n", + "Epoch 706, Loss: 2.351091\n", + "Epoch 707, Loss: 2.351091\n", + "Epoch 708, Loss: 2.351091\n", + "Epoch 709, Loss: 2.351091\n", + "Epoch 710, Loss: 2.351091\n", + "Epoch 711, Loss: 2.351091\n", + "Epoch 712, Loss: 2.351091\n", + "Epoch 713, Loss: 2.351091\n", + "Epoch 714, Loss: 2.351091\n", + "Epoch 715, Loss: 2.351091\n", + "Epoch 716, Loss: 2.351091\n", + "Epoch 717, Loss: 2.351091\n", + "Epoch 718, Loss: 2.351091\n", + "Epoch 719, Loss: 2.351091\n", + "Epoch 720, Loss: 2.351091\n", + "Epoch 721, Loss: 2.341352\n", + "Epoch 722, Loss: 2.341352\n", + "Epoch 723, Loss: 2.341352\n", + "Epoch 724, Loss: 2.341352\n", + "Epoch 725, Loss: 2.341352\n", + "Epoch 726, Loss: 2.239999\n", + "Epoch 727, Loss: 2.239999\n", + "Epoch 728, Loss: 2.239999\n", + "Epoch 729, Loss: 2.239999\n", + "Epoch 730, Loss: 2.239999\n", + "Epoch 731, Loss: 2.239999\n", + "Epoch 732, Loss: 2.239999\n", + "Epoch 733, Loss: 2.239999\n", + "Epoch 734, Loss: 2.239999\n", + "Epoch 735, Loss: 2.239999\n", + "Epoch 736, Loss: 2.239999\n", + "Epoch 737, Loss: 2.239999\n", + "Epoch 738, Loss: 2.239999\n", + "Epoch 739, Loss: 2.239999\n", + "Epoch 740, Loss: 2.143670\n", + "Epoch 741, Loss: 2.143670\n", + "Epoch 742, Loss: 2.143670\n", + "Epoch 743, Loss: 2.143670\n", + "Epoch 744, Loss: 2.143670\n", + "Epoch 745, Loss: 2.143670\n", + "Epoch 746, Loss: 2.143670\n", + "Epoch 747, Loss: 2.143670\n", + "Epoch 748, Loss: 2.143670\n", + "Epoch 749, Loss: 2.116693\n", + "Epoch 750, Loss: 2.116693\n", + "Epoch 751, Loss: 2.110732\n", + "Epoch 752, Loss: 2.109454\n", + "Epoch 753, Loss: 2.049552\n", + "Epoch 754, Loss: 2.049552\n", + "Epoch 755, Loss: 2.049552\n", + "Epoch 756, Loss: 2.049552\n", + "Epoch 757, Loss: 2.049552\n", + "Epoch 758, Loss: 2.049552\n", + "Epoch 759, Loss: 2.049552\n", + "Epoch 760, Loss: 2.049552\n", + "Epoch 761, Loss: 2.049552\n", + "Epoch 762, Loss: 2.049552\n", + "Epoch 763, Loss: 2.049552\n", + "Epoch 764, Loss: 2.049552\n", + "Epoch 765, Loss: 2.049552\n", + "Epoch 766, Loss: 2.049552\n", + "Epoch 767, Loss: 2.049552\n", + "Epoch 768, Loss: 2.049552\n", + "Epoch 769, Loss: 2.049552\n", + "Epoch 770, Loss: 2.049552\n", + "Epoch 771, Loss: 2.049552\n", + "Epoch 772, Loss: 2.049552\n", + "Epoch 773, Loss: 2.049552\n", + "Epoch 774, Loss: 2.049552\n", + "Epoch 775, Loss: 2.049552\n", + "Epoch 776, Loss: 2.049552\n", + "Epoch 777, Loss: 2.049552\n", + "Epoch 778, Loss: 2.049552\n", + "Epoch 779, Loss: 2.049552\n", + "Epoch 780, Loss: 2.049552\n", + "Epoch 781, Loss: 2.049552\n", + "Epoch 782, Loss: 2.049552\n", + "Epoch 783, Loss: 2.049552\n", + "Epoch 784, Loss: 2.049552\n", + "Epoch 785, Loss: 2.049552\n", + "Epoch 786, Loss: 2.049552\n", + "Epoch 787, Loss: 2.049552\n", + "Epoch 788, Loss: 2.049552\n", + "Epoch 789, Loss: 2.049552\n", + "Epoch 790, Loss: 2.030377\n", + "Epoch 791, Loss: 2.030377\n", + "Epoch 792, Loss: 2.030377\n", + "Epoch 793, Loss: 2.030377\n", + "Epoch 794, Loss: 2.030377\n", + "Epoch 795, Loss: 2.030377\n", + "Epoch 796, Loss: 2.030377\n", + "Epoch 797, Loss: 2.030377\n", + "Epoch 798, Loss: 2.030377\n", + "Epoch 799, Loss: 2.030377\n", + "Epoch 800, Loss: 2.030377\n", + "Epoch 801, Loss: 2.030377\n", + "Epoch 802, Loss: 2.030377\n", + "Epoch 803, Loss: 2.030377\n", + "Epoch 804, Loss: 2.030377\n", + "Epoch 805, Loss: 2.030377\n", + "Epoch 806, Loss: 2.030377\n", + "Epoch 807, Loss: 2.030377\n", + "Epoch 808, Loss: 2.030377\n", + "Epoch 809, Loss: 2.030377\n", + "Epoch 810, Loss: 2.030377\n", + "Epoch 811, Loss: 2.030377\n", + "Epoch 812, Loss: 2.030377\n", + "Epoch 813, Loss: 2.030377\n", + "Epoch 814, Loss: 2.030377\n", + "Epoch 815, Loss: 2.030377\n", + "Epoch 816, Loss: 2.030377\n", + "Epoch 817, Loss: 2.030377\n", + "Epoch 818, Loss: 2.030377\n", + "Epoch 819, Loss: 2.015679\n", + "Epoch 820, Loss: 2.015679\n", + "Epoch 821, Loss: 2.015679\n", + "Epoch 822, Loss: 2.015679\n", + "Epoch 823, Loss: 2.015679\n", + "Epoch 824, Loss: 2.015679\n", + "Epoch 825, Loss: 2.015679\n", + "Epoch 826, Loss: 2.015679\n", + "Epoch 827, Loss: 2.015679\n", + "Epoch 828, Loss: 2.015679\n", + "Epoch 829, Loss: 2.015679\n", + "Epoch 830, Loss: 2.015679\n", + "Epoch 831, Loss: 2.015679\n", + "Epoch 832, Loss: 2.015679\n", + "Epoch 833, Loss: 2.015679\n", + "Epoch 834, Loss: 2.015679\n", + "Epoch 835, Loss: 2.015679\n", + "Epoch 836, Loss: 2.015679\n", + "Epoch 837, Loss: 2.015679\n", + "Epoch 838, Loss: 1.943676\n", + "Epoch 839, Loss: 1.943676\n", + "Epoch 840, Loss: 1.943676\n", + "Epoch 841, Loss: 1.943676\n", + "Epoch 842, Loss: 1.943676\n", + "Epoch 843, Loss: 1.943676\n", + "Epoch 844, Loss: 1.943676\n", + "Epoch 845, Loss: 1.943676\n", + "Epoch 846, Loss: 1.943676\n", + "Epoch 847, Loss: 1.943676\n", + "Epoch 848, Loss: 1.943676\n", + "Epoch 849, Loss: 1.943676\n", + "Epoch 850, Loss: 1.943676\n", + "Epoch 851, Loss: 1.943676\n", + "Epoch 852, Loss: 1.936657\n", + "Epoch 853, Loss: 1.936657\n", + "Epoch 854, Loss: 1.925539\n", + "Epoch 855, Loss: 1.872059\n", + "Epoch 856, Loss: 1.872059\n", + "Epoch 857, Loss: 1.872059\n", + "Epoch 858, Loss: 1.872059\n", + "Epoch 859, Loss: 1.872059\n", + "Epoch 860, Loss: 1.872059\n", + "Epoch 861, Loss: 1.872059\n", + "Epoch 862, Loss: 1.872059\n", + "Epoch 863, Loss: 1.872059\n", + "Epoch 864, Loss: 1.872059\n", + "Epoch 865, Loss: 1.872059\n", + "Epoch 866, Loss: 1.872059\n", + "Epoch 867, Loss: 1.872059\n", + "Epoch 868, Loss: 1.872059\n", + "Epoch 869, Loss: 1.872059\n", + "Epoch 870, Loss: 1.872059\n", + "Epoch 871, Loss: 1.872059\n", + "Epoch 872, Loss: 1.872059\n", + "Epoch 873, Loss: 1.872059\n", + "Epoch 874, Loss: 1.872059\n", + "Epoch 875, Loss: 1.872059\n", + "Epoch 876, Loss: 1.872059\n", + "Epoch 877, Loss: 1.872059\n", + "Epoch 878, Loss: 1.872059\n", + "Epoch 879, Loss: 1.872059\n", + "Epoch 880, Loss: 1.872059\n", + "Epoch 881, Loss: 1.872059\n", + "Epoch 882, Loss: 1.872059\n", + "Epoch 883, Loss: 1.872059\n", + "Epoch 884, Loss: 1.872059\n", + "Epoch 885, Loss: 1.872059\n", + "Epoch 886, Loss: 1.872059\n", + "Epoch 887, Loss: 1.872059\n", + "Epoch 888, Loss: 1.872059\n", + "Epoch 889, Loss: 1.872059\n", + "Epoch 890, Loss: 1.872059\n", + "Epoch 891, Loss: 1.872059\n", + "Epoch 892, Loss: 1.872059\n", + "Epoch 893, Loss: 1.872059\n", + "Epoch 894, Loss: 1.872059\n", + "Epoch 895, Loss: 1.872059\n", + "Epoch 896, Loss: 1.872059\n", + "Epoch 897, Loss: 1.872059\n", + "Epoch 898, Loss: 1.872059\n", + "Epoch 899, Loss: 1.872059\n", + "Epoch 900, Loss: 1.872059\n", + "Epoch 901, Loss: 1.872059\n", + "Epoch 902, Loss: 1.872059\n", + "Epoch 903, Loss: 1.872059\n", + "Epoch 904, Loss: 1.872059\n", + "Epoch 905, Loss: 1.872059\n", + "Epoch 906, Loss: 1.865547\n", + "Epoch 907, Loss: 1.848590\n", + "Epoch 908, Loss: 1.848590\n", + "Epoch 909, Loss: 1.848590\n", + "Epoch 910, Loss: 1.848590\n", + "Epoch 911, Loss: 1.848590\n", + "Epoch 912, Loss: 1.848590\n", + "Epoch 913, Loss: 1.848590\n", + "Epoch 914, Loss: 1.848590\n", + "Epoch 915, Loss: 1.848590\n", + "Epoch 916, Loss: 1.848590\n", + "Epoch 917, Loss: 1.848590\n", + "Epoch 918, Loss: 1.848590\n", + "Epoch 919, Loss: 1.811494\n", + "Epoch 920, Loss: 1.811494\n", + "Epoch 921, Loss: 1.811494\n", + "Epoch 922, Loss: 1.811494\n", + "Epoch 923, Loss: 1.811494\n", + "Epoch 924, Loss: 1.799052\n", + "Epoch 925, Loss: 1.740880\n", + "Epoch 926, Loss: 1.740880\n", + "Epoch 927, Loss: 1.667730\n", + "Epoch 928, Loss: 1.667730\n", + "Epoch 929, Loss: 1.667730\n", + "Epoch 930, Loss: 1.667730\n", + "Epoch 931, Loss: 1.667730\n", + "Epoch 932, Loss: 1.667730\n", + "Epoch 933, Loss: 1.667730\n", + "Epoch 934, Loss: 1.667730\n", + "Epoch 935, Loss: 1.667730\n", + "Epoch 936, Loss: 1.667730\n", + "Epoch 937, Loss: 1.667730\n", + "Epoch 938, Loss: 1.667730\n", + "Epoch 939, Loss: 1.667730\n", + "Epoch 940, Loss: 1.667730\n", + "Epoch 941, Loss: 1.667730\n", + "Epoch 942, Loss: 1.667730\n", + "Epoch 943, Loss: 1.667730\n", + "Epoch 944, Loss: 1.667730\n", + "Epoch 945, Loss: 1.667730\n", + "Epoch 946, Loss: 1.667730\n", + "Epoch 947, Loss: 1.667730\n", + "Epoch 948, Loss: 1.667730\n", + "Epoch 949, Loss: 1.603416\n", + "Epoch 950, Loss: 1.603416\n", + "Epoch 951, Loss: 1.603416\n", + "Epoch 952, Loss: 1.603416\n", + "Epoch 953, Loss: 1.603416\n", + "Epoch 954, Loss: 1.603416\n", + "Epoch 955, Loss: 1.603416\n", + "Epoch 956, Loss: 1.603416\n", + "Epoch 957, Loss: 1.603416\n", + "Epoch 958, Loss: 1.603416\n", + "Epoch 959, Loss: 1.603416\n", + "Epoch 960, Loss: 1.603416\n", + "Epoch 961, Loss: 1.603416\n", + "Epoch 962, Loss: 1.603416\n", + "Epoch 963, Loss: 1.603416\n", + "Epoch 964, Loss: 1.603416\n", + "Epoch 965, Loss: 1.603416\n", + "Epoch 966, Loss: 1.603416\n", + "Epoch 967, Loss: 1.603416\n", + "Epoch 968, Loss: 1.603416\n", + "Epoch 969, Loss: 1.603416\n", + "Epoch 970, Loss: 1.603416\n", + "Epoch 971, Loss: 1.603416\n", + "Epoch 972, Loss: 1.603416\n", + "Epoch 973, Loss: 1.603416\n", + "Epoch 974, Loss: 1.603416\n", + "Epoch 975, Loss: 1.603416\n", + "Epoch 976, Loss: 1.603416\n", + "Epoch 977, Loss: 1.603416\n", + "Epoch 978, Loss: 1.603416\n", + "Epoch 979, Loss: 1.603416\n", + "Epoch 980, Loss: 1.603416\n", + "Epoch 981, Loss: 1.603416\n", + "Epoch 982, Loss: 1.603416\n", + "Epoch 983, Loss: 1.603416\n", + "Epoch 984, Loss: 1.603416\n", + "Epoch 985, Loss: 1.603416\n", + "Epoch 986, Loss: 1.603416\n", + "Epoch 987, Loss: 1.603416\n", + "Epoch 988, Loss: 1.603416\n", + "Epoch 989, Loss: 1.603416\n", + "Epoch 990, Loss: 1.603416\n", + "Epoch 991, Loss: 1.603416\n", + "Epoch 992, Loss: 1.603416\n", + "Epoch 993, Loss: 1.603416\n", + "Epoch 994, Loss: 1.603416\n", + "Epoch 995, Loss: 1.603416\n", + "Epoch 996, Loss: 1.603416\n", + "Epoch 997, Loss: 1.603416\n", + "Epoch 998, Loss: 1.603416\n", + "Epoch 999, Loss: 1.603416\n", + "Epoch 1000, Loss: 1.603416\n", + "Epoch 1001, Loss: 1.603416\n", + "Epoch 1002, Loss: 1.603416\n", + "Epoch 1003, Loss: 1.603416\n", + "Epoch 1004, Loss: 1.603416\n", + "Epoch 1005, Loss: 1.603416\n", + "Epoch 1006, Loss: 1.603416\n", + "Epoch 1007, Loss: 1.603416\n", + "Epoch 1008, Loss: 1.603416\n", + "Epoch 1009, Loss: 1.603416\n", + "Epoch 1010, Loss: 1.603416\n", + "Epoch 1011, Loss: 1.603416\n", + "Epoch 1012, Loss: 1.603416\n", + "Epoch 1013, Loss: 1.603416\n", + "Epoch 1014, Loss: 1.603416\n", + "Epoch 1015, Loss: 1.603416\n", + "Epoch 1016, Loss: 1.603416\n", + "Epoch 1017, Loss: 1.603416\n", + "Epoch 1018, Loss: 1.603416\n", + "Epoch 1019, Loss: 1.603416\n", + "Epoch 1020, Loss: 1.603416\n", + "Epoch 1021, Loss: 1.603416\n", + "Epoch 1022, Loss: 1.603416\n", + "Epoch 1023, Loss: 1.603416\n", + "Epoch 1024, Loss: 1.603416\n", + "Epoch 1025, Loss: 1.603416\n", + "Epoch 1026, Loss: 1.603416\n", + "Epoch 1027, Loss: 1.603416\n", + "Epoch 1028, Loss: 1.603416\n", + "Epoch 1029, Loss: 1.593780\n", + "Epoch 1030, Loss: 1.593780\n", + "Epoch 1031, Loss: 1.593780\n", + "Epoch 1032, Loss: 1.593780\n", + "Epoch 1033, Loss: 1.593780\n", + "Epoch 1034, Loss: 1.593780\n", + "Epoch 1035, Loss: 1.593780\n", + "Epoch 1036, Loss: 1.593780\n", + "Epoch 1037, Loss: 1.593780\n", + "Epoch 1038, Loss: 1.593780\n", + "Epoch 1039, Loss: 1.593780\n", + "Epoch 1040, Loss: 1.593780\n", + "Epoch 1041, Loss: 1.593780\n", + "Epoch 1042, Loss: 1.593780\n", + "Epoch 1043, Loss: 1.593780\n", + "Epoch 1044, Loss: 1.593780\n", + "Epoch 1045, Loss: 1.593780\n", + "Epoch 1046, Loss: 1.593780\n", + "Epoch 1047, Loss: 1.593780\n", + "Epoch 1048, Loss: 1.593780\n", + "Epoch 1049, Loss: 1.593780\n", + "Epoch 1050, Loss: 1.593780\n", + "Epoch 1051, Loss: 1.593780\n", + "Epoch 1052, Loss: 1.593780\n", + "Epoch 1053, Loss: 1.593780\n", + "Epoch 1054, Loss: 1.593780\n", + "Epoch 1055, Loss: 1.593780\n", + "Epoch 1056, Loss: 1.593780\n", + "Epoch 1057, Loss: 1.593780\n", + "Epoch 1058, Loss: 1.593780\n", + "Epoch 1059, Loss: 1.593780\n", + "Epoch 1060, Loss: 1.593780\n", + "Epoch 1061, Loss: 1.593780\n", + "Epoch 1062, Loss: 1.593780\n", + "Epoch 1063, Loss: 1.593780\n", + "Epoch 1064, Loss: 1.593780\n", + "Epoch 1065, Loss: 1.593780\n", + "Epoch 1066, Loss: 1.536872\n", + "Epoch 1067, Loss: 1.536872\n", + "Epoch 1068, Loss: 1.536872\n", + "Epoch 1069, Loss: 1.536872\n", + "Epoch 1070, Loss: 1.536872\n", + "Epoch 1071, Loss: 1.536872\n", + "Epoch 1072, Loss: 1.536872\n", + "Epoch 1073, Loss: 1.536872\n", + "Epoch 1074, Loss: 1.536872\n", + "Epoch 1075, Loss: 1.536872\n", + "Epoch 1076, Loss: 1.536872\n", + "Epoch 1077, Loss: 1.536872\n", + "Epoch 1078, Loss: 1.536872\n", + "Epoch 1079, Loss: 1.536872\n", + "Epoch 1080, Loss: 1.536872\n", + "Epoch 1081, Loss: 1.536872\n", + "Epoch 1082, Loss: 1.536872\n", + "Epoch 1083, Loss: 1.536872\n", + "Epoch 1084, Loss: 1.536872\n", + "Epoch 1085, Loss: 1.536872\n", + "Epoch 1086, Loss: 1.536872\n", + "Epoch 1087, Loss: 1.536872\n", + "Epoch 1088, Loss: 1.536872\n", + "Epoch 1089, Loss: 1.536872\n", + "Epoch 1090, Loss: 1.536872\n", + "Epoch 1091, Loss: 1.536872\n", + "Epoch 1092, Loss: 1.536872\n", + "Epoch 1093, Loss: 1.536872\n", + "Epoch 1094, Loss: 1.536872\n", + "Epoch 1095, Loss: 1.536872\n", + "Epoch 1096, Loss: 1.536872\n", + "Epoch 1097, Loss: 1.536872\n", + "Epoch 1098, Loss: 1.536872\n", + "Epoch 1099, Loss: 1.536872\n", + "Epoch 1100, Loss: 1.536872\n", + "Epoch 1101, Loss: 1.536872\n", + "Epoch 1102, Loss: 1.535428\n", + "Epoch 1103, Loss: 1.535428\n", + "Epoch 1104, Loss: 1.491978\n", + "Epoch 1105, Loss: 1.491978\n", + "Epoch 1106, Loss: 1.491978\n", + "Epoch 1107, Loss: 1.491978\n", + "Epoch 1108, Loss: 1.491978\n", + "Epoch 1109, Loss: 1.491978\n", + "Epoch 1110, Loss: 1.491978\n", + "Epoch 1111, Loss: 1.491978\n", + "Epoch 1112, Loss: 1.491978\n", + "Epoch 1113, Loss: 1.491978\n", + "Epoch 1114, Loss: 1.491978\n", + "Epoch 1115, Loss: 1.491978\n", + "Epoch 1116, Loss: 1.491978\n", + "Epoch 1117, Loss: 1.491978\n", + "Epoch 1118, Loss: 1.491978\n", + "Epoch 1119, Loss: 1.491978\n", + "Epoch 1120, Loss: 1.491978\n", + "Epoch 1121, Loss: 1.491978\n", + "Epoch 1122, Loss: 1.491978\n", + "Epoch 1123, Loss: 1.491978\n", + "Epoch 1124, Loss: 1.491978\n", + "Epoch 1125, Loss: 1.491978\n", + "Epoch 1126, Loss: 1.491978\n", + "Epoch 1127, Loss: 1.491978\n", + "Epoch 1128, Loss: 1.491978\n", + "Epoch 1129, Loss: 1.491978\n", + "Epoch 1130, Loss: 1.491978\n", + "Epoch 1131, Loss: 1.491978\n", + "Epoch 1132, Loss: 1.491978\n", + "Epoch 1133, Loss: 1.491978\n", + "Epoch 1134, Loss: 1.491978\n", + "Epoch 1135, Loss: 1.491978\n", + "Epoch 1136, Loss: 1.491978\n", + "Epoch 1137, Loss: 1.491978\n", + "Epoch 1138, Loss: 1.491978\n", + "Epoch 1139, Loss: 1.491978\n", + "Epoch 1140, Loss: 1.491978\n", + "Epoch 1141, Loss: 1.491978\n", + "Epoch 1142, Loss: 1.491978\n", + "Epoch 1143, Loss: 1.491978\n", + "Epoch 1144, Loss: 1.491978\n", + "Epoch 1145, Loss: 1.491978\n", + "Epoch 1146, Loss: 1.446972\n", + "Epoch 1147, Loss: 1.446972\n", + "Epoch 1148, Loss: 1.446972\n", + "Epoch 1149, Loss: 1.446972\n", + "Epoch 1150, Loss: 1.446972\n", + "Epoch 1151, Loss: 1.446972\n", + "Epoch 1152, Loss: 1.446972\n", + "Epoch 1153, Loss: 1.446972\n", + "Epoch 1154, Loss: 1.446972\n", + "Epoch 1155, Loss: 1.446972\n", + "Epoch 1156, Loss: 1.446972\n", + "Epoch 1157, Loss: 1.446972\n", + "Epoch 1158, Loss: 1.446972\n", + "Epoch 1159, Loss: 1.446972\n", + "Epoch 1160, Loss: 1.446972\n", + "Epoch 1161, Loss: 1.446972\n", + "Epoch 1162, Loss: 1.446972\n", + "Epoch 1163, Loss: 1.446972\n", + "Epoch 1164, Loss: 1.446972\n", + "Epoch 1165, Loss: 1.446972\n", + "Epoch 1166, Loss: 1.446972\n", + "Epoch 1167, Loss: 1.446972\n", + "Epoch 1168, Loss: 1.446972\n", + "Epoch 1169, Loss: 1.446972\n", + "Epoch 1170, Loss: 1.446972\n", + "Epoch 1171, Loss: 1.446972\n", + "Epoch 1172, Loss: 1.446972\n", + "Epoch 1173, Loss: 1.446972\n", + "Epoch 1174, Loss: 1.446972\n", + "Epoch 1175, Loss: 1.446972\n", + "Epoch 1176, Loss: 1.446972\n", + "Epoch 1177, Loss: 1.446972\n", + "Epoch 1178, Loss: 1.446972\n", + "Epoch 1179, Loss: 1.446972\n", + "Epoch 1180, Loss: 1.446972\n", + "Epoch 1181, Loss: 1.446972\n", + "Epoch 1182, Loss: 1.446972\n", + "Epoch 1183, Loss: 1.446972\n", + "Epoch 1184, Loss: 1.446972\n", + "Epoch 1185, Loss: 1.446972\n", + "Epoch 1186, Loss: 1.431363\n", + "Epoch 1187, Loss: 1.431363\n", + "Epoch 1188, Loss: 1.431363\n", + "Epoch 1189, Loss: 1.431363\n", + "Epoch 1190, Loss: 1.431363\n", + "Epoch 1191, Loss: 1.431363\n", + "Epoch 1192, Loss: 1.431363\n", + "Epoch 1193, Loss: 1.431363\n", + "Epoch 1194, Loss: 1.431363\n", + "Epoch 1195, Loss: 1.431363\n", + "Epoch 1196, Loss: 1.431363\n", + "Epoch 1197, Loss: 1.431363\n", + "Epoch 1198, Loss: 1.431363\n", + "Epoch 1199, Loss: 1.431363\n", + "Epoch 1200, Loss: 1.431363\n", + "Epoch 1201, Loss: 1.431363\n", + "Epoch 1202, Loss: 1.431363\n", + "Epoch 1203, Loss: 1.431363\n", + "Epoch 1204, Loss: 1.431363\n", + "Epoch 1205, Loss: 1.431363\n", + "Epoch 1206, Loss: 1.431363\n", + "Epoch 1207, Loss: 1.431363\n", + "Epoch 1208, Loss: 1.431363\n", + "Epoch 1209, Loss: 1.431363\n", + "Epoch 1210, Loss: 1.431363\n", + "Epoch 1211, Loss: 1.431363\n", + "Epoch 1212, Loss: 1.431363\n", + "Epoch 1213, Loss: 1.431363\n", + "Epoch 1214, Loss: 1.431363\n", + "Epoch 1215, Loss: 1.431363\n", + "Epoch 1216, Loss: 1.431363\n", + "Epoch 1217, Loss: 1.431363\n", + "Epoch 1218, Loss: 1.431363\n", + "Epoch 1219, Loss: 1.431363\n", + "Epoch 1220, Loss: 1.431363\n", + "Epoch 1221, Loss: 1.392185\n", + "Epoch 1222, Loss: 1.392185\n", + "Epoch 1223, Loss: 1.392185\n", + "Epoch 1224, Loss: 1.392185\n", + "Epoch 1225, Loss: 1.392185\n", + "Epoch 1226, Loss: 1.374197\n", + "Epoch 1227, Loss: 1.374197\n", + "Epoch 1228, Loss: 1.374197\n", + "Epoch 1229, Loss: 1.374197\n", + "Epoch 1230, Loss: 1.374197\n", + "Epoch 1231, Loss: 1.374197\n", + "Epoch 1232, Loss: 1.374197\n", + "Epoch 1233, Loss: 1.374197\n", + "Epoch 1234, Loss: 1.374197\n", + "Epoch 1235, Loss: 1.374197\n", + "Epoch 1236, Loss: 1.374197\n", + "Epoch 1237, Loss: 1.374197\n", + "Epoch 1238, Loss: 1.374197\n", + "Epoch 1239, Loss: 1.374197\n", + "Epoch 1240, Loss: 1.374197\n", + "Epoch 1241, Loss: 1.374197\n", + "Epoch 1242, Loss: 1.374197\n", + "Epoch 1243, Loss: 1.374197\n", + "Epoch 1244, Loss: 1.374197\n", + "Epoch 1245, Loss: 1.374197\n", + "Epoch 1246, Loss: 1.374197\n", + "Epoch 1247, Loss: 1.374197\n", + "Epoch 1248, Loss: 1.374197\n", + "Epoch 1249, Loss: 1.374197\n", + "Epoch 1250, Loss: 1.374197\n", + "Epoch 1251, Loss: 1.374197\n", + "Epoch 1252, Loss: 1.374197\n", + "Epoch 1253, Loss: 1.374197\n", + "Epoch 1254, Loss: 1.374197\n", + "Epoch 1255, Loss: 1.374197\n", + "Epoch 1256, Loss: 1.374197\n", + "Epoch 1257, Loss: 1.374197\n", + "Epoch 1258, Loss: 1.374197\n", + "Epoch 1259, Loss: 1.374197\n", + "Epoch 1260, Loss: 1.374197\n", + "Epoch 1261, Loss: 1.374197\n", + "Epoch 1262, Loss: 1.374197\n", + "Epoch 1263, Loss: 1.374197\n", + "Epoch 1264, Loss: 1.374197\n", + "Epoch 1265, Loss: 1.374197\n", + "Epoch 1266, Loss: 1.374197\n", + "Epoch 1267, Loss: 1.374197\n", + "Epoch 1268, Loss: 1.374197\n", + "Epoch 1269, Loss: 1.374197\n", + "Epoch 1270, Loss: 1.374197\n", + "Epoch 1271, Loss: 1.374197\n", + "Epoch 1272, Loss: 1.374197\n", + "Epoch 1273, Loss: 1.374197\n", + "Epoch 1274, Loss: 1.374197\n", + "Epoch 1275, Loss: 1.374197\n", + "Epoch 1276, Loss: 1.374197\n", + "Epoch 1277, Loss: 1.374197\n", + "Epoch 1278, Loss: 1.374197\n", + "Epoch 1279, Loss: 1.374197\n", + "Epoch 1280, Loss: 1.374197\n", + "Epoch 1281, Loss: 1.374197\n", + "Epoch 1282, Loss: 1.374197\n", + "Epoch 1283, Loss: 1.374197\n", + "Epoch 1284, Loss: 1.374197\n", + "Epoch 1285, Loss: 1.374197\n", + "Epoch 1286, Loss: 1.374197\n", + "Epoch 1287, Loss: 1.374197\n", + "Epoch 1288, Loss: 1.374197\n", + "Epoch 1289, Loss: 1.374197\n", + "Epoch 1290, Loss: 1.374197\n", + "Epoch 1291, Loss: 1.374197\n", + "Epoch 1292, Loss: 1.374197\n", + "Epoch 1293, Loss: 1.374197\n", + "Epoch 1294, Loss: 1.374197\n", + "Epoch 1295, Loss: 1.374197\n", + "Epoch 1296, Loss: 1.374197\n", + "Epoch 1297, Loss: 1.374197\n", + "Epoch 1298, Loss: 1.374197\n", + "Epoch 1299, Loss: 1.374197\n", + "Epoch 1300, Loss: 1.374197\n", + "Epoch 1301, Loss: 1.374197\n", + "Epoch 1302, Loss: 1.374197\n", + "Epoch 1303, Loss: 1.374197\n", + "Epoch 1304, Loss: 1.374197\n", + "Epoch 1305, Loss: 1.374197\n", + "Epoch 1306, Loss: 1.374197\n", + "Epoch 1307, Loss: 1.374197\n", + "Epoch 1308, Loss: 1.374197\n", + "Epoch 1309, Loss: 1.374197\n", + "Epoch 1310, Loss: 1.374197\n", + "Epoch 1311, Loss: 1.374197\n", + "Epoch 1312, Loss: 1.374197\n", + "Epoch 1313, Loss: 1.374197\n", + "Epoch 1314, Loss: 1.374197\n", + "Epoch 1315, Loss: 1.374197\n", + "Epoch 1316, Loss: 1.374197\n", + "Epoch 1317, Loss: 1.374197\n", + "Epoch 1318, Loss: 1.374197\n", + "Epoch 1319, Loss: 1.374197\n", + "Epoch 1320, Loss: 1.374197\n", + "Epoch 1321, Loss: 1.374197\n", + "Epoch 1322, Loss: 1.327959\n", + "Epoch 1323, Loss: 1.327959\n", + "Epoch 1324, Loss: 1.327959\n", + "Epoch 1325, Loss: 1.327959\n", + "Epoch 1326, Loss: 1.327959\n", + "Epoch 1327, Loss: 1.327959\n", + "Epoch 1328, Loss: 1.327959\n", + "Epoch 1329, Loss: 1.327959\n", + "Epoch 1330, Loss: 1.327959\n", + "Epoch 1331, Loss: 1.327959\n", + "Epoch 1332, Loss: 1.327959\n", + "Epoch 1333, Loss: 1.327959\n", + "Epoch 1334, Loss: 1.327959\n", + "Epoch 1335, Loss: 1.327959\n", + "Epoch 1336, Loss: 1.327959\n", + "Epoch 1337, Loss: 1.327959\n", + "Epoch 1338, Loss: 1.327959\n", + "Epoch 1339, Loss: 1.327959\n", + "Epoch 1340, Loss: 1.327959\n", + "Epoch 1341, Loss: 1.327959\n", + "Epoch 1342, Loss: 1.327959\n", + "Epoch 1343, Loss: 1.327959\n", + "Epoch 1344, Loss: 1.327959\n", + "Epoch 1345, Loss: 1.327959\n", + "Epoch 1346, Loss: 1.327959\n", + "Epoch 1347, Loss: 1.327959\n", + "Epoch 1348, Loss: 1.327959\n", + "Epoch 1349, Loss: 1.327959\n", + "Epoch 1350, Loss: 1.327959\n", + "Epoch 1351, Loss: 1.327959\n", + "Epoch 1352, Loss: 1.327959\n", + "Epoch 1353, Loss: 1.327959\n", + "Epoch 1354, Loss: 1.327959\n", + "Epoch 1355, Loss: 1.327959\n", + "Epoch 1356, Loss: 1.327959\n", + "Epoch 1357, Loss: 1.295175\n", + "Epoch 1358, Loss: 1.295175\n", + "Epoch 1359, Loss: 1.295175\n", + "Epoch 1360, Loss: 1.295175\n", + "Epoch 1361, Loss: 1.295175\n", + "Epoch 1362, Loss: 1.295175\n", + "Epoch 1363, Loss: 1.295175\n", + "Epoch 1364, Loss: 1.295175\n", + "Epoch 1365, Loss: 1.295175\n", + "Epoch 1366, Loss: 1.295175\n", + "Epoch 1367, Loss: 1.295175\n", + "Epoch 1368, Loss: 1.295175\n", + "Epoch 1369, Loss: 1.295175\n", + "Epoch 1370, Loss: 1.295175\n", + "Epoch 1371, Loss: 1.295175\n", + "Epoch 1372, Loss: 1.295175\n", + "Epoch 1373, Loss: 1.295175\n", + "Epoch 1374, Loss: 1.295175\n", + "Epoch 1375, Loss: 1.295175\n", + "Epoch 1376, Loss: 1.295175\n", + "Epoch 1377, Loss: 1.295175\n", + "Epoch 1378, Loss: 1.295175\n", + "Epoch 1379, Loss: 1.295175\n", + "Epoch 1380, Loss: 1.295175\n", + "Epoch 1381, Loss: 1.295175\n", + "Epoch 1382, Loss: 1.295175\n", + "Epoch 1383, Loss: 1.295175\n", + "Epoch 1384, Loss: 1.295175\n", + "Epoch 1385, Loss: 1.295175\n", + "Epoch 1386, Loss: 1.295175\n", + "Epoch 1387, Loss: 1.295175\n", + "Epoch 1388, Loss: 1.295175\n", + "Epoch 1389, Loss: 1.295175\n", + "Epoch 1390, Loss: 1.295175\n", + "Epoch 1391, Loss: 1.295175\n", + "Epoch 1392, Loss: 1.295175\n", + "Epoch 1393, Loss: 1.295175\n", + "Epoch 1394, Loss: 1.295175\n", + "Epoch 1395, Loss: 1.295175\n", + "Epoch 1396, Loss: 1.295175\n", + "Epoch 1397, Loss: 1.295175\n", + "Epoch 1398, Loss: 1.295175\n", + "Epoch 1399, Loss: 1.295175\n", + "Epoch 1400, Loss: 1.295175\n", + "Epoch 1401, Loss: 1.295175\n", + "Epoch 1402, Loss: 1.295175\n", + "Epoch 1403, Loss: 1.295175\n", + "Epoch 1404, Loss: 1.295175\n", + "Epoch 1405, Loss: 1.295175\n", + "Epoch 1406, Loss: 1.295175\n", + "Epoch 1407, Loss: 1.295175\n", + "Epoch 1408, Loss: 1.295175\n", + "Epoch 1409, Loss: 1.295175\n", + "Epoch 1410, Loss: 1.295175\n", + "Epoch 1411, Loss: 1.295175\n", + "Epoch 1412, Loss: 1.295175\n", + "Epoch 1413, Loss: 1.295175\n", + "Epoch 1414, Loss: 1.295175\n", + "Epoch 1415, Loss: 1.295175\n", + "Epoch 1416, Loss: 1.295175\n", + "Epoch 1417, Loss: 1.295175\n", + "Epoch 1418, Loss: 1.295175\n", + "Epoch 1419, Loss: 1.295175\n", + "Epoch 1420, Loss: 1.295175\n", + "Epoch 1421, Loss: 1.295175\n", + "Epoch 1422, Loss: 1.295175\n", + "Epoch 1423, Loss: 1.295175\n", + "Epoch 1424, Loss: 1.295175\n", + "Epoch 1425, Loss: 1.295175\n", + "Epoch 1426, Loss: 1.295175\n", + "Epoch 1427, Loss: 1.295175\n", + "Epoch 1428, Loss: 1.295175\n", + "Epoch 1429, Loss: 1.282940\n", + "Epoch 1430, Loss: 1.282940\n", + "Epoch 1431, Loss: 1.282940\n", + "Epoch 1432, Loss: 1.282940\n", + "Epoch 1433, Loss: 1.282940\n", + "Epoch 1434, Loss: 1.282940\n", + "Epoch 1435, Loss: 1.282940\n", + "Epoch 1436, Loss: 1.282940\n", + "Epoch 1437, Loss: 1.282940\n", + "Epoch 1438, Loss: 1.282940\n", + "Epoch 1439, Loss: 1.268425\n", + "Epoch 1440, Loss: 1.268425\n", + "Epoch 1441, Loss: 1.268425\n", + "Epoch 1442, Loss: 1.268425\n", + "Epoch 1443, Loss: 1.268425\n", + "Epoch 1444, Loss: 1.268425\n", + "Epoch 1445, Loss: 1.268425\n", + "Epoch 1446, Loss: 1.268425\n", + "Epoch 1447, Loss: 1.268425\n", + "Epoch 1448, Loss: 1.268425\n", + "Epoch 1449, Loss: 1.268425\n", + "Epoch 1450, Loss: 1.268425\n", + "Epoch 1451, Loss: 1.268425\n", + "Epoch 1452, Loss: 1.268425\n", + "Epoch 1453, Loss: 1.268425\n", + "Epoch 1454, Loss: 1.268425\n", + "Epoch 1455, Loss: 1.268425\n", + "Epoch 1456, Loss: 1.268425\n", + "Epoch 1457, Loss: 1.268425\n", + "Epoch 1458, Loss: 1.268425\n", + "Epoch 1459, Loss: 1.268425\n", + "Epoch 1460, Loss: 1.268425\n", + "Epoch 1461, Loss: 1.268425\n", + "Epoch 1462, Loss: 1.268425\n", + "Epoch 1463, Loss: 1.268425\n", + "Epoch 1464, Loss: 1.268425\n", + "Epoch 1465, Loss: 1.268425\n", + "Epoch 1466, Loss: 1.268425\n", + "Epoch 1467, Loss: 1.268425\n", + "Epoch 1468, Loss: 1.268425\n", + "Epoch 1469, Loss: 1.268425\n", + "Epoch 1470, Loss: 1.268425\n", + "Epoch 1471, Loss: 1.268425\n", + "Epoch 1472, Loss: 1.268425\n", + "Epoch 1473, Loss: 1.268425\n", + "Epoch 1474, Loss: 1.268425\n", + "Epoch 1475, Loss: 1.267470\n", + "Epoch 1476, Loss: 1.234429\n", + "Epoch 1477, Loss: 1.234429\n", + "Epoch 1478, Loss: 1.234429\n", + "Epoch 1479, Loss: 1.234429\n", + "Epoch 1480, Loss: 1.234429\n", + "Epoch 1481, Loss: 1.234429\n", + "Epoch 1482, Loss: 1.234429\n", + "Epoch 1483, Loss: 1.234429\n", + "Epoch 1484, Loss: 1.234429\n", + "Epoch 1485, Loss: 1.234429\n", + "Epoch 1486, Loss: 1.234429\n", + "Epoch 1487, Loss: 1.234429\n", + "Epoch 1488, Loss: 1.234429\n", + "Epoch 1489, Loss: 1.234429\n", + "Epoch 1490, Loss: 1.234429\n", + "Epoch 1491, Loss: 1.234429\n", + "Epoch 1492, Loss: 1.234429\n", + "Epoch 1493, Loss: 1.234429\n", + "Epoch 1494, Loss: 1.234429\n", + "Epoch 1495, Loss: 1.234429\n", + "Epoch 1496, Loss: 1.234429\n", + "Epoch 1497, Loss: 1.234429\n", + "Epoch 1498, Loss: 1.234429\n", + "Epoch 1499, Loss: 1.234429\n", + "Epoch 1500, Loss: 1.234429\n", + "Epoch 1501, Loss: 1.234429\n", + "Epoch 1502, Loss: 1.234429\n", + "Epoch 1503, Loss: 1.234429\n", + "Epoch 1504, Loss: 1.234429\n", + "Epoch 1505, Loss: 1.234429\n", + "Epoch 1506, Loss: 1.234429\n", + "Epoch 1507, Loss: 1.234429\n", + "Epoch 1508, Loss: 1.234429\n", + "Epoch 1509, Loss: 1.234429\n", + "Epoch 1510, Loss: 1.234429\n", + "Epoch 1511, Loss: 1.234429\n", + "Epoch 1512, Loss: 1.234429\n", + "Epoch 1513, Loss: 1.234429\n", + "Epoch 1514, Loss: 1.234429\n", + "Epoch 1515, Loss: 1.234429\n", + "Epoch 1516, Loss: 1.234429\n", + "Epoch 1517, Loss: 1.234429\n", + "Epoch 1518, Loss: 1.234429\n", + "Epoch 1519, Loss: 1.234429\n", + "Epoch 1520, Loss: 1.234429\n", + "Epoch 1521, Loss: 1.234429\n", + "Epoch 1522, Loss: 1.234429\n", + "Epoch 1523, Loss: 1.234429\n", + "Epoch 1524, Loss: 1.234429\n", + "Epoch 1525, Loss: 1.234429\n", + "Epoch 1526, Loss: 1.234429\n", + "Epoch 1527, Loss: 1.234429\n", + "Epoch 1528, Loss: 1.234429\n", + "Epoch 1529, Loss: 1.234429\n", + "Epoch 1530, Loss: 1.234429\n", + "Epoch 1531, Loss: 1.234429\n", + "Epoch 1532, Loss: 1.234429\n", + "Epoch 1533, Loss: 1.234429\n", + "Epoch 1534, Loss: 1.234429\n", + "Epoch 1535, Loss: 1.234429\n", + "Epoch 1536, Loss: 1.234429\n", + "Epoch 1537, Loss: 1.234429\n", + "Epoch 1538, Loss: 1.234429\n", + "Epoch 1539, Loss: 1.234429\n", + "Epoch 1540, Loss: 1.234429\n", + "Epoch 1541, Loss: 1.234429\n", + "Epoch 1542, Loss: 1.234429\n", + "Epoch 1543, Loss: 1.234429\n", + "Epoch 1544, Loss: 1.234429\n", + "Epoch 1545, Loss: 1.234429\n", + "Epoch 1546, Loss: 1.234429\n", + "Epoch 1547, Loss: 1.234429\n", + "Epoch 1548, Loss: 1.234429\n", + "Epoch 1549, Loss: 1.234429\n", + "Epoch 1550, Loss: 1.234429\n", + "Epoch 1551, Loss: 1.234429\n", + "Epoch 1552, Loss: 1.234429\n", + "Epoch 1553, Loss: 1.234429\n", + "Epoch 1554, Loss: 1.234429\n", + "Epoch 1555, Loss: 1.234429\n", + "Epoch 1556, Loss: 1.234429\n", + "Epoch 1557, Loss: 1.234429\n", + "Epoch 1558, Loss: 1.234429\n", + "Epoch 1559, Loss: 1.234429\n", + "Epoch 1560, Loss: 1.234429\n", + "Epoch 1561, Loss: 1.234429\n", + "Epoch 1562, Loss: 1.234429\n", + "Epoch 1563, Loss: 1.234429\n", + "Epoch 1564, Loss: 1.234429\n", + "Epoch 1565, Loss: 1.234429\n", + "Epoch 1566, Loss: 1.234429\n", + "Epoch 1567, Loss: 1.234429\n", + "Epoch 1568, Loss: 1.234429\n", + "Epoch 1569, Loss: 1.234429\n", + "Epoch 1570, Loss: 1.234429\n", + "Epoch 1571, Loss: 1.234429\n", + "Epoch 1572, Loss: 1.234429\n", + "Epoch 1573, Loss: 1.234429\n", + "Epoch 1574, Loss: 1.234429\n", + "Epoch 1575, Loss: 1.234429\n", + "Epoch 1576, Loss: 1.225872\n", + "Epoch 1577, Loss: 1.205730\n", + "Epoch 1578, Loss: 1.205730\n", + "Epoch 1579, Loss: 1.205730\n", + "Epoch 1580, Loss: 1.205730\n", + "Epoch 1581, Loss: 1.205730\n", + "Epoch 1582, Loss: 1.205730\n", + "Epoch 1583, Loss: 1.205730\n", + "Epoch 1584, Loss: 1.205730\n", + "Epoch 1585, Loss: 1.205730\n", + "Epoch 1586, Loss: 1.205730\n", + "Epoch 1587, Loss: 1.205730\n", + "Epoch 1588, Loss: 1.205730\n", + "Epoch 1589, Loss: 1.205730\n", + "Epoch 1590, Loss: 1.205730\n", + "Epoch 1591, Loss: 1.205730\n", + "Epoch 1592, Loss: 1.205730\n", + "Epoch 1593, Loss: 1.205730\n", + "Epoch 1594, Loss: 1.205730\n", + "Epoch 1595, Loss: 1.205730\n", + "Epoch 1596, Loss: 1.205730\n", + "Epoch 1597, Loss: 1.205730\n", + "Epoch 1598, Loss: 1.205730\n", + "Epoch 1599, Loss: 1.205730\n", + "Epoch 1600, Loss: 1.205730\n", + "Epoch 1601, Loss: 1.205730\n", + "Epoch 1602, Loss: 1.205730\n", + "Epoch 1603, Loss: 1.205730\n", + "Epoch 1604, Loss: 1.205730\n", + "Epoch 1605, Loss: 1.205730\n", + "Epoch 1606, Loss: 1.195645\n", + "Epoch 1607, Loss: 1.195645\n", + "Epoch 1608, Loss: 1.195645\n", + "Epoch 1609, Loss: 1.195645\n", + "Epoch 1610, Loss: 1.195645\n", + "Epoch 1611, Loss: 1.195645\n", + "Epoch 1612, Loss: 1.195645\n", + "Epoch 1613, Loss: 1.195645\n", + "Epoch 1614, Loss: 1.195645\n", + "Epoch 1615, Loss: 1.195645\n", + "Epoch 1616, Loss: 1.195645\n", + "Epoch 1617, Loss: 1.195645\n", + "Epoch 1618, Loss: 1.195645\n", + "Epoch 1619, Loss: 1.195645\n", + "Epoch 1620, Loss: 1.195645\n", + "Epoch 1621, Loss: 1.195645\n", + "Epoch 1622, Loss: 1.195645\n", + "Epoch 1623, Loss: 1.195645\n", + "Epoch 1624, Loss: 1.195645\n", + "Epoch 1625, Loss: 1.195645\n", + "Epoch 1626, Loss: 1.195645\n", + "Epoch 1627, Loss: 1.195645\n", + "Epoch 1628, Loss: 1.195645\n", + "Epoch 1629, Loss: 1.195645\n", + "Epoch 1630, Loss: 1.195645\n", + "Epoch 1631, Loss: 1.195645\n", + "Epoch 1632, Loss: 1.195645\n", + "Epoch 1633, Loss: 1.195645\n", + "Epoch 1634, Loss: 1.195645\n", + "Epoch 1635, Loss: 1.195645\n", + "Epoch 1636, Loss: 1.195645\n", + "Epoch 1637, Loss: 1.195645\n", + "Epoch 1638, Loss: 1.195645\n", + "Epoch 1639, Loss: 1.195645\n", + "Epoch 1640, Loss: 1.195645\n", + "Epoch 1641, Loss: 1.195645\n", + "Epoch 1642, Loss: 1.195645\n", + "Epoch 1643, Loss: 1.195645\n", + "Epoch 1644, Loss: 1.195645\n", + "Epoch 1645, Loss: 1.195645\n", + "Epoch 1646, Loss: 1.195645\n", + "Epoch 1647, Loss: 1.195645\n", + "Epoch 1648, Loss: 1.195645\n", + "Epoch 1649, Loss: 1.195645\n", + "Epoch 1650, Loss: 1.195645\n", + "Epoch 1651, Loss: 1.195645\n", + "Epoch 1652, Loss: 1.195645\n", + "Epoch 1653, Loss: 1.195645\n", + "Epoch 1654, Loss: 1.195645\n", + "Epoch 1655, Loss: 1.195645\n", + "Epoch 1656, Loss: 1.195645\n", + "Epoch 1657, Loss: 1.195645\n", + "Epoch 1658, Loss: 1.195645\n", + "Epoch 1659, Loss: 1.195645\n", + "Epoch 1660, Loss: 1.195645\n", + "Epoch 1661, Loss: 1.195645\n", + "Epoch 1662, Loss: 1.195645\n", + "Epoch 1663, Loss: 1.195645\n", + "Epoch 1664, Loss: 1.195645\n", + "Epoch 1665, Loss: 1.195645\n", + "Epoch 1666, Loss: 1.195645\n", + "Epoch 1667, Loss: 1.195645\n", + "Epoch 1668, Loss: 1.195645\n", + "Epoch 1669, Loss: 1.195645\n", + "Epoch 1670, Loss: 1.195645\n", + "Epoch 1671, Loss: 1.195645\n", + "Epoch 1672, Loss: 1.195645\n", + "Epoch 1673, Loss: 1.195645\n", + "Epoch 1674, Loss: 1.195645\n", + "Epoch 1675, Loss: 1.195645\n", + "Epoch 1676, Loss: 1.195645\n", + "Epoch 1677, Loss: 1.195645\n", + "Epoch 1678, Loss: 1.195645\n", + "Epoch 1679, Loss: 1.195645\n", + "Epoch 1680, Loss: 1.195645\n", + "Epoch 1681, Loss: 1.195645\n", + "Epoch 1682, Loss: 1.195645\n", + "Epoch 1683, Loss: 1.195645\n", + "Epoch 1684, Loss: 1.195645\n", + "Epoch 1685, Loss: 1.195645\n", + "Epoch 1686, Loss: 1.195645\n", + "Epoch 1687, Loss: 1.195645\n", + "Epoch 1688, Loss: 1.195645\n", + "Epoch 1689, Loss: 1.195645\n", + "Epoch 1690, Loss: 1.195645\n", + "Epoch 1691, Loss: 1.195645\n", + "Epoch 1692, Loss: 1.195645\n", + "Epoch 1693, Loss: 1.195645\n", + "Epoch 1694, Loss: 1.195645\n", + "Epoch 1695, Loss: 1.195645\n", + "Epoch 1696, Loss: 1.195645\n", + "Epoch 1697, Loss: 1.195645\n", + "Epoch 1698, Loss: 1.195645\n", + "Epoch 1699, Loss: 1.195645\n", + "Epoch 1700, Loss: 1.195645\n", + "Epoch 1701, Loss: 1.195645\n", + "Epoch 1702, Loss: 1.195645\n", + "Epoch 1703, Loss: 1.195645\n", + "Epoch 1704, Loss: 1.195645\n", + "Epoch 1705, Loss: 1.195645\n", + "Epoch 1706, Loss: 1.195645\n", + "stopped early after 1707 epochs, with a loss of: 1.1956449747085571\n" + ] + }, + { + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjsAAAGdCAYAAAD0e7I1AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjYsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvq6yFwwAAAAlwSFlzAAAPYQAAD2EBqD+naQAAO/VJREFUeJzt3Xt8lOWd///3PZmcQxhOMcRwFCJWMdBW6CpdqLLCKr9apRYWrQdEa1Hrfl1+XaqsrRS02LVru2hhJVbwzPItPw9VoVVrUaioFIGARgiBcEiTaCaYcyZz/f64mTuMBGQOMPeE1/Px4DGH+5o71/3hTvLOdd0HyxhjBAAA0E15Et0BAACAk4mwAwAAujXCDgAA6NYIOwAAoFsj7AAAgG6NsAMAALo1wg4AAOjWCDsAAKBbI+wAAIBujbADAAC6NW+iO3Cy1dXVKRAIxHWd/fr1U01NTVzXmYyog406dKIWNupgow426mA70Tp4vV716tUrrl+724edQCCg9vb2uK3PsixnvafzbcWog406dKIWNupgow426mBLdB2YxgIAAN0aYQcAAHRrhB0AANCtEXYAAEC3RtgBAADdGmEHAAB0a4QdAADQrRF2AABAt0bYAQAA3RphBwAAdGuEHQAA0K0RdgAAQLfW7W8EGm/Bd15X3adVMmefLxWdl+juAACAL8HIToRM6SY1vPicTOXuRHcFAACcAMJOtILBRPcAAACcAMJOpCxKBgBAMuE3d6Ssw4+GkR0AAJIBYSdSoZEdk9huAACAE0PYiRQjOwAAJBXCTqSckR2GdgAASAaEnUhZh4d2CDsAACQFwk6kCDsAACQVwk6kQmEHAAAkBcJOpJyRHQ5QBgAgGRB2IhYKO4ntBQAAODGEnUh57LBjGNkBACApEHYixgHKAAAkE8JOpDgbCwCApELYiRRhBwCApELYiRRhBwCApELYiRRhBwCApELYiRRhBwCApOKNpPHq1au1ceNG7d+/X2lpaSoqKtK1116rgoICp83PfvYzbd++PexzEydO1C233OK8rq2t1WOPPabS0lJlZGRo/PjxmjFjhlJSUpw2paWlWrFihSorK9WnTx9NnTpVEyZMiHIz48i5gjJhBwCAZBBR2Nm+fbsmTZqks846Sx0dHXr22We1YMEC/epXv1JGRobT7pJLLtG0adOc12lpac7zYDCoBx54QD6fTwsWLFBdXZ0WL16slJQUzZgxQ5JUXV2tX/ziF/qnf/on3XHHHdq2bZuWLFkin8+nUaNGxbjJMQrd9TxI2AEAIBlENI11zz33aMKECRowYIAGDx6s2267TbW1tSovLw9rl56eLp/P5/zLyspyln344Yfat2+f7rjjDg0ePFijR4/WtGnTtGbNGgUCAUnS2rVrlZeXp+uuu06FhYWaPHmyvvGNb+gPf/hDHDY5Xgg7AAAkg4hGdr6oqalJkpSTkxP2/rp167Ru3Tr5fD597Wtf09SpU5Weni5JKisr08CBA+Xz+Zz2o0aN0rJly1RZWakhQ4bok08+0ciRI8PWWVxcrCeeeOKYfWlvb1d7e7vz2rIsZWZmOs/jxfJ4ZGRfWjCe6002oW0/nWsgUYcjUQsbdbBRBxt1sCW6DlGHnWAwqCeeeEJnn322Bg4c6Lw/btw49e3bV71799aePXv09NNP68CBA5ozZ44kye/3hwUdSerZs6ezLPQYeu/INs3NzWprawubFgtZvXq1Vq1a5bweMmSIFi1apH79+kW7iV3y5+Toc0lZmZnq1b9/XNedjPLz8xPdBVegDp2ohY062KiDjTrYElWHqMNOSUmJKisrNX/+/LD3J06c6DwfOHCgevXqpfnz56uqquqkbuSVV16pKVOmOK9D6bGmpsaZHouH4OHRrKbGRrUcPBi39SYby7KUn5+vqqoqmdP4zDTq0Ila2KiDjTrYqIMtkjp4vd64D1REFXZKSkq0adMm3XffferTp89x2w4bNkySnLDj8/m0c+fOsDb19fWS5Iz4+Hw+570j22RmZnY5qiNJqampSk1N7XJZPHcwczhEmWDHab3jhhhjqIOow5GohY062KiDjTrYElWHiA5QNsaopKREGzdu1L333qu8vLwv/UxFRYUkqVevXpKkoqIi7d27NyzMbNmyRZmZmSosLJQkDR8+XFu3bg1bz5YtW1RUVBRJd08Ky3P49PiOjsR2BAAAnJCIwk5JSYnWrVunO++8U5mZmfL7/fL7/Wpra5Nkj96sWrVK5eXlqq6u1vvvv69HHnlE55xzjgYNGiTJPtC4sLBQixcvVkVFhTZv3qznnntOkyZNckZmLr30UlVXV+upp57S/v37tWbNGm3YsEGXX355nDc/CimEHQAAkklE01hr166VZF848EizZ8/WhAkT5PV6tXXrVr3yyitqbW1Vnz59NHbsWF111VVOW4/Ho7lz52rZsmWaN2+e0tPTNX78+LDr8uTl5Wnu3Llavny5XnnlFfXp00e33npr4q+xI0new1NlcTwOCAAAnDwRhZ2VK1ced3nfvn113333fel6+vXrp5/85CfHbXPuuefqwQcfjKR7p4YzskPYAQAgGXBvrEilHM6HTGMBAJAUCDuRYmQHAICkQtiJFCM7AAAkFcJOpBjZAQAgqRB2IuW1R3YMYQcAgKRA2IkU01gAACQVwk6kQtNYXGcHAICkQNiJFCM7AAAkFcJOhCwOUAYAIKkQdiIVul0EYQcAgKRA2IkUIzsAACQVwk6kOGYHAICkQtiJVCjscDYWAABJgbATKaaxAABIKoSdSHmZxgIAIJkQdiLFNBYAAEmFsBOp0DSWCcoEGd0BAMDtCDuRCl1nR2IqCwCAJEDYiVRoZEfiIGUAAJIAYSdSoQOUJUZ2AABIAoSdCFmeFMmy7BccpAwAgOsRdqLhXEWZsAMAgNsRdqJgpR4+SJmRHQAAXI+wEwWL+2MBAJA0CDvRCJ2RxXV2AABwPcJOFCwvx+wAAJAsCDvRYBoLAICkQdiJAiM7AAAkD8JONBjZAQAgaRB2omCFDlAm7AAA4HqEnWgwsgMAQNIg7ESBY3YAAEgehJ1oeBnZAQAgWRB2ohC6grJhZAcAANcj7ETBYmQHAICkQdiJhofbRQAAkCwIO1HgAGUAAJIHYScanHoOAEDSIOxEgZEdAACSB2EnGhygDABA0iDsRCF06rkCjOwAAOB2hJ1ohO6NFQwmth8AAOBLEXai4IzscMwOAACuR9iJBsfsAACQNAg7UWBkBwCA5EHYiQK3iwAAIHkQdqKRwu0iAABIFoSdKFhcQRkAgKRB2ImGl+vsAACQLAg7UWBkBwCA5EHYiQb3xgIAIGkQdqIQOhvLMLIDAIDreSNpvHr1am3cuFH79+9XWlqaioqKdO2116qgoMBp09bWphUrVmj9+vVqb29XcXGxZs2aJZ/P57Spra3VY489ptLSUmVkZGj8+PGaMWOGUkJnOUkqLS3VihUrVFlZqT59+mjq1KmaMGFCzBscFx7OxgIAIFlENLKzfft2TZo0SQsXLtS8efPU0dGhBQsWqKWlxWmzfPlyffDBB7rrrrt03333qa6uTg899JCzPBgM6oEHHlAgENCCBQt022236c9//rOef/55p011dbV+8Ytf6Nxzz9WDDz6oyy+/XEuWLNHmzZtj3+I4sJjGAgAgaUQUdu655x5NmDBBAwYM0ODBg3XbbbeptrZW5eXlkqSmpia98cYbuv7663Xeeedp6NChmj17tj7++GOVlZVJkj788EPt27dPd9xxhwYPHqzRo0dr2rRpWrNmjQKHz25au3at8vLydN1116mwsFCTJ0/WN77xDf3hD3+I8+ZHiQOUAQBIGhFNY31RU1OTJCknJ0eSVF5ero6ODo0cOdJpc+aZZ6pv374qKytTUVGRysrKNHDgwLBprVGjRmnZsmWqrKzUkCFD9Mknn4StQ5KKi4v1xBNPHLMv7e3tam9vd15blqXMzEznebxYlhV2BeV4rjuZhLb7dN3+EOrQiVrYqIONOtiogy3RdYg67ASDQT3xxBM6++yzNXDgQEmS3++X1+tVdnZ2WNuePXvK7/c7bY4MOqHloWWhx9B7R7Zpbm5WW1ub0tLSjurP6tWrtWrVKuf1kCFDtGjRIvXr1y/aTTym5t0fSZLSUjw6o3//uK8/meTn5ye6C65AHTpRCxt1sFEHG3WwJaoOUYedkpISVVZWav78+fHsT9SuvPJKTZkyxXkdSo81NTXO9Fg8WJalnodHdtqam3Xw4MG4rTuZWJal/Px8VVVVyRiT6O4kDHXoRC1s1MFGHWzUwRZJHbxeb9wHKqIKOyUlJdq0aZPuu+8+9enTx3nf5/MpEAiosbExbHSnvr7eGc3x+XzauXNn2Prq6+udZaHH0HtHtsnMzOxyVEeSUlNTlZqa2uWyeO9gR15U8HTeeSW7tqd7DSTqcCRqYaMONupgow62RNUhogOUjTEqKSnRxo0bde+99yovLy9s+dChQ5WSkqKtW7c67x04cEC1tbUqKiqSJBUVFWnv3r1hYWbLli3KzMxUYWGhJGn48OFh6wi1Ca0j4VI4GwsAgGQRUdgpKSnRunXrdOeddyozM1N+v19+v19tbW2SpKysLF188cVasWKFtm3bpvLycj366KMqKipygkpxcbEKCwu1ePFiVVRUaPPmzXruuec0adIkZ2Tm0ksvVXV1tZ566int379fa9as0YYNG3T55ZfHefOjc+QBygAAwN0imsZau3atJOlnP/tZ2PuzZ892Lvh3/fXXy7IsPfTQQwoEAs5FBUM8Ho/mzp2rZcuWad68eUpPT9f48eM1bdo0p01eXp7mzp2r5cuX65VXXlGfPn106623atSoUdFtZbwxsgMAQNKwTDefRKypqQk7JT1WlmWpT2O9/n7ntZKvj1J++bu4rTuZWJal/v376+DBg6f1PDR16EQtbNTBRh1s1MEWSR1SU1PjfoAy98aKRgq3iwAAIFkQdqJgcQVlAACSBmEnGtwbCwCApEHYiQJnYwEAkDwIO1GwOBsLAICkQdiJRmhkJxg8rY+uBwAgGRB2omB5UjpfMJUFAICrEXai4T3iWoyEHQAAXI2wEwUrLOxw3A4AAG5G2IlGCiM7AAAkC8JOFCyPR7IOl46RHQAAXI2wE62UUNhhZAcAADcj7EQrNJXF/bEAAHA1wk60QjcDZRoLAABXI+xEi5uBAgCQFAg70WJkBwCApEDYiRYjOwAAJAXCTrRCt4wg7AAA4GqEnWilEHYAAEgGhJ1oOdNYHLMDAICbEXaixcgOAABJgbATLS8jOwAAJAPCTrQY2QEAICkQdqJkHT4by3C7CAAAXI2wEy0uKggAQFIg7ESLiwoCAJAUCDvRYmQHAICkQNiJFiM7AAAkBcJOtDgbCwCApEDYiRZhBwCApEDYiRa3iwAAICkQdqLFyA4AAEmBsBMtRnYAAEgKhJ1oMbIDAEBSIOxE6/DtIsTtIgAAcDXCTrQY2QEAICkQdqLFMTsAACQFwk6ULEZ2AABICoSdaIVGdgKM7AAA4GaEnWgxsgMAQFIg7EQrhbOxAABIBoSdaB2exjIcoAwAgKsRdqLFNBYAAEmBsBMtTj0HACApEHaixcgOAABJgbATLSfsMLIDAICbEXai5ZyNFUxsPwAAwHERdqLFRQUBAEgKhJ1occwOAABJgbATLc7GAgAgKRB2osSNQAEASA7eSD+wfft2vfjii9q9e7fq6uo0Z84cjRkzxln+yCOP6K233gr7THFxse655x7ndUNDgx5//HF98MEHsixLY8eO1Y033qiMjAynzZ49e1RSUqJdu3YpNzdXkydP1hVXXBHNNp4cjOwAAJAUIg47ra2tGjx4sC6++GL953/+Z5dtRo0apdmzZ3d+EW/4l/nNb36juro6zZs3Tx0dHXr00Ue1dOlS3XnnnZKkpqYmLViwQCNHjtTNN9+svXv36re//a2ys7M1ceLESLt8cjCyAwBAUog47IwePVqjR48+/kq9Xvl8vi6X7du3T5s3b9YDDzygs846S5I0c+ZMPfDAA/r+97+v3r176+2331YgENDs2bPl9Xo1YMAAVVRU6OWXX3ZR2GFkBwCAZBBx2DkR27dv16xZs5Sdna3zzjtP06dPV48ePSRJZWVlys7OdoKOJI0cOVKWZWnnzp0aM2aMysrKdM4554SNCBUXF+uFF15QQ0ODcnJyjvqa7e3tam9vd15blqXMzEznebyE1mU5YacjrutPFk4dTsNtPxJ16EQtbNTBRh1s1MGW6DrEPeyMGjVKY8eOVV5enqqqqvTss8/q/vvv18KFC+XxeOT3+5Wbmxv2mZSUFOXk5Mjv90uS/H6/8vLywtqERor8fn+XYWf16tVatWqV83rIkCFatGiR+vXrF98NPKxvfr6qJFnGqH///iflaySD/Pz8RHfBFahDJ2phow426mCjDrZE1SHuYeeiiy5yng8cOFCDBg3SHXfcodLSUo0cOTLeX85x5ZVXasqUKc7rUHqsqalRII4X/rMsS/n5+ar9rE6SZALtOnjwYNzWnyxCdaiqqpIxJtHdSRjq0Ila2KiDjTrYqIMtkjp4vd64D1SclGmsI51xxhnq0aOHqqqqNHLkSPl8Ph06dCisTUdHhxoaGpzRG5/P54zyhIReH+tYoNTUVKWmpna57GTsYCbl8Fn7HYHTegc2xpzW2x9CHTpRCxt1sFEHG3WwJaoOJ/06O59++qkaGhrUq1cvSVJRUZEaGxtVXl7utNm2bZuMMRo2bJjTZseOHWEjMlu2bFFBQUGXU1gJETpmJxhkBwYAwMUiDjstLS2qqKhQRUWFJKm6uloVFRWqra1VS0uLnnzySZWVlam6ulpbt27Vgw8+qPz8fBUXF0uSCgsLNWrUKC1dulQ7d+7URx99pMcff1wXXnihevfuLUkaN26cvF6vlixZosrKSq1fv16vvvpq2DRVwoVOPZc4IwsAABeLeBpr165duu+++5zXK1askCSNHz/euSbOW2+9pcbGRvXu3Vvnn3++pk2bFjbF9KMf/UglJSWaP3++c1HBmTNnOsuzsrI0b948lZSUaO7cuerRo4emTp3qntPOpc6RHcm+1o636yk0AACQWBGHnXPPPVcrV6485vIjr5R8LDk5Oc4FBI9l0KBBmj9/fqTdO3UY2QEAIClwb6xoeY4MO1xFGQAAtyLsRMnyeCSr84wsAADgToSdWDj3xwomth8AAOCYCDux4P5YAAC4HmEnFtz5HAAA1yPsxMIJO4zsAADgVoSdWBxx53MAAOBOhJ1YMLIDAIDrEXZiwcgOAACuR9iJBSM7AAC4HmEnFpyNBQCA6xF2YhGaxgoSdgAAcCvCTiyYxgIAwPUIO7FgGgsAANcj7MTi8DSWCTCyAwCAWxF2YsHIDgAArkfYiQU3AgUAwPUIO7FgZAcAANcj7MTA4grKAAC4HmEnFh5OPQcAwO0IO7EITWNxUUEAAFyLsBMLL9NYAAC4HWEnFlxBGQAA1yPsxIIDlAEAcD3CTiwY2QEAwPUIO7HgOjsAALgeYScWXEEZAADXI+zEgpEdAABcj7ATCw9hBwAAtyPsxIKzsQAAcD3CTiw4GwsAANcj7MTi8MiOYWQHAADXIuzEgpEdAABcj7ATC47ZAQDA9Qg7sWBkBwAA1yPsxIKRHQAAXI+wEwOLkR0AAFyPsBOLUNgJBhPbDwAAcEyEnVgwsgMAgOsRdmLBMTsAALgeYScWjOwAAOB6hJ1YMLIDAIDrEXZiwcgOAACuR9iJBSM7AAC4HmEnFozsAADgeoSdWDCyAwCA6xF2YuE5XD7CDgAArkXYiQUjOwAAuB5hJxbezmN2jDGJ7QsAAOgSYScWoZEdiftjAQDgUoSdWITOxpI4IwsAAJci7MTiyJEdjtsBAMCVvF/eJNz27dv14osvavfu3aqrq9OcOXM0ZswYZ7kxRitXrtTrr7+uxsZGjRgxQrNmzVL//v2dNg0NDXr88cf1wQcfyLIsjR07VjfeeKMyMjKcNnv27FFJSYl27dql3NxcTZ48WVdccUWMmxtnjOwAAOB6EY/stLa2avDgwbrpppu6XP7CCy/o1Vdf1c0336z7779f6enpWrhwodra2pw2v/nNb1RZWal58+Zp7ty52rFjh5YuXeosb2pq0oIFC9S3b1/94he/0LXXXqv//d//1Z/+9KcoNvHksTwpkmXZLxjZAQDAlSIOO6NHj9b06dPDRnNCjDF65ZVXdNVVV+mCCy7QoEGDdPvtt6uurk7vvfeeJGnfvn3avHmzbr31Vg0fPlwjRozQzJkztX79en322WeSpLfffluBQECzZ8/WgAEDdNFFF+mf//mf9fLLL8e4uSeBh6soAwDgZhFPYx1PdXW1/H6/zj//fOe9rKwsDRs2TGVlZbroootUVlam7OxsnXXWWU6bkSNHyrIs7dy5U2PGjFFZWZnOOecceb2d3SsuLtYLL7yghoYG5eTkHPW129vb1d7e7ry2LEuZmZnO83gJrctZZ0qK1BGQFQzG9eu43VF1OE1Rh07UwkYdbNTBRh1sia5DXMOO3++XJPXs2TPs/Z49ezrL/H6/cnNzw5anpKQoJycnrE1eXl5YG5/P5yzrKuysXr1aq1atcl4PGTJEixYtUr9+/WLYomPLz8+XJO1LTZVpa1W/Pr2VesRxSaeLUB1Od9ShE7WwUQcbdbBRB1ui6hDXsJNIV155paZMmeK8DqXHmpoaBQLxm2KyLEv5+fmqqqqSMUbGsmcCaw4elOVJi9vXcbsv1uF0RR06UQsbdbBRBxt1sEVSB6/XG/eBiriGndDoS319vXr16uW8X19fr8GDBzttDh06FPa5jo4ONTQ0OJ/3+XzOKE9I6HWozRelpqYqNTW1y2UnYwczxtjrPXz6uQkEpNNwR3bqcJqjDp2ohY062KiDjTrYElWHuF5nJy8vTz6fT1u3bnXea2pq0s6dO1VUVCRJKioqUmNjo8rLy50227ZtkzFGw4YNc9rs2LEjbERmy5YtKigo6HIKK6FCp59zNhYAAK4UcdhpaWlRRUWFKioqJNkHJVdUVKi2tlaWZemyyy7T73//e73//vvau3evFi9erF69eumCCy6QJBUWFmrUqFFaunSpdu7cqY8++kiPP/64LrzwQvXu3VuSNG7cOHm9Xi1ZskSVlZVav369Xn311bBpKtdI4WwsAADcLOJprF27dum+++5zXq9YsUKSNH78eN1222264oor1NraqqVLl6qpqUkjRozQ3XffrbS0zuNZfvSjH6mkpETz5893Lio4c+ZMZ3lWVpbmzZunkpISzZ07Vz169NDUqVM1ceLEWLb15ODO5wAAuFrEYefcc8/VypUrj7ncsixNmzZN06ZNO2abnJwc3Xnnncf9OoMGDdL8+fMj7d6px8gOAACuxr2xYsXIDgAArkbYiRUjOwAAuBphJ1ahqzwTdgAAcCXCTqyOvM4OAABwHcJOrLjODgAArkbYiZX38FWbmcYCAMCVCDux4gBlAABcjbATI4tTzwEAcDXCTqwY2QEAwNUIO7EKjexwNhYAAK5E2IkV01gAALgaYSdWTGMBAOBqhJ1YeRnZAQDAzQg7seKYHQAAXI2wEyumsQAAcDXCTqw4QBkAAFcj7MTKOWanPbH9AAAAXSLsxIobgQIA4GqEnVilhG4EStgBAMCNCDuxOjyyYwJMYwEA4EaEnVh5OfUcAAA3I+zEirOxAABwNcJOrJyzsRjZAQDAjQg7MbK4qCAAAK5G2IlV6GwsjtkBAMCVCDuxCo3sEHYAAHAlwk6sOGYHAABXI+zEirADAICrEXZixannAAC4GmEnVilcVBAAADcj7MQqhbueAwDgZoSdWHmZxgIAwM0IO7Hi1HMAAFyNsBMrzsYCAMDVCDuxCh2zEwzKBJnKAgDAbQg7sQqFHYnjdgAAcCHCTqy8R4QdjtsBAMB1CDuxIuwAAOBqhJ0YWZ4UyXO4jO1tie0MAAA4CmEnHlLT7McAFxYEAMBtCDvx4E21Hwk7AAC4DmEnHgg7AAC4FmEnHlIPh512wg4AAG5D2IkHRnYAAHAtwk48eBnZAQDArQg78ZDKyA4AAG5F2ImHw2HHMLIDAIDrEHbigWN2AABwLcJOPBB2AABwLcJOPDinnnO7CAAA3IawEwcWIzsAALgWYSceOPUcAADX8sZ7hStXrtSqVavC3isoKNDDDz8sSWpra9OKFSu0fv16tbe3q7i4WLNmzZLP53Pa19bW6rHHHlNpaakyMjI0fvx4zZgxQykpKfHubnw4p54HEtsPAABwlLiHHUkaMGCA/uM//sN57fF0DiAtX75cmzZt0l133aWsrCyVlJTooYce0s9//nNJUjAY1AMPPCCfz6cFCxaorq5OixcvVkpKimbMmHEyuhs77+G7nnPMDgAArnNSprE8Ho98Pp/zLzc3V5LU1NSkN954Q9dff73OO+88DR06VLNnz9bHH3+ssrIySdKHH36offv26Y477tDgwYM1evRoTZs2TWvWrFHArSMnqYczI8fsAADgOidlZKeqqko/+MEPlJqaqqKiIs2YMUN9+/ZVeXm5Ojo6NHLkSKftmWeeqb59+6qsrExFRUUqKyvTwIEDw6a1Ro0apWXLlqmyslJDhgzp8mu2t7er/YhjZizLUmZmpvM8XkLrCltnaGQnEIjr13KzLutwGqIOnaiFjTrYqIONOtgSXYe4h53hw4dr9uzZKigoUF1dnVatWqV7771XDz30kPx+v7xer7Kzs8M+07NnT/n9fkmS3+8PCzqh5aFlx7J69eqwY4WGDBmiRYsWqV+/fnHZri/Kz893nh/q3Uf1krLSvOrdv/9J+XpudWQdTmfUoRO1sFEHG3WwUQdbouoQ97AzevRo5/mgQYOc8LNhwwalpaXF+8s5rrzySk2ZMsV5HUqPNTU1cZ3+sixL+fn5qqqqkjFGkhRsbpYkNdXXq/Xgwbh9LTfrqg6nI+rQiVrYqIONOtiogy2SOni93rgPVJyUaawjZWdnq6CgQFVVVTr//PMVCATU2NgYNrpTX1/vjOb4fD7t3LkzbB319fXOsmNJTU1VauisqC84GTuYMcZZrzl86rkJtJ92O/ORdTidUYdO1MJGHWzUwUYdbImqw0m/zk5LS4uqqqrk8/k0dOhQpaSkaOvWrc7yAwcOqLa2VkVFRZKkoqIi7d271wk4krRlyxZlZmaqsLDwZHc3Ot7DmZHr7AAA4DpxH9lZsWKFvv71r6tv376qq6vTypUr5fF4NG7cOGVlZeniiy/WihUrlJOTo6ysLD3++OMqKipywk5xcbEKCwu1ePFiXXPNNfL7/Xruuec0adKkY47cJFxq6ABlwg4AAG4T97Dz2Wef6de//rU+//xz5ebmasSIEVq4cKFz+vn1118vy7L00EMPKRAIOBcVDPF4PJo7d66WLVumefPmKT09XePHj9e0adPi3dW4sVJTZSRGdgAAcKG4h51//dd/Pe7ytLQ0zZo1KyzgfFG/fv30k5/8JM49O4m4NxYAAK7FvbHiIZWwAwCAWxF24oEbgQIA4FqEnXhgGgsAANci7MQDYQcAANci7MRD6NRzprEAAHAdwk48hC4qGGhLbD8AAMBRCDvxEDobqz1+9+ACAADxQdiJh9A0lgnKdHQkti8AACAMYScevEfcxoKDlAEAcBXCTjwcGXbaOW4HAAA3IezEgZWSIlmHS8nIDgAArkLYiZdUrqIMAIAbEXbihQsLAgDgSoSdeGFkBwAAVyLsxAsjOwAAuBJhJ15SCTsAALgRYSdevExjAQDgRoSdeGEaCwAAVyLsxAvTWAAAuBJhJ14Oj+wYprEAAHAVwk68OMfscLsIAADchLATL6E7nwcCie0HAAAIQ9iJE4sDlAEAcCXCTrykeu1Hwg4AAK5C2ImX0DQWx+wAAOAqhJ14ScuwH1tbE9sPAAAQhrATLx32gcmmbFuCOwIAAI5E2ImX0PV1qvYlth8AACAMYSdehgy3HwcOTWw/AABAGMJOnFhZ2faTYDCxHQEAAGEIO/GSkWk/Njclth8AACAMYSdeMrLsx5bmxPYDAACEIezES2hkh7ADAICrEHbiJXTMTnOjjDGJ7QsAAHAQduIlM8d+DAal1pbE9gUAADgIO/GSlialHL4/VlNjYvsCAAAchJ04sSwrbCoLAAC4A2EnnjIPh53GhsT2AwAAOAg78ZR9+Lidxs8T2w8AAOAg7MRTTq4kyTQcSnBHAABACGEnjqycHvYTRnYAAHANwk48ZdsjO2JkBwAA1yDsxFOPw2Gn3p/QbgAAgE6EnXjqly9JMjUHE9wRAAAQQtiJIyuvwH5STdgBAMAtCDvxlNfffvy8XoarKAMA4AqEnTiyMrOc5+aNlxLYEwAAEELYOUnMC89w93MAAFyAsBNn1sVTnOfBW65IYE8AAIBE2Ik7z7/cEva64+Zvq+Pmb8vsLmOkBwCABPAmugPdkec/lys45/qw94L3z+m67aISWb37nYpuAQBwWnJ12Hnttdf00ksvye/3a9CgQZo5c6aGDRuW6G59KatnL3l+9aSCd33/S9sG//2mL1/fmH+UsnNkFY+Vhp4tZWTKsqx4dBUAgG7PtWFn/fr1WrFihW6++WYNHz5cf/jDH7Rw4UI9/PDD6tmzZ6K796WsHj2V8tiLkiTT2qLgIwulHR9GtS6z8S/245uvxK1/X2T983dlfX2c5P9USk2TMrOk3F5Srk/yeGR5knPG0xhDMOwmTCAg/f2ArDMHJrorwFFChynE8+dN8H9/J7N2tTyL/1dWenrc1ns6cm3Yefnll3XJJZfoW9/6liTp5ptv1qZNm/Tmm2/qO9/5TmI7FyErPUMpd/38qPfNnl0KLvg/CejR0cyrq2ReXRXRZypPsJ110USZd/50/DbfvUFW3zMkT4rMrh0ya1bbCzweWdf8UObJR6Q+ebKGnSPrkm/LHNwr8+5bsr4+TtbAoTJ/eknW1y6UBg+XMjKktlap5u8K/uLH9mr+5wWZt16T+eAdee76uWSMZFlSc5OUkWk/l6RAu9TeLnUEpJxcWZYl09IsNTXK6t3XrpUxMm//0e5LwdG/eE1zk4I/mi7rH74lz8zO/19jjBQMykpJsV8H2qV9FbIGD1fw/y6XNWS4rK9eePT6DtVJWTmyvKld1s40Ncq8vVbW178p5fY8ZrujPle2TerXX1avPsdvV31Q5oP1siZfZddjd5mC98+RZ+6Dss4acdzPdjz8U6n0b/Is/f+OCszG/6mU01OW1/4xZALtx95GYxT84VWSJOtbl8sz4wfhy4PBLgO5qamS2fgXWRO/LSs9w36vqUFm4zpZ/zjJ+YwxRmprO+YvFNPaIgXaZWXbN/s1uz6S+hfKysqRaWyQUlJkZWQesw6mvd3el1NSFFy3VmbFYnkeWi4rt5ckKfinF2Veelae/3pKlufw/vH+29KZg2T1H9C5ni3vSSle+4+Q/oVd1utEAr45VCfzlzXyTJne+V5bq5TidfbPLj/3Wa3k6+X0UZJMsMOu3XG2P5I+drXMVO1T8D9my/rmpfJcd/ux13uM/SC0XpWVSmf0l+U7ep83xkgdgRP+/vmi4P97o1T/mTyPrpKVmnbctkduo2lvk7ypXdbDrLV/DgZvv9r54zkSxhjJGFkej0wg4HyvxYMJdoTtB25nGRceNRsIBHTttdfqrrvu0pgxY5z3Fy9erKamJv34xz8+4XXV1NSovb09bn2zLEv9+/fXwYMHT8kBx8YY+xfwoXqZndulPTtl/vjCSf+6iEJ+of1Yte/oZRmZUktzjOs/U6raH9lnfL3tQNfacuw2A4ZIWTl2ADTBw492MNOn1dIhf2fbM86U/n5EH/oPkA4ejr3DzlFmvzPUvOHPx+9T3zOk2r8fv403VTqjQNq/p+vlX71QsiQZSZvW2++lpEgdHdLwr0h/PxDeb0ka/Q378W9/7XxvSJHk8Ui7Pup8Ly1d+sooqe5Tac/O4/czJKeHrK+Mlqn45LhXULe+dpHMB+90vr7gm5JlOaO3x9Sjp/R5/dHru/ASKdAu8/cDXfd1SJG0u8x+Pvwrsnr1kzwemb++2bmOf/iWzIY3wz8XqmW/fFlDz5as8M9o6NmyzjhT8npl1q0N/+zIr0tb3+9c/9gJMu/+2X5x3lelbZvC2581wv6job1NprlJ+nDjcUthXXiJ3b/Df3R8qWPUzpHX/9j/Z6O/ISvXZ3+djo5j92nseJl33+p8fdFEuzab35XVf4Ay8s5Qi8crBY3MX1475jrkTZX5rEZKTZPVs1d4bUd+XVZ2D/uPr81H7MODhtn/92ePlNWzl5SVLXV0HP3/Ikn9B8ga/hWZip3S3l2d7484X1a/fPt7wRiZd/8itYb/vLIuvETmvXVSe5uscf/k1N7zgx/bswJfIpLfnampqerXL77Hsroy7Hz22We69dZbtWDBAhUVFTnvP/XUU9q+fbvuv//+oz7T3t4eFmosy1JmZqZqamoUCATi1jfLspSfn6+qqqpueXaVCXZIra1SXa1MTZVUXydzsNL+5ktLlzmw98t/MH+BNenKzpGa4xl6tv0LtuKTKHsPADiVPN+9UZ7JV31pu0h+d3q93riHHddOY0Vq9erVWrWqcxpmyJAhWrRoUdwLFpKfn39S1useZ8V3dT+6J77r+4LQcK1pb3MePekZUmqaTFurgofvRG9lZKh9b7k86ZmysrJkpaUr6K+TPJYUNAo2NypwcJ+stHR5+xcqcGCvTEeHgnWfScEOpQ4bIdPWJis9Q60fvqeUvHypo0Mp/fLlOXzXeys1Td68/mr+65/VVl4mT06uZFlK6dVHbWWlSunVVw0vr5Tvhz+WaW5SR221Oupq5S0cJG+fM2Slp+vQqhXKvvQKBes/k5WRJW9+gRQMqqO2Wk3vvC51dKitrFTpI7+qzAsvVuMfX1R7uf0XfI+p31fLBxtkTFDZEy6Tp6dPjWvtIfDsSVcoeMiv+t/9tzL/4Vvy5p+p1LPOtqcuLI9dB8tjD6l7PJJlqe3jUnl6+iRPioKH/Gr5YIPaPtqintffrpS+/XTomceUOrRIaSPOl+X1qnXHh2p+5w2po0NZEyYrpVdfec8coPrlj6rH1dfLNDaoad0fZaVnKPPCi9VesVPN77wueVOVPXGKAlX7ZaWl2/9X5Z8osK9CqUOKZGVlqce3p0vGqKO+zpmKDFTtV8Pqp5Vzxb+oo6ZK6cVjFKz7VIeeW2YH9LZW+Wb9H1np6TKBgJrf/Yvad32stLPPU9rZ59nvNzWqZesH6qiukrdggNK/MkpWWprqlz/i7GPp531VJtCuto+2hu17PW+4Xaa9TVZaujpq/q6Gl1cq5zsz1Lp5owLVB8NuHdNz5o/kycpW+97d8ub1t0d1Dk+9tG7/UIGqfeqo+1TBz2qdz/S48lp9vvoppZxRoNSBQ9Xy3tvy9O6r9BEjlTb8XFlpabLS0vT56mfk6dVbbaWblXvND9TywQal9Oqt1m1/U/DzeuVee6uslBSZlmZZmVmd04fBoJrX/1ltH21x+tj2yQ41r/ujeky9Tm0fb1PG6LHy9OqjhheeVbClRRmjLpC3YIBMoF0t765TW1mpUs86W+27PlbPG25Xe3mZmv6yVlZ2D+VO/b5ad2xRy3tvq+d1syXLcurqPXOgvIWDlVo4WJ7sHFnpGWqv2KmO+jq1bFzn1D11yHC1fbxVqYPOkje/UMYYtX74nqzMLLVsXKes8ZPkLRykQ0//j7IumSLT3Kjm9W/KysxSjytm6NBzy5R50cX2fin7avemuUmSlPPt6Wp6+09OzbMnfUcKBtX4xxeVe80tkjFqeOX/Kuj/TJLk6dVHwbpPJUkZF4xT8PNDyvjaN2SlpevQM49JMsqddpNMR0CmpVnBhgalDhisYFODJKlt50f2toVGzw5vY8bX/kGSFGw4pJbNG5U59h8ly1LLpr+qbccW9bz+Nnua0eORf9l/2X3/f6Yp2HBITW++qux/vkoyRim+3pI3VZ7sHPmX/qc8vj5K/8r5atv5kbIvvsweNbWkQ08uUcbYf1TLpr8qd+r3pdRUuz+eFHV8VqvGV1bJO2ioAnvKlfG1C5V29rlqKytVy/vrlTv9JrV+tFXBzw8p/8bbIvhJnbjfna4c2YlmGouRnVOLOtioQydqYaMONupgow42Rna64PV6NXToUG3bts0JO8FgUNu2bdPkyZO7/ExqaqpSU499cGO8GWNO6x03hDrYqEMnamGjDjbqYKMOtkTVwZVhR5KmTJmiRx55REOHDtWwYcP0yiuvqLW1VRMmTEh01wAAQBJxbdi58MILdejQIa1cuVJ+v1+DBw/W3XffLZ/Pl+iuAQCAJOLasCNJkydPPua0FQAAwIlIzsviAgAAnCDCDgAA6NYIOwAAoFsj7AAAgG6NsAMAALo1wg4AAOjWCDsAAKBbI+wAAIBujbADAAC6NVdfQTkevN6Ts4kna73JhjrYqEMnamGjDjbqYKMOthOpw8molWW4DSsAAOjGmMaKUHNzs/793/9dzc3Nie5KQlEHG3XoRC1s1MFGHWzUwZboOhB2ImSM0e7du3W6D4hRBxt16EQtbNTBRh1s1MGW6DoQdgAAQLdG2AEAAN0aYSdCqamp+u53v6vU1NREdyWhqIONOnSiFjbqYKMONupgS3QdOBsLAAB0a4zsAACAbo2wAwAAujXCDgAA6NYIOwAAoFvjZh0Reu211/TSSy/J7/dr0KBBmjlzpoYNG5bobkVl5cqVWrVqVdh7BQUFevjhhyVJbW1tWrFihdavX6/29nYVFxdr1qxZ8vl8Tvva2lo99thjKi0tVUZGhsaPH68ZM2YoJSXFaVNaWqoVK1aosrJSffr00dSpUzVhwoRTsIVd2759u1588UXt3r1bdXV1mjNnjsaMGeMsN8Zo5cqVev3119XY2KgRI0Zo1qxZ6t+/v9OmoaFBjz/+uD744ANZlqWxY8fqxhtvVEZGhtNmz549Kikp0a5du5Sbm6vJkyfriiuuCOvLhg0b9Pzzz6umpkb5+fm65ppr9NWvfvXkF0FfXodHHnlEb731VthniouLdc899zivu0MdVq9erY0bN2r//v1KS0tTUVGRrr32WhUUFDhtTuX3QqJ+xpxIHX72s59p+/btYZ+bOHGibrnlFud1stdh7dq1Wrt2rWpqaiRJhYWF+u53v6vRo0dLOj32BenL65B0+4LBCXvnnXfMv/zLv5g33njDVFZWmiVLlpgbbrjB+P3+RHctKs8//7y56667TF1dnfOvvr7eWf4///M/5tZbbzVbt241u3btMnfffbeZN2+es7yjo8PcddddZv78+Wb37t1m06ZNZubMmebpp5922vz973831157rVm+fLmprKw0r776qpk2bZr529/+dio3NcymTZvMs88+a959911z9dVXm3fffTds+erVq831119vNm7caCoqKsyiRYvMbbfdZlpbW502CxcuNHPmzDFlZWVmx44d5o477jAPP/yws7yxsdHMmjXL/PrXvzZ79+41b7/9trnmmmvMH//4R6fNRx99ZKZNm2ZeeOEFU1lZaZ599lkzffp0s2fPnpNfBPPldVi8eLFZuHBh2P7x+eefh7XpDnVYsGCBefPNN83evXvN7t27zf33329++MMfmubmZqfNqfpeSOTPmBOpw09/+lOzZMmSsH2isbGxW9XhvffeMx988IE5cOCA2b9/v3nmmWfM9OnTzd69e40xp8e+cCJ1SLZ9gbATgZ/85Cdm2bJlzuuOjg5zyy23mNWrVyeuUzF4/vnnzZw5c7pc1tjYaKZPn242bNjgvLdv3z5z9dVXm48//tgYY/+y/N73vmfq6uqcNmvWrDHXXXedaW9vN8YY8+STT5q77rorbN3/9V//ZRYsWBDnrYnOF3/JB4NBc/PNN5sXXnjBea+xsdHMmDHDvP3228YYYyorK83VV19tdu7c6bT529/+Zr73ve+ZTz/91Bhj1+GGG25w6mCMMU899ZS58847nde/+tWvzAMPPBDWn7vvvtssXbo0rtt4Io4VdhYtWnTMz3THOhhjTH19vbn66qtNaWmpMebUfi+46WfMF+tgjP0L7ne/+90xP9Md62CMMTfccIN5/fXXT9t9ISRUB2OSb1/gmJ0TFAgEVF5erpEjRzrveTwejRw5UmVlZQnsWWyqqqr0gx/8QLfffrt+85vfqLa2VpJUXl6ujo6OsO0988wz1bdvX2d7y8rKNHDgwLDh21GjRqm5uVmVlZWSpE8++SRsHZI9FeLWmlVXV8vv9+v888933svKytKwYcPCtjs7O1tnnXWW02bkyJGyLEs7d+502pxzzjnyejtniouLi3XgwAE1NDQ4bbqqzSeffHLSti9S27dv16xZs3TnnXfqscce0+eff+4s6651aGpqkiTl5ORIOnXfC277GfPFOoSsW7dON910k/7t3/5NzzzzjFpbW51l3a0OwWBQ77zzjlpbW1VUVHTa7gtfrENIMu0LHLNzgg4dOqRgMBj2HydJPp9PBw4cSEynYjR8+HDNnj1bBQUFqqur06pVq3TvvffqoYcekt/vl9frVXZ2dthnevbsKb/fL0ny+/1H1aNnz57OstBj6L0j2zQ3N6utrU1paWknZduiFep3V30+cptyc3PDlqekpCgnJyesTV5eXlibUK38fr/T9nhfJ9FGjRqlsWPHKi8vT1VVVXr22Wd1//33a+HChfJ4PN2yDsFgUE888YTOPvtsDRw40OnnqfheaGhocM3PmK7qIEnjxo1T37591bt3b+3Zs0dPP/20Dhw4oDlz5kjqPnXYu3ev7rnnHrW3tysjI0Nz5sxRYWGhKioqTqt94Vh1kJJvXyDsnMZCB5pJ0qBBg5zws2HDBteFEJx6F110kfN84MCBGjRokO644w6VlpYe9ddYd1FSUqLKykrNnz8/0V1JqGPVYeLEic7zgQMHqlevXpo/f76qqqqUn59/qrt50hQUFOiXv/ylmpqa9Ne//lWPPPKI7rvvvkR365Q7Vh0KCwuTbl9gGusE5ebmOn/NHqmr9JqssrOzVVBQoKqqKvl8PgUCATU2Noa1qa+vd7bX5/MdVY/6+npnWegx9N6RbTIzM10ZqEL97qrPR27ToUOHwpZ3dHSooaHhuLUJvf6y2rh1fzrjjDPUo0cPVVVVSep+dSgpKdGmTZv005/+VH369HHeP1XfC275GXOsOnQldEbMkftEd6iD1+tVfn6+hg4dqhkzZmjw4MF65ZVXTrt94Vh16Irb9wXCzgnyer0aOnSotm3b5rwXDAa1bdu2sDnMZNbS0uIEnaFDhyolJUVbt251lh84cEC1tbXO9hYVFWnv3r1hO+uWLVuUmZnpDHUOHz48bB2hNm6tWV5ennw+X1ifm5qatHPnzrDtbmxsVHl5udNm27ZtMsY43/BFRUXasWOHAoGA02bLli0qKChwjoEoKirqsjbDhw8/adsXi08//VQNDQ3q1auXpO5TB2OMSkpKtHHjRt17771HTbudqu+FRP+M+bI6dKWiokKSwvaJZK9DV4LBoNrb20+bfeFYQnXoitv3BcJOBKZMmaLXX39df/7zn7Vv3z4tW7ZMra2tCb1mTCxWrFih7du3q7q6Wh9//LF++ctfyuPxaNy4ccrKytLFF1+sFStWaNu2bSovL9ejjz6qoqIiZycrLi5WYWGhFi9erIqKCm3evFnPPfecJk2a5NzZ9tJLL1V1dbWeeuop7d+/X2vWrNGGDRt0+eWXJ2y7W1paVFFR4XxzVldXq6KiQrW1tbIsS5dddpl+//vf6/3339fevXu1ePFi9erVSxdccIEk+3oTo0aN0tKlS7Vz50599NFHevzxx3XhhReqd+/ekuz5bK/XqyVLlqiyslLr16/Xq6++qilTpjj9uOyyy/Thhx/qpZde0v79+7Vy5Urt2rVLkydPTngdWlpa9OSTT6qsrEzV1dXaunWrHnzwQeXn56u4uLhb1aGkpETr1q3TnXfeqczMTPn9fvn9frW1tUnSKf1eSOTPmC+rQ1VVlVatWqXy8nJVV1fr/fff1yOPPKJzzjlHgwYN6jZ1eOaZZ5yfi3v37nVef/Ob3zxt9oUvq0My7gvc9TxCr732ml588UX5/X4NHjxYN954o2v/Ev8yDz/8sHbs2KHPP/9cubm5GjFihKZPn+7Mt4YunvXOO+8oEAh0efGsmpoaLVu2TKWlpUpPT9f48eN1zTXXHHXRqOXLl2vfvn2uuKhgaWlpl/Pv48eP12233eZcVPBPf/qTmpqaNGLECN10001hF1draGhQSUlJ2MX0Zs6cecyL6fXo0UOTJ0/Wd77znbCvuWHDBj333HOqqalR//79T+nF9I5Xh5tvvlm//OUvtXv3bjU2Nqp37946//zzNW3atLD//+5Qh+9973tdvj979mxnPz2V3wuJ+hnzZXWora3Vf//3f6uyslKtra3q06ePxowZo6uuukpZWVlO+2Svw29/+1tt27ZNdXV1ysrK0qBBg3TFFVc4Z2ieDvuCdPw6JOO+QNgBAADdGtNYAACgWyPsAACAbo2wAwAAujXCDgAA6NYIOwAAoFsj7AAAgG6NsAMAALo1wg4AAOjWCDsAAKBbI+wAAIBujbADAAC6NcIOAADo1v5/kWZnEK149R4AAAAASUVORK5CYII=" + }, + "metadata": {}, + "output_type": "display_data", + "jetTransient": { + "display_id": null + } + } + ], + "execution_count": 30 }, { "cell_type": "markdown", @@ -2599,105 +3133,105 @@ }, { "cell_type": "code", - "execution_count": 120, "metadata": { "ExecuteTime": { - "end_time": "2025-04-10T14:16:18.278321361Z", - "start_time": "2025-04-03T18:22:08.696567Z" + "end_time": "2025-10-08T10:13:29.356750Z", + "start_time": "2025-10-08T10:13:29.344911Z" } }, + "source": [ + "print(discrete_autoencoder_model.encoder.q_values[0:20,0:20])" + ], "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "tensor([[-1.5707e+00, 1.6763e-04, -1.5708e+00, 1.5707e+00, 1.1577e-04,\n", - " 8.8554e-05, -1.5707e+00, -4.4146e-05, -8.0929e-05, 4.4981e-05,\n", - " 2.5490e-05, 3.1560e-05, -1.5709e+00, 1.4254e-05, -2.7892e-04,\n", - " 1.7612e-06, 1.7375e-05, -1.5710e+00, -1.5708e+00, 9.3605e-05],\n", - " [-1.1979e-04, 2.9103e-05, -8.7400e-05, 1.5708e+00, 7.7426e-05,\n", - " 1.2997e-04, -1.2431e-04, 1.5707e+00, -1.3935e-04, 4.6723e-05,\n", - " -1.5707e+00, -2.1258e-04, -1.5708e+00, 3.1502e-04, 1.5709e+00,\n", - " 1.5710e+00, -2.8735e-04, 1.7256e-04, 1.5706e+00, 1.5706e+00],\n", - " [ 5.4674e-05, 1.0755e-04, 2.0990e-04, -1.5361e-04, -1.5709e+00,\n", - " -1.5709e+00, -8.7036e-05, 5.9849e-06, 2.4989e-04, -2.2934e-04,\n", - " 1.5708e+00, 2.8368e-05, -1.5708e+00, -1.3945e-04, -1.0065e-04,\n", - " -3.1415e+00, -1.5707e+00, 1.9150e-04, 2.7448e-05, -1.5707e+00],\n", - " [-1.5706e+00, 2.9920e-04, 1.5708e+00, 1.9246e-04, -2.1294e-04,\n", - " -1.5818e-04, -1.5708e+00, 1.7666e-04, 1.3565e-04, -1.9265e-05,\n", - " 4.4285e-05, 1.1071e-04, 1.8500e-04, -1.5709e+00, 5.9398e-05,\n", - " -9.2974e-05, -1.5707e+00, -1.5707e+00, -1.5708e+00, 1.5708e+00],\n", - " [ 5.2041e-05, 1.5708e+00, 1.5710e+00, 1.5707e+00, -1.5707e+00,\n", - " -1.5708e+00, -3.5685e-05, -5.1315e-05, -3.1417e+00, 1.5709e+00,\n", - " -1.5707e+00, 1.5707e+00, 1.5708e+00, -2.9445e-05, 1.5708e+00,\n", - " -1.8814e-05, -1.3272e-04, -9.8650e-06, 2.1087e-05, 1.5707e+00],\n", - " [-4.8530e-05, 1.5711e+00, -1.7156e-05, 1.1125e-04, -1.5710e+00,\n", - " 1.5707e+00, -3.3634e-05, -7.6202e-06, -5.6674e-05, -1.5708e+00,\n", - " -1.5708e+00, -1.7164e-04, -1.5709e+00, -1.7003e-04, -1.5709e+00,\n", - " 2.9508e-05, -1.5707e+00, -6.5362e-05, -3.3819e-04, 1.5710e+00],\n", - " [ 7.5635e-05, -1.2950e-04, -1.9259e-04, 1.5705e+00, -1.0635e-04,\n", - " -1.5707e+00, 1.2479e-04, -6.7964e-05, -1.4979e-04, -2.6215e-04,\n", - " 1.5706e+00, -1.2591e-05, -1.5708e+00, -2.0140e-04, 1.2389e-04,\n", - " -1.5707e+00, -1.0438e-04, -1.2963e-04, 1.5711e+00, -2.2088e-04],\n", - " [ 1.5708e+00, 1.5709e+00, -9.2511e-05, 3.9726e-05, 6.9768e-05,\n", - " 1.5708e+00, -8.0593e-05, -1.7509e-04, -9.6643e-05, 1.7238e-04,\n", - " 1.2025e-04, 1.5708e+00, -1.0369e-05, 1.5705e+00, -1.5708e+00,\n", - " 5.1468e-06, -2.9015e-04, -1.5709e+00, 2.1121e-04, 5.5486e-05],\n", - " [ 3.1417e+00, 1.8813e-04, 1.5707e-04, -1.5708e+00, 2.5344e-04,\n", - " 1.5709e+00, 8.0252e-05, -1.5708e+00, -2.6418e-04, -1.3199e-05,\n", - " -1.5708e+00, 3.6924e-06, 3.1418e+00, 1.5706e+00, 1.5709e+00,\n", - " -1.2685e-04, 1.5705e+00, 1.4341e-04, 4.3719e-05, -8.4313e-05],\n", - " [-7.2703e-05, 1.5572e-04, 5.9289e-05, 1.5709e+00, 1.5709e+00,\n", - " -2.2301e-04, -1.5708e+00, -1.5706e+00, 1.5709e+00, -1.5707e+00,\n", - " -1.5030e-04, 6.1785e-05, -1.7309e-05, -1.2595e-04, 8.3095e-05,\n", - " -1.5709e+00, -3.7786e-05, -1.5707e+00, 1.0586e-05, 1.5710e+00],\n", - " [ 1.5709e+00, 3.1416e+00, 3.9748e-05, 1.1416e-04, -1.1607e-04,\n", - " 1.5706e+00, -9.2428e-05, -3.8402e-05, -8.0753e-05, -1.0552e-05,\n", - " 4.9602e-05, 1.6161e-04, 1.8071e-04, 3.2194e-04, -1.8392e-04,\n", - " 1.3026e-04, 2.3893e-04, 5.0516e-06, 2.7954e-05, 3.2616e-05],\n", - " [-2.5808e-04, 1.5705e+00, 6.3167e-05, -1.7325e-04, 1.5708e+00,\n", - " 4.4178e-05, -1.5707e+00, 1.5709e+00, -6.3739e-05, 6.9099e-05,\n", - " 1.5706e+00, 1.5707e+00, 1.9292e-04, -1.5708e+00, 1.5708e+00,\n", - " 1.5706e+00, 1.5713e+00, -2.0062e-04, -1.1945e-04, 7.7778e-05],\n", - " [ 1.5711e+00, -1.5707e+00, 1.5710e+00, -1.5708e+00, 1.2928e-04,\n", - " -1.5709e+00, -2.6449e-04, -1.5708e+00, 1.5759e-04, -2.7394e-04,\n", - " 8.6624e-06, 1.5708e+00, -2.0275e-05, 6.6326e-05, 1.0746e-04,\n", - " -1.5707e+00, 4.3330e-05, -1.5710e+00, -1.1123e-04, 3.2390e-05],\n", - " [ 1.5709e+00, -8.2649e-05, 1.0977e-04, 2.7830e-05, -1.9137e-04,\n", - " -1.8828e-04, -1.7604e-06, 9.1911e-05, -1.5706e+00, -2.7012e-05,\n", - " -4.0529e-04, -2.8389e-04, 2.1967e-04, -1.7199e-04, 3.1417e+00,\n", - " 1.5708e+00, -1.5710e+00, 3.1416e+00, 1.0565e-05, -1.5708e+00],\n", - " [ 1.5709e+00, 1.5709e+00, 1.4807e-04, -8.6526e-05, -8.7838e-05,\n", - " 3.9509e-06, 1.5708e+00, 2.0932e-04, 6.1877e-05, -1.5708e+00,\n", - " -4.1395e-06, 1.5705e+00, -1.5706e+00, -1.6724e-04, -1.6305e-04,\n", - " 6.8581e-05, 1.5704e+00, 1.5707e+00, -1.5708e+00, 1.7096e-05],\n", - " [ 1.5705e+00, 1.5706e+00, 1.5708e+00, 5.8401e-05, -1.0849e-05,\n", - " 1.5709e+00, -2.0660e-05, 1.6353e-04, -1.5709e+00, -1.0005e-04,\n", - " 1.3355e-04, 1.5706e+00, 1.5707e+00, 1.2561e-04, 6.5832e-05,\n", - " 1.5708e+00, 7.0534e-05, 1.5709e+00, -6.1977e-05, 2.3180e-04],\n", - " [ 4.3504e-06, -1.9544e-04, 1.5707e+00, 1.5710e+00, -1.5708e+00,\n", - " -1.3897e-05, 9.2550e-05, -3.3740e-05, 2.1801e-04, -2.1055e-04,\n", - " 1.4226e-04, -2.7532e-04, -5.1623e-05, 9.9100e-05, -8.5527e-06,\n", - " 1.7988e-04, 1.0971e-04, 1.5708e+00, -1.1260e-04, -7.8811e-05],\n", - " [-1.5708e+00, -5.2032e-06, -4.0180e-04, 1.5707e+00, -9.0944e-05,\n", - " 4.1257e-05, -5.6181e-05, 1.3775e-04, -1.5707e+00, 3.6385e-05,\n", - " -1.5946e-04, 6.6167e-05, -1.5709e+00, -1.5712e+00, -1.5709e+00,\n", - " -1.1572e-05, -1.5710e+00, 9.8960e-05, -3.6166e-05, 5.1057e-05],\n", - " [ 1.2584e-04, -1.5708e+00, 1.4483e-05, 1.5710e+00, 1.5706e+00,\n", - " -1.5707e+00, 1.5708e+00, 3.8280e-05, -1.5707e+00, 4.8117e-05,\n", - " -1.5709e+00, -1.3518e-04, 1.5709e+00, 1.5709e+00, 1.5708e+00,\n", - " 1.5709e+00, 2.7991e-04, -8.6214e-05, 1.4815e-04, -8.4752e-05],\n", - " [ 6.5084e-05, -1.5709e+00, 2.2567e-04, 1.5706e+00, 1.5707e+00,\n", - " 1.5708e+00, -1.5707e+00, -1.2043e-04, -1.7736e-04, -1.5710e+00,\n", - " -3.8013e-05, -1.5706e+00, -1.5706e+00, -4.1095e-05, 1.5706e+00,\n", - " -3.6366e-04, -3.4139e-06, -2.5157e-04, -1.5709e+00, 1.8740e-04]],\n", + "tensor([[-1.5707e+00, 4.0283e-05, -1.5708e+00, -1.5708e+00, -1.0713e-04,\n", + " 1.3885e-04, -1.6476e-04, 3.1416e+00, 3.3499e-04, 7.5454e-05,\n", + " 1.1472e-04, -6.1352e-05, -3.7930e-06, -1.5750e-04, -5.2845e-05,\n", + " -4.1358e-05, -1.1994e-04, 8.9084e-05, -1.5709e+00, 1.5706e+00],\n", + " [ 4.5018e-04, 1.5707e+00, 1.7965e-04, -1.4673e-04, -2.2644e-04,\n", + " 2.2459e-04, 1.5706e+00, 1.5709e+00, 1.5708e+00, -1.0340e-04,\n", + " 1.6360e-04, -1.5710e+00, -1.5707e+00, 8.4664e-05, 2.5510e-04,\n", + " 8.1784e-05, 1.5706e+00, -7.6247e-05, 3.7239e-04, 3.4284e-05],\n", + " [ 1.5708e+00, -2.2201e-04, -1.2829e-05, 3.9699e-04, -1.1036e-04,\n", + " -4.0515e-05, -1.5705e+00, -1.5707e+00, 1.5708e+00, -1.5709e+00,\n", + " -1.5708e+00, -1.5708e+00, -1.7423e-04, -4.2594e-05, -2.9945e-04,\n", + " 1.5709e+00, 2.4125e-04, -1.5709e+00, 2.8703e-05, -2.5356e-04],\n", + " [ 1.0579e-05, 1.5709e+00, 1.5710e+00, 3.3842e-04, 1.5709e+00,\n", + " 3.0471e-05, 1.5707e+00, 1.2137e-04, 3.5459e-04, 1.5039e-06,\n", + " -8.9575e-05, -1.5708e+00, 3.5727e-04, -1.3242e-04, -3.5441e-05,\n", + " 2.1368e-04, -1.8138e-04, 4.2078e-05, 8.2067e-05, 1.5709e+00],\n", + " [-6.4721e-05, 1.5707e+00, -5.1367e-05, 1.2167e-04, 2.6032e-05,\n", + " -1.6534e-04, 3.1416e+00, 7.8329e-05, 1.5393e-04, -1.5709e+00,\n", + " -1.5709e+00, -1.0181e-04, 1.9090e-04, -8.1991e-05, -1.5710e+00,\n", + " 5.6519e-06, -1.5708e+00, 1.8233e-04, 6.9652e-05, -1.5708e+00],\n", + " [ 1.5706e+00, -1.5709e+00, 1.5707e+00, -1.5662e-04, 1.4701e-04,\n", + " 1.4533e-05, -1.2488e-04, 8.5195e-05, -1.1984e-04, 1.5707e+00,\n", + " -2.2012e-04, 1.3154e-04, -1.3099e-04, 1.5711e+00, 8.5014e-05,\n", + " 1.5708e+00, -4.6062e-05, -1.7796e-04, -1.5709e+00, 1.5707e+00],\n", + " [ 1.8136e-04, -3.3585e-04, 3.3242e-05, 1.5706e+00, -1.7805e-05,\n", + " -2.2873e-04, 1.0814e-04, -1.5708e+00, 6.0931e-05, -6.1626e-05,\n", + " 6.0392e-05, -1.5705e+00, -1.5709e+00, 1.5709e+00, -2.3662e-04,\n", + " 1.5705e+00, 7.4526e-06, -1.5707e+00, -1.0795e-04, 2.5145e-05],\n", + " [-1.5709e+00, 1.5709e+00, 1.5709e+00, 2.0287e-05, -1.5708e+00,\n", + " 6.4006e-06, -4.1086e-05, 1.8931e-04, 1.5707e+00, 2.6546e-04,\n", + " 1.5708e+00, 1.0134e-04, 1.5709e+00, -2.9784e-05, 1.5707e+00,\n", + " 1.3967e-04, -1.5709e+00, -1.5707e+00, 3.2269e-05, -1.5708e+00],\n", + " [ 1.5707e+00, -1.5708e+00, 1.1691e-05, 4.6857e-05, 1.5708e+00,\n", + " -1.5706e+00, -1.5706e+00, -1.5711e+00, 1.5710e+00, 3.1427e-04,\n", + " 6.4213e-05, 8.8667e-05, 4.3613e-05, -1.5708e+00, -1.5709e+00,\n", + " 1.5707e+00, -2.0060e-04, -3.1416e+00, -1.5708e+00, -3.5872e-05],\n", + " [-1.5706e+00, 6.1098e-06, 1.5707e+00, 2.0944e-04, 1.5707e+00,\n", + " -7.4724e-05, 1.5709e+00, 2.8691e-07, 1.7395e-04, 6.1453e-05,\n", + " 1.5707e+00, 2.3415e-04, 1.1772e-04, -1.3072e-04, 6.2710e-05,\n", + " 6.3667e-05, 1.4704e-04, 1.5706e+00, 2.0196e-04, -1.0505e-04],\n", + " [-1.2627e-04, 3.3657e-05, -1.5708e+00, 2.4799e-04, 1.5707e+00,\n", + " 1.5708e+00, -2.1423e-04, -2.8167e-05, 1.5709e+00, 1.5708e+00,\n", + " -7.3675e-05, 1.3579e-05, -1.6408e-05, 1.8017e-04, -3.1415e+00,\n", + " -1.5707e+00, 1.5707e+00, 6.6553e-05, 1.5708e+00, 1.1967e-04],\n", + " [-6.7860e-05, -1.5708e+00, 2.7522e-05, -7.6960e-05, 1.4708e-05,\n", + " -1.5705e+00, 9.2834e-05, -3.1417e+00, -1.5708e+00, -1.5708e+00,\n", + " 6.5491e-05, 3.3587e-04, 1.5707e+00, -7.8326e-05, -1.2709e-05,\n", + " -2.8010e-04, 3.7780e-05, 3.4467e-05, 3.0993e-04, 1.5707e+00],\n", + " [ 8.9481e-05, 1.5709e+00, 1.5706e+00, -1.1673e-04, -3.2593e-05,\n", + " 1.5708e+00, 3.3225e-05, 1.5709e+00, 6.8874e-05, -3.3794e-04,\n", + " 1.6461e-04, -1.3651e-04, -1.5709e+00, 1.3047e-04, 1.5713e+00,\n", + " 9.8932e-05, -2.4656e-04, 1.5707e+00, 1.5707e+00, -1.5710e+00],\n", + " [ 1.5706e+00, 1.5707e+00, 1.5706e+00, 6.2977e-05, -1.4934e-05,\n", + " -1.5705e+00, 1.6301e-04, 1.0820e-04, 1.9607e-04, -8.3623e-09,\n", + " 7.3124e-05, -2.2403e-05, 4.9572e-05, 9.1401e-05, -1.5704e+00,\n", + " -3.3105e-05, -1.0450e-04, -3.1869e-04, 1.7224e-04, 1.5706e+00],\n", + " [ 1.5708e+00, -1.8064e-05, -1.5710e+00, -1.5708e+00, -1.0975e-04,\n", + " -1.0147e-04, 1.1857e-04, -1.5707e+00, -1.0609e-04, 1.6045e-04,\n", + " -1.5707e+00, 1.5707e+00, 9.8135e-05, -1.5709e+00, -7.1306e-05,\n", + " -1.5705e+00, -1.5710e+00, -1.5708e+00, -1.0769e-04, -6.2034e-05],\n", + " [-3.2567e-05, 1.2820e-04, -1.5710e+00, 5.2289e-05, -1.5707e+00,\n", + " -3.5972e-04, -1.5706e+00, -2.5608e-04, -1.5712e+00, 2.9613e-05,\n", + " 1.5847e-04, -1.5385e-04, -1.8317e-05, 7.1556e-05, -1.5708e+00,\n", + " 1.7788e-04, 1.5710e+00, -6.5181e-05, 1.5706e+00, -2.0346e-04],\n", + " [ 1.5707e+00, -1.0368e-04, 3.0057e-06, 1.5708e+00, 1.2505e-04,\n", + " 7.2912e-05, -9.0195e-05, -1.5708e+00, -1.3817e-04, 3.1414e+00,\n", + " 4.1361e-05, -1.5706e+00, -1.5707e+00, -1.5708e+00, -1.5620e-04,\n", + " 1.1368e-04, 1.5710e+00, -1.6657e-04, 1.5709e+00, -1.8223e-04],\n", + " [ 1.6140e-04, -3.3420e-05, 1.5709e+00, 1.4044e-04, 1.5709e+00,\n", + " 2.2808e-05, 1.5708e+00, 1.3251e-04, 1.5709e+00, 1.1197e-04,\n", + " 2.2630e-04, 7.5787e-05, -1.5710e+00, -1.5708e+00, -1.5711e+00,\n", + " 1.0199e-04, 1.5710e+00, 1.4419e-04, 1.5706e+00, 1.5705e+00],\n", + " [ 1.5708e+00, -1.5708e+00, 6.1536e-05, 1.5708e+00, 1.5706e+00,\n", + " 1.5707e+00, 1.8044e-05, -1.6204e-04, 1.5708e+00, 2.9314e-05,\n", + " -1.7237e-04, 1.9266e-04, 1.5709e+00, 1.5708e+00, -4.1983e-05,\n", + " 1.5709e+00, 2.6807e-05, 5.8831e-05, 1.5708e+00, 3.9255e-05],\n", + " [-9.5543e-05, -2.7007e-04, -2.4074e-05, 2.4038e-04, -1.5708e+00,\n", + " -1.5707e+00, 4.0224e-05, -4.1677e-05, -1.5707e+00, 1.5709e+00,\n", + " -3.2787e-04, -1.5707e+00, -6.5654e-05, 1.5706e+00, -1.5708e+00,\n", + " 1.5709e+00, 1.5710e+00, 1.7018e-05, 1.5708e+00, 7.6482e-05]],\n", " grad_fn=)\n" ] } ], - "source": [ - "print(discrete_autoencoder_model.encoder.q_values[0:20,0:20])" - ] + "execution_count": 31 }, { "cell_type": "markdown", @@ -2708,14 +3242,12 @@ }, { "cell_type": "code", - "execution_count": 18, "metadata": { "ExecuteTime": { - "end_time": "2025-04-10T14:16:18.296664684Z", - "start_time": "2025-04-04T07:50:46.986345Z" + "end_time": "2025-10-08T10:13:29.437943Z", + "start_time": "2025-10-08T10:13:29.433046Z" } }, - "outputs": [], "source": [ "def mapToDiscreteValues(weights,discrete_values):\n", " # Input is a tensor (possibly a matrix) of weights, and a np array of discrete values\n", @@ -2736,13 +3268,18 @@ " return mappedWeights\n", "\n", "# Testing\n" - ] + ], + "outputs": [], + "execution_count": 32 }, { "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], + "metadata": { + "ExecuteTime": { + "end_time": "2025-10-08T10:13:29.471326Z", + "start_time": "2025-10-08T10:13:29.466794Z" + } + }, "source": [ "\n", "qweights = discrete_autoencoder_model.encoder.q_values\n", @@ -2752,7 +3289,9 @@ "\n", "mapped_discrete_autoencoder_model = discrete_autoencoder_model\n", "mapped_discrete_autoencoder_model.encoder.q_values = mapped_q_weights\n" - ] + ], + "outputs": [], + "execution_count": 33 }, { "cell_type": "markdown", @@ -2764,17 +3303,17 @@ }, { "cell_type": "code", - "execution_count": 116, "metadata": { "ExecuteTime": { - "end_time": "2025-04-10T14:16:18.298778548Z", - "start_time": "2025-04-04T07:50:49.633982Z" + "end_time": "2025-10-08T10:13:29.524313Z", + "start_time": "2025-10-08T10:13:29.521670Z" } }, - "outputs": [], "source": [ "# torch.save(mapped_discrete_autoencoder_model.state_dict(), f\"Models/discrete_models/discrete_model.pt\")" - ] + ], + "outputs": [], + "execution_count": 34 }, { "cell_type": "markdown", @@ -2785,38 +3324,30 @@ }, { "cell_type": "code", - "execution_count": 45, "metadata": { "ExecuteTime": { - "end_time": "2025-04-10T14:16:18.299792866Z", - "start_time": "2025-04-04T07:52:45.865307Z" + "end_time": "2025-10-08T10:13:29.587922Z", + "start_time": "2025-10-08T10:13:29.578009Z" } }, + "source": [ + "discrete_model = LearnedAutoencoder(vector_size,encoding_dim,hidden_dims)\n", + "# Load the state dictionary\n", + "discrete_model.load_state_dict(torch.load(\"Models/discrete_models/discrete_model.pt\"))" + ], "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "C:\\Users\\tomli\\AppData\\Local\\Temp\\ipykernel_1208\\37869980.py:3: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature.\n", - " discrete_model.load_state_dict(torch.load(\"Models/discrete_models/discrete_model.pt\"))\n" - ] - }, { "data": { "text/plain": [ "" ] }, - "execution_count": 45, + "execution_count": 35, "metadata": {}, "output_type": "execute_result" } ], - "source": [ - "discrete_model = LearnedAutoencoder(vector_size,encoding_dim,hidden_dims)\n", - "# Load the state dictionary\n", - "discrete_model.load_state_dict(torch.load(\"Models/discrete_models/discrete_model.pt\"))" - ] + "execution_count": 35 }, { "cell_type": "markdown", @@ -2828,18 +3359,44 @@ }, { "cell_type": "code", - "execution_count": 46, "metadata": { "ExecuteTime": { - "end_time": "2025-04-10T14:16:18.323407358Z", - "start_time": "2025-04-04T08:01:58.373036Z" + "end_time": "2025-10-08T10:13:29.874875Z", + "start_time": "2025-10-08T10:13:29.683919Z" } }, - "outputs": [], "source": [ "# Here we generate a test vector from our buildDataSet function, put it through the model and look at the output\n", "visualizeReconstruction(discrete_model,max_amplitude,min_sparsity,max_sparsity,vector_size)" - ] + ], + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/tmp/ipykernel_14740/316903877.py:10: DeprecationWarning: __array__ implementation doesn't accept a copy keyword, so passing copy=False failed. __array__ must implement 'dtype' and 'copy' keyword arguments. To learn more, see the migration guide https://numpy.org/devdocs/numpy_2_0_migration_guide.html#adapting-to-changes-in-the-copy-keyword\n", + " h_hat = np.array(H_hat.detach())\n", + "/home/daan/DL-based-CS-under-IQ-imbalance/.venv/lib/python3.12/site-packages/matplotlib/cbook.py:1719: ComplexWarning: Casting complex values to real discards the imaginary part\n", + " return math.isfinite(val)\n", + "/home/daan/DL-based-CS-under-IQ-imbalance/.venv/lib/python3.12/site-packages/numpy/ma/core.py:3463: ComplexWarning: Casting complex values to real discards the imaginary part\n", + " _data[indx] = dval\n" + ] + }, + { + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAioAAAGdCAYAAAA8F1jjAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjYsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvq6yFwwAAAAlwSFlzAAAPYQAAD2EBqD+naQAAKe5JREFUeJzt3X9wVPW9//HXSTbBbIAkEEKA8CvQAN82gFqrV+vXKN6LAziIgjLYAoXA9YK1I1N/IfSCik6qwFxa28tcgoCUaynlVxmhUrTzFXFEaW2heElj5IeEQBB2IT9Istnz/cNyrpsfkh97dj+bPB8zzOT8+pz3vs/J8srZ3bOWbdu2AAAADBQX7QIAAACaQ1ABAADGIqgAAABjEVQAAICxCCoAAMBYBBUAAGAsggoAADAWQQUAABiLoAIAAIxFUAEAAMbyRLuAcLl48aICgUBYx+zVq5fKy8vDOiaaRq8ji35HDr2OHHodOeHotcfjUVpa2rXXa9deDBIIBFRXVxe28SzLcsbl65DcRa8ji35HDr2OHHodOZHuNS/9AAAAYxFUAACAsQgqAADAWAQVAABgrA7zZloAANqqpqZGNTU10S4jZlRXV6u2tvaa63Xp0kVdunRp174IKgCATq2yslKWZalbt27OJ1rw9RISEq75SVvbtlVdXa3KykolJye3eV+89AMA6NQCgYC8Xi8hJcwsy5LX6233Pc4IKgCATo2A4q729pegAgAAjEVQAQAAxiKoAAAAYxFUAACAsfh4MgAADdiX/RHdn9UtJaL7iyUEFSBK7Mt+BRd8P2Re3IrXecICDNDwd9Nt8f+1s1Xrf/HFFxozZoxmzZqlxx57TJL04YcfasqUKXr99dd1++23u1FmVPDSDxBFVny9+j98SP0fPiQrvj7a5QCIET179tTy5cu1YsUK/eUvf1FFRYV+9KMfaebMmR0qpEhcUQEAICaNGTNG06ZN06OPPqpRo0bJ6/XqmWeeiXZZYccVFQAAYtTixYtVX1+vXbt26Wc/+1m7v1fHRFxRAQCggbgVr0e7hBY5ceKEzp49q2AwqFOnTmnEiBHRLinsCCoAADQQC29qr62t1Q9/+EPde++9GjJkiJ544gndcMMNSk9Pj3ZpYcVLPwAAxKCCggJdvnxZzz//vObPn6/s7GwtWLAg2mWFHUEFAIAYc+DAAa1Zs0arVq1St27dFBcXp1WrVungwYNav359tMsLK176AQAgxtx66606ceJEyLz+/fvrf/7nf6JUkXu4ogIAAIxFUAEAAMYiqAAAAGO5+h6VYDCozZs3691335XP51OPHj10xx136IEHHpBlWZIk27a1efNm7du3T5WVlRo+fLjy8/PVp08fN0sDAAAxwNUrKtu3b9fevXs1e/ZsrVy5Ug8//LB27typ3bt3O+vs2LFDu3fv1pw5c/Tiiy+qS5cuWrZsmWpra90sDQAAxABXg0pRUZG+/e1v64YbblBGRoZuueUWjRw5UsXFxZK+vJry5ptv6v7779dNN92kgQMH6tFHH9XFixf14YcfulkaAACIAa6+9JOTk6N9+/aptLRUffv21fHjx3Xs2DFNnz5dknTu3Dn5fD6NHDnS2cbr9Wro0KEqKirSbbfd1mjMuro61dXVOdOWZSkpKcn5OVyujhXOMdG0Tttry5LdaJbleh86bb+jgF5HDr02W3uOi6tB5b777lN1dbUef/xxxcXFKRgMaurUqc5XUPt8PklSSkrorYpTUlKcZQ1t27ZNW7ZscaYHDx6sgoIC9erVy5XHkJmZ6cq4aKyz9bree53ONJjXu3dvxaekRWT/na3f0USvI6ctva6urlZCQoIL1XRsLe1ZYmJiu9536mpQef/997V//3499thj6t+/v44fP65169YpLS1NeXl5bRpz0qRJmjBhgjN9NaWVl5crEAiEo2xn3MzMTJWVlcm2G/7di3DqrL22L/sbzTt79qysqiuu7rez9jsa6HXktKfXtbW1IVfqcW0JCQkt7lltba3OnGn4Z5nk8XhadJHB1aCyceNGTZw40XkJZ8CAASovL9f27duVl5en1NRUSZLf71da2v/+Fen3+zVo0KAmx0xISGg2xbnxRGDbNk8wEdLZet3UY7VtW4pQDzpbv6OJXkcOvb625cuXa8+ePdq7d2/E9tmeY+Lqm2lramoUFxe6i7i4OKfgjIwMpaam6vDhw87yqqoqFRcXKycnx83SAABAG508eVL9+vXTkSNHXN+Xq1dUbrzxRm3dulXp6enKysrS8ePHtWvXLt15552SvrxUN27cOG3dulV9+vRRRkaG3njjDaWlpemmm25yszQAABADXL2iMmvWLN1yyy1as2aNHn/8cb3++uv653/+Z02dOtVZZ+LEibrnnnu0evVqPfPMM6qpqdHChQuVmJjoZmkAADTLqq+K6L/W+uKLLzR69GitWrXKmffhhx9q0KBBevfdd1s0xpYtW3TzzTdr+PDh+rd/+zdVVFQ4y9555x3dd999GjFihL75zW9q+vTpOn78uLP829/+tiRp7Nix6tevnyZPntzqx9BSrl5RSUpK0syZMzVz5sxm17EsSw899JAeeughN0sBAKDF+rz7jYjurzTvdKvW79mzp5YvX67Zs2frjjvu0JAhQ/SjH/1IM2fOdD5Z+3VOnDih3//+91q/fr38fr8eeeQR/fznP9fTTz8t6cu3YcydO1cjRoxQZWWlXnnlFeXn5+utt95SXFycfv/732vs2LF64403NGzYMFc/NeVqUAEAAO4YM2aMpk2bpkcffVSjRo2S1+vVM88806Jtg8GgVq5cqa5du0qSHnjgAe3fv99ZPn78+JD1V6xYodzcXBUVFWn48OHq2bOnJCktLU0ZGRlhekRNI6gAANDAmdv/Hu0SWmTx4sUaM2aMdu3apd27d6tLly4t2q5///5OSJG+/HDLF1984UyXlJTolVde0Z///GdduHBBwWBQknT69GkNHz48vA/iGggqAAA0YMd7o11Ci5w4cUJnz55VMBjUqVOnNGLEiBZt5/GE/vdvWZYTRiRp5syZysrK0k9/+lNlZmYqGAzqrrvuisr9ZggqAADEoNraWv3whz/UvffeqyFDhuiJJ57QDTfcoPT09HaNe+HCBX366ad6+eWXdfPNN0uSDh48GLLO1Q+8fDXcuIWgAgBADCooKNDly5f1/PPPKzk5WW+//bYWLFigDRs2tGvc1NRUpaWlaePGjcrIyNDp06f10ksvhayTnp6u6667Tu+884769OmjLl26qHv37u3ab3Nc/XgyAAAIvwMHDmjNmjVatWqVunXrpri4OK1atUoHDx7U+vXr2zV2XFycfvGLX+jw4cMaM2aMlixZokWLFoWs4/F49Pzzz2vjxo264YYbNGvWrHbt8+tYdge513B5eXlYXzuzLEt9+vTRmTNnuB2zyzprr+3LftlPTFPW1I8lSZ+/MVrWy5tkdUv5+g3bqbP2OxrodeS0p9eXLl1y7WpAR9Wa7/pprr8JCQkt+q4frqgAAABj8R4VAAA6kDvvvFOff/55k8sKCgp0//33R7ii9iGoAADQgbz++uvNvizTkpdaTENQAQCgA8nKyop2CWHFe1QAAICxCCoAgE4vEjcu64zC0VeCCgCgU/N6vbp8+TJhJcyCwaAuX74sr7d9X0fAe1QAAJ2ax+NRcnKyKioqol1KzEhMTFRtbe0110tOTm70vUKtRVABAHR6Ho+Hm761UKRvZMhLPwAAwFgEFQAAYCyCCgAAMBZBBQAAGIugAgAAjEVQAQAAxiKoAAAAYxFUAACAsQgqAADAWAQVAABgLIIKAAAwFkEFAAAYi6ACAACMRVABAADGIqgAAABjEVQAAICxCCoAAMBYBBUAAGAsggoAADAWQQUAABiLoAIAAIxFUAEAAMYiqAAAAGMRVAAAgLEIKgAAwFgEFQAAYCyCCgAAMBZBBQAAGIugAgAAjEVQAQAAxvJEuwCEh33Zr+CC74fMi1vxuqxuKVGqCACA9uOKCgAAMBZBBQAAGIugAgAAjOX6e1QuXLigjRs36uOPP1ZNTY0yMzM1b948DRkyRJJk27Y2b96sffv2qbKyUsOHD1d+fr769OnjdmkAAMBwrgaViooKLV68WN/85je1cOFCde/eXWfOnFFycrKzzo4dO7R7927Nnz9fGRkZ+vWvf61ly5ZpxYoVSkxMdLM8AABgOFeDyo4dO9SzZ0/NmzfPmZeRkeH8bNu23nzzTd1///266aabJEmPPvqo5syZow8//FC33Xabm+V1OFZ8vbKmfixJ+vyN0VGtBQCAcHA1qHz00UcaNWqUVqxYoaNHj6pHjx76l3/5F919992SpHPnzsnn82nkyJHONl6vV0OHDlVRUVGTQaWurk51dXXOtGVZSkpKcn4Ol6tjhXNMV1mW7EazrJioP+Z6HS5ROmadtt9RQK8jh15HTqR77WpQOXfunPbu3avx48dr0qRJ+vTTT/Xaa6/J4/EoLy9PPp9PkpSSEnqvj5SUFGdZQ9u2bdOWLVuc6cGDB6ugoEC9evVy5TFkZma6Mm641Xuv05kG83r37q34lLSo1NMWsdLrcIn2Mets/Y4meh059DpyItVrV4NKMBjUkCFDNG3aNElfhoqTJ09q7969ysvLa9OYkyZN0oQJE5zpq4muvLxcgUCg3TV/ddzMzEyVlZXJthv+3Wse+7K/0byzZ8/KqroShWpaJ9Z6HS7ROmadtd/RQK8jh15HTrh67fF4WnSRwdWgkpaWpqysrJB5WVlZ+uCDDyRJqampkiS/36+0tP/9K9Lv92vQoEFNjpmQkKCEhIQml7lxctq2HRMnfVM12rYtxUDtV8VKr8Ml2sess/U7muh15NDryIlUr129j8qwYcNUWloaMq+0tNRJUBkZGUpNTdXhw4ed5VVVVSouLlZOTo6bpQEAgBjgalAZP368/v73v2vr1q0qKyvT/v37tW/fPo0dO1bSl5ePxo0bp61bt+qjjz7SyZMn9fOf/1xpaWnOp4AAAEDn5epLP0OHDtWPf/xjbdq0Sb/97W+VkZGhGTNm6Pbbb3fWmThxompqarR69WpVVVVp+PDhWrhwIfdQAQAA7t+Z9sYbb9SNN97Y7HLLsvTQQw/poYcecrsUAAAQY/iuHwAAYCyCCgAAMBZBBQAAGIugAgAAjEVQAQAAxiKoAAAAYxFUAACAsQgqAADAWAQVAABgLIIKAAAwFkEFAAAYi6ACAACMRVABAADGIqgAAABjEVQAAICxCCoAAMBYBBUAAGAsggoAADAWQQUAABiLoAIAAIxFUAEAAMYiqAAAAGMRVAAAgLEIKgAAwFgEFQAAYCyCCgAAMBZBBQAAGIugAgAAjEVQAQAAxiKoAAAAYxFUAACAsQgqAADAWAQVAABgLIIKAAAwFkEFAAAYi6ACAACMRVABAADGIqgAAABjEVQAAICxCCoAAMBYBBUAAGAsggoAADAWQQUAABiLoAIAAIxFUAEAAMYiqAAAAGMRVAAAgLEIKgAAwFgEFQAAYCxPpHa0fft2bdq0SePGjdPMmTMlSbW1tdqwYYMOHDiguro6jRo1Svn5+UpNTY1UWQAAwGARuaJSXFysvXv3auDAgSHz169fr0OHDmnBggVaunSpLl68qOXLl0eiJAAAEANcDypXrlzRz372M/3rv/6rkpOTnflVVVV6++23NWPGDH3rW99Sdna25s2bp2PHjqmoqMjtsgAAQAxw/aWfNWvW6Prrr9fIkSO1detWZ35JSYnq6+uVm5vrzOvXr5/S09NVVFSknJycJserq6tTXV2dM21ZlpKSkpyfw+XqWOEc01WWJbvRLCsm6o+5XodLlI5Zp+13FNDryKHXkRPpXrsaVN577z199tlneumllxot8/l88ng8IVdZJCklJUU+n6/ZMbdt26YtW7Y404MHD1ZBQYF69eoVtrq/KjMz05Vxw63ee53ONJjXu3dvxaekRaWetoiVXodLtI9ZZ+t3NNHryKHXkROpXrsWVM6fP69169Zp0aJFSkxMDNu4kyZN0oQJE5zpq4muvLxcgUAgbPuxLEuZmZkqKyuTbTf8u9c89mV/o3lnz56VVXUlCtW0Tqz1Olyidcw6a7+jgV5HDr2OnHD12uPxtOgig2tBpaSkRH6/X0899ZQzLxgM6pNPPtGePXv07LPPKhAIqLKyMuSqit/v/9pP/SQkJCghIaHJZW6cnLZtx8RJ31SNtm1LMVD7VbHS63CJ9jHrbP2OJnodOfQ6ciLVa9eCSm5url555ZWQeb/85S/Vt29fTZw4Uenp6YqPj9fhw4d1yy23SJJKS0t1/vz5Zt+fAgAAOhfXgkpSUpIGDBgQMq9Lly7q1q2bM/+uu+7Shg0b1LVrV3m9Xq1du1Y5OTkEFQAAICmCN3xryowZM2RZlpYvX65AIODc8A0AAECKcFBZsmRJyHRiYqLy8/MJJwAAoEl81w8AADAWQQUAABiLoAIAAIxFUAEAAMYiqAAAAGMRVAAAgLEIKgAAwFgEFQAAYCyCCgAAMBZBBQAAGIugAgAAjEVQAQAAxiKoAAAAYxFUAACAsQgqAADAWAQVAABgLIIKgFaz6qvU94/91PeP/WTVV0W7HAAdGEEFAAAYi6ACAACMRVAB0Cr2Zb/q509xpuvnT5F92R/FigB0ZAQVAABgLIIKAAAwFkEFAAAYi6ACAACMRVABAADGIqgAAABjEVQAAICxCCoAAEl8NQLMRFABAHAjPxiLoAIAAIxFUAEAAMYiqAAAAGMRVAAAgLEIKgAAwFgEFQAAYCyCCgAAMBZBBQAAGIugAgAAjEVQAQAAxiKoAAAAYxFUAACAsQgqAADAWAQVAABgLIIKAAAwFkEFAAAYi6ACAACMRVABAADGIqgAAABjEVQAAICxCCoAAMBYHjcH37Ztmw4ePKjTp08rMTFROTk5+t73vqe+ffs669TW1mrDhg06cOCA6urqNGrUKOXn5ys1NdXN0gAAQAxw9YrK0aNHNXbsWC1btkyLFi1SfX29XnjhBV25csVZZ/369Tp06JAWLFigpUuX6uLFi1q+fLmbZQEAgBjhalB59tlnlZeXp/79+2vQoEGaP3++zp8/r5KSEklSVVWV3n77bc2YMUPf+ta3lJ2drXnz5unYsWMqKipyszQAABADXH3pp6GqqipJUteuXSVJJSUlqq+vV25urrNOv379lJ6erqKiIuXk5DQao66uTnV1dc60ZVlKSkpyfg6Xq2OFc0xXWZbsRrOsmKg/5nodLlE6Zu3udwyfa5EWU+d2jB/XmOp1jIt0ryMWVILBoNatW6dhw4ZpwIABkiSfzyePx6Pk5OSQdVNSUuTz+ZocZ9u2bdqyZYszPXjwYBUUFKhXr16u1J2ZmenKuOFW771OZxrM6927t+JT0qJST1vESq/DJdrHrK39jnbdsSgWzu2OclxjodcdRaR6HbGgUlhYqFOnTum5555r1ziTJk3ShAkTnOmria68vFyBQKBdY3+VZVnKzMxUWVmZbLvh3xnmsS/7G807e/asrKorTaxtlljrdbhE65i1t9+xfK5FWiyd27F+XGOp17EuXL32eDwtusgQkaBSWFioP/3pT1q6dKl69uzpzE9NTVUgEFBlZWXIVRW/39/sp34SEhKUkJDQ5DI3Tk7btmPipG+qRtu2pRio/apY6XW4RPuYtbXf0a47FsXCud1Rjmss9LqjiFSvXX0zrW3bKiws1MGDB/WTn/xEGRkZIcuzs7MVHx+vw4cPO/NKS0t1/vz5Jt+fAgAAOhdXr6gUFhZq//79evLJJ5WUlOS878Tr9SoxMVFer1d33XWXNmzYoK5du8rr9Wrt2rXKyckhqAAAAHeDyltvvSVJWrJkScj8efPmKS8vT5I0Y8YMWZal5cuXKxAIODd8AwAAcDWobN68+ZrrJCYmKj8/n3ACAAAa4bt+AACAsQgqAADAWAQVAABgLIIKAAAwFkEFAAAYi6ACAACMRVABAADGIqgAAABjEVQAAICxCCoAAMBYBBUAAGAsggoAADAWQQUAABiLoAIAAIxFUAEAAMYiqAAAAGMRVAAAgLEIKgAAwFgEFQAAYCyCCgAAMBZBBQAAGIugAgAAjEVQAQAAxiKoAAAAYxFUAACAsQgqAADAWAQVAABgLIIKAAAwFkEFAAAYi6ACAACMRVABAADGIqgAAABjEVQAAICxCCoAAMBYBBUAAGAsggoAADAWQQUAABiLoAIAAIxFUAEAAMYiqAAAAGMRVAAAgLEIKgAAwFgEFQAAYCyCCgAAMBZBBQAAGIugAgAAjEVQAQAAxiKoAAAAYxFUAOBrWPVV6vvHfur7x36y6quiXQ7Q6XiiXYAk7dmzR7/73e/k8/k0cOBAzZo1S0OHDo12WZ2GVV+lPu9+Q5J05va/y473RrkiAAC+FPUrKgcOHNCGDRs0efJkFRQUaODAgVq2bJn8fn+0SwvBX1UwWUc+PzvyY+vsOLZmM+X4RD2o7Nq1S2PGjNGdd96prKwszZkzR4mJiXrnnXeiVpNVX6U+7/SVNln88rSCKSc1zBTt8yPa+0fkhPNYd5TzpuHjiKXHFdWgEggEVFJSotzcXGdeXFyccnNzVVRUFMXK2qYlB76tJ0csnVSt0VQobOqxmvb4I1lPpB97uPZn2jFzU3Pn7FfP7c7UDxNFu/+xHBSiLarvUbl06ZKCwaBSU1ND5qempqq0tLTJberq6lRXV+dMW5alpKQk5+dw+Oo4lmU5/0KWN7GvcK3TkpoabWdZspvYpiU9aVHd9VXK/H9fvm+o7P8WN/k+lrY8tpb2uq19a4uGj1VSo8feZI0t6FHojpo+ZnHB6tD9h/G8+mqNcXd8qmBc0jXHshrUE2yi7rhgtfr88f846zTZo4b7CNe530Ku/e41s07YHn8Lzse2jGPHe0Pmnbn+kOqbeFzhel5tsqYw/l5fHavhOM0dj4bndcN+NHceN7Vda+pr+HNIjWE61m3d/zW3+WqPmxjHLZZt2w2fcyLmwoULeuSRR/TCCy8oJyfHmb9x40YdPXpUL774YqNtNm/erC1btjjTgwcPVkFBQUTqbZNApbS565c/P1gheZKvvY7U+m0arFPvv6gz379LWVM/liR9/sZo9Xn9bcUnJ7Ztu5S01j+uprR1u5aM05I+tqXXJgpDH1t8rCMtXL8zbRnHhPM4XOOEa+y27r8t67RkbMm839lI1hgL53WYRfWKSvfu3RUXFyefzxcy3+fzNbrKctWkSZM0YcIEZ/pqoisvL1cgEAhbbZZlKTMzU2VlZWp3lrvzH1eHyi9JutR4X/VVyvzHz2VlZZIUMt1siv6ace3Ljd+MfPbsWVndUtq2XdWVVu3/azXYrs29bmr/X5nXsK9OH1uyjuHaU/fVfp87d67RsmaPdQS15LG15HemxT1qw3nc0rFbdG639feoJfWEYex27b+V67RkbKnp58ewPme3RYSeV9w8r1u6Xbh67fF41KtXr2uv1+Y9hIHH41F2draOHDmi73znO5KkYDCoI0eO6J577mlym4SEBCUkJDS5zI2T07Zt90/6r4zfcF9t3X9T29i2HbKvcG4XDmHvdYO+NvnY4pJUmne6yW1MFo66o3msv1YLjltLfmfcPLatHdvt55Gon8cu/q412k762nEi8px9LS05h00cu9WlRGb/Ub+PyoQJE/Tqq68qOztbQ4cO1Ztvvqmamhrl5eVFuzTEODve2+gJDuZryXFruA5vRgQ6rqgHlVtvvVWXLl3S5s2b5fP5NGjQIC1cuLDZl346Ip50gfYhlEYX/Q9FP8Ir6kFFku65555mX+oBAACdlxFBBaFI4wCApnTG/x+ifmdaAACA5hBUAACAsQgqAADAWAQVAABgLIIKAAAwFkEFAAAYi6ACAACMRVABAADGIqgAAABjEVQAAICxCCoAAMBYBBUAAGAsggoAADAWQQUAABiLoAIAAIxFUAEAAMYiqAAAAGMRVAAAgLEIKgAAwFgEFQAAYCyCCgAAMBZBBQAAGIugAgAAjEVQAQAAxiKoAAAAYxFUAACAsQgqAADAWAQVAABgLIIKAAAwFkEFAAAYi6ACAACMRVABAADGIqgAAABjEVQAAICxCCoAAMBYBBUAAGAsggoAADAWQQUAABiLoAIAAIxFUAEAAMYiqAAAAGMRVIBOyuqWovhXf+NMx7/6G1ndUqJYEQA0RlABAADGIqgAAABjeaJdAIDoseO9Ks07He0yAKBZXFEBAADGIqgAAABjEVQAAICxCCoAAMBYrryZ9ty5c/rtb3+rI0eOyOfzqUePHrr99tt1//33y+P5312eOHFChYWF+vTTT9W9e3fdc889mjhxohslAQCAGORKUCktLZVt25o7d64yMzN16tQprV69WleuXNH06dMlSVVVVXrhhReUm5urOXPm6OTJk/rlL3+p5ORk3X333W6UBQAAYowrQWX06NEaPXq0M927d2+VlpbqrbfecoLK/v37FQgENG/ePHk8HvXv31/Hjx/Xrl27CCoAAEBSBO+jUlVVpa5duzrTRUVFGjFiRMhLQaNGjdKOHTtUUVERsu5X1dXVqa6uzpm2LEtJSUnOz+FydaxwjhlRliW70Szr2o+nrdu1Q8z3OsbQ78ih15FDryMn0r2OSFApKyvT7t279f3vf9+Z5/P5lJGREbJeamqqs6y5oLJt2zZt2bLFmR48eLAKCgrUq1ev8BcuKTMz05Vx3VbvvU5nGszr3bu34lPSXNkuHGK117GKfkcOvY4ceh05kep1q4LKr371K+3YseNr11m5cqX69evnTF+4cEHLli3TP/3TP4XlJZ1JkyZpwoQJzvTVRFdeXq5AINDu8b86bmZmpsrKymTbDa8xmM++7G807+zZs7KqrriyXXvEeq9jDf2OHHodOfQ6csLVa4/H06KLDK0KKvfee6/y8vK+dp3evXs7P1+4cEFLly7VsGHDNHfu3JD1UlNT5fP5QuZdnb56ZaUpCQkJSkhIaHKZGyenbdsxedI3VbNt29I1HktbtwuHWO11rKLfkUOvI4deR06ket2qoNK9e3d17969ReteDSmDBw/WvHnzFBcXesuWnJwc/fd//7cCgYDzPpW//vWv6tu3b7Mv+wAAgM7FlRu+XbhwQUuWLFF6erqmT5+uS5cuyefzhVxB+e53vyuPx6P//M//1KlTp3TgwAHt3r075GUdAADQubnyZtq//vWvKisrU1lZmR555JGQZZs3b5Ykeb1eLVq0SIWFhXr66afVrVs3PfDAA3w0GQAAOFwJKnl5edd8L4skDRw4UM8995wbJQAAgA6A7/oBAADGIqgAAABjEVQAAICxCCoAAMBYBBUAAGAsggoAADAWQQUAABiLoAIAAIxFUOmgrG4pin/1N850/Ku/kdUtJYoVAQDQeq7cmRZmsOO9Ks073frt6uN16lc3OtNWOIsCAKAVCCoIYXVLUfx/7Yx2GQAASOKlHwAAYDCCCgAAMBZBBQAAGIugAgAAjEVQAQAAxiKoAAAAYxFUAACAsQgqAADAWAQVAABgLIIKAAAwFkEFAAAYi6ACAACMRVABAADGIqgAAABjEVQAAICxPNEuIFw8HnceilvjojF6HVn0O3LodeTQ68hpb69bur1l27bdrj0BAAC4hJd+mlFdXa2nnnpK1dXV0S6lw6PXkUW/I4deRw69jpxI95qg0gzbtvXZZ5+JC07uo9eRRb8jh15HDr2OnEj3mqACAACMRVABAADGIqg0IyEhQZMnT1ZCQkK0S+nw6HVk0e/IodeRQ68jJ9K95lM/AADAWFxRAQAAxiKoAAAAYxFUAACAsQgqAADAWHwpQjP27Nmj3/3ud/L5fBo4cKBmzZqloUOHRrusmLZt2zYdPHhQp0+fVmJionJycvS9731Pffv2ddapra3Vhg0bdODAAdXV1WnUqFHKz89Xampq9ArvALZv365NmzZp3LhxmjlzpiR6HU4XLlzQxo0b9fHHH6umpkaZmZmaN2+ehgwZIunLG2Rt3rxZ+/btU2VlpYYPH678/Hz16dMnypXHlmAwqM2bN+vdd9+Vz+dTjx49dMcdd+iBBx6QZVmS6HVbHT16VDt37tRnn32mixcv6sc//rG+853vOMtb0teKigqtXbtWhw4dkmVZuvnmm/WDH/xA1113Xbtq44pKEw4cOKANGzZo8uTJKigo0MCBA7Vs2TL5/f5olxbTjh49qrFjx2rZsmVatGiR6uvr9cILL+jKlSvOOuvXr9ehQ4e0YMECLV26VBcvXtTy5cujWHXsKy4u1t69ezVw4MCQ+fQ6PCoqKrR48WJ5PB4tXLhQK1eu1PTp05WcnOyss2PHDu3evVtz5szRiy++qC5dumjZsmWqra2NYuWxZ/v27dq7d69mz56tlStX6uGHH9bOnTu1e/duZx163TY1NTUaNGiQZs+e3eTylvR11apVOnXqlBYtWqSnn35an3zyiVavXt3+4mw08swzz9hr1qxxpuvr6+25c+fa27Zti15RHZDf77enTJli/+1vf7Nt27YrKyvtqVOn2u+//76zzueff25PmTLFPnbsWLTKjGnV1dX2Y489Zv/lL3+x//3f/91+7bXXbNum1+G0ceNGe/Hixc0uDwaD9pw5c+wdO3Y48yorK+1p06bZ+/fvj0SJHcZLL71k/+IXvwiZ9/LLL9v/8R//Yds2vQ6XKVOm2B988IEz3ZK+njp1yp4yZYpdXFzsrPPnP//ZfvDBB+0vvviiXfVwRaWBQCCgkpIS5ebmOvPi4uKUm5uroqKiKFbW8VRVVUmSunbtKkkqKSlRfX19SO/79eun9PR0et9Ga9as0fXXX6+RI0eGzKfX4fPRRx8pOztbK1asUH5+vp588kn94Q9/cJafO3dOPp8v5Bh4vV4NHTqUXrdSTk6Ojhw5otLSUknS8ePHdezYMV1//fWS6LVbWtLXoqIiJScnOy93SlJubq4sy1JxcXG79s97VBq4dOmSgsFgo9fpU1NTnV8OtF8wGNS6des0bNgwDRgwQJLk8/nk8XhCLplLUkpKinw+XxSqjG3vvfeePvvsM7300kuNltHr8Dl37pz27t2r8ePHa9KkSfr000/12muvyePxKC8vz+lnSkpKyHb0uvXuu+8+VVdX6/HHH1dcXJyCwaCmTp2q22+/XZLotUta0lefz6fu3buHLI+Pj1fXrl3b3XuCCqKisLBQp06d0nPPPRftUjqk8+fPa926dVq0aJESExOjXU6HFgwGNWTIEE2bNk2SNHjwYJ08eVJ79+5VXl5edIvrYN5//33t379fjz32mPr376/jx49r3bp1SktLo9cdGEGlge7duysuLq5RAvT5fHwaIkwKCwv1pz/9SUuXLlXPnj2d+ampqQoEAqqsrAz5S9/v99P7ViopKZHf79dTTz3lzAsGg/rkk0+0Z88ePfvss/Q6TNLS0pSVlRUyLysrSx988IEkOf30+/1KS0tz1vH7/Ro0aFCkyuwQNm7cqIkTJ+q2226TJA0YMEDl5eXavn278vLy6LVLWtLX1NRUXbp0KWS7+vp6VVRUtPs5hfeoNODxeJSdna0jR44484LBoI4cOaKcnJwoVhb7bNtWYWGhDh48qJ/85CfKyMgIWZ6dna34+HgdPnzYmVdaWqrz58/T+1bKzc3VK6+8op/+9KfOvyFDhui73/2u8zO9Do9hw4Y1elm4tLRUvXr1kiRlZGQoNTU1pNdVVVUqLi6m161UU1OjuLjQ/7bi4uJk/+Mr6+i1O1rS15ycHFVWVqqkpMRZ58iRI7Jtu9239uCKShMmTJigV199VdnZ2Ro6dKjefPNN1dTUcGmxnQoLC7V//349+eSTSkpKcq5aeb1eJSYmyuv16q677tKGDRvUtWtXeb1erV27Vjk5OTzJtFJSUpLz3p+runTpom7dujnz6XV4jB8/XosXL9bWrVt16623qri4WPv27dPcuXMlSZZlady4cdq6dav69OmjjIwMvfHGG0pLS9NNN90U5epjy4033qitW7cqPT1dWVlZOn78uHbt2qU777xTEr1ujytXrqisrMyZPnfunI4fP66uXbsqPT39mn3NysrS6NGjtXr1as2ZM0eBQEBr167Vrbfeqh49erSrNr49uRl79uzRzp075fP5NGjQIP3gBz/QN77xjWiXFdMefPDBJufPmzfPCYFXb0L23nvvKRAIcBOyMFqyZIkGDRrU6IZv9Lr9Dh06pE2bNqmsrEwZGRkaP3687r77bme5/Y+bZf3hD39QVVWVhg8frtmzZ4fc7BDXVl1drV//+tc6ePCg/H6/evToodtuu02TJ0+Wx/Pl3930um3+9re/aenSpY3m33HHHZo/f36L+lpRUaHCwsKQG77NmjWr3Td8I6gAAABj8R4VAABgLIIKAAAwFkEFAAAYi6ACAACMRVABAADGIqgAAABjEVQAAICxCCoAAMBYBBUAAGAsggoAADAWQQUAABiLoAIAAIz1/wHLpEeWJqGG2wAAAABJRU5ErkJggg==" + }, + "metadata": {}, + "output_type": "display_data", + "jetTransient": { + "display_id": null + } + } + ], + "execution_count": 36 }, { "cell_type": "markdown", @@ -2850,17 +3407,12 @@ }, { "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Normalized loss is:[0.006659], Unnormalized loss is:[0.88564657]\n" - ] + "metadata": { + "ExecuteTime": { + "end_time": "2025-10-08T10:13:30.340007Z", + "start_time": "2025-10-08T10:13:29.894217Z" } - ], + }, "source": [ "discrete_model_losses = []\n", "\n", @@ -2874,7 +3426,17 @@ "normalized_loss, unnormalized_loss = validateModels(dataloader_val,discrete_models,loss_fn)\n", "\n", "print(f\"Normalized loss is:{normalized_loss}, Unnormalized loss is:{unnormalized_loss}\")" - ] + ], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Normalized loss is:[0.00676254], Unnormalized loss is:[0.899418]\n" + ] + } + ], + "execution_count": 37 }, { "cell_type": "markdown", @@ -2900,14 +3462,12 @@ }, { "cell_type": "code", - "execution_count": 19, "metadata": { "ExecuteTime": { - "end_time": "2025-04-10T14:16:18.326087885Z", - "start_time": "2025-04-03T18:26:10.431652Z" + "end_time": "2025-10-08T10:13:30.404137Z", + "start_time": "2025-10-08T10:13:30.392908Z" } }, - "outputs": [], "source": [ "def trainModelsForDiscreteSet(dataloader,SNR_values,imb_percentages,encoding_dims,signal_variance = 133,hidden_dims=[60,80],scale_factor=0.05):\n", " # Function takes as inputs:\n", @@ -2960,7 +3520,9 @@ " models.append(best_model)\n", " losses.append(lowest_loss)\n", " return models" - ] + ], + "outputs": [], + "execution_count": 38 }, { "cell_type": "markdown", @@ -2972,14 +3534,12 @@ }, { "cell_type": "code", - "execution_count": 48, "metadata": { "ExecuteTime": { - "end_time": "2025-04-10T14:16:18.332950982Z", - "start_time": "2025-04-03T18:26:19.258286Z" + "end_time": "2025-10-08T10:13:30.420194Z", + "start_time": "2025-10-08T10:13:30.417130Z" } }, - "outputs": [], "source": [ "# Train 19 models. Here we define a list of all combinations of SNR, IRR and encoding dimensions that we want our function to train the models for.\n", "# Uncomment for complete training\n", @@ -2991,19680 +3551,856 @@ "encoding_dims_list = [30]\n", "SNR_list = [np.inf]\n", "imb_percentage_list = [0]" - ] + ], + "outputs": [], + "execution_count": 39 }, { "cell_type": "code", - "execution_count": null, - "metadata": {}, + "metadata": { + "ExecuteTime": { + "end_time": "2025-10-08T10:16:43.987589Z", + "start_time": "2025-10-08T10:13:30.470439Z" + } + }, + "source": [ + "discrete_models = trainModelsForDiscreteSet(dataloader,SNR_list,imb_percentage_list,encoding_dims_list,scale_factor=0.01)" + ], "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1, Loss: 585.068726\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 2, Loss: 556.388489\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 3, Loss: 530.479309\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 4, Loss: 495.758881\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 5, Loss: 466.309326\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 6, Loss: 431.455505\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 7, Loss: 403.078278\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 8, Loss: 378.776428\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 9, Loss: 352.238953\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 10, Loss: 326.493805\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 11, Loss: 302.292175\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 12, Loss: 282.298615\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 13, Loss: 255.775909\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 14, Loss: 234.550766\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 15, Loss: 213.849213\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 16, Loss: 192.778305\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 17, Loss: 174.265640\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 18, Loss: 154.256287\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 19, Loss: 137.139709\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 20, Loss: 120.622421\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 21, Loss: 103.852463\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 22, Loss: 92.131035\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 23, Loss: 80.061172\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 24, Loss: 72.260452\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 25, Loss: 64.540756\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 26, Loss: 56.763893\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 27, Loss: 52.201519\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 28, Loss: 47.555260\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 29, Loss: 43.045856\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 30, Loss: 41.599731\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 31, Loss: 39.398567\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 32, Loss: 40.184502\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 33, Loss: 38.244198\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 34, Loss: 37.204651\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 35, Loss: 35.670609\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 36, Loss: 34.306789\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 37, Loss: 33.855755\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 38, Loss: 33.568954\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 39, Loss: 32.704563\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 40, Loss: 32.449997\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 41, Loss: 31.522337\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 42, Loss: 32.363689\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 43, Loss: 31.802301\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 44, Loss: 32.348686\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 45, Loss: 30.859175\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 46, Loss: 31.130968\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 47, Loss: 30.697565\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 48, Loss: 30.369951\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 49, Loss: 30.495693\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 50, Loss: 29.980143\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 51, Loss: 29.994162\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 52, Loss: 29.044615\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 53, Loss: 29.319725\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 54, Loss: 29.291397\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 55, Loss: 28.571896\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 56, Loss: 28.678366\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 57, Loss: 27.739397\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 58, Loss: 28.430225\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 59, Loss: 27.656408\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 60, Loss: 28.333649\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 61, Loss: 27.969431\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 62, Loss: 26.939726\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 63, Loss: 26.292826\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 64, Loss: 26.275789\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 65, Loss: 26.521328\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 66, Loss: 26.427097\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 67, Loss: 26.655258\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 68, Loss: 25.714933\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 69, Loss: 26.119799\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 70, Loss: 24.995560\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 71, Loss: 25.707386\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 72, Loss: 25.881971\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 73, Loss: 26.023363\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 74, Loss: 25.181618\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 75, Loss: 24.116253\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 76, Loss: 24.635611\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 77, Loss: 24.276493\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 78, Loss: 23.930189\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 79, Loss: 23.595125\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 80, Loss: 24.322544\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 81, Loss: 23.319683\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 82, Loss: 22.920811\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 83, Loss: 23.235632\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 84, Loss: 23.235456\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 85, Loss: 22.805986\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 86, Loss: 23.073559\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 87, Loss: 22.388874\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 88, Loss: 22.056614\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 89, Loss: 22.502172\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 90, Loss: 22.302607\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 91, Loss: 22.500463\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 92, Loss: 21.892448\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 93, Loss: 21.368397\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 94, Loss: 21.973394\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 95, Loss: 21.506456\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 96, Loss: 21.834871\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 97, Loss: 21.247217\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 98, Loss: 20.360069\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 99, Loss: 20.792057\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 100, Loss: 21.103563\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 101, Loss: 20.833197\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 102, Loss: 20.354586\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 103, Loss: 19.856703\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 104, Loss: 20.657448\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 105, Loss: 20.423311\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 106, Loss: 19.766344\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 107, Loss: 19.636084\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 108, Loss: 20.192966\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 109, Loss: 19.692381\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 110, Loss: 19.436420\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 111, Loss: 19.291672\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 112, Loss: 18.903170\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 113, Loss: 18.771196\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 114, Loss: 19.233738\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 115, Loss: 19.162409\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 116, Loss: 18.830950\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 117, Loss: 18.896910\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 118, Loss: 18.668764\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 119, Loss: 18.801744\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 120, Loss: 19.004578\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 121, Loss: 18.536175\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 122, Loss: 18.698296\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 123, Loss: 18.094490\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 124, Loss: 18.149136\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 125, Loss: 17.966589\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 126, Loss: 18.271049\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 127, Loss: 18.297556\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 128, Loss: 17.706753\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 129, Loss: 18.261999\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 130, Loss: 17.902227\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 131, Loss: 17.856686\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 132, Loss: 17.343407\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 133, Loss: 17.308723\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 134, Loss: 17.649912\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 135, Loss: 17.336096\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 136, Loss: 18.193926\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 137, Loss: 17.059233\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 138, Loss: 17.512634\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 139, Loss: 16.966475\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 140, Loss: 16.825323\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 141, Loss: 17.273638\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 142, Loss: 16.674374\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 143, Loss: 17.166588\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 144, Loss: 17.134237\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 145, Loss: 16.576893\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 146, Loss: 17.047136\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 147, Loss: 16.310175\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 148, Loss: 16.777500\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 149, Loss: 16.818628\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 150, Loss: 16.614603\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 151, Loss: 16.509007\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 152, Loss: 16.780308\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 153, Loss: 15.596710\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 154, Loss: 16.160675\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 155, Loss: 16.473221\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 156, Loss: 16.785711\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 157, Loss: 16.235386\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 158, Loss: 16.010376\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 159, Loss: 15.557759\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 160, Loss: 16.403755\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 161, Loss: 15.777298\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 162, Loss: 15.720657\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 163, Loss: 15.136259\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 164, Loss: 15.906966\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 165, Loss: 15.346491\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 166, Loss: 15.188922\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 167, Loss: 15.766966\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 168, Loss: 15.777825\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 169, Loss: 14.974334\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 170, Loss: 14.989801\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 171, Loss: 14.901811\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 172, Loss: 15.103951\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 173, Loss: 14.725224\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 174, Loss: 15.099422\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 175, Loss: 14.970053\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 176, Loss: 14.811901\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 177, Loss: 14.434797\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 178, Loss: 15.116921\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 179, Loss: 14.256943\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 180, Loss: 14.588125\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 181, Loss: 14.696139\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 182, Loss: 14.771312\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 183, Loss: 14.499177\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 184, Loss: 14.218767\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 185, Loss: 14.098009\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 186, Loss: 14.585470\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 187, Loss: 14.159066\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 188, Loss: 14.093799\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 189, Loss: 14.209439\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 190, Loss: 14.467762\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 191, Loss: 14.465827\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 192, Loss: 14.112339\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 193, Loss: 14.307550\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 194, Loss: 14.093982\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 195, Loss: 14.123085\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 196, Loss: 13.695026\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 197, Loss: 13.692195\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 198, Loss: 13.605958\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 199, Loss: 13.499082\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 200, Loss: 13.860320\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 201, Loss: 13.113602\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 202, Loss: 13.297767\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 203, Loss: 13.270793\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 204, Loss: 13.087612\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 205, Loss: 13.143638\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 206, Loss: 13.278229\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 207, Loss: 13.615715\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 208, Loss: 13.032175\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 209, Loss: 12.720451\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 210, Loss: 12.715047\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 211, Loss: 12.522378\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 212, Loss: 12.777995\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 213, Loss: 12.770810\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 214, Loss: 12.498261\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 215, Loss: 12.446757\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 216, Loss: 12.134072\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 217, Loss: 12.705588\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 218, Loss: 12.576127\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 219, Loss: 12.365241\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 220, Loss: 12.385981\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 221, Loss: 12.345573\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 222, Loss: 12.186421\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 223, Loss: 12.657943\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 224, Loss: 12.013225\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 225, Loss: 12.492685\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 226, Loss: 12.070369\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 227, Loss: 11.805700\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 228, Loss: 12.163777\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 229, Loss: 12.133399\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 230, Loss: 11.628447\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 231, Loss: 11.759689\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 232, Loss: 11.369923\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 233, Loss: 12.019404\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 234, Loss: 11.573792\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 235, Loss: 11.861526\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 236, Loss: 11.613866\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 237, Loss: 11.275723\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 238, Loss: 11.373854\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 239, Loss: 11.515635\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 240, Loss: 11.219682\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 241, Loss: 11.680534\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 242, Loss: 11.860485\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 243, Loss: 10.662703\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 244, Loss: 11.197843\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 245, Loss: 11.056024\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 246, Loss: 11.162621\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 247, Loss: 10.719378\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 248, Loss: 10.987385\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 249, Loss: 11.187979\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 250, Loss: 10.876204\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 251, Loss: 11.326925\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 252, Loss: 10.886361\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 253, Loss: 10.396129\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 254, Loss: 10.513854\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 255, Loss: 10.287307\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 256, Loss: 10.330395\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 257, Loss: 9.923325\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 258, Loss: 10.609335\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 259, Loss: 9.749922\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 260, Loss: 9.842422\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 261, Loss: 10.256857\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 262, Loss: 10.235573\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 263, Loss: 10.051935\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 264, Loss: 10.056081\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 265, Loss: 10.339334\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 266, Loss: 10.034996\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 267, Loss: 9.700327\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 268, Loss: 9.765026\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 269, Loss: 10.026870\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 270, Loss: 9.454113\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 271, Loss: 9.746103\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 272, Loss: 10.041070\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 273, Loss: 9.502725\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 274, Loss: 9.741037\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 275, Loss: 9.643909\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 276, Loss: 9.852834\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 277, Loss: 9.294238\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 278, Loss: 9.419797\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 279, Loss: 9.223362\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 280, Loss: 8.990347\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 281, Loss: 9.206889\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 282, Loss: 9.487256\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 283, Loss: 8.824837\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 284, Loss: 9.449387\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 285, Loss: 9.206070\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 286, Loss: 8.824433\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 287, Loss: 8.510183\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 288, Loss: 9.049460\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 289, Loss: 9.079997\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 290, Loss: 8.905216\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 291, Loss: 8.499322\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 292, Loss: 8.941523\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 293, Loss: 8.357526\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 294, Loss: 8.501663\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 295, Loss: 8.486305\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 296, Loss: 8.319910\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 297, Loss: 8.230464\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 298, Loss: 8.374149\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 299, Loss: 9.262408\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 300, Loss: 8.177299\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 301, Loss: 8.088093\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 302, Loss: 8.260299\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 303, Loss: 7.958601\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 304, Loss: 7.800465\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 305, Loss: 7.790984\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 306, Loss: 7.587621\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 307, Loss: 7.622614\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 308, Loss: 7.787981\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 309, Loss: 7.895122\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 310, Loss: 7.668257\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 311, Loss: 7.505673\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 312, Loss: 7.389352\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 313, Loss: 7.245972\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 314, Loss: 7.862948\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 315, Loss: 7.374730\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 316, Loss: 7.479564\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 317, Loss: 7.346951\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 318, Loss: 7.601071\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 319, Loss: 7.528070\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 320, Loss: 7.624004\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 321, Loss: 7.248278\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 322, Loss: 7.428226\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 323, Loss: 7.158124\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 324, Loss: 7.223454\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 325, Loss: 7.132922\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 326, Loss: 6.906949\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 327, Loss: 7.290885\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 328, Loss: 7.003727\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 329, Loss: 6.714848\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 330, Loss: 7.157885\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 331, Loss: 6.630209\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 332, Loss: 6.984156\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 333, Loss: 6.948904\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 334, Loss: 7.625031\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 335, Loss: 6.943622\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 336, Loss: 6.370887\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 337, Loss: 6.481359\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 338, Loss: 6.645314\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 339, Loss: 6.622938\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 340, Loss: 6.356204\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 341, Loss: 6.033768\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 342, Loss: 6.531980\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 343, Loss: 6.306291\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 344, Loss: 6.258695\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 345, Loss: 6.106748\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 346, Loss: 6.089303\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 347, Loss: 6.086137\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 348, Loss: 5.981623\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 349, Loss: 6.427279\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 350, Loss: 5.903255\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 351, Loss: 6.047134\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 352, Loss: 6.509608\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 353, Loss: 6.064055\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 354, Loss: 5.753185\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 355, Loss: 5.723503\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 356, Loss: 5.807069\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 357, Loss: 5.625019\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 358, Loss: 5.731568\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 359, Loss: 6.204481\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 360, Loss: 5.651093\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 361, Loss: 5.248613\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 362, Loss: 5.339895\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 363, Loss: 5.535610\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 364, Loss: 5.491449\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 365, Loss: 5.700193\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 366, Loss: 5.159246\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 367, Loss: 5.191518\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 368, Loss: 5.465889\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 369, Loss: 5.284616\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 370, Loss: 5.073644\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 371, Loss: 5.007409\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 372, Loss: 5.142089\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 373, Loss: 5.246334\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 374, Loss: 5.267880\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 375, Loss: 5.464209\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 376, Loss: 5.359515\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 377, Loss: 5.747257\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 378, Loss: 5.440281\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 379, Loss: 6.126756\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 380, Loss: 5.728102\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 381, Loss: 6.172285\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 382, Loss: 5.327214\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 383, Loss: 5.235293\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 384, Loss: 5.203897\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 385, Loss: 4.743279\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 386, Loss: 4.785693\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 387, Loss: 4.589875\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 388, Loss: 4.766512\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 389, Loss: 4.629401\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 390, Loss: 4.513423\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 391, Loss: 4.791765\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 392, Loss: 4.588070\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 393, Loss: 4.799964\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 394, Loss: 5.115355\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 395, Loss: 4.815979\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 396, Loss: 4.700212\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 397, Loss: 4.469203\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 398, Loss: 4.582901\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 399, Loss: 4.712388\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 400, Loss: 4.286313\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 401, Loss: 4.350927\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 402, Loss: 4.379849\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 403, Loss: 4.606648\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 404, Loss: 4.342823\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 405, Loss: 4.195888\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 406, Loss: 4.069769\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 407, Loss: 4.095990\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 408, Loss: 4.238916\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 409, Loss: 4.174253\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 410, Loss: 4.730217\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 411, Loss: 5.396911\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 412, Loss: 5.168157\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 413, Loss: 4.641059\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 414, Loss: 4.420280\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 415, Loss: 4.446787\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 416, Loss: 3.770437\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 417, Loss: 4.215738\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 418, Loss: 3.979369\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 419, Loss: 4.135387\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 420, Loss: 4.013277\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 421, Loss: 4.312388\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 422, Loss: 6.571229\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 423, Loss: 4.489686\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 424, Loss: 4.661634\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 425, Loss: 4.129825\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 426, Loss: 3.750534\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 427, Loss: 4.215908\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 428, Loss: 4.053989\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 429, Loss: 4.204558\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 430, Loss: 3.535064\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 431, Loss: 3.778508\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 432, Loss: 3.760858\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 433, Loss: 3.602712\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 434, Loss: 4.330344\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 435, Loss: 3.978835\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 436, Loss: 3.935277\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 437, Loss: 3.573579\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 438, Loss: 3.246610\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 439, Loss: 5.755704\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 440, Loss: 4.066514\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 441, Loss: 3.762512\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 442, Loss: 3.539881\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 443, Loss: 3.444836\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 444, Loss: 3.819454\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 445, Loss: 3.548409\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 446, Loss: 3.522104\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 447, Loss: 4.268759\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 448, Loss: 4.673703\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 449, Loss: 3.737567\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 450, Loss: 3.936925\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 451, Loss: 3.938553\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 452, Loss: 3.510684\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 453, Loss: 4.341064\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 454, Loss: 3.433029\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 455, Loss: 3.399625\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 456, Loss: 3.635965\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 457, Loss: 3.630866\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 458, Loss: 3.537446\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 459, Loss: 3.461498\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 460, Loss: 3.420604\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 461, Loss: 3.283517\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 462, Loss: 2.990968\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 463, Loss: 3.306267\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 464, Loss: 3.053912\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 465, Loss: 3.381966\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 466, Loss: 3.147225\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 467, Loss: 3.682400\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 468, Loss: 3.262516\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 469, Loss: 2.814470\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 470, Loss: 2.951414\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 471, Loss: 2.995306\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 472, Loss: 2.829480\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 473, Loss: 3.014231\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 474, Loss: 2.858113\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 475, Loss: 3.152396\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 476, Loss: 4.270709\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 477, Loss: 4.548381\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 478, Loss: 3.804442\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 479, Loss: 3.220259\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 480, Loss: 3.031776\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 481, Loss: 3.029175\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 482, Loss: 3.472100\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 483, Loss: 3.195364\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 484, Loss: 2.845498\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 485, Loss: 2.907214\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 486, Loss: 4.205308\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 487, Loss: 5.145755\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 488, Loss: 3.531615\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 489, Loss: 3.065765\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 490, Loss: 2.866615\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 491, Loss: 2.807357\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 492, Loss: 3.281519\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 493, Loss: 3.028814\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 494, Loss: 3.663383\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 495, Loss: 5.515906\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 496, Loss: 3.875606\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 497, Loss: 3.830631\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 498, Loss: 2.874653\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 499, Loss: 2.775021\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 500, Loss: 3.117001\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 501, Loss: 2.659817\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 502, Loss: 2.527483\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 503, Loss: 2.745253\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 504, Loss: 2.427346\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 505, Loss: 2.481129\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 506, Loss: 2.391776\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 507, Loss: 2.705789\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 508, Loss: 2.580154\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 509, Loss: 2.495368\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 510, Loss: 2.456070\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 511, Loss: 2.778913\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 512, Loss: 2.617025\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 513, Loss: 2.697783\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 514, Loss: 2.738415\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 515, Loss: 5.295756\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 516, Loss: 2.977792\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 517, Loss: 2.759765\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 518, Loss: 2.556846\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 519, Loss: 2.474600\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 520, Loss: 3.447170\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 521, Loss: 3.017255\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 522, Loss: 2.647540\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 523, Loss: 2.968602\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 524, Loss: 3.194230\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 525, Loss: 3.330532\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 526, Loss: 3.870293\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 527, Loss: 3.059120\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 528, Loss: 2.377800\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 529, Loss: 2.511683\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 530, Loss: 2.793199\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 531, Loss: 2.991563\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 532, Loss: 2.533440\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 533, Loss: 2.703616\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 534, Loss: 3.581931\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 535, Loss: 3.237732\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 536, Loss: 3.788161\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 537, Loss: 3.032988\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 538, Loss: 2.768882\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 539, Loss: 4.430500\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 540, Loss: 3.015908\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 541, Loss: 2.437562\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 542, Loss: 2.237805\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 543, Loss: 2.275173\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 544, Loss: 2.368436\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 545, Loss: 2.271907\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 546, Loss: 2.398060\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 547, Loss: 2.406838\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 548, Loss: 2.372528\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 549, Loss: 2.337426\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 550, Loss: 2.541124\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 551, Loss: 2.783085\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 552, Loss: 2.417547\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 553, Loss: 2.386759\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 554, Loss: 2.468450\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 555, Loss: 2.704356\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 556, Loss: 2.398271\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 557, Loss: 3.450758\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 558, Loss: 2.979712\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 559, Loss: 3.125253\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 560, Loss: 2.682777\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 561, Loss: 2.993555\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 562, Loss: 2.761994\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 563, Loss: 2.242724\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 564, Loss: 2.102407\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 565, Loss: 2.183574\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 566, Loss: 2.163170\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 567, Loss: 2.315512\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 568, Loss: 2.275376\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 569, Loss: 3.106452\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 570, Loss: 2.326515\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 571, Loss: 2.632558\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 572, Loss: 2.470765\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 573, Loss: 2.080898\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 574, Loss: 2.089765\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 575, Loss: 1.915555\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 576, Loss: 2.036559\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 577, Loss: 1.958434\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 578, Loss: 2.140187\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 579, Loss: 2.783969\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 580, Loss: 2.410564\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 581, Loss: 3.189897\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 582, Loss: 3.280720\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 583, Loss: 4.104545\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 584, Loss: 2.560965\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 585, Loss: 2.402147\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 586, Loss: 2.074386\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 587, Loss: 2.051791\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 588, Loss: 1.979650\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 589, Loss: 1.900175\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 590, Loss: 1.782217\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 591, Loss: 2.139514\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 592, Loss: 1.956227\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 593, Loss: 2.264129\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 594, Loss: 2.265109\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 595, Loss: 2.228113\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 596, Loss: 2.997164\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 597, Loss: 2.888995\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 598, Loss: 2.293626\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 599, Loss: 2.102134\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 600, Loss: 1.814135\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 601, Loss: 2.138320\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 602, Loss: 1.908357\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 603, Loss: 2.026141\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 604, Loss: 1.989461\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 605, Loss: 2.178064\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 606, Loss: 1.733911\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 607, Loss: 1.886744\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 608, Loss: 1.859134\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 609, Loss: 3.547192\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 610, Loss: 6.699276\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 611, Loss: 3.750615\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 612, Loss: 3.651189\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 613, Loss: 2.863791\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 614, Loss: 2.109503\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 615, Loss: 1.999668\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 616, Loss: 2.020234\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 617, Loss: 2.005054\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 618, Loss: 1.981131\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 619, Loss: 2.071590\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 620, Loss: 2.214398\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 621, Loss: 2.389023\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 622, Loss: 1.990078\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 623, Loss: 1.891489\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 624, Loss: 1.735140\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 625, Loss: 1.898439\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 626, Loss: 1.765845\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 627, Loss: 1.869051\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 628, Loss: 1.690975\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 629, Loss: 1.923051\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 630, Loss: 1.839952\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 631, Loss: 4.455143\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 632, Loss: 3.446118\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 633, Loss: 2.599340\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 634, Loss: 2.482528\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 635, Loss: 2.178318\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 636, Loss: 2.113361\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 637, Loss: 2.869632\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 638, Loss: 2.179260\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 639, Loss: 2.156189\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 640, Loss: 1.950622\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 641, Loss: 1.786811\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 642, Loss: 1.973757\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 643, Loss: 1.878638\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 644, Loss: 2.064811\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 645, Loss: 2.122056\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 646, Loss: 2.227437\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 647, Loss: 2.299442\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 648, Loss: 2.173509\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 649, Loss: 1.806411\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 650, Loss: 2.328242\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 651, Loss: 2.364933\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 652, Loss: 2.322957\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 653, Loss: 3.198406\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 654, Loss: 4.628154\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 655, Loss: 3.319782\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 656, Loss: 2.151410\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 657, Loss: 2.577288\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 658, Loss: 2.794024\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 659, Loss: 2.463583\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 660, Loss: 1.998523\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 661, Loss: 1.819980\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 662, Loss: 1.719192\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 663, Loss: 1.562667\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 664, Loss: 1.687960\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 665, Loss: 1.664196\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 666, Loss: 2.459981\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 667, Loss: 2.612168\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 668, Loss: 1.974868\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 669, Loss: 1.754294\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 670, Loss: 1.624771\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 671, Loss: 1.555434\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 672, Loss: 1.572389\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 673, Loss: 1.617517\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 674, Loss: 2.045020\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 675, Loss: 2.158755\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 676, Loss: 1.923528\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 677, Loss: 2.899225\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 678, Loss: 2.683745\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 679, Loss: 1.855496\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 680, Loss: 1.827138\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 681, Loss: 1.566289\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 682, Loss: 1.555519\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 683, Loss: 1.702963\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 684, Loss: 1.662761\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 685, Loss: 1.855252\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 686, Loss: 1.520845\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 687, Loss: 1.881280\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 688, Loss: 1.720495\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 689, Loss: 2.009138\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 690, Loss: 1.546682\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 691, Loss: 1.869210\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 692, Loss: 1.912195\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 693, Loss: 4.012271\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 694, Loss: 3.467162\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 695, Loss: 2.694529\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 696, Loss: 1.811160\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 697, Loss: 1.698001\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 698, Loss: 1.576221\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 699, Loss: 1.798383\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 700, Loss: 1.595714\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 701, Loss: 1.769470\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 702, Loss: 2.226824\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 703, Loss: 1.925452\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 704, Loss: 1.763307\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 705, Loss: 1.683559\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 706, Loss: 1.639004\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 707, Loss: 2.399070\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 708, Loss: 1.877131\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 709, Loss: 1.744011\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 710, Loss: 1.679740\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 711, Loss: 1.897873\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 712, Loss: 1.767167\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 713, Loss: 1.649674\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 714, Loss: 1.908599\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 715, Loss: 1.983824\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 716, Loss: 1.803100\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 717, Loss: 3.400696\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 718, Loss: 2.786000\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 719, Loss: 3.826714\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 720, Loss: 2.326658\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 721, Loss: 1.951882\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 722, Loss: 1.583739\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 723, Loss: 1.551124\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 724, Loss: 1.584071\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 725, Loss: 1.457319\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 726, Loss: 1.469416\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 727, Loss: 1.479289\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 728, Loss: 1.382997\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 729, Loss: 1.486416\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 730, Loss: 1.619084\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 731, Loss: 2.199531\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 732, Loss: 1.994029\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 733, Loss: 3.245602\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 734, Loss: 2.391356\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 735, Loss: 3.925912\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 736, Loss: 2.324187\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 737, Loss: 3.122388\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 738, Loss: 2.032719\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 739, Loss: 1.988942\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 740, Loss: 1.962339\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 741, Loss: 1.581683\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 742, Loss: 1.615930\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 743, Loss: 1.872023\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 744, Loss: 1.480108\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 745, Loss: 1.539899\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 746, Loss: 1.494689\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 747, Loss: 1.482118\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 748, Loss: 1.636146\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 749, Loss: 1.502599\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 750, Loss: 1.464250\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 751, Loss: 1.486380\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 752, Loss: 1.918081\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 753, Loss: 3.073506\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 754, Loss: 1.695048\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 755, Loss: 1.512425\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 756, Loss: 1.555599\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 757, Loss: 2.160171\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 758, Loss: 1.671726\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 759, Loss: 1.552958\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 760, Loss: 1.397078\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 761, Loss: 1.543720\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 762, Loss: 2.005043\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 763, Loss: 1.635409\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 764, Loss: 1.417839\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 765, Loss: 1.515433\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 766, Loss: 1.637551\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 767, Loss: 1.784319\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 768, Loss: 4.706812\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 769, Loss: 2.324341\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 770, Loss: 1.683028\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 771, Loss: 1.579730\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 772, Loss: 1.737364\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 773, Loss: 1.667077\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 774, Loss: 1.485741\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 775, Loss: 1.441741\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 776, Loss: 1.960157\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 777, Loss: 1.578444\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 778, Loss: 1.388422\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 779, Loss: 1.434836\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 780, Loss: 1.458521\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 781, Loss: 1.305973\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 782, Loss: 1.384766\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 783, Loss: 1.489718\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 784, Loss: 1.452183\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 785, Loss: 1.788674\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 786, Loss: 2.626729\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 787, Loss: 2.268832\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 788, Loss: 1.999184\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 789, Loss: 2.679017\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 790, Loss: 1.908492\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 791, Loss: 1.563687\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 792, Loss: 1.544117\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 793, Loss: 1.363690\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 794, Loss: 1.857782\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 795, Loss: 1.952850\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 796, Loss: 2.902710\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 797, Loss: 2.333466\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 798, Loss: 1.422431\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 799, Loss: 1.520188\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 800, Loss: 1.428354\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 801, Loss: 1.392625\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 802, Loss: 1.521860\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 803, Loss: 1.343046\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 804, Loss: 1.282667\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 805, Loss: 1.384818\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 806, Loss: 1.330190\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 807, Loss: 1.344504\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 808, Loss: 1.440098\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 809, Loss: 2.267785\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 810, Loss: 2.298436\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 811, Loss: 3.010582\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 812, Loss: 2.938267\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 813, Loss: 2.168348\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 814, Loss: 2.042773\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 815, Loss: 2.096655\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 816, Loss: 1.405972\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 817, Loss: 1.292760\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 818, Loss: 1.315122\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 819, Loss: 1.346845\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 820, Loss: 1.394013\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 821, Loss: 1.150555\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 822, Loss: 1.405716\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 823, Loss: 1.787313\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 824, Loss: 2.778305\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 825, Loss: 3.562866\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 826, Loss: 2.965768\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 827, Loss: 1.830350\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 828, Loss: 1.502951\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 829, Loss: 1.388081\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 830, Loss: 1.360003\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 831, Loss: 1.315740\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 832, Loss: 1.632213\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 833, Loss: 1.625220\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 834, Loss: 1.434108\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 835, Loss: 1.183327\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 836, Loss: 1.201088\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 837, Loss: 1.211264\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 838, Loss: 1.296398\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 839, Loss: 1.220929\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 840, Loss: 1.190493\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 841, Loss: 1.289150\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 842, Loss: 1.369099\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 843, Loss: 1.800359\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 844, Loss: 1.322136\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 845, Loss: 1.483028\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 846, Loss: 1.419762\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 847, Loss: 1.301731\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 848, Loss: 1.303550\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 849, Loss: 1.321877\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 850, Loss: 1.313711\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 851, Loss: 1.349985\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 852, Loss: 1.383082\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 853, Loss: 1.369003\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 854, Loss: 1.210239\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 855, Loss: 1.305523\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 856, Loss: 1.378280\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 857, Loss: 1.651769\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 858, Loss: 1.453536\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 859, Loss: 1.328713\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 860, Loss: 1.415877\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 861, Loss: 1.170516\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 862, Loss: 1.661561\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 863, Loss: 1.468817\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 864, Loss: 1.917089\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 865, Loss: 1.463468\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 866, Loss: 1.498009\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 867, Loss: 1.359985\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 868, Loss: 1.840531\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 869, Loss: 1.613642\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 870, Loss: 1.283802\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 871, Loss: 1.345370\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 872, Loss: 1.394070\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 873, Loss: 3.229403\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 874, Loss: 1.951374\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 875, Loss: 1.748666\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 876, Loss: 1.995961\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 877, Loss: 1.758049\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 878, Loss: 1.483987\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 879, Loss: 1.322278\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 880, Loss: 1.600324\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 881, Loss: 1.309156\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 882, Loss: 1.433625\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 883, Loss: 1.361544\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 884, Loss: 1.439513\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 885, Loss: 1.384027\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 886, Loss: 1.182635\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 887, Loss: 1.112190\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 888, Loss: 1.105353\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 889, Loss: 1.181848\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 890, Loss: 1.077679\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 891, Loss: 1.257340\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 892, Loss: 1.373187\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 893, Loss: 2.974279\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 894, Loss: 1.675431\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 895, Loss: 1.363422\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 896, Loss: 1.544908\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 897, Loss: 1.259089\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 898, Loss: 1.789796\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 899, Loss: 1.240515\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 900, Loss: 1.366828\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 901, Loss: 6.455173\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 902, Loss: 4.230689\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 903, Loss: 2.380922\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 904, Loss: 1.554373\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 905, Loss: 1.167224\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 906, Loss: 1.327915\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 907, Loss: 1.424307\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 908, Loss: 1.268513\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 909, Loss: 1.073089\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 910, Loss: 1.046553\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 911, Loss: 1.539240\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 912, Loss: 1.411692\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 913, Loss: 1.243949\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 914, Loss: 1.060490\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 915, Loss: 1.745536\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 916, Loss: 1.607342\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 917, Loss: 1.469932\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 918, Loss: 1.176754\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 919, Loss: 1.192145\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 920, Loss: 1.348553\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 921, Loss: 1.158249\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 922, Loss: 0.945518\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 923, Loss: 1.520379\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 924, Loss: 3.686378\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 925, Loss: 5.286555\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 926, Loss: 5.665518\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 927, Loss: 2.777025\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 928, Loss: 1.666408\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 929, Loss: 1.262000\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 930, Loss: 1.616374\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 931, Loss: 2.447936\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 932, Loss: 1.321782\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 933, Loss: 1.456363\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 934, Loss: 1.344355\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 935, Loss: 1.193839\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 936, Loss: 1.457522\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 937, Loss: 1.224164\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 938, Loss: 1.257377\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 939, Loss: 1.152020\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 940, Loss: 0.992490\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 941, Loss: 1.521879\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 942, Loss: 1.376393\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 943, Loss: 1.357082\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 944, Loss: 1.130535\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 945, Loss: 1.078394\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 946, Loss: 0.980169\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 947, Loss: 0.995463\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 948, Loss: 1.077591\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 949, Loss: 1.005008\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 950, Loss: 1.665294\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 951, Loss: 2.207529\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 952, Loss: 1.499481\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 953, Loss: 1.467009\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 954, Loss: 1.131375\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 955, Loss: 1.136947\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 956, Loss: 1.156977\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 957, Loss: 1.044912\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 958, Loss: 1.018139\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 959, Loss: 1.111889\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 960, Loss: 1.228946\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 961, Loss: 1.363427\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 962, Loss: 1.302376\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 963, Loss: 1.308574\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 964, Loss: 1.109508\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 965, Loss: 1.060640\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 966, Loss: 1.961388\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 967, Loss: 1.749448\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 968, Loss: 1.633663\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 969, Loss: 1.864518\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 970, Loss: 1.172538\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 971, Loss: 1.252493\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 972, Loss: 1.196532\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 973, Loss: 1.178334\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 974, Loss: 1.154791\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 975, Loss: 1.131417\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 976, Loss: 1.068885\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 977, Loss: 1.070652\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 978, Loss: 1.009590\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 979, Loss: 0.994388\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 980, Loss: 0.935119\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 981, Loss: 1.448593\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 982, Loss: 1.205096\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 983, Loss: 1.422074\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 984, Loss: 1.125705\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 985, Loss: 1.500195\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 986, Loss: 2.123793\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 987, Loss: 1.459434\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 988, Loss: 2.342716\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 989, Loss: 1.829276\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 990, Loss: 3.398337\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 991, Loss: 3.271901\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 992, Loss: 1.713222\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 993, Loss: 1.706283\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 994, Loss: 2.553782\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 995, Loss: 1.347977\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 996, Loss: 1.106570\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 997, Loss: 1.183299\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 998, Loss: 1.208843\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 999, Loss: 1.931823\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1000, Loss: 1.855260\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1001, Loss: 1.296994\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1002, Loss: 1.585704\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1003, Loss: 1.815416\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1004, Loss: 1.051125\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1005, Loss: 1.158966\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1006, Loss: 1.106741\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1007, Loss: 1.149655\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1008, Loss: 1.648054\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1009, Loss: 1.625673\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1010, Loss: 1.246701\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1011, Loss: 1.027749\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1012, Loss: 0.936845\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1013, Loss: 0.923557\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1014, Loss: 1.007295\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1015, Loss: 1.111086\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1016, Loss: 1.459777\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1017, Loss: 1.720691\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1018, Loss: 2.534418\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1019, Loss: 1.476842\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1020, Loss: 1.364709\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1021, Loss: 1.863406\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1022, Loss: 1.194058\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1023, Loss: 3.086432\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1024, Loss: 1.611515\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1025, Loss: 1.410788\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1026, Loss: 1.042799\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1027, Loss: 0.984227\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1028, Loss: 1.102357\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1029, Loss: 1.058149\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1030, Loss: 1.063498\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1031, Loss: 1.113386\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1032, Loss: 1.496725\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1033, Loss: 1.151847\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1034, Loss: 1.080744\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1035, Loss: 1.702994\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1036, Loss: 1.110545\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1037, Loss: 1.148638\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1038, Loss: 1.197450\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1039, Loss: 1.164261\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1040, Loss: 1.149555\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1041, Loss: 1.050491\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1042, Loss: 0.934232\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1043, Loss: 0.909456\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1044, Loss: 0.950052\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1045, Loss: 0.915698\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1046, Loss: 0.952386\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1047, Loss: 0.933676\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1048, Loss: 0.959499\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1049, Loss: 1.365853\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1050, Loss: 1.620167\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1051, Loss: 1.769942\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1052, Loss: 1.706677\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1053, Loss: 1.196832\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1054, Loss: 1.122941\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1055, Loss: 1.435559\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1056, Loss: 1.430016\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1057, Loss: 3.481597\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1058, Loss: 2.023191\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1059, Loss: 1.372647\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1060, Loss: 1.312746\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1061, Loss: 1.399441\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1062, Loss: 1.171196\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1063, Loss: 1.039837\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1064, Loss: 1.070453\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1065, Loss: 0.943606\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1066, Loss: 1.196842\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1067, Loss: 1.416513\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1068, Loss: 1.112111\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1069, Loss: 1.286708\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1070, Loss: 1.434233\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1071, Loss: 1.728188\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1072, Loss: 1.189224\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1073, Loss: 1.056069\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1074, Loss: 0.987869\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1075, Loss: 0.997112\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1076, Loss: 1.751073\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1077, Loss: 4.320671\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1078, Loss: 4.129223\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1079, Loss: 1.982605\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1080, Loss: 1.212952\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1081, Loss: 1.091597\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1082, Loss: 1.012144\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1083, Loss: 1.079365\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1084, Loss: 0.968860\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1085, Loss: 0.837679\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1086, Loss: 0.951841\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1087, Loss: 0.976349\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1088, Loss: 0.902185\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1089, Loss: 0.870974\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1090, Loss: 0.872002\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1091, Loss: 0.946962\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1092, Loss: 1.112778\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1093, Loss: 3.836021\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1094, Loss: 4.968795\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1095, Loss: 2.464794\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1096, Loss: 2.063021\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1097, Loss: 1.513250\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1098, Loss: 1.844887\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1099, Loss: 1.405398\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1100, Loss: 1.061325\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1101, Loss: 0.885870\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1102, Loss: 0.840085\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1103, Loss: 0.868645\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1104, Loss: 0.915174\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1105, Loss: 0.847509\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1106, Loss: 0.808379\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1107, Loss: 0.891327\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1108, Loss: 1.515070\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1109, Loss: 2.141408\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1110, Loss: 2.227697\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1111, Loss: 1.172863\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1112, Loss: 1.315925\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1113, Loss: 1.082647\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1114, Loss: 1.560403\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1115, Loss: 1.254441\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1116, Loss: 0.956103\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1117, Loss: 0.950753\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1118, Loss: 1.267851\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1119, Loss: 0.851799\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1120, Loss: 0.880765\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1121, Loss: 1.639711\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1122, Loss: 1.412690\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1123, Loss: 0.882820\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1124, Loss: 1.035813\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1125, Loss: 1.111156\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1126, Loss: 1.103567\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1127, Loss: 0.952424\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1128, Loss: 1.141768\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1129, Loss: 0.882220\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1130, Loss: 1.302157\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1131, Loss: 1.411449\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1132, Loss: 1.257085\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1133, Loss: 1.158403\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1134, Loss: 1.091131\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1135, Loss: 1.306226\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1136, Loss: 3.639596\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1137, Loss: 4.186745\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1138, Loss: 2.421062\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1139, Loss: 1.663443\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1140, Loss: 1.244874\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1141, Loss: 0.994497\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1142, Loss: 0.952187\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1143, Loss: 0.839158\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1144, Loss: 0.948939\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1145, Loss: 1.139589\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1146, Loss: 0.897111\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1147, Loss: 1.172711\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1148, Loss: 0.954595\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1149, Loss: 2.142871\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1150, Loss: 1.656522\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1151, Loss: 0.978582\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1152, Loss: 0.821100\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1153, Loss: 1.372700\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1154, Loss: 1.029184\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1155, Loss: 2.152027\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1156, Loss: 1.379415\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1157, Loss: 1.365409\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1158, Loss: 1.127277\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1159, Loss: 0.999799\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1160, Loss: 1.037773\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1161, Loss: 0.921666\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1162, Loss: 1.028049\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1163, Loss: 0.901779\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1164, Loss: 1.413061\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1165, Loss: 3.740630\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1166, Loss: 1.923188\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1167, Loss: 1.194230\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1168, Loss: 1.039446\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1169, Loss: 0.903335\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1170, Loss: 0.896018\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1171, Loss: 0.914591\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1172, Loss: 0.898188\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1173, Loss: 1.716494\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1174, Loss: 2.986189\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1175, Loss: 3.097476\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1176, Loss: 1.523144\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1177, Loss: 1.539946\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1178, Loss: 1.118163\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1179, Loss: 0.992627\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1180, Loss: 0.873270\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1181, Loss: 0.893564\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1182, Loss: 0.773103\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1183, Loss: 0.762037\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1184, Loss: 0.741810\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1185, Loss: 0.844941\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1186, Loss: 1.058231\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1187, Loss: 0.752214\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1188, Loss: 0.749960\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1189, Loss: 0.903521\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1190, Loss: 1.009853\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1191, Loss: 1.702982\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1192, Loss: 1.262774\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1193, Loss: 1.158326\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1194, Loss: 0.872197\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1195, Loss: 0.938619\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1196, Loss: 0.834873\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1197, Loss: 2.027494\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1198, Loss: 1.185417\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1199, Loss: 2.186254\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1200, Loss: 0.993722\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1201, Loss: 0.842763\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1202, Loss: 0.929108\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1203, Loss: 1.465075\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1204, Loss: 1.404633\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1205, Loss: 1.249278\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1206, Loss: 1.040193\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1207, Loss: 1.286355\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1208, Loss: 1.061883\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1209, Loss: 1.272308\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1210, Loss: 1.431514\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1211, Loss: 1.007353\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1212, Loss: 0.833065\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1213, Loss: 0.772936\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1214, Loss: 0.923882\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1215, Loss: 0.879084\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1216, Loss: 1.033052\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1217, Loss: 1.574043\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1218, Loss: 3.415260\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1219, Loss: 1.946413\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1220, Loss: 1.778232\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1221, Loss: 1.324187\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1222, Loss: 1.164899\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1223, Loss: 0.990394\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1224, Loss: 0.930400\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1225, Loss: 0.896638\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1226, Loss: 0.783693\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1227, Loss: 0.868224\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1228, Loss: 1.653651\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1229, Loss: 0.866384\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1230, Loss: 1.365339\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1231, Loss: 1.067505\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1232, Loss: 1.019899\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1233, Loss: 1.183390\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1234, Loss: 1.528929\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1235, Loss: 3.042091\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1236, Loss: 1.456668\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1237, Loss: 0.944508\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1238, Loss: 0.926937\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1239, Loss: 0.862885\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1240, Loss: 1.108523\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1241, Loss: 1.840075\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1242, Loss: 0.779947\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1243, Loss: 1.086590\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1244, Loss: 0.937479\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1245, Loss: 1.401815\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1246, Loss: 0.974160\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1247, Loss: 0.737197\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1248, Loss: 0.837065\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1249, Loss: 1.678486\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1250, Loss: 1.841978\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1251, Loss: 3.218300\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1252, Loss: 1.480226\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1253, Loss: 1.170391\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1254, Loss: 1.082278\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1255, Loss: 0.892152\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1256, Loss: 1.123376\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1257, Loss: 0.804567\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1258, Loss: 1.152298\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1259, Loss: 2.557805\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1260, Loss: 1.526818\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1261, Loss: 1.219388\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1262, Loss: 0.869923\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1263, Loss: 0.808592\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1264, Loss: 0.800317\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1265, Loss: 0.750564\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1266, Loss: 0.749512\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1267, Loss: 0.824321\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1268, Loss: 0.919296\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1269, Loss: 0.793230\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1270, Loss: 0.818251\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1271, Loss: 0.728544\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1272, Loss: 0.830036\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1273, Loss: 0.872476\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1274, Loss: 1.816251\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1275, Loss: 1.235738\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1276, Loss: 1.253595\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1277, Loss: 1.462958\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1278, Loss: 1.133928\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1279, Loss: 1.062734\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1280, Loss: 0.848225\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1281, Loss: 1.020027\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1282, Loss: 1.080690\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1283, Loss: 1.254860\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1284, Loss: 1.206885\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1285, Loss: 1.277946\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1286, Loss: 0.942099\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1287, Loss: 1.514698\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1288, Loss: 0.953051\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1289, Loss: 0.925706\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1290, Loss: 1.317300\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1291, Loss: 1.150918\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1292, Loss: 1.171906\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1293, Loss: 0.962735\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1294, Loss: 1.053476\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1295, Loss: 1.117807\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1296, Loss: 1.148625\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1297, Loss: 2.418862\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1298, Loss: 1.582564\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1299, Loss: 1.948451\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1300, Loss: 1.370260\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1301, Loss: 2.788973\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1302, Loss: 1.392883\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1303, Loss: 1.407899\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1304, Loss: 1.136474\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1305, Loss: 1.002595\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1306, Loss: 1.120545\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1307, Loss: 0.997460\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1308, Loss: 1.021244\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1309, Loss: 0.794105\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1310, Loss: 0.679464\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1311, Loss: 0.718858\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1312, Loss: 0.698152\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1313, Loss: 0.785450\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1314, Loss: 0.710671\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1315, Loss: 0.711718\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1316, Loss: 0.703265\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1317, Loss: 0.685143\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1318, Loss: 0.713680\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1319, Loss: 0.730094\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1320, Loss: 0.808809\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1321, Loss: 0.818262\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1322, Loss: 1.888204\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1323, Loss: 1.406404\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1324, Loss: 2.355305\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1325, Loss: 3.590415\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1326, Loss: 2.345597\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1327, Loss: 1.415635\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1328, Loss: 1.042172\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1329, Loss: 0.852964\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1330, Loss: 2.703042\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1331, Loss: 1.937755\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1332, Loss: 1.158522\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1333, Loss: 0.939571\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1334, Loss: 0.746697\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1335, Loss: 1.021136\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1336, Loss: 0.952231\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1337, Loss: 0.922122\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1338, Loss: 0.764096\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1339, Loss: 1.096298\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1340, Loss: 2.057932\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1341, Loss: 1.769018\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1342, Loss: 0.974157\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1343, Loss: 0.857841\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1344, Loss: 0.806048\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1345, Loss: 0.937434\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1346, Loss: 0.719876\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1347, Loss: 0.745882\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1348, Loss: 0.707676\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1349, Loss: 0.717100\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1350, Loss: 0.798919\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1351, Loss: 1.074880\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1352, Loss: 0.908600\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1353, Loss: 1.849028\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1354, Loss: 2.860505\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1355, Loss: 1.388751\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1356, Loss: 1.357675\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1357, Loss: 1.075535\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1358, Loss: 1.946589\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1359, Loss: 0.953243\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1360, Loss: 0.956206\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1361, Loss: 1.039987\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1362, Loss: 1.366994\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1363, Loss: 0.783802\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1364, Loss: 0.876777\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1365, Loss: 0.728957\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1366, Loss: 0.698628\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1367, Loss: 0.658807\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1368, Loss: 0.696799\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1369, Loss: 2.302224\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1370, Loss: 1.556647\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1371, Loss: 0.926617\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1372, Loss: 0.824540\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1373, Loss: 1.019204\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1374, Loss: 0.950843\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1375, Loss: 0.750954\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1376, Loss: 0.762775\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1377, Loss: 0.764730\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1378, Loss: 0.717877\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1379, Loss: 0.701366\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1380, Loss: 0.681220\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1381, Loss: 0.698881\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1382, Loss: 0.710041\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1383, Loss: 0.737495\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1384, Loss: 0.863588\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1385, Loss: 1.048423\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1386, Loss: 3.526548\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1387, Loss: 3.900486\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1388, Loss: 2.245347\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1389, Loss: 1.315816\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1390, Loss: 1.141986\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1391, Loss: 1.039609\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1392, Loss: 1.099819\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1393, Loss: 0.702458\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1394, Loss: 0.787879\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1395, Loss: 0.727505\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1396, Loss: 0.952679\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1397, Loss: 1.896947\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1398, Loss: 2.100903\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1399, Loss: 1.116580\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1400, Loss: 0.770994\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1401, Loss: 0.927038\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1402, Loss: 0.855272\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1403, Loss: 0.912910\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1404, Loss: 0.785696\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1405, Loss: 0.645209\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1406, Loss: 0.738969\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1407, Loss: 0.685545\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1408, Loss: 1.077279\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1409, Loss: 0.782979\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1410, Loss: 0.723008\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1411, Loss: 0.624030\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1412, Loss: 0.740207\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1413, Loss: 0.717408\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1414, Loss: 0.840519\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1415, Loss: 1.009386\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1416, Loss: 1.021491\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1417, Loss: 2.405875\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1418, Loss: 3.962989\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1419, Loss: 2.459644\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1420, Loss: 3.048751\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1421, Loss: 1.960212\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1422, Loss: 1.130912\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1423, Loss: 1.151906\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1424, Loss: 1.053205\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1425, Loss: 1.497704\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1426, Loss: 0.888473\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1427, Loss: 0.722721\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1428, Loss: 0.692643\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1429, Loss: 0.820445\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1430, Loss: 1.321322\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1431, Loss: 1.087113\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1432, Loss: 0.799347\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1433, Loss: 0.676882\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1434, Loss: 0.688587\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1435, Loss: 0.714126\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1436, Loss: 0.660931\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1437, Loss: 1.260499\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1438, Loss: 0.975527\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1439, Loss: 1.039903\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1440, Loss: 0.756294\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1441, Loss: 0.774964\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1442, Loss: 0.838424\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1443, Loss: 0.717002\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1444, Loss: 0.947265\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1445, Loss: 1.068722\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1446, Loss: 0.927325\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1447, Loss: 0.861583\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1448, Loss: 1.333755\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1449, Loss: 1.742329\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1450, Loss: 1.273583\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1451, Loss: 1.201315\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1452, Loss: 1.071752\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1453, Loss: 1.015359\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1454, Loss: 1.155117\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1455, Loss: 0.857789\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1456, Loss: 1.861171\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1457, Loss: 0.891922\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1458, Loss: 0.902372\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1459, Loss: 1.032366\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1460, Loss: 1.262686\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1461, Loss: 1.253584\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1462, Loss: 0.945507\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1463, Loss: 0.799990\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1464, Loss: 0.902736\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1465, Loss: 0.779044\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1466, Loss: 1.383056\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1467, Loss: 0.965237\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1468, Loss: 1.133769\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1469, Loss: 1.171821\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1470, Loss: 0.825122\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1471, Loss: 0.850481\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1472, Loss: 0.718799\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1473, Loss: 0.831406\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1474, Loss: 0.899940\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1475, Loss: 0.922025\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1476, Loss: 0.736486\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1477, Loss: 1.365299\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1478, Loss: 1.062687\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1479, Loss: 1.038628\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1480, Loss: 1.176756\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1481, Loss: 1.154828\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1482, Loss: 1.003995\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1483, Loss: 1.876271\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1484, Loss: 1.155506\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1485, Loss: 0.808274\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1486, Loss: 0.634998\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1487, Loss: 0.812514\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1488, Loss: 0.705447\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1489, Loss: 0.655522\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1490, Loss: 0.643607\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1491, Loss: 0.618632\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1492, Loss: 0.610827\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1493, Loss: 0.763568\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1494, Loss: 0.712463\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1495, Loss: 0.595318\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1496, Loss: 0.690508\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1497, Loss: 0.631725\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1498, Loss: 0.730787\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1499, Loss: 0.703660\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1500, Loss: 0.691113\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1501, Loss: 0.780307\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1502, Loss: 1.501332\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1503, Loss: 2.297292\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1504, Loss: 1.398911\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1505, Loss: 0.801620\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1506, Loss: 0.819108\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1507, Loss: 1.233016\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1508, Loss: 0.912619\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1509, Loss: 0.735230\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1510, Loss: 0.863768\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1511, Loss: 0.748365\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1512, Loss: 0.811898\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1513, Loss: 0.754901\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1514, Loss: 0.707233\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1515, Loss: 0.725151\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1516, Loss: 0.687721\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1517, Loss: 1.055352\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1518, Loss: 1.014179\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1519, Loss: 0.831623\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1520, Loss: 0.965727\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1521, Loss: 1.310051\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1522, Loss: 0.690614\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1523, Loss: 0.716506\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1524, Loss: 2.798195\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1525, Loss: 1.753483\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1526, Loss: 3.970320\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1527, Loss: 2.036565\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1528, Loss: 1.759910\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1529, Loss: 1.389100\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1530, Loss: 0.997612\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1531, Loss: 0.801666\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1532, Loss: 0.715361\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1533, Loss: 0.764679\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1534, Loss: 0.767264\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1535, Loss: 0.727985\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1536, Loss: 0.652533\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1537, Loss: 0.691939\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1538, Loss: 0.618760\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1539, Loss: 0.698895\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1540, Loss: 1.950869\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1541, Loss: 2.592219\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1542, Loss: 1.537786\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1543, Loss: 2.198518\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1544, Loss: 1.391688\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1545, Loss: 0.802183\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1546, Loss: 0.718150\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1547, Loss: 0.624946\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1548, Loss: 0.862149\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1549, Loss: 0.678016\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1550, Loss: 0.675686\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1551, Loss: 0.705027\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1552, Loss: 0.812154\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1553, Loss: 0.670679\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1554, Loss: 0.692632\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1555, Loss: 1.073802\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1556, Loss: 0.844371\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1557, Loss: 0.745594\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1558, Loss: 0.738460\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1559, Loss: 0.706813\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1560, Loss: 1.700344\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1561, Loss: 1.007112\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1562, Loss: 1.023375\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1563, Loss: 0.866510\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1564, Loss: 0.734291\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1565, Loss: 1.226294\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1566, Loss: 1.269568\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1567, Loss: 2.222900\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1568, Loss: 1.519366\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1569, Loss: 1.345380\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1570, Loss: 1.124780\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1571, Loss: 1.275045\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1572, Loss: 0.830836\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1573, Loss: 0.856682\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1574, Loss: 1.011306\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1575, Loss: 0.731909\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1576, Loss: 0.669625\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1577, Loss: 0.688410\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1578, Loss: 0.767108\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1579, Loss: 0.691703\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1580, Loss: 0.629633\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1581, Loss: 0.588263\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1582, Loss: 3.318567\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1583, Loss: 3.860517\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1584, Loss: 2.811528\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1585, Loss: 1.736229\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1586, Loss: 1.445216\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1587, Loss: 1.012339\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1588, Loss: 0.757236\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1589, Loss: 0.724398\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1590, Loss: 0.831078\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1591, Loss: 0.692145\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1592, Loss: 0.631813\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1593, Loss: 0.686738\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1594, Loss: 0.773095\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1595, Loss: 0.764835\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1596, Loss: 0.885348\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1597, Loss: 0.762222\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1598, Loss: 1.139088\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1599, Loss: 0.812694\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1600, Loss: 0.749896\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1601, Loss: 0.776157\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1602, Loss: 0.735469\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1603, Loss: 0.714397\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1604, Loss: 1.059072\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1605, Loss: 0.921286\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1606, Loss: 0.774084\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1607, Loss: 0.716328\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1608, Loss: 0.677375\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1609, Loss: 0.598397\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1610, Loss: 0.561667\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1611, Loss: 0.621999\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1612, Loss: 0.574473\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1613, Loss: 0.612430\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1614, Loss: 0.724097\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1615, Loss: 1.686290\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1616, Loss: 2.981988\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1617, Loss: 1.379262\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1618, Loss: 0.813916\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1619, Loss: 0.639429\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1620, Loss: 0.697361\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1621, Loss: 0.708462\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1622, Loss: 0.724616\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1623, Loss: 1.172720\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1624, Loss: 3.994368\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1625, Loss: 1.529230\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1626, Loss: 1.260690\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1627, Loss: 1.263702\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1628, Loss: 3.257740\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1629, Loss: 2.071120\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1630, Loss: 1.228736\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1631, Loss: 1.141434\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1632, Loss: 0.897903\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1633, Loss: 0.902020\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1634, Loss: 0.766274\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1635, Loss: 0.750383\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1636, Loss: 0.705039\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1637, Loss: 0.756678\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1638, Loss: 0.664311\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1639, Loss: 0.594003\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1640, Loss: 0.699400\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1641, Loss: 0.570716\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1642, Loss: 0.559680\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1643, Loss: 0.577972\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1644, Loss: 0.631569\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1645, Loss: 0.904063\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1646, Loss: 0.851369\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1647, Loss: 1.379472\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1648, Loss: 1.229353\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1649, Loss: 2.394264\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1650, Loss: 1.337339\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1651, Loss: 0.920981\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1652, Loss: 1.578551\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1653, Loss: 1.115738\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1654, Loss: 1.220934\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1655, Loss: 1.072336\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1656, Loss: 0.748845\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1657, Loss: 0.595307\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1658, Loss: 0.663124\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1659, Loss: 0.877672\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1660, Loss: 0.758231\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1661, Loss: 3.763323\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1662, Loss: 1.578510\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1663, Loss: 1.632141\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1664, Loss: 1.279576\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1665, Loss: 1.291790\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1666, Loss: 0.981857\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1667, Loss: 0.839619\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1668, Loss: 0.694062\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1669, Loss: 0.733789\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1670, Loss: 0.994820\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1671, Loss: 0.741339\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1672, Loss: 0.628183\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1673, Loss: 0.582898\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1674, Loss: 0.793637\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1675, Loss: 0.839963\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1676, Loss: 0.617300\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1677, Loss: 0.845397\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1678, Loss: 0.980007\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1679, Loss: 0.793374\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1680, Loss: 0.896906\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1681, Loss: 0.642042\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1682, Loss: 0.925341\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1683, Loss: 0.841527\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1684, Loss: 0.935848\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1685, Loss: 0.910207\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1686, Loss: 0.663993\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1687, Loss: 0.795049\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1688, Loss: 0.659904\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1689, Loss: 0.698188\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1690, Loss: 1.142871\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1691, Loss: 1.126588\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1692, Loss: 3.047652\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1693, Loss: 1.768190\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1694, Loss: 1.069477\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1695, Loss: 0.778323\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1696, Loss: 0.736000\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1697, Loss: 0.597076\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1698, Loss: 0.606297\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1699, Loss: 0.594841\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1700, Loss: 0.645284\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1701, Loss: 0.726428\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1702, Loss: 0.841001\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1703, Loss: 0.721252\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1704, Loss: 0.719051\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1705, Loss: 0.630924\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1706, Loss: 1.229253\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1707, Loss: 0.795101\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1708, Loss: 0.764620\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1709, Loss: 0.707532\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1710, Loss: 0.704875\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1711, Loss: 1.182055\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1712, Loss: 1.090490\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1713, Loss: 0.796391\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1714, Loss: 0.642756\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1715, Loss: 0.540854\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1716, Loss: 0.695492\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1717, Loss: 1.477970\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1718, Loss: 0.875606\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1719, Loss: 0.736671\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1720, Loss: 0.781389\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1721, Loss: 1.654189\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1722, Loss: 1.912577\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1723, Loss: 1.477283\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1724, Loss: 0.861280\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1725, Loss: 0.752115\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1726, Loss: 0.647412\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1727, Loss: 0.552364\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1728, Loss: 0.521725\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1729, Loss: 0.592214\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1730, Loss: 0.569453\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1731, Loss: 0.609993\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1732, Loss: 0.783472\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1733, Loss: 0.804190\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1734, Loss: 1.847732\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1735, Loss: 1.636252\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1736, Loss: 1.599021\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1737, Loss: 1.128269\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1738, Loss: 0.836447\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1739, Loss: 0.740377\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1740, Loss: 1.657765\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1741, Loss: 0.790546\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1742, Loss: 1.000654\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1743, Loss: 0.884671\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1744, Loss: 0.640257\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1745, Loss: 0.632608\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1746, Loss: 1.119052\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1747, Loss: 0.882860\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1748, Loss: 1.140498\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1749, Loss: 0.794892\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1750, Loss: 0.979072\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1751, Loss: 0.733998\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1752, Loss: 0.631394\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1753, Loss: 0.605999\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1754, Loss: 0.598421\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1755, Loss: 0.582534\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1756, Loss: 0.733963\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1757, Loss: 2.049114\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1758, Loss: 1.080573\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1759, Loss: 1.034804\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1760, Loss: 2.403821\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1761, Loss: 1.697383\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1762, Loss: 0.950612\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1763, Loss: 0.702297\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1764, Loss: 0.661528\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1765, Loss: 0.622351\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1766, Loss: 0.550727\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1767, Loss: 0.576920\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1768, Loss: 0.643416\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1769, Loss: 0.741160\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1770, Loss: 0.681426\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1771, Loss: 0.963764\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1772, Loss: 0.599200\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1773, Loss: 0.578842\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1774, Loss: 0.523475\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1775, Loss: 0.514411\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1776, Loss: 0.554389\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1777, Loss: 0.594527\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1778, Loss: 2.247886\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1779, Loss: 0.904884\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1780, Loss: 4.849525\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1781, Loss: 1.563589\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1782, Loss: 1.272447\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1783, Loss: 0.790959\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1784, Loss: 0.882951\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1785, Loss: 1.112371\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1786, Loss: 1.195730\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1787, Loss: 1.282709\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1788, Loss: 0.696742\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1789, Loss: 0.628710\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1790, Loss: 0.787289\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1791, Loss: 1.004316\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1792, Loss: 0.903195\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1793, Loss: 0.844081\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1794, Loss: 1.100132\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1795, Loss: 0.976570\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1796, Loss: 0.656535\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1797, Loss: 0.774925\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1798, Loss: 0.626253\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1799, Loss: 0.644552\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1800, Loss: 0.654544\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1801, Loss: 0.671329\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1802, Loss: 0.617975\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1803, Loss: 0.604172\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1804, Loss: 1.204567\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1805, Loss: 0.807925\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1806, Loss: 0.730422\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1807, Loss: 0.842569\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1808, Loss: 0.701017\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1809, Loss: 0.622499\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1810, Loss: 0.575643\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1811, Loss: 0.591650\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1812, Loss: 0.713078\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1813, Loss: 0.598503\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1814, Loss: 0.639401\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1815, Loss: 1.444689\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1816, Loss: 1.235046\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1817, Loss: 1.044502\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1818, Loss: 0.815027\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1819, Loss: 1.096286\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1820, Loss: 0.726475\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1821, Loss: 0.772618\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1822, Loss: 0.748711\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1823, Loss: 0.897615\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1824, Loss: 2.040983\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1825, Loss: 0.892832\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1826, Loss: 0.846290\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1827, Loss: 0.901542\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1828, Loss: 0.815668\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1829, Loss: 0.794923\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1830, Loss: 0.785118\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1831, Loss: 0.738577\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1832, Loss: 0.652295\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1833, Loss: 1.288838\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1834, Loss: 1.877043\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1835, Loss: 1.221620\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1836, Loss: 1.469747\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1837, Loss: 1.063900\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1838, Loss: 1.131390\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1839, Loss: 1.321048\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1840, Loss: 0.904246\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1841, Loss: 0.688743\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1842, Loss: 0.585944\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1843, Loss: 0.535668\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1844, Loss: 2.643744\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1845, Loss: 2.294500\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1846, Loss: 1.378057\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1847, Loss: 1.129691\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1848, Loss: 0.800924\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1849, Loss: 1.232954\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1850, Loss: 4.936202\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1851, Loss: 2.089667\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1852, Loss: 1.014440\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1853, Loss: 0.712844\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1854, Loss: 0.585848\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1855, Loss: 0.570074\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1856, Loss: 0.526704\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1857, Loss: 0.581378\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1858, Loss: 0.640856\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1859, Loss: 0.986588\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1860, Loss: 0.663928\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1861, Loss: 0.679384\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1862, Loss: 0.547873\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1863, Loss: 0.534035\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1864, Loss: 0.587506\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1865, Loss: 2.039994\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1866, Loss: 1.552839\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1867, Loss: 0.852635\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1868, Loss: 0.725691\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1869, Loss: 0.964088\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1870, Loss: 0.722453\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1871, Loss: 0.556008\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1872, Loss: 0.511288\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1873, Loss: 0.542560\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1874, Loss: 0.555128\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1875, Loss: 0.532256\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1876, Loss: 0.528131\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1877, Loss: 0.600800\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1878, Loss: 0.652766\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1879, Loss: 0.604704\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1880, Loss: 0.586952\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1881, Loss: 1.181634\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1882, Loss: 1.420949\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1883, Loss: 0.784680\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1884, Loss: 0.850183\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1885, Loss: 0.684645\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1886, Loss: 0.673171\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1887, Loss: 0.725312\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1888, Loss: 0.799160\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1889, Loss: 0.740218\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1890, Loss: 0.768410\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1891, Loss: 0.593471\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1892, Loss: 0.588319\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1893, Loss: 0.896876\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1894, Loss: 0.825492\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1895, Loss: 1.373269\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1896, Loss: 1.750333\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1897, Loss: 1.043470\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1898, Loss: 0.785010\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1899, Loss: 1.317099\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1900, Loss: 2.297019\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1901, Loss: 1.679755\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1902, Loss: 1.165654\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1903, Loss: 1.042207\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1904, Loss: 0.948623\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1905, Loss: 1.068711\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1906, Loss: 0.933377\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1907, Loss: 0.700858\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1908, Loss: 0.761416\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1909, Loss: 0.853754\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1910, Loss: 1.129901\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1911, Loss: 0.629652\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1912, Loss: 0.643820\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1913, Loss: 0.669414\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1914, Loss: 1.283110\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1915, Loss: 1.278160\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1916, Loss: 0.754222\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1917, Loss: 0.602401\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1918, Loss: 0.736204\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1919, Loss: 0.679338\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1920, Loss: 0.573920\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1921, Loss: 0.752304\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1922, Loss: 0.518362\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1923, Loss: 0.651003\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1924, Loss: 0.518057\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1925, Loss: 0.869353\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1926, Loss: 0.606439\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1927, Loss: 0.608474\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1928, Loss: 0.539564\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1929, Loss: 0.583037\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1930, Loss: 0.608130\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1931, Loss: 0.567787\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1932, Loss: 0.548496\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1933, Loss: 0.606453\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1934, Loss: 0.494378\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1935, Loss: 0.586888\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1936, Loss: 0.916989\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1937, Loss: 6.625369\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1938, Loss: 4.327356\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1939, Loss: 1.648356\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1940, Loss: 1.041748\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1941, Loss: 0.835200\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1942, Loss: 0.636587\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1943, Loss: 0.641599\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1944, Loss: 0.636541\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1945, Loss: 0.617239\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1946, Loss: 0.744980\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1947, Loss: 0.552247\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1948, Loss: 0.571533\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1949, Loss: 0.524868\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1950, Loss: 0.545536\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1951, Loss: 0.514340\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1952, Loss: 0.532286\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1953, Loss: 0.510210\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1954, Loss: 0.548825\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1955, Loss: 0.478828\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1956, Loss: 0.572442\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1957, Loss: 0.574178\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1958, Loss: 0.592024\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1959, Loss: 0.588306\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1960, Loss: 8.017962\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1961, Loss: 1.171706\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1962, Loss: 1.145881\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1963, Loss: 1.249490\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1964, Loss: 0.732005\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1965, Loss: 1.166128\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1966, Loss: 1.690839\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1967, Loss: 1.412238\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1968, Loss: 1.543319\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1969, Loss: 0.764489\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1970, Loss: 0.558603\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1971, Loss: 0.584220\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1972, Loss: 0.539132\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1973, Loss: 0.552427\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1974, Loss: 0.556852\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1975, Loss: 0.495967\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1976, Loss: 0.518312\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1977, Loss: 0.878624\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1978, Loss: 0.779395\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1979, Loss: 0.680533\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1980, Loss: 0.850945\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1981, Loss: 0.889012\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1982, Loss: 2.047771\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1983, Loss: 1.475768\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1984, Loss: 0.885630\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1985, Loss: 0.839857\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1986, Loss: 0.566179\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1987, Loss: 0.541544\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1988, Loss: 0.559085\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1989, Loss: 0.812128\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1990, Loss: 0.673856\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1991, Loss: 0.614350\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1992, Loss: 0.558298\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1993, Loss: 0.708996\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1994, Loss: 0.897568\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1995, Loss: 0.628053\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1996, Loss: 0.559640\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1997, Loss: 0.562634\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1998, Loss: 1.171899\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1999, Loss: 1.789325\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 2000, Loss: 2.150385\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 2001, Loss: 1.268419\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 2002, Loss: 1.082792\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 2003, Loss: 0.682068\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 2004, Loss: 0.777630\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 2005, Loss: 0.923178\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 2006, Loss: 0.590254\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 2007, Loss: 0.705901\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 2008, Loss: 0.611158\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 2009, Loss: 0.710509\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 2010, Loss: 1.395740\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 2011, Loss: 0.995666\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 2012, Loss: 0.844718\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 2013, Loss: 0.561549\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 2014, Loss: 0.590605\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 2015, Loss: 0.609232\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 2016, Loss: 0.509931\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 2017, Loss: 0.520004\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 2018, Loss: 0.589477\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 2019, Loss: 0.656691\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 2020, Loss: 0.658318\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 2021, Loss: 1.832993\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 2022, Loss: 1.765415\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 2023, Loss: 0.973164\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 2024, Loss: 1.566749\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 2025, Loss: 0.960569\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 2026, Loss: 0.839854\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 2027, Loss: 0.869396\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 2028, Loss: 0.604733\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 2029, Loss: 0.598235\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 2030, Loss: 0.718774\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 2031, Loss: 0.686756\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 2032, Loss: 1.354759\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 2033, Loss: 0.528997\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 2034, Loss: 0.696888\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 2035, Loss: 0.797436\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 2036, Loss: 0.729936\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 2037, Loss: 0.657172\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 2038, Loss: 0.623582\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 2039, Loss: 0.669109\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 2040, Loss: 0.996821\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 2041, Loss: 0.943689\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 2042, Loss: 0.683400\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 2043, Loss: 0.711503\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 2044, Loss: 0.547009\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 2045, Loss: 0.737462\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 2046, Loss: 0.488002\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 2047, Loss: 1.077342\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 2048, Loss: 0.699693\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 2049, Loss: 0.657743\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 2050, Loss: 0.664028\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 2051, Loss: 0.803409\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 2052, Loss: 0.904007\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 2053, Loss: 3.458681\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 2054, Loss: 1.900764\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 2055, Loss: 2.098914\n", - "Stopped early after 2056 epochs, with loss of 0.478828\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 1, Loss: 499.664978\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 2, Loss: 483.204590\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 3, Loss: 457.516663\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 4, Loss: 432.132019\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 5, Loss: 404.761383\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 6, Loss: 375.077179\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 7, Loss: 353.468903\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 8, Loss: 329.699402\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 9, Loss: 309.820709\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 10, Loss: 289.259277\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 11, Loss: 270.202667\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 12, Loss: 251.068924\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 13, Loss: 233.020508\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 14, Loss: 213.932343\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 15, Loss: 196.134811\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 16, Loss: 179.570526\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 17, Loss: 163.723892\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 18, Loss: 148.928497\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 19, Loss: 134.558258\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 20, Loss: 120.856186\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 21, Loss: 108.099236\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 22, Loss: 96.397186\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 23, Loss: 85.898041\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 24, Loss: 77.455650\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 25, Loss: 71.864281\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 26, Loss: 66.473221\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 27, Loss: 61.049240\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 28, Loss: 57.195011\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 29, Loss: 53.498169\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 30, Loss: 50.819912\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 31, Loss: 50.113544\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 32, Loss: 49.771896\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 33, Loss: 47.863884\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 34, Loss: 46.768101\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 35, Loss: 45.510403\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 36, Loss: 45.422905\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 37, Loss: 42.726673\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 38, Loss: 42.556923\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 39, Loss: 41.712658\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 40, Loss: 41.877125\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 41, Loss: 41.525635\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 42, Loss: 40.877632\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 43, Loss: 40.713879\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 44, Loss: 40.592762\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 45, Loss: 39.728325\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 46, Loss: 38.559956\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 47, Loss: 39.792019\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 48, Loss: 37.655609\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 49, Loss: 39.186699\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 50, Loss: 36.711216\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 51, Loss: 37.376408\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 52, Loss: 36.770439\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 53, Loss: 35.876282\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 54, Loss: 35.892590\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 55, Loss: 35.194065\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 56, Loss: 35.192776\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 57, Loss: 36.160820\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 58, Loss: 33.498402\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 59, Loss: 33.347576\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 60, Loss: 34.073994\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 61, Loss: 33.914314\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 62, Loss: 33.394669\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 63, Loss: 32.634262\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 64, Loss: 33.404392\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 65, Loss: 32.115070\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 66, Loss: 32.008572\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 67, Loss: 31.478737\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 68, Loss: 31.588522\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 69, Loss: 30.574158\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 70, Loss: 31.447001\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 71, Loss: 31.151226\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 72, Loss: 30.479650\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 73, Loss: 30.450878\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 74, Loss: 30.084644\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 75, Loss: 29.386766\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 76, Loss: 28.892122\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 77, Loss: 28.873770\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 78, Loss: 28.719324\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 79, Loss: 29.663057\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 80, Loss: 28.954990\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 81, Loss: 29.054567\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 82, Loss: 27.106253\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 83, Loss: 27.504683\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 84, Loss: 28.075319\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 85, Loss: 27.409924\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 86, Loss: 27.660723\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 87, Loss: 27.017439\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 88, Loss: 26.690187\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 89, Loss: 27.020985\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 90, Loss: 27.346317\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 91, Loss: 25.922047\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 92, Loss: 25.532845\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 93, Loss: 26.037037\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 94, Loss: 25.639883\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 95, Loss: 26.414770\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 96, Loss: 25.052292\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 97, Loss: 25.919134\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 98, Loss: 25.924078\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 99, Loss: 25.859671\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 100, Loss: 25.512995\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 101, Loss: 24.855131\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 102, Loss: 25.056034\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 103, Loss: 25.369137\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 104, Loss: 24.955507\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 105, Loss: 24.730482\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 106, Loss: 24.039955\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 107, Loss: 24.824598\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 108, Loss: 25.229773\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 109, Loss: 25.011578\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 110, Loss: 24.385796\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 111, Loss: 24.628996\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 112, Loss: 24.202801\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 113, Loss: 24.107960\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 114, Loss: 24.124950\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 115, Loss: 24.254477\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 116, Loss: 24.079233\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 117, Loss: 23.600338\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 118, Loss: 23.705473\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 119, Loss: 24.404299\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 120, Loss: 23.417505\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 121, Loss: 23.683067\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 122, Loss: 23.853304\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 123, Loss: 23.289305\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 124, Loss: 23.898748\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 125, Loss: 23.295502\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 126, Loss: 24.895256\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 127, Loss: 22.818298\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 128, Loss: 22.496489\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 129, Loss: 23.537264\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 130, Loss: 23.172783\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 131, Loss: 22.970760\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 132, Loss: 22.342516\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 133, Loss: 22.846622\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 134, Loss: 22.712437\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 135, Loss: 23.106102\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 136, Loss: 23.650635\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 137, Loss: 22.111874\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 138, Loss: 22.050772\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 139, Loss: 22.823656\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 140, Loss: 22.287437\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 141, Loss: 21.966267\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 142, Loss: 22.337284\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 143, Loss: 21.588678\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 144, Loss: 22.024401\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 145, Loss: 21.538752\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 146, Loss: 22.254215\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 147, Loss: 22.843060\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 148, Loss: 21.676504\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 149, Loss: 21.415634\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 150, Loss: 21.319283\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 151, Loss: 21.040302\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 152, Loss: 21.832401\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 153, Loss: 21.528404\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 154, Loss: 21.079426\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 155, Loss: 21.495026\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 156, Loss: 21.471313\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 157, Loss: 21.414177\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 158, Loss: 21.213249\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 159, Loss: 21.241520\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 160, Loss: 20.795938\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 161, Loss: 20.077080\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 162, Loss: 21.011332\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 163, Loss: 20.705643\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 164, Loss: 20.045200\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 165, Loss: 20.068169\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 166, Loss: 20.618193\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 167, Loss: 19.840105\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 168, Loss: 19.694044\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 169, Loss: 19.966721\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 170, Loss: 20.921028\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 171, Loss: 20.405046\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 172, Loss: 19.893167\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 173, Loss: 20.058382\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 174, Loss: 20.408146\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 175, Loss: 19.966227\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 176, Loss: 19.806702\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 177, Loss: 19.385229\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 178, Loss: 19.490223\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 179, Loss: 19.971155\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 180, Loss: 19.881548\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 181, Loss: 20.024830\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 182, Loss: 19.895901\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 183, Loss: 19.274940\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 184, Loss: 19.187935\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 185, Loss: 19.435017\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 186, Loss: 19.442457\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 187, Loss: 20.009548\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 188, Loss: 19.319027\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 189, Loss: 19.873362\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 190, Loss: 19.155668\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 191, Loss: 18.936260\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 192, Loss: 19.249998\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 193, Loss: 18.473339\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 194, Loss: 18.809528\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 195, Loss: 19.316914\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 196, Loss: 18.550713\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 197, Loss: 18.493084\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 198, Loss: 19.053221\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 199, Loss: 18.810843\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 200, Loss: 18.760149\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 201, Loss: 18.605972\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 202, Loss: 18.283480\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 203, Loss: 18.165758\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 204, Loss: 18.647942\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 205, Loss: 18.619457\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 206, Loss: 18.074827\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 207, Loss: 17.990484\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 208, Loss: 18.432182\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 209, Loss: 18.103912\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 210, Loss: 18.697645\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 211, Loss: 18.118696\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 212, Loss: 18.139381\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 213, Loss: 18.332695\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 214, Loss: 18.478041\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 215, Loss: 17.558210\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 216, Loss: 18.118359\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 217, Loss: 17.892227\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 218, Loss: 17.754318\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 219, Loss: 17.984865\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 220, Loss: 17.419022\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 221, Loss: 17.762783\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 222, Loss: 17.627096\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 223, Loss: 17.308474\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 224, Loss: 17.193838\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 225, Loss: 17.842010\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 226, Loss: 17.143002\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 227, Loss: 17.693541\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 228, Loss: 18.072895\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 229, Loss: 17.919783\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 230, Loss: 17.861929\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 231, Loss: 17.626081\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 232, Loss: 17.475775\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 233, Loss: 17.057962\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 234, Loss: 16.535091\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 235, Loss: 16.786329\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 236, Loss: 17.158230\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 237, Loss: 16.737656\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 238, Loss: 17.087793\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 239, Loss: 17.148796\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 240, Loss: 16.930981\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 241, Loss: 17.786287\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 242, Loss: 16.787695\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 243, Loss: 16.252312\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 244, Loss: 16.604570\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 245, Loss: 16.837336\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 246, Loss: 16.769489\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 247, Loss: 16.557867\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 248, Loss: 16.813854\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 249, Loss: 17.001724\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 250, Loss: 16.376549\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 251, Loss: 16.959076\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 252, Loss: 16.109928\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 253, Loss: 16.349888\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 254, Loss: 15.782440\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 255, Loss: 16.455124\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 256, Loss: 15.804344\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 257, Loss: 16.679190\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 258, Loss: 15.633828\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 259, Loss: 16.310978\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 260, Loss: 15.685410\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 261, Loss: 15.780421\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 262, Loss: 15.450832\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 263, Loss: 15.568210\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 264, Loss: 15.742081\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 265, Loss: 15.839643\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 266, Loss: 15.360636\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 267, Loss: 15.223343\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 268, Loss: 15.491950\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 269, Loss: 15.656957\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 270, Loss: 15.100072\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 271, Loss: 16.075071\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 272, Loss: 15.305241\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 273, Loss: 14.867134\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 274, Loss: 15.892713\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 275, Loss: 15.693284\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 276, Loss: 15.633806\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 277, Loss: 14.883262\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 278, Loss: 14.611505\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 279, Loss: 14.953191\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 280, Loss: 15.029474\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 281, Loss: 14.931044\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 282, Loss: 14.174762\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 283, Loss: 15.004455\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 284, Loss: 14.686470\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 285, Loss: 14.504674\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 286, Loss: 14.608814\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 287, Loss: 14.503496\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 288, Loss: 14.554570\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 289, Loss: 14.743606\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 290, Loss: 14.945949\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 291, Loss: 14.964736\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 292, Loss: 14.190462\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 293, Loss: 15.041658\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 294, Loss: 14.223198\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 295, Loss: 14.707126\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 296, Loss: 14.388515\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 297, Loss: 14.551293\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 298, Loss: 13.656530\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 299, Loss: 13.947336\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 300, Loss: 13.509886\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 301, Loss: 13.809310\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 302, Loss: 13.992281\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 303, Loss: 13.724254\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 304, Loss: 13.670397\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 305, Loss: 13.505089\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 306, Loss: 13.374484\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 307, Loss: 14.064002\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 308, Loss: 13.000773\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 309, Loss: 13.224258\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 310, Loss: 13.190941\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 311, Loss: 12.897095\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 312, Loss: 13.364817\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 313, Loss: 13.027987\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 314, Loss: 13.471492\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 315, Loss: 13.159880\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 316, Loss: 13.403065\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 317, Loss: 13.118023\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 318, Loss: 12.595027\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 319, Loss: 12.980872\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 320, Loss: 13.349293\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 321, Loss: 12.996540\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 322, Loss: 12.420830\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 323, Loss: 12.490003\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 324, Loss: 12.969872\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 325, Loss: 12.253601\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 326, Loss: 12.475744\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 327, Loss: 12.534667\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 328, Loss: 13.114046\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 329, Loss: 12.430515\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 330, Loss: 12.348090\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 331, Loss: 12.375924\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 332, Loss: 12.002225\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 333, Loss: 12.192165\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 334, Loss: 12.139631\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 335, Loss: 12.678885\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 336, Loss: 11.876835\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 337, Loss: 11.942634\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 338, Loss: 11.857072\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 339, Loss: 12.186301\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 340, Loss: 11.665698\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 341, Loss: 11.306103\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 342, Loss: 11.867695\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 343, Loss: 11.727692\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 344, Loss: 11.709085\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 345, Loss: 10.968302\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 346, Loss: 11.197020\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 347, Loss: 11.829153\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 348, Loss: 11.616177\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 349, Loss: 11.371270\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 350, Loss: 11.496363\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 351, Loss: 11.892195\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 352, Loss: 11.303929\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 353, Loss: 11.071683\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 354, Loss: 11.162557\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 355, Loss: 11.415914\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 356, Loss: 11.960087\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 357, Loss: 11.377102\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 358, Loss: 10.612441\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 359, Loss: 10.736405\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 360, Loss: 11.017174\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 361, Loss: 9.956329\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 362, Loss: 10.777853\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 363, Loss: 10.376964\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 364, Loss: 10.329797\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 365, Loss: 10.700774\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 366, Loss: 10.049810\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 367, Loss: 10.654370\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 368, Loss: 10.319053\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 369, Loss: 10.099391\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 370, Loss: 10.715960\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 371, Loss: 9.881910\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 372, Loss: 10.820720\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 373, Loss: 10.423004\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 374, Loss: 10.182837\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 375, Loss: 10.441062\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 376, Loss: 10.158521\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 377, Loss: 10.143835\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 378, Loss: 10.447146\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 379, Loss: 10.371852\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 380, Loss: 10.585504\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 381, Loss: 10.083478\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 382, Loss: 9.535408\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 383, Loss: 10.254771\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 384, Loss: 9.561249\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 385, Loss: 9.752844\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 386, Loss: 9.669689\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 387, Loss: 9.660335\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 388, Loss: 9.851741\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 389, Loss: 9.618889\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 390, Loss: 9.707925\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 391, Loss: 9.547659\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 392, Loss: 9.906120\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 393, Loss: 9.628254\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 394, Loss: 9.235767\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 395, Loss: 9.471291\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 396, Loss: 9.362272\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 397, Loss: 9.340092\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 398, Loss: 9.373219\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 399, Loss: 9.812331\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 400, Loss: 9.882565\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 401, Loss: 9.346834\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 402, Loss: 9.186899\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 403, Loss: 9.290255\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 404, Loss: 8.682302\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 405, Loss: 9.074324\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 406, Loss: 9.214759\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 407, Loss: 9.281608\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 408, Loss: 8.957088\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 409, Loss: 9.016444\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 410, Loss: 9.012331\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 411, Loss: 8.930082\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 412, Loss: 9.269830\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 413, Loss: 9.062699\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 414, Loss: 8.819891\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 415, Loss: 9.307720\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 416, Loss: 9.017147\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 417, Loss: 9.197666\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 418, Loss: 9.103189\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 419, Loss: 8.594999\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 420, Loss: 8.934296\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 421, Loss: 9.025760\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 422, Loss: 9.071086\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 423, Loss: 9.209986\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 424, Loss: 9.359431\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 425, Loss: 8.460829\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 426, Loss: 8.569468\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 427, Loss: 8.271383\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 428, Loss: 9.141276\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 429, Loss: 8.638086\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 430, Loss: 8.641404\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 431, Loss: 8.302741\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 432, Loss: 7.898324\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 433, Loss: 8.758096\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 434, Loss: 7.653938\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 435, Loss: 8.212866\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 436, Loss: 8.099298\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 437, Loss: 8.528068\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 438, Loss: 9.067153\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 439, Loss: 8.306427\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 440, Loss: 9.587505\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 441, Loss: 8.221387\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 442, Loss: 8.992196\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 443, Loss: 8.435128\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 444, Loss: 8.648868\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 445, Loss: 7.723620\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 446, Loss: 8.091054\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 447, Loss: 7.973197\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 448, Loss: 8.025078\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 449, Loss: 8.254418\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 450, Loss: 8.355686\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 451, Loss: 8.165274\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 452, Loss: 8.444022\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 453, Loss: 8.141268\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 454, Loss: 7.751458\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 455, Loss: 7.616682\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 456, Loss: 7.773956\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 457, Loss: 7.500139\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 458, Loss: 7.564693\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 459, Loss: 7.916955\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 460, Loss: 7.980783\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 461, Loss: 7.981200\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 462, Loss: 7.902195\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 463, Loss: 8.195600\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 464, Loss: 7.947385\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 465, Loss: 7.646530\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 466, Loss: 7.787383\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 467, Loss: 7.482738\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 468, Loss: 8.451615\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 469, Loss: 7.610761\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 470, Loss: 8.156459\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 471, Loss: 7.815285\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 472, Loss: 7.596677\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 473, Loss: 7.568202\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 474, Loss: 7.686436\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 475, Loss: 7.323643\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 476, Loss: 7.740794\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 477, Loss: 7.670496\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 478, Loss: 7.645485\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 479, Loss: 7.760164\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 480, Loss: 7.530452\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 481, Loss: 7.779821\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 482, Loss: 7.668309\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 483, Loss: 7.394400\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 484, Loss: 7.605001\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 485, Loss: 7.584918\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 486, Loss: 6.996127\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 487, Loss: 7.872070\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 488, Loss: 7.327671\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 489, Loss: 7.267803\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 490, Loss: 7.772960\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 491, Loss: 7.169607\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 492, Loss: 7.505462\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 493, Loss: 7.550337\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 494, Loss: 7.466315\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 495, Loss: 7.470593\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 496, Loss: 7.584905\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 497, Loss: 7.465427\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 498, Loss: 7.709043\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 499, Loss: 7.281926\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 500, Loss: 7.334608\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 501, Loss: 7.596324\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 502, Loss: 7.253206\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 503, Loss: 8.329500\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 504, Loss: 7.933749\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 505, Loss: 7.658330\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 506, Loss: 7.655971\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 507, Loss: 7.356213\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 508, Loss: 6.949529\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 509, Loss: 7.157984\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 510, Loss: 6.986164\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 511, Loss: 7.471875\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 512, Loss: 7.357461\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 513, Loss: 7.176517\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 514, Loss: 8.396821\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 515, Loss: 7.405510\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 516, Loss: 7.105240\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 517, Loss: 7.223057\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 518, Loss: 6.936989\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 519, Loss: 7.230649\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 520, Loss: 7.315581\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 521, Loss: 7.271416\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 522, Loss: 7.116917\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 523, Loss: 7.205864\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 524, Loss: 6.696182\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 525, Loss: 7.344396\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 526, Loss: 7.079561\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 527, Loss: 7.068520\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 528, Loss: 6.936160\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 529, Loss: 6.791923\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 530, Loss: 7.370388\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 531, Loss: 7.007182\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 532, Loss: 6.395364\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 533, Loss: 7.079973\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 534, Loss: 6.976802\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 535, Loss: 7.230823\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 536, Loss: 7.333435\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 537, Loss: 6.657311\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 538, Loss: 6.685732\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 539, Loss: 7.802405\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 540, Loss: 7.399653\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 541, Loss: 7.088549\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 542, Loss: 7.268697\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 543, Loss: 7.517528\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 544, Loss: 6.923271\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 545, Loss: 7.138325\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 546, Loss: 7.022907\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 547, Loss: 6.764067\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 548, Loss: 6.853454\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 549, Loss: 6.878517\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 550, Loss: 6.853429\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 551, Loss: 7.335623\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 552, Loss: 6.868419\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 553, Loss: 7.375867\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 554, Loss: 6.975355\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 555, Loss: 6.983494\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 556, Loss: 6.771574\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 557, Loss: 6.491687\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 558, Loss: 7.404108\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 559, Loss: 7.189218\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 560, Loss: 6.942867\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 561, Loss: 7.034709\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 562, Loss: 6.996324\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 563, Loss: 7.174839\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 564, Loss: 7.043687\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 565, Loss: 6.485504\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 566, Loss: 6.712125\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 567, Loss: 6.860013\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 568, Loss: 7.213109\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 569, Loss: 6.761527\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 570, Loss: 7.057952\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 571, Loss: 6.777296\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 572, Loss: 6.697307\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 573, Loss: 6.335546\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 574, Loss: 6.727729\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 575, Loss: 6.334890\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 576, Loss: 6.676586\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 577, Loss: 6.926360\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 578, Loss: 6.937457\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 579, Loss: 6.430651\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 580, Loss: 6.514954\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 581, Loss: 7.213826\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 582, Loss: 6.354282\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 583, Loss: 7.011196\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 584, Loss: 7.050354\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 585, Loss: 7.223660\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 586, Loss: 6.782834\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 587, Loss: 6.873034\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 588, Loss: 6.698965\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 589, Loss: 6.672356\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 590, Loss: 6.694110\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 591, Loss: 6.917252\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 592, Loss: 7.012993\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 593, Loss: 6.444514\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 594, Loss: 7.060009\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 595, Loss: 6.635121\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 596, Loss: 6.478919\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 597, Loss: 6.687324\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 598, Loss: 6.863561\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 599, Loss: 6.928580\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 600, Loss: 6.673725\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 601, Loss: 6.958037\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 602, Loss: 6.653007\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 603, Loss: 6.710750\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 604, Loss: 6.766318\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 605, Loss: 6.264696\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 606, Loss: 6.293517\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 607, Loss: 6.913990\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 608, Loss: 6.293880\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 609, Loss: 6.650494\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 610, Loss: 6.312814\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 611, Loss: 6.902607\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 612, Loss: 7.052649\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 613, Loss: 6.281301\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 614, Loss: 6.567485\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 615, Loss: 6.559142\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 616, Loss: 6.824273\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 617, Loss: 6.137959\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 618, Loss: 6.359528\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 619, Loss: 6.168561\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 620, Loss: 6.624151\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 621, Loss: 6.793605\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 622, Loss: 7.479321\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 623, Loss: 7.133211\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 624, Loss: 6.342047\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 625, Loss: 6.536678\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 626, Loss: 6.607433\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 627, Loss: 6.012325\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 628, Loss: 6.646064\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 629, Loss: 6.629326\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 630, Loss: 6.613797\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 631, Loss: 6.718809\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 632, Loss: 6.107752\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 633, Loss: 8.088426\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 634, Loss: 6.374159\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 635, Loss: 6.203531\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 636, Loss: 6.481722\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 637, Loss: 6.559902\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 638, Loss: 6.649708\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 639, Loss: 6.744860\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 640, Loss: 6.718477\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 641, Loss: 6.246185\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 642, Loss: 6.495680\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 643, Loss: 6.049486\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 644, Loss: 6.502532\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 645, Loss: 6.325364\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 646, Loss: 6.570480\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 647, Loss: 6.682131\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 648, Loss: 6.335448\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 649, Loss: 6.763514\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 650, Loss: 6.188535\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 651, Loss: 6.149168\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 652, Loss: 6.372197\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 653, Loss: 6.594545\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 654, Loss: 6.231084\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 655, Loss: 5.930299\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 656, Loss: 6.654807\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 657, Loss: 6.688575\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 658, Loss: 6.718947\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 659, Loss: 6.773296\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 660, Loss: 6.646541\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 661, Loss: 6.106107\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 662, Loss: 6.421198\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 663, Loss: 6.752889\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 664, Loss: 6.814910\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 665, Loss: 6.530455\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 666, Loss: 6.368265\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 667, Loss: 6.575296\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 668, Loss: 5.901745\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 669, Loss: 6.997463\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 670, Loss: 6.191585\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 671, Loss: 6.012157\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 672, Loss: 6.106030\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 673, Loss: 6.373988\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 674, Loss: 6.505433\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 675, Loss: 6.309615\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 676, Loss: 6.253521\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 677, Loss: 6.417727\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 678, Loss: 6.900249\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 679, Loss: 6.186247\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 680, Loss: 6.681544\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 681, Loss: 6.869834\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 682, Loss: 6.518465\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 683, Loss: 6.259665\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 684, Loss: 6.207576\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 685, Loss: 5.805324\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 686, Loss: 5.901247\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 687, Loss: 6.211392\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 688, Loss: 5.843263\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 689, Loss: 6.379626\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 690, Loss: 6.532872\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 691, Loss: 6.016156\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 692, Loss: 6.693263\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 693, Loss: 6.172361\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 694, Loss: 6.530192\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 695, Loss: 6.125743\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 696, Loss: 6.384856\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 697, Loss: 6.480809\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 698, Loss: 6.650485\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 699, Loss: 6.269797\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 700, Loss: 6.057684\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 701, Loss: 6.126276\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 702, Loss: 6.401673\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 703, Loss: 6.166296\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 704, Loss: 5.775784\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 705, Loss: 5.934700\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 706, Loss: 5.837862\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 707, Loss: 5.935144\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 708, Loss: 6.591915\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 709, Loss: 6.676305\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 710, Loss: 6.544302\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 711, Loss: 6.205631\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 712, Loss: 6.306760\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 713, Loss: 6.010354\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 714, Loss: 6.067883\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 715, Loss: 6.094377\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 716, Loss: 6.195374\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 717, Loss: 5.909044\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 718, Loss: 5.902489\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 719, Loss: 6.054618\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 720, Loss: 5.874605\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 721, Loss: 6.082539\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 722, Loss: 6.028013\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 723, Loss: 6.554390\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 724, Loss: 6.798084\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 725, Loss: 6.274621\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 726, Loss: 6.031645\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 727, Loss: 6.004315\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 728, Loss: 6.181279\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 729, Loss: 5.876193\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 730, Loss: 5.889688\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 731, Loss: 6.300966\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 732, Loss: 5.716146\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 733, Loss: 7.141290\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 734, Loss: 6.204164\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 735, Loss: 6.453128\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 736, Loss: 6.295105\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 737, Loss: 6.439419\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 738, Loss: 6.765826\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 739, Loss: 6.263256\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 740, Loss: 5.702122\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 741, Loss: 5.966250\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 742, Loss: 6.055562\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 743, Loss: 6.114582\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 744, Loss: 6.182766\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 745, Loss: 5.789341\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 746, Loss: 5.986834\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 747, Loss: 6.297094\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 748, Loss: 6.250356\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 749, Loss: 5.909573\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 750, Loss: 6.085029\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 751, Loss: 6.280424\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 752, Loss: 6.299275\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 753, Loss: 5.917919\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 754, Loss: 5.752114\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 755, Loss: 5.695981\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 756, Loss: 6.139731\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 757, Loss: 6.102757\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 758, Loss: 5.522847\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 759, Loss: 5.836615\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 760, Loss: 5.935763\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 761, Loss: 5.831567\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 762, Loss: 6.184094\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 763, Loss: 6.054296\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 764, Loss: 5.877486\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 765, Loss: 6.186322\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 766, Loss: 5.675253\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 767, Loss: 5.556483\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 768, Loss: 6.306865\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 769, Loss: 7.303115\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 770, Loss: 6.133717\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 771, Loss: 6.143873\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 772, Loss: 5.770688\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 773, Loss: 6.109931\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 774, Loss: 5.716908\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 775, Loss: 5.603431\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 776, Loss: 5.911675\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 777, Loss: 6.195335\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 778, Loss: 6.085855\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 779, Loss: 6.056346\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 780, Loss: 6.532515\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 781, Loss: 6.565068\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 782, Loss: 6.624999\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 783, Loss: 6.188239\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 784, Loss: 6.026926\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 785, Loss: 6.553954\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 786, Loss: 5.972982\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 787, Loss: 5.708254\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 788, Loss: 5.616178\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 789, Loss: 6.080830\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 790, Loss: 5.688891\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 791, Loss: 5.955455\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 792, Loss: 5.742039\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 793, Loss: 5.961832\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 794, Loss: 5.840887\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 795, Loss: 5.900883\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 796, Loss: 5.902901\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 797, Loss: 6.360548\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 798, Loss: 5.696021\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 799, Loss: 5.782689\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 800, Loss: 5.949343\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 801, Loss: 6.089798\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 802, Loss: 5.816153\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 803, Loss: 6.023505\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 804, Loss: 5.495293\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 805, Loss: 5.938029\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 806, Loss: 5.963593\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 807, Loss: 6.114614\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 808, Loss: 6.353902\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 809, Loss: 5.704150\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 810, Loss: 5.519940\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 811, Loss: 5.628860\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 812, Loss: 5.481410\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 813, Loss: 5.430746\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 814, Loss: 5.809989\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 815, Loss: 5.494769\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 816, Loss: 5.919071\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 817, Loss: 6.156364\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 818, Loss: 6.076691\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 819, Loss: 5.721241\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 820, Loss: 5.903337\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 821, Loss: 5.785541\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 822, Loss: 6.147257\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 823, Loss: 5.711131\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 824, Loss: 5.683191\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 825, Loss: 6.176397\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 826, Loss: 5.994679\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 827, Loss: 5.762468\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 828, Loss: 6.210333\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 829, Loss: 6.123558\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 830, Loss: 5.768746\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 831, Loss: 6.277843\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 832, Loss: 6.045079\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 833, Loss: 6.053687\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 834, Loss: 5.678389\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 835, Loss: 5.861441\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 836, Loss: 5.736814\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 837, Loss: 5.941651\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 838, Loss: 6.070641\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 839, Loss: 5.928042\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 840, Loss: 5.645589\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 841, Loss: 5.389696\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 842, Loss: 5.807678\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 843, Loss: 5.711516\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 844, Loss: 6.068760\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 845, Loss: 5.426515\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 846, Loss: 5.496610\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 847, Loss: 6.025062\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 848, Loss: 5.485075\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 849, Loss: 5.852152\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 850, Loss: 5.911216\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 851, Loss: 5.614805\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 852, Loss: 5.870005\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 853, Loss: 5.682984\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 854, Loss: 5.911547\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 855, Loss: 5.855627\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 856, Loss: 5.746177\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 857, Loss: 5.526788\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 858, Loss: 5.939504\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 859, Loss: 6.298326\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 860, Loss: 6.117615\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 861, Loss: 5.610326\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 862, Loss: 5.418772\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 863, Loss: 5.955496\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 864, Loss: 5.620555\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 865, Loss: 5.425392\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 866, Loss: 5.969008\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 867, Loss: 5.712441\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 868, Loss: 5.719535\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 869, Loss: 5.284800\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 870, Loss: 5.637573\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 871, Loss: 6.061689\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 872, Loss: 6.040836\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 873, Loss: 5.676005\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 874, Loss: 5.991530\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 875, Loss: 6.569818\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 876, Loss: 6.047911\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 877, Loss: 5.471775\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 878, Loss: 5.788224\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 879, Loss: 5.505886\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 880, Loss: 5.532307\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 881, Loss: 5.948803\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 882, Loss: 5.842264\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 883, Loss: 6.191702\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 884, Loss: 5.824440\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 885, Loss: 5.416777\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 886, Loss: 5.326914\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 887, Loss: 6.323021\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 888, Loss: 5.840008\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 889, Loss: 5.481575\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 890, Loss: 5.857467\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 891, Loss: 5.369266\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 892, Loss: 5.731921\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 893, Loss: 5.833664\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 894, Loss: 5.510924\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 895, Loss: 5.455999\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 896, Loss: 5.301564\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 897, Loss: 5.377802\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 898, Loss: 5.272223\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 899, Loss: 5.536288\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 900, Loss: 5.250509\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 901, Loss: 5.184005\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 902, Loss: 5.537291\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 903, Loss: 5.407988\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 904, Loss: 5.332412\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 905, Loss: 5.527261\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 906, Loss: 5.980713\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 907, Loss: 5.967782\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 908, Loss: 6.156960\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 909, Loss: 5.425268\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 910, Loss: 5.722054\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 911, Loss: 6.095773\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 912, Loss: 5.931932\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 913, Loss: 5.542371\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 914, Loss: 6.594371\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 915, Loss: 6.009030\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 916, Loss: 5.633669\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 917, Loss: 5.625757\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 918, Loss: 6.383655\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 919, Loss: 5.662457\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 920, Loss: 5.415774\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 921, Loss: 5.322285\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 922, Loss: 5.807741\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 923, Loss: 5.555210\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 924, Loss: 5.413664\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 925, Loss: 5.283344\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 926, Loss: 5.784411\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 927, Loss: 5.775352\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 928, Loss: 5.625068\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 929, Loss: 5.322444\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 930, Loss: 5.436550\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 931, Loss: 5.221554\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 932, Loss: 5.828583\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 933, Loss: 5.322338\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 934, Loss: 5.420317\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 935, Loss: 5.701571\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 936, Loss: 5.459433\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 937, Loss: 5.675624\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 938, Loss: 5.188807\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 939, Loss: 5.533218\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 940, Loss: 5.867723\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 941, Loss: 5.574935\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 942, Loss: 5.310199\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 943, Loss: 5.677060\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 944, Loss: 5.181193\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 945, Loss: 5.564778\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 946, Loss: 5.521019\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 947, Loss: 5.541412\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 948, Loss: 5.239535\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 949, Loss: 5.808984\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 950, Loss: 5.890756\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 951, Loss: 5.807595\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 952, Loss: 6.019926\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 953, Loss: 5.326985\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 954, Loss: 5.737546\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 955, Loss: 5.938184\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 956, Loss: 5.844837\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 957, Loss: 5.854997\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 958, Loss: 5.597506\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 959, Loss: 5.688473\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 960, Loss: 5.321079\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 961, Loss: 5.418526\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 962, Loss: 5.772365\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 963, Loss: 5.708300\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 964, Loss: 4.991150\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 965, Loss: 5.276701\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 966, Loss: 5.240884\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 967, Loss: 5.414348\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 968, Loss: 5.506571\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 969, Loss: 5.695197\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 970, Loss: 5.580373\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 971, Loss: 5.481396\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 972, Loss: 5.966870\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 973, Loss: 5.445040\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 974, Loss: 5.704167\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 975, Loss: 6.475978\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 976, Loss: 5.740703\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 977, Loss: 5.521309\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 978, Loss: 5.296846\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 979, Loss: 5.517134\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 980, Loss: 5.607499\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 981, Loss: 5.264395\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 982, Loss: 5.377761\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 983, Loss: 5.498509\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 984, Loss: 5.420161\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 985, Loss: 5.717294\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 986, Loss: 5.526665\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 987, Loss: 5.272961\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 988, Loss: 6.059254\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 989, Loss: 5.495475\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 990, Loss: 5.596786\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 991, Loss: 5.496939\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 992, Loss: 5.281244\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 993, Loss: 5.155610\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 994, Loss: 5.630424\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 995, Loss: 5.100367\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 996, Loss: 5.368145\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 997, Loss: 5.479002\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 998, Loss: 5.340661\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 999, Loss: 5.174290\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 1000, Loss: 6.567086\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 1001, Loss: 5.663977\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 1002, Loss: 5.851560\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 1003, Loss: 5.409669\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 1004, Loss: 5.277478\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 1005, Loss: 5.420608\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 1006, Loss: 5.511877\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 1007, Loss: 5.680687\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 1008, Loss: 5.190369\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 1009, Loss: 5.618872\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 1010, Loss: 5.492643\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 1011, Loss: 5.501218\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 1012, Loss: 5.304395\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 1013, Loss: 5.771401\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 1014, Loss: 5.564279\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 1015, Loss: 5.968293\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 1016, Loss: 6.142089\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 1017, Loss: 5.944672\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 1018, Loss: 5.752617\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 1019, Loss: 5.445516\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 1020, Loss: 5.150059\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 1021, Loss: 5.267235\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 1022, Loss: 5.286155\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 1023, Loss: 5.397493\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 1024, Loss: 5.164309\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 1025, Loss: 5.819656\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 1026, Loss: 5.200497\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 1027, Loss: 5.454404\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 1028, Loss: 5.363761\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 1029, Loss: 5.281920\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 1030, Loss: 5.405562\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 1031, Loss: 5.402157\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 1032, Loss: 5.659430\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 1033, Loss: 5.461237\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 1034, Loss: 5.387271\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 1035, Loss: 5.463872\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 1036, Loss: 5.254832\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 1037, Loss: 5.118555\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 1038, Loss: 5.629494\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 1039, Loss: 5.207174\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 1040, Loss: 5.458152\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 1041, Loss: 5.214272\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 1042, Loss: 5.274531\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 1043, Loss: 4.704383\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 1044, Loss: 5.412445\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 1045, Loss: 5.558269\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 1046, Loss: 5.512872\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 1047, Loss: 5.611579\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 1048, Loss: 5.073359\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 1049, Loss: 5.359117\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 1050, Loss: 5.400154\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 1051, Loss: 5.057988\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 1052, Loss: 5.355611\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 1053, Loss: 5.408112\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 1054, Loss: 6.007459\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 1055, Loss: 5.283091\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 1056, Loss: 5.296262\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 1057, Loss: 5.408733\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 1058, Loss: 5.138960\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 1059, Loss: 5.289575\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 1060, Loss: 5.443678\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 1061, Loss: 4.930429\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 1062, Loss: 6.091803\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 1063, Loss: 5.241746\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 1064, Loss: 5.279055\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 1065, Loss: 5.231662\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 1066, Loss: 5.355130\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 1067, Loss: 5.339876\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 1068, Loss: 5.234690\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 1069, Loss: 5.568034\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 1070, Loss: 5.035685\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 1071, Loss: 5.379640\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 1072, Loss: 5.591244\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 1073, Loss: 5.689172\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 1074, Loss: 5.750419\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 1075, Loss: 5.122961\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 1076, Loss: 5.757058\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 1077, Loss: 5.546125\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 1078, Loss: 5.229766\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 1079, Loss: 5.312092\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 1080, Loss: 5.558292\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 1081, Loss: 5.355813\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 1082, Loss: 5.025248\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 1083, Loss: 5.236298\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 1084, Loss: 5.257102\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 1085, Loss: 5.511538\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 1086, Loss: 5.554409\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 1087, Loss: 5.346546\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 1088, Loss: 5.624972\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 1089, Loss: 5.155381\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 1090, Loss: 5.567895\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 1091, Loss: 5.178843\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 1092, Loss: 5.231871\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 1093, Loss: 5.132732\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 1094, Loss: 5.454136\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 1095, Loss: 5.597381\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 1096, Loss: 6.136902\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 1097, Loss: 5.842021\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 1098, Loss: 5.342971\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 1099, Loss: 5.238776\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 1100, Loss: 5.419024\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 1101, Loss: 5.585894\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 1102, Loss: 5.387910\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 1103, Loss: 5.298162\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 1104, Loss: 5.397135\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 1105, Loss: 5.035018\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 1106, Loss: 5.349957\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 1107, Loss: 5.359108\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 1108, Loss: 5.327709\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 1109, Loss: 5.024925\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 1110, Loss: 4.986028\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 1111, Loss: 5.351318\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 1112, Loss: 5.157098\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 1113, Loss: 5.469736\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 1114, Loss: 5.766178\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 1115, Loss: 5.143712\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 1116, Loss: 5.345860\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 1117, Loss: 5.338924\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 1118, Loss: 5.422698\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 1119, Loss: 5.506957\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 1120, Loss: 5.339091\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 1121, Loss: 5.499850\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 1122, Loss: 5.205112\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 1123, Loss: 5.945521\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 1124, Loss: 5.790782\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 1125, Loss: 5.572349\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 1126, Loss: 5.381590\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 1127, Loss: 5.998467\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 1128, Loss: 5.501692\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 1129, Loss: 5.058551\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 1130, Loss: 5.266315\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 1131, Loss: 5.379393\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 1132, Loss: 5.373557\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 1133, Loss: 5.115661\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 1134, Loss: 5.188798\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 1135, Loss: 5.607783\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 1136, Loss: 5.383705\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 1137, Loss: 5.275961\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 1138, Loss: 5.206279\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 1139, Loss: 4.836008\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 1140, Loss: 4.876210\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 1141, Loss: 5.465442\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 1142, Loss: 5.113052\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:40, Epoch 1143, Loss: 5.515323\n", - "Stopped early after 1144 epochs, with loss of 4.704383\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 1, Loss: 404.107788\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 2, Loss: 390.977478\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 3, Loss: 372.026062\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 4, Loss: 350.779846\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 5, Loss: 327.479309\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 6, Loss: 308.292603\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 7, Loss: 288.353729\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 8, Loss: 271.724335\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 9, Loss: 254.565247\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 10, Loss: 239.575745\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 11, Loss: 223.809143\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 12, Loss: 211.125366\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 13, Loss: 196.205170\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 14, Loss: 181.290924\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 15, Loss: 171.224228\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 16, Loss: 158.070160\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 17, Loss: 145.765427\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 18, Loss: 134.910385\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 19, Loss: 123.056686\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 20, Loss: 112.588654\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 21, Loss: 103.736099\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 22, Loss: 95.561584\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 23, Loss: 87.439590\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 24, Loss: 82.086868\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 25, Loss: 75.875565\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 26, Loss: 70.517059\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 27, Loss: 68.612740\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 28, Loss: 65.311806\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 29, Loss: 62.571808\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 30, Loss: 59.368732\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 31, Loss: 58.704773\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 32, Loss: 58.029755\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 33, Loss: 56.652161\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 34, Loss: 55.387535\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 35, Loss: 53.527065\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 36, Loss: 53.357273\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 37, Loss: 51.295113\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 38, Loss: 51.322147\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 39, Loss: 51.379379\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 40, Loss: 50.421898\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 41, Loss: 49.561760\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 42, Loss: 47.678486\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 43, Loss: 46.571728\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 44, Loss: 47.022072\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 45, Loss: 46.071838\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 46, Loss: 45.695087\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 47, Loss: 45.527328\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 48, Loss: 43.130051\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 49, Loss: 44.495914\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 50, Loss: 41.805260\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 51, Loss: 42.886032\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 52, Loss: 42.627457\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 53, Loss: 41.392788\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 54, Loss: 40.752079\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 55, Loss: 40.863464\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 56, Loss: 39.948357\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 57, Loss: 38.856125\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 58, Loss: 37.020641\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 59, Loss: 38.084389\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 60, Loss: 38.587524\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 61, Loss: 37.014854\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 62, Loss: 37.305542\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 63, Loss: 35.939449\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 64, Loss: 36.257416\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 65, Loss: 34.003105\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 66, Loss: 35.350662\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 67, Loss: 34.659607\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 68, Loss: 35.425556\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 69, Loss: 33.330521\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 70, Loss: 34.332455\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 71, Loss: 34.168140\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 72, Loss: 33.445793\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 73, Loss: 33.307003\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 74, Loss: 32.583092\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 75, Loss: 32.612427\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 76, Loss: 31.956522\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 77, Loss: 33.282303\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 78, Loss: 30.998352\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 79, Loss: 31.767618\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 80, Loss: 30.051102\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 81, Loss: 31.132717\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 82, Loss: 30.297693\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 83, Loss: 30.573914\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 84, Loss: 29.780180\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 85, Loss: 30.325821\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 86, Loss: 30.371012\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 87, Loss: 29.325884\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 88, Loss: 29.316565\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 89, Loss: 29.038313\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 90, Loss: 29.168983\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 91, Loss: 27.904018\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 92, Loss: 28.056684\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 93, Loss: 28.410770\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 94, Loss: 28.100161\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 95, Loss: 28.776297\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 96, Loss: 27.921492\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 97, Loss: 27.750868\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 98, Loss: 26.814890\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 99, Loss: 27.475010\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 100, Loss: 27.525379\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 101, Loss: 27.529396\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 102, Loss: 27.276577\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 103, Loss: 27.911531\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 104, Loss: 28.186609\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 105, Loss: 28.144289\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 106, Loss: 26.931471\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 107, Loss: 26.354563\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 108, Loss: 27.324306\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 109, Loss: 28.775885\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 110, Loss: 25.475811\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 111, Loss: 26.374380\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 112, Loss: 25.868948\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 113, Loss: 27.261038\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 114, Loss: 27.414978\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 115, Loss: 26.084223\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 116, Loss: 27.616125\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 117, Loss: 25.612858\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 118, Loss: 27.526722\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 119, Loss: 25.765778\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 120, Loss: 25.957951\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 121, Loss: 27.447744\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 122, Loss: 26.947386\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 123, Loss: 26.543951\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 124, Loss: 26.468328\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 125, Loss: 27.095818\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 126, Loss: 26.128387\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 127, Loss: 26.621300\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 128, Loss: 26.900827\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 129, Loss: 26.724642\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 130, Loss: 25.903866\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 131, Loss: 26.054367\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 132, Loss: 26.807636\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 133, Loss: 25.936192\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 134, Loss: 26.927826\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 135, Loss: 26.270109\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 136, Loss: 26.519775\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 137, Loss: 25.968895\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 138, Loss: 25.885639\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 139, Loss: 25.504019\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 140, Loss: 26.058893\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 141, Loss: 26.144594\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 142, Loss: 26.545292\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 143, Loss: 25.832554\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 144, Loss: 25.221708\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 145, Loss: 26.579283\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 146, Loss: 26.342762\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 147, Loss: 25.760517\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 148, Loss: 25.914433\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 149, Loss: 25.934193\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 150, Loss: 24.730183\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 151, Loss: 25.757072\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 152, Loss: 24.998886\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 153, Loss: 26.496294\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 154, Loss: 25.468515\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 155, Loss: 25.463570\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 156, Loss: 25.616133\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 157, Loss: 25.453999\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 158, Loss: 25.274988\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 159, Loss: 25.643972\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 160, Loss: 25.294922\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 161, Loss: 24.931099\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 162, Loss: 25.688248\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 163, Loss: 25.115866\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 164, Loss: 25.290380\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 165, Loss: 24.710159\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 166, Loss: 25.458715\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 167, Loss: 24.870743\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 168, Loss: 24.635715\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 169, Loss: 25.444246\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 170, Loss: 24.562992\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 171, Loss: 24.979307\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 172, Loss: 25.465740\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 173, Loss: 25.411564\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 174, Loss: 24.815393\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 175, Loss: 26.121649\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 176, Loss: 25.044277\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 177, Loss: 24.793653\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 178, Loss: 24.608486\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 179, Loss: 26.283421\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 180, Loss: 25.257076\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 181, Loss: 24.674320\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 182, Loss: 23.766447\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 183, Loss: 25.350281\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 184, Loss: 24.296721\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 185, Loss: 24.685389\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 186, Loss: 25.371372\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 187, Loss: 25.336927\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 188, Loss: 24.881777\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 189, Loss: 25.426666\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 190, Loss: 25.003223\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 191, Loss: 25.112694\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 192, Loss: 25.908903\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 193, Loss: 25.564535\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 194, Loss: 25.176918\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 195, Loss: 24.872448\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 196, Loss: 25.412048\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 197, Loss: 24.597717\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 198, Loss: 25.122833\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 199, Loss: 25.374214\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 200, Loss: 24.826212\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 201, Loss: 24.814142\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 202, Loss: 24.789328\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 203, Loss: 24.391657\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 204, Loss: 25.641846\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 205, Loss: 24.692776\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 206, Loss: 24.304842\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 207, Loss: 24.065458\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 208, Loss: 25.301302\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 209, Loss: 23.759834\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 210, Loss: 24.601957\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 211, Loss: 24.771538\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 212, Loss: 24.691738\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 213, Loss: 24.389061\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 214, Loss: 23.927729\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 215, Loss: 24.735550\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 216, Loss: 24.196405\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 217, Loss: 24.963079\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 218, Loss: 24.805111\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 219, Loss: 24.460537\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 220, Loss: 24.783474\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 221, Loss: 24.175344\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 222, Loss: 25.053249\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 223, Loss: 25.164963\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 224, Loss: 24.271626\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 225, Loss: 24.728308\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 226, Loss: 24.764158\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 227, Loss: 24.933958\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 228, Loss: 24.251369\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 229, Loss: 24.457767\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 230, Loss: 23.597740\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 231, Loss: 23.765526\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 232, Loss: 24.424362\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 233, Loss: 24.434538\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 234, Loss: 24.680418\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 235, Loss: 24.858446\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 236, Loss: 24.535543\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 237, Loss: 24.161934\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 238, Loss: 24.625469\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 239, Loss: 24.326536\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 240, Loss: 23.980196\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 241, Loss: 23.781975\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 242, Loss: 24.419100\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 243, Loss: 24.241096\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 244, Loss: 24.033745\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 245, Loss: 23.350521\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 246, Loss: 24.473894\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 247, Loss: 24.411171\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 248, Loss: 23.952953\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 249, Loss: 24.878914\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 250, Loss: 24.774967\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 251, Loss: 23.771275\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 252, Loss: 24.579014\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 253, Loss: 24.401550\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 254, Loss: 23.773537\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 255, Loss: 24.053968\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 256, Loss: 23.512489\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 257, Loss: 23.052343\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 258, Loss: 23.283722\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 259, Loss: 23.652142\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 260, Loss: 23.333593\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 261, Loss: 23.788574\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 262, Loss: 23.824093\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 263, Loss: 23.439692\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 264, Loss: 25.004660\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 265, Loss: 22.342703\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 266, Loss: 22.334494\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 267, Loss: 24.270765\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 268, Loss: 23.866785\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 269, Loss: 23.924475\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 270, Loss: 23.330141\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 271, Loss: 23.478024\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 272, Loss: 23.572281\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 273, Loss: 23.493725\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 274, Loss: 23.674026\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 275, Loss: 23.725760\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 276, Loss: 24.956326\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 277, Loss: 24.037277\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 278, Loss: 23.427561\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 279, Loss: 22.952478\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 280, Loss: 23.275745\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 281, Loss: 23.591543\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 282, Loss: 23.394857\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 283, Loss: 23.582809\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 284, Loss: 24.444830\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 285, Loss: 25.100733\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 286, Loss: 23.670591\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 287, Loss: 23.340769\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 288, Loss: 23.657965\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 289, Loss: 24.423172\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 290, Loss: 22.896494\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 291, Loss: 23.964882\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 292, Loss: 23.760794\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 293, Loss: 23.630514\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 294, Loss: 23.815641\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 295, Loss: 23.597178\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 296, Loss: 23.714010\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 297, Loss: 24.547003\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 298, Loss: 24.842712\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 299, Loss: 24.659842\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 300, Loss: 23.134424\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 301, Loss: 23.335182\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 302, Loss: 23.364012\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 303, Loss: 23.418743\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 304, Loss: 23.528458\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 305, Loss: 23.025307\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 306, Loss: 23.104723\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 307, Loss: 22.631310\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 308, Loss: 22.742235\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 309, Loss: 23.382027\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 310, Loss: 23.076258\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 311, Loss: 23.970377\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 312, Loss: 23.179489\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 313, Loss: 23.132387\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 314, Loss: 23.117634\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 315, Loss: 22.507193\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 316, Loss: 23.060602\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 317, Loss: 22.572027\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 318, Loss: 23.232540\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 319, Loss: 23.555384\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 320, Loss: 23.393116\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 321, Loss: 24.685566\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 322, Loss: 21.863758\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 323, Loss: 22.797321\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 324, Loss: 22.913307\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 325, Loss: 22.952726\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 326, Loss: 23.135561\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 327, Loss: 23.208130\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 328, Loss: 22.465351\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 329, Loss: 22.839479\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 330, Loss: 23.872066\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 331, Loss: 23.433571\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 332, Loss: 24.001673\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 333, Loss: 22.379078\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 334, Loss: 24.009611\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 335, Loss: 23.055424\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 336, Loss: 22.676556\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 337, Loss: 23.461414\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 338, Loss: 23.482382\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 339, Loss: 23.125221\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 340, Loss: 24.135849\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 341, Loss: 23.076151\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 342, Loss: 23.470482\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 343, Loss: 22.760653\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 344, Loss: 23.205704\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 345, Loss: 23.014645\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 346, Loss: 23.621332\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 347, Loss: 22.940432\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 348, Loss: 24.317654\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 349, Loss: 22.849554\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 350, Loss: 22.676756\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 351, Loss: 22.931255\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 352, Loss: 23.291191\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 353, Loss: 22.448362\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 354, Loss: 23.838030\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 355, Loss: 22.670124\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 356, Loss: 23.532757\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 357, Loss: 23.278549\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 358, Loss: 23.068554\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 359, Loss: 22.542212\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 360, Loss: 22.332859\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 361, Loss: 22.861811\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 362, Loss: 22.441084\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 363, Loss: 23.151342\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 364, Loss: 21.671995\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 365, Loss: 23.494329\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 366, Loss: 22.298830\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 367, Loss: 23.026125\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 368, Loss: 22.725880\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 369, Loss: 22.810175\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 370, Loss: 22.601839\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 371, Loss: 23.100632\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 372, Loss: 22.928419\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 373, Loss: 22.780571\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 374, Loss: 22.698250\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 375, Loss: 23.199335\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 376, Loss: 22.395617\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 377, Loss: 22.682400\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 378, Loss: 22.678913\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 379, Loss: 22.691696\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 380, Loss: 22.360245\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 381, Loss: 23.438654\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 382, Loss: 22.624775\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 383, Loss: 22.902229\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 384, Loss: 22.222797\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 385, Loss: 22.323013\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 386, Loss: 23.192188\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 387, Loss: 22.348690\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 388, Loss: 23.130892\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 389, Loss: 23.129631\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 390, Loss: 23.869715\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 391, Loss: 21.841768\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 392, Loss: 22.877954\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 393, Loss: 22.615723\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 394, Loss: 23.245632\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 395, Loss: 24.009542\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 396, Loss: 22.538261\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 397, Loss: 22.419586\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 398, Loss: 21.666428\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 399, Loss: 23.004848\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 400, Loss: 22.879997\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 401, Loss: 22.553673\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 402, Loss: 23.483316\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 403, Loss: 22.779137\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 404, Loss: 22.252234\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 405, Loss: 23.301846\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 406, Loss: 23.109049\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 407, Loss: 22.656122\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 408, Loss: 22.126955\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 409, Loss: 23.365402\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 410, Loss: 22.521353\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 411, Loss: 22.272480\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 412, Loss: 22.898703\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 413, Loss: 23.142698\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 414, Loss: 22.010143\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 415, Loss: 22.647591\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 416, Loss: 23.428959\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 417, Loss: 22.476824\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 418, Loss: 22.784357\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 419, Loss: 23.102552\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 420, Loss: 22.555803\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 421, Loss: 22.855637\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 422, Loss: 22.334570\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 423, Loss: 22.313482\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 424, Loss: 22.612534\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 425, Loss: 22.253607\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 426, Loss: 21.017742\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 427, Loss: 22.471727\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 428, Loss: 21.320215\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 429, Loss: 23.659906\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 430, Loss: 22.671968\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 431, Loss: 22.996424\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 432, Loss: 22.420649\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 433, Loss: 22.424749\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 434, Loss: 22.014114\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 435, Loss: 22.750589\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 436, Loss: 22.199789\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 437, Loss: 22.345982\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 438, Loss: 22.235216\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 439, Loss: 22.058336\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 440, Loss: 22.160191\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 441, Loss: 21.740252\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 442, Loss: 21.842932\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 443, Loss: 23.292860\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 444, Loss: 21.435802\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 445, Loss: 22.482775\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 446, Loss: 22.157473\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 447, Loss: 21.843897\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 448, Loss: 22.106913\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 449, Loss: 22.112869\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 450, Loss: 22.714428\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 451, Loss: 22.149748\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 452, Loss: 22.182472\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 453, Loss: 22.455664\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 454, Loss: 22.769171\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 455, Loss: 21.662941\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 456, Loss: 21.295298\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 457, Loss: 22.572758\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 458, Loss: 22.100832\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 459, Loss: 21.171837\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 460, Loss: 22.190474\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 461, Loss: 22.015829\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 462, Loss: 21.665039\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 463, Loss: 22.176548\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 464, Loss: 23.061331\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 465, Loss: 22.626364\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 466, Loss: 21.830969\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 467, Loss: 21.489447\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 468, Loss: 21.861208\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 469, Loss: 21.751663\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 470, Loss: 21.667461\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 471, Loss: 21.955418\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 472, Loss: 23.107470\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 473, Loss: 22.019382\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 474, Loss: 22.400694\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 475, Loss: 22.816759\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 476, Loss: 22.279873\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 477, Loss: 22.054626\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 478, Loss: 22.770802\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 479, Loss: 22.247217\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 480, Loss: 21.832840\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 481, Loss: 22.958130\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 482, Loss: 22.773130\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 483, Loss: 21.847750\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 484, Loss: 22.181572\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 485, Loss: 21.625689\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 486, Loss: 21.743771\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 487, Loss: 21.991148\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 488, Loss: 21.518459\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 489, Loss: 22.133972\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 490, Loss: 21.368551\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 491, Loss: 22.471050\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 492, Loss: 22.935411\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 493, Loss: 22.660036\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 494, Loss: 22.464020\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 495, Loss: 22.268820\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 496, Loss: 22.536850\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 497, Loss: 22.512291\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 498, Loss: 22.379423\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 499, Loss: 22.063166\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 500, Loss: 22.424026\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 501, Loss: 22.663815\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 502, Loss: 21.314772\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 503, Loss: 21.342356\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 504, Loss: 22.898842\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 505, Loss: 21.590488\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 506, Loss: 21.379139\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 507, Loss: 21.468483\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 508, Loss: 21.997976\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 509, Loss: 21.774603\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 510, Loss: 21.847696\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 511, Loss: 21.877769\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 512, Loss: 21.924477\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 513, Loss: 22.012438\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 514, Loss: 21.578970\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 515, Loss: 21.887205\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 516, Loss: 21.547014\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 517, Loss: 21.645105\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 518, Loss: 22.957291\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 519, Loss: 22.221066\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 520, Loss: 22.258308\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 521, Loss: 22.140728\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 522, Loss: 21.765234\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 523, Loss: 21.722692\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 524, Loss: 22.928171\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 525, Loss: 22.261143\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 526, Loss: 20.975193\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 527, Loss: 21.840881\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 528, Loss: 22.410639\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 529, Loss: 22.499155\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 530, Loss: 22.229710\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 531, Loss: 22.335840\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 532, Loss: 21.681335\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 533, Loss: 22.317726\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 534, Loss: 22.569824\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 535, Loss: 22.022512\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 536, Loss: 21.054670\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 537, Loss: 21.735987\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 538, Loss: 21.696838\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 539, Loss: 22.451664\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 540, Loss: 22.666389\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 541, Loss: 21.637772\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 542, Loss: 21.291901\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 543, Loss: 21.912264\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 544, Loss: 22.062939\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 545, Loss: 22.045740\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 546, Loss: 22.058065\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 547, Loss: 22.549459\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 548, Loss: 22.873434\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 549, Loss: 21.692688\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 550, Loss: 21.030334\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 551, Loss: 22.001635\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 552, Loss: 21.798616\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 553, Loss: 22.062895\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 554, Loss: 21.420982\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 555, Loss: 21.639566\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 556, Loss: 21.608028\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 557, Loss: 21.261597\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 558, Loss: 22.451496\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 559, Loss: 21.893206\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 560, Loss: 22.330456\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 561, Loss: 21.292650\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 562, Loss: 22.304249\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 563, Loss: 21.569262\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 564, Loss: 21.308044\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 565, Loss: 21.843679\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 566, Loss: 21.406263\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 567, Loss: 22.100416\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 568, Loss: 21.843914\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 569, Loss: 21.492228\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 570, Loss: 21.698400\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 571, Loss: 22.141932\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 572, Loss: 22.695395\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 573, Loss: 22.219639\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 574, Loss: 21.418306\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 575, Loss: 22.007292\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 576, Loss: 21.912043\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 577, Loss: 21.508305\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 578, Loss: 22.111748\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 579, Loss: 21.473045\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 580, Loss: 22.423208\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 581, Loss: 21.367191\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 582, Loss: 21.943392\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 583, Loss: 21.375454\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 584, Loss: 22.032221\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 585, Loss: 21.921597\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 586, Loss: 22.570383\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 587, Loss: 21.931105\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 588, Loss: 22.046103\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 589, Loss: 22.465748\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 590, Loss: 21.658159\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 591, Loss: 22.322472\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 592, Loss: 21.946039\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 593, Loss: 22.160545\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 594, Loss: 22.196115\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 595, Loss: 21.360029\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 596, Loss: 21.581066\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 597, Loss: 21.514599\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 598, Loss: 21.876173\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 599, Loss: 20.898085\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 600, Loss: 21.488960\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 601, Loss: 21.571201\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 602, Loss: 21.892977\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 603, Loss: 21.980246\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 604, Loss: 21.043234\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 605, Loss: 22.106602\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 606, Loss: 21.839079\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 607, Loss: 21.580881\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 608, Loss: 22.845224\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 609, Loss: 21.284445\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 610, Loss: 22.273058\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 611, Loss: 21.178917\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 612, Loss: 21.706980\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 613, Loss: 20.606846\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 614, Loss: 21.601978\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 615, Loss: 21.711393\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 616, Loss: 21.102070\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 617, Loss: 20.414860\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 618, Loss: 21.941587\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 619, Loss: 22.060482\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 620, Loss: 22.016922\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 621, Loss: 21.702604\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 622, Loss: 21.233143\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 623, Loss: 21.446104\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 624, Loss: 21.475533\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 625, Loss: 21.877169\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 626, Loss: 21.130409\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 627, Loss: 21.149115\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 628, Loss: 21.874443\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 629, Loss: 21.941965\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 630, Loss: 21.992268\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 631, Loss: 20.743402\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 632, Loss: 21.966557\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 633, Loss: 21.607317\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 634, Loss: 21.582396\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 635, Loss: 21.749454\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 636, Loss: 21.060711\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 637, Loss: 20.814293\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 638, Loss: 20.969654\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 639, Loss: 22.094501\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 640, Loss: 21.419725\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 641, Loss: 21.055901\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 642, Loss: 21.590885\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 643, Loss: 20.989727\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 644, Loss: 21.167091\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 645, Loss: 21.021481\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 646, Loss: 22.145479\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 647, Loss: 21.150297\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 648, Loss: 21.168549\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 649, Loss: 21.831669\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 650, Loss: 21.432236\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 651, Loss: 22.087337\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 652, Loss: 20.954031\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 653, Loss: 20.877182\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 654, Loss: 21.497047\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 655, Loss: 22.464483\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 656, Loss: 21.197489\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 657, Loss: 21.081602\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 658, Loss: 21.459328\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 659, Loss: 21.584263\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 660, Loss: 21.472935\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 661, Loss: 21.398836\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 662, Loss: 20.804113\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 663, Loss: 21.339890\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 664, Loss: 21.294815\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 665, Loss: 21.638876\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 666, Loss: 21.249706\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 667, Loss: 21.919018\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 668, Loss: 21.464109\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 669, Loss: 21.718021\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 670, Loss: 22.087740\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 671, Loss: 20.785925\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 672, Loss: 21.448305\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 673, Loss: 21.814024\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 674, Loss: 20.939198\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 675, Loss: 21.122099\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 676, Loss: 21.403456\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 677, Loss: 20.966511\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 678, Loss: 20.963524\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 679, Loss: 21.573124\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 680, Loss: 20.531311\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 681, Loss: 19.842827\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 682, Loss: 21.588163\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 683, Loss: 21.192135\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 684, Loss: 20.905157\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 685, Loss: 21.657206\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 686, Loss: 21.160833\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 687, Loss: 21.093847\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 688, Loss: 21.482553\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 689, Loss: 20.817347\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 690, Loss: 22.042503\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 691, Loss: 22.435863\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 692, Loss: 21.125334\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 693, Loss: 20.779911\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 694, Loss: 20.401501\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 695, Loss: 20.597021\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 696, Loss: 21.427118\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 697, Loss: 21.598707\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 698, Loss: 22.751196\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 699, Loss: 20.774261\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 700, Loss: 21.322514\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 701, Loss: 21.141546\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 702, Loss: 22.260908\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 703, Loss: 21.872301\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 704, Loss: 21.096319\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 705, Loss: 21.524921\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 706, Loss: 22.152067\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 707, Loss: 21.690483\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 708, Loss: 20.843304\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 709, Loss: 21.068037\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 710, Loss: 21.204243\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 711, Loss: 21.027828\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 712, Loss: 21.209837\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 713, Loss: 21.142332\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 714, Loss: 20.429031\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 715, Loss: 21.497091\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 716, Loss: 21.189726\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 717, Loss: 21.449200\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 718, Loss: 21.695223\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 719, Loss: 21.703243\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 720, Loss: 21.740105\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 721, Loss: 21.643839\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 722, Loss: 21.527418\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 723, Loss: 20.927221\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 724, Loss: 20.369461\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 725, Loss: 22.308025\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 726, Loss: 21.767384\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 727, Loss: 22.082205\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 728, Loss: 20.937469\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 729, Loss: 22.248119\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 730, Loss: 21.674900\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 731, Loss: 20.816786\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 732, Loss: 20.907108\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 733, Loss: 20.789795\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 734, Loss: 20.781792\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 735, Loss: 20.798475\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 736, Loss: 20.962231\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 737, Loss: 21.393723\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 738, Loss: 21.278290\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 739, Loss: 21.140368\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 740, Loss: 20.887596\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 741, Loss: 21.232334\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 742, Loss: 21.896782\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 743, Loss: 20.918638\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 744, Loss: 21.335493\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 745, Loss: 20.932924\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 746, Loss: 22.112293\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 747, Loss: 20.331730\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 748, Loss: 21.287207\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 749, Loss: 21.363728\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 750, Loss: 21.547047\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 751, Loss: 20.423489\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 752, Loss: 21.151669\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 753, Loss: 21.206800\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 754, Loss: 20.676657\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 755, Loss: 21.150650\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 756, Loss: 20.701323\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 757, Loss: 21.293840\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 758, Loss: 21.439110\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 759, Loss: 20.639593\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 760, Loss: 22.108326\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 761, Loss: 21.708323\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 762, Loss: 20.910162\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 763, Loss: 21.255787\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 764, Loss: 21.309977\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 765, Loss: 20.238443\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 766, Loss: 20.452442\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 767, Loss: 20.378145\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 768, Loss: 20.301395\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 769, Loss: 20.801559\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 770, Loss: 21.639015\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 771, Loss: 21.228193\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 772, Loss: 21.191496\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 773, Loss: 21.320095\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 774, Loss: 20.094816\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 775, Loss: 21.122267\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 776, Loss: 20.244200\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 777, Loss: 20.951784\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 778, Loss: 21.303234\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 779, Loss: 21.436632\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 780, Loss: 21.046885\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 781, Loss: 20.962605\n", - "Stopped early after 782 epochs, with loss of 19.842827\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 1, Loss: 311.243835\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 2, Loss: 304.592407\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 3, Loss: 290.063568\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 4, Loss: 274.520691\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 5, Loss: 258.292664\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 6, Loss: 241.540039\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 7, Loss: 229.550369\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 8, Loss: 218.075058\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 9, Loss: 207.184540\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 10, Loss: 196.380127\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 11, Loss: 187.908966\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 12, Loss: 180.820282\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 13, Loss: 168.882019\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 14, Loss: 162.316040\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 15, Loss: 153.721161\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 16, Loss: 145.563065\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 17, Loss: 134.954025\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 18, Loss: 131.112946\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 19, Loss: 123.087769\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 20, Loss: 116.062759\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 21, Loss: 104.830566\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 22, Loss: 100.838547\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 23, Loss: 93.771873\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 24, Loss: 91.699829\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 25, Loss: 86.188866\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 26, Loss: 81.623077\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 27, Loss: 80.918755\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 28, Loss: 81.340080\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 29, Loss: 75.164352\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 30, Loss: 73.627716\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 31, Loss: 73.222626\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 32, Loss: 72.492279\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 33, Loss: 71.282677\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 34, Loss: 69.752136\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 35, Loss: 68.575371\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 36, Loss: 67.354889\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 37, Loss: 67.817833\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 38, Loss: 65.567062\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 39, Loss: 66.774887\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 40, Loss: 62.685326\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 41, Loss: 64.769455\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 42, Loss: 63.142178\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 43, Loss: 61.117588\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 44, Loss: 59.857677\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 45, Loss: 58.071278\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 46, Loss: 61.518326\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 47, Loss: 58.615921\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 48, Loss: 58.300415\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 49, Loss: 57.347729\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 50, Loss: 58.568573\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 51, Loss: 57.962700\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 52, Loss: 55.942543\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 53, Loss: 56.497211\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 54, Loss: 53.618416\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 55, Loss: 56.444420\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 56, Loss: 55.023510\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 57, Loss: 55.654037\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 58, Loss: 55.377060\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 59, Loss: 53.783203\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 60, Loss: 52.318127\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 61, Loss: 53.402081\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 62, Loss: 52.166645\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 63, Loss: 52.641933\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 64, Loss: 54.638710\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 65, Loss: 53.671040\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 66, Loss: 52.159397\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 67, Loss: 51.102646\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 68, Loss: 51.425182\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 69, Loss: 51.510677\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 70, Loss: 50.748211\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 71, Loss: 51.102749\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 72, Loss: 51.237648\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 73, Loss: 48.357700\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 74, Loss: 49.298702\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 75, Loss: 47.517689\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 76, Loss: 48.682472\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 77, Loss: 48.062019\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 78, Loss: 50.832848\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 79, Loss: 49.911793\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 80, Loss: 48.323513\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 81, Loss: 46.046024\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 82, Loss: 48.779682\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 83, Loss: 48.912243\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 84, Loss: 48.679184\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 85, Loss: 48.103558\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 86, Loss: 47.435249\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 87, Loss: 49.082134\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 88, Loss: 46.945724\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 89, Loss: 47.074097\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 90, Loss: 47.610813\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 91, Loss: 46.906693\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 92, Loss: 47.810444\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 93, Loss: 48.850883\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 94, Loss: 47.070831\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 95, Loss: 48.153671\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 96, Loss: 46.263496\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 97, Loss: 47.288765\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 98, Loss: 46.723007\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 99, Loss: 46.742851\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 100, Loss: 47.556835\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 101, Loss: 47.704578\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 102, Loss: 45.435661\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 103, Loss: 46.600136\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 104, Loss: 47.151806\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 105, Loss: 45.041805\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 106, Loss: 45.155834\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 107, Loss: 46.377705\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 108, Loss: 47.740917\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 109, Loss: 47.297142\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 110, Loss: 45.066353\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 111, Loss: 45.254795\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 112, Loss: 45.279289\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 113, Loss: 48.082577\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 114, Loss: 46.529636\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 115, Loss: 45.844643\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 116, Loss: 45.964340\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 117, Loss: 46.093086\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 118, Loss: 43.216507\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 119, Loss: 47.004261\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 120, Loss: 46.721058\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 121, Loss: 45.736198\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 122, Loss: 45.502728\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 123, Loss: 45.670181\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 124, Loss: 45.769184\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 125, Loss: 46.492077\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 126, Loss: 44.033527\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 127, Loss: 45.899765\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 128, Loss: 45.088398\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 129, Loss: 45.117489\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 130, Loss: 45.100101\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 131, Loss: 43.642086\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 132, Loss: 43.900517\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 133, Loss: 46.486988\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 134, Loss: 44.682468\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 135, Loss: 44.088917\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 136, Loss: 45.301010\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 137, Loss: 45.515953\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 138, Loss: 44.580021\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 139, Loss: 45.139862\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 140, Loss: 44.926262\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 141, Loss: 42.978203\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 142, Loss: 44.259323\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 143, Loss: 43.834408\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 144, Loss: 44.820606\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 145, Loss: 46.359543\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 146, Loss: 42.776672\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 147, Loss: 44.901886\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 148, Loss: 43.076366\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 149, Loss: 45.634888\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 150, Loss: 44.057880\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 151, Loss: 44.242592\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 152, Loss: 43.202255\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 153, Loss: 43.541428\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 154, Loss: 43.872475\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 155, Loss: 43.859627\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 156, Loss: 42.899208\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 157, Loss: 45.090252\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 158, Loss: 44.284157\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 159, Loss: 43.631981\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 160, Loss: 44.113716\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 161, Loss: 42.417000\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 162, Loss: 43.590420\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 163, Loss: 45.106869\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 164, Loss: 44.130913\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 165, Loss: 44.260067\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 166, Loss: 43.079033\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 167, Loss: 43.888096\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 168, Loss: 44.378475\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 169, Loss: 43.135967\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 170, Loss: 43.167332\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 171, Loss: 45.082718\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 172, Loss: 43.000557\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 173, Loss: 45.229225\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 174, Loss: 42.870537\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 175, Loss: 44.327663\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 176, Loss: 44.721909\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 177, Loss: 43.950054\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 178, Loss: 43.619625\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 179, Loss: 45.465710\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 180, Loss: 42.302471\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 181, Loss: 43.762497\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 182, Loss: 45.423786\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 183, Loss: 44.056595\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 184, Loss: 43.566441\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 185, Loss: 44.463852\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 186, Loss: 44.274498\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 187, Loss: 42.326641\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 188, Loss: 42.958355\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 189, Loss: 44.338860\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 190, Loss: 43.234322\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 191, Loss: 43.053898\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 192, Loss: 43.075211\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 193, Loss: 43.273590\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 194, Loss: 42.645046\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 195, Loss: 45.260025\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 196, Loss: 42.936558\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 197, Loss: 43.484676\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 198, Loss: 43.782131\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 199, Loss: 43.770462\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 200, Loss: 43.583878\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 201, Loss: 44.201427\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 202, Loss: 43.935169\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 203, Loss: 42.595486\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 204, Loss: 41.992226\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 205, Loss: 44.441181\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 206, Loss: 44.285973\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 207, Loss: 44.220409\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 208, Loss: 43.353893\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 209, Loss: 42.810925\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 210, Loss: 42.833797\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 211, Loss: 44.819336\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 212, Loss: 43.676819\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 213, Loss: 44.503914\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 214, Loss: 42.521397\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 215, Loss: 42.422157\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 216, Loss: 42.901009\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 217, Loss: 41.950340\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 218, Loss: 42.684586\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 219, Loss: 42.210438\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 220, Loss: 44.297222\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 221, Loss: 43.698006\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 222, Loss: 42.325748\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 223, Loss: 43.392704\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 224, Loss: 42.844685\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 225, Loss: 43.260067\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 226, Loss: 43.855484\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 227, Loss: 43.447601\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 228, Loss: 43.561153\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 229, Loss: 41.774014\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 230, Loss: 43.216301\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 231, Loss: 42.313831\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 232, Loss: 42.577049\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 233, Loss: 43.195576\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 234, Loss: 41.241062\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 235, Loss: 42.149857\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 236, Loss: 42.721695\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 237, Loss: 41.804844\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 238, Loss: 41.782906\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 239, Loss: 43.909828\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 240, Loss: 40.902699\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 241, Loss: 41.371719\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 242, Loss: 43.026424\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 243, Loss: 44.058201\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 244, Loss: 42.511078\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 245, Loss: 43.019527\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 246, Loss: 42.634399\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 247, Loss: 40.904533\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 248, Loss: 42.604458\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 249, Loss: 40.770267\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 250, Loss: 43.159637\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 251, Loss: 42.425869\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 252, Loss: 43.128059\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 253, Loss: 44.054710\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 254, Loss: 42.686642\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 255, Loss: 42.731186\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 256, Loss: 41.389175\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 257, Loss: 42.768993\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 258, Loss: 41.981140\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 259, Loss: 41.919025\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 260, Loss: 41.807758\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 261, Loss: 42.011902\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 262, Loss: 42.933998\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 263, Loss: 41.042961\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 264, Loss: 43.373940\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 265, Loss: 42.118282\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 266, Loss: 42.770958\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 267, Loss: 42.915707\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 268, Loss: 43.413486\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 269, Loss: 43.717571\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 270, Loss: 42.785583\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 271, Loss: 42.178078\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 272, Loss: 41.012268\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 273, Loss: 41.963520\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 274, Loss: 40.011044\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 275, Loss: 42.745735\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 276, Loss: 42.838463\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 277, Loss: 42.441711\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 278, Loss: 42.466522\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 279, Loss: 43.978313\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 280, Loss: 42.618141\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 281, Loss: 42.552799\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 282, Loss: 41.809452\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 283, Loss: 41.514992\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 284, Loss: 41.513157\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 285, Loss: 42.701981\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 286, Loss: 41.599384\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 287, Loss: 43.164043\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 288, Loss: 41.788883\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 289, Loss: 42.902718\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 290, Loss: 43.745235\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 291, Loss: 41.870113\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 292, Loss: 40.870071\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 293, Loss: 42.714539\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 294, Loss: 41.257507\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 295, Loss: 43.346924\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 296, Loss: 42.237736\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 297, Loss: 43.369228\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 298, Loss: 42.053802\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 299, Loss: 43.443317\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 300, Loss: 41.736843\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 301, Loss: 41.756737\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 302, Loss: 41.378117\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 303, Loss: 40.734737\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 304, Loss: 41.692696\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 305, Loss: 41.509602\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 306, Loss: 42.921383\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 307, Loss: 41.518131\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 308, Loss: 41.993183\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 309, Loss: 40.902977\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 310, Loss: 42.941990\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 311, Loss: 41.624435\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 312, Loss: 41.623127\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 313, Loss: 41.875156\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 314, Loss: 41.553043\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 315, Loss: 41.088818\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 316, Loss: 42.714367\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 317, Loss: 40.656059\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 318, Loss: 42.111000\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 319, Loss: 42.530434\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 320, Loss: 41.867821\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 321, Loss: 41.286472\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 322, Loss: 41.364670\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 323, Loss: 42.761120\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 324, Loss: 41.992321\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 325, Loss: 42.497856\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 326, Loss: 40.582554\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 327, Loss: 42.051891\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 328, Loss: 41.586090\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 329, Loss: 41.118004\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 330, Loss: 42.753445\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 331, Loss: 41.851963\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 332, Loss: 39.844616\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 333, Loss: 41.754177\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 334, Loss: 41.827869\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 335, Loss: 41.291409\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 336, Loss: 40.684994\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 337, Loss: 42.201241\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 338, Loss: 41.583263\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 339, Loss: 40.338757\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 340, Loss: 42.070206\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 341, Loss: 41.370430\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 342, Loss: 42.529182\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 343, Loss: 41.276138\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 344, Loss: 40.704529\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 345, Loss: 40.368900\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 346, Loss: 41.722832\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 347, Loss: 42.520264\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 348, Loss: 41.867073\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 349, Loss: 41.114223\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 350, Loss: 40.800510\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 351, Loss: 41.106575\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 352, Loss: 40.038528\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 353, Loss: 41.380524\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 354, Loss: 40.979759\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 355, Loss: 39.625069\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 356, Loss: 40.971176\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 357, Loss: 41.384033\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 358, Loss: 42.548466\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 359, Loss: 41.919308\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 360, Loss: 41.636120\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 361, Loss: 41.706871\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 362, Loss: 43.289410\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 363, Loss: 42.129803\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 364, Loss: 42.297932\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 365, Loss: 41.820915\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 366, Loss: 40.805046\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 367, Loss: 40.893848\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 368, Loss: 41.667198\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 369, Loss: 40.402813\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 370, Loss: 41.228760\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 371, Loss: 41.567078\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 372, Loss: 40.944653\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 373, Loss: 40.668964\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 374, Loss: 40.830894\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 375, Loss: 42.376186\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 376, Loss: 41.491337\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 377, Loss: 41.480045\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 378, Loss: 40.282841\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 379, Loss: 40.910076\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 380, Loss: 40.734890\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 381, Loss: 38.633938\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 382, Loss: 41.498283\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 383, Loss: 41.559219\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 384, Loss: 42.066494\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 385, Loss: 41.324974\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 386, Loss: 41.468399\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 387, Loss: 41.565437\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 388, Loss: 42.003162\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 389, Loss: 42.030918\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 390, Loss: 41.255539\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 391, Loss: 42.218178\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 392, Loss: 40.961514\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 393, Loss: 41.218555\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 394, Loss: 40.390518\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 395, Loss: 41.560539\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 396, Loss: 40.399616\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 397, Loss: 40.837311\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 398, Loss: 40.745445\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 399, Loss: 41.238327\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 400, Loss: 42.108070\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 401, Loss: 40.666023\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 402, Loss: 41.611626\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 403, Loss: 40.553539\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 404, Loss: 40.784584\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 405, Loss: 40.905128\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 406, Loss: 42.387756\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 407, Loss: 40.891186\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 408, Loss: 41.590904\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 409, Loss: 42.471592\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 410, Loss: 40.371399\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 411, Loss: 41.081615\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 412, Loss: 42.024670\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 413, Loss: 39.530273\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 414, Loss: 41.590504\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 415, Loss: 40.589592\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 416, Loss: 41.750694\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 417, Loss: 40.846619\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 418, Loss: 40.799175\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 419, Loss: 41.403500\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 420, Loss: 41.255344\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 421, Loss: 40.162395\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 422, Loss: 41.762272\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 423, Loss: 41.102962\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 424, Loss: 39.363258\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 425, Loss: 41.479774\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 426, Loss: 40.627865\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 427, Loss: 41.981712\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 428, Loss: 40.268299\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 429, Loss: 40.523003\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 430, Loss: 41.765282\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 431, Loss: 40.098274\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 432, Loss: 40.593475\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 433, Loss: 41.689476\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 434, Loss: 43.219273\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 435, Loss: 41.777790\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 436, Loss: 41.576740\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 437, Loss: 41.759487\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 438, Loss: 39.710129\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 439, Loss: 40.078136\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 440, Loss: 41.767807\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 441, Loss: 41.761536\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 442, Loss: 41.236176\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 443, Loss: 41.082672\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 444, Loss: 40.786804\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 445, Loss: 40.082905\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 446, Loss: 41.015980\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 447, Loss: 39.689110\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 448, Loss: 40.965656\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 449, Loss: 41.134491\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 450, Loss: 41.621334\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 451, Loss: 42.010166\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 452, Loss: 41.283142\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 453, Loss: 41.336975\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 454, Loss: 42.211559\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 455, Loss: 41.058128\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 456, Loss: 42.502327\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 457, Loss: 41.246052\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 458, Loss: 41.503349\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 459, Loss: 41.507721\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 460, Loss: 39.666328\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 461, Loss: 40.467175\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 462, Loss: 41.975323\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 463, Loss: 40.656467\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 464, Loss: 40.878147\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 465, Loss: 41.137249\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 466, Loss: 42.402931\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 467, Loss: 41.360065\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 468, Loss: 41.923744\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 469, Loss: 40.695232\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 470, Loss: 40.565720\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 471, Loss: 40.323414\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 472, Loss: 41.354889\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 473, Loss: 38.379047\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 474, Loss: 41.408268\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 475, Loss: 41.881546\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 476, Loss: 41.663296\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 477, Loss: 41.925480\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 478, Loss: 39.924870\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 479, Loss: 39.936378\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 480, Loss: 41.366806\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 481, Loss: 40.297012\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 482, Loss: 41.434032\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 483, Loss: 42.344765\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 484, Loss: 39.081219\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 485, Loss: 41.699955\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 486, Loss: 41.658600\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 487, Loss: 40.465130\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 488, Loss: 41.218693\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 489, Loss: 40.237667\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 490, Loss: 40.980644\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 491, Loss: 40.770725\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 492, Loss: 42.147354\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 493, Loss: 41.631454\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 494, Loss: 39.916946\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 495, Loss: 42.377888\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 496, Loss: 41.271423\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 497, Loss: 39.765625\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 498, Loss: 41.428967\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 499, Loss: 43.071579\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 500, Loss: 41.632587\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 501, Loss: 39.596790\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 502, Loss: 41.854805\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 503, Loss: 40.511532\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 504, Loss: 43.033337\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 505, Loss: 41.086548\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 506, Loss: 42.250912\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 507, Loss: 40.761200\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 508, Loss: 40.785625\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 509, Loss: 40.373074\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 510, Loss: 43.721527\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 511, Loss: 41.620251\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 512, Loss: 39.016068\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 513, Loss: 41.456066\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 514, Loss: 41.486015\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 515, Loss: 41.283848\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 516, Loss: 41.379505\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 517, Loss: 40.438004\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 518, Loss: 41.482319\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 519, Loss: 40.862843\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 520, Loss: 42.223900\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 521, Loss: 40.970848\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 522, Loss: 41.188492\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 523, Loss: 39.958229\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 524, Loss: 41.562523\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 525, Loss: 39.482246\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 526, Loss: 41.109852\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 527, Loss: 41.369869\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 528, Loss: 40.092060\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 529, Loss: 39.216953\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 530, Loss: 42.027405\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 531, Loss: 41.448483\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 532, Loss: 42.966022\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 533, Loss: 41.107662\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 534, Loss: 39.580791\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 535, Loss: 40.441498\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 536, Loss: 39.570568\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 537, Loss: 39.821014\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 538, Loss: 40.786507\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 539, Loss: 39.845146\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 540, Loss: 40.396965\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 541, Loss: 40.320705\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 542, Loss: 41.491867\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 543, Loss: 40.830883\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 544, Loss: 41.969158\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 545, Loss: 40.251778\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 546, Loss: 41.213165\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 547, Loss: 40.578819\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 548, Loss: 38.898750\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 549, Loss: 41.420010\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 550, Loss: 41.015121\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 551, Loss: 40.946125\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 552, Loss: 41.096981\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 553, Loss: 41.886192\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 554, Loss: 40.470245\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 555, Loss: 40.698029\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 556, Loss: 40.658413\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 557, Loss: 40.690239\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 558, Loss: 39.044773\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 559, Loss: 41.512817\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 560, Loss: 41.082710\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 561, Loss: 40.413891\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 562, Loss: 40.165634\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 563, Loss: 40.021755\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 564, Loss: 40.552616\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 565, Loss: 40.353100\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 566, Loss: 39.956844\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 567, Loss: 40.631504\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 568, Loss: 41.499489\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 569, Loss: 40.037788\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 570, Loss: 38.934422\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 571, Loss: 39.368275\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 572, Loss: 40.743900\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:20, Epoch 573, Loss: 41.054966\n", - "Stopped early after 574 epochs, with loss of 38.379047\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 1, Loss: 231.997391\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 2, Loss: 224.609467\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 3, Loss: 217.244690\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 4, Loss: 206.390778\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 5, Loss: 197.762238\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 6, Loss: 188.762726\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 7, Loss: 182.014359\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 8, Loss: 179.369507\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 9, Loss: 171.550247\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 10, Loss: 168.042511\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 11, Loss: 163.754837\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 12, Loss: 158.674561\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 13, Loss: 153.706421\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 14, Loss: 150.046875\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 15, Loss: 143.605988\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 16, Loss: 141.015030\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 17, Loss: 136.517975\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 18, Loss: 132.451752\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 19, Loss: 126.527779\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 20, Loss: 122.307755\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 21, Loss: 121.725830\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 22, Loss: 115.056320\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 23, Loss: 112.062141\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 24, Loss: 110.073822\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 25, Loss: 108.911278\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 26, Loss: 104.373047\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 27, Loss: 104.066467\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 28, Loss: 106.903061\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 29, Loss: 102.023140\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 30, Loss: 101.731949\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 31, Loss: 99.001503\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 32, Loss: 98.216705\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 33, Loss: 99.058998\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 34, Loss: 98.169495\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 35, Loss: 96.216690\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 36, Loss: 96.847794\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 37, Loss: 95.137177\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 38, Loss: 94.432030\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 39, Loss: 93.967461\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 40, Loss: 93.149986\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 41, Loss: 94.862663\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 42, Loss: 93.119850\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 43, Loss: 97.258774\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 44, Loss: 94.002838\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 45, Loss: 94.367828\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 46, Loss: 88.262779\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 47, Loss: 93.169395\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 48, Loss: 88.949287\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 49, Loss: 88.701050\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 50, Loss: 91.214699\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 51, Loss: 89.950729\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 52, Loss: 89.485695\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 53, Loss: 92.095871\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 54, Loss: 89.690117\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 55, Loss: 88.107666\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 56, Loss: 87.883598\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 57, Loss: 90.778328\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 58, Loss: 88.485992\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 59, Loss: 86.549019\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 60, Loss: 88.406456\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 61, Loss: 89.278267\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 62, Loss: 89.219833\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 63, Loss: 84.549789\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 64, Loss: 88.223412\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 65, Loss: 82.619217\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 66, Loss: 86.364548\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 67, Loss: 87.733238\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 68, Loss: 86.419380\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 69, Loss: 85.307526\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 70, Loss: 85.638229\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 71, Loss: 83.275429\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 72, Loss: 85.139626\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 73, Loss: 82.595856\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 74, Loss: 84.723389\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 75, Loss: 86.416275\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 76, Loss: 86.216743\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 77, Loss: 86.950035\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 78, Loss: 83.573135\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 79, Loss: 82.956070\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 80, Loss: 83.323753\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 81, Loss: 82.740852\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 82, Loss: 82.189728\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 83, Loss: 83.129944\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 84, Loss: 80.929993\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 85, Loss: 79.428261\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 86, Loss: 82.921890\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 87, Loss: 83.926216\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 88, Loss: 82.686234\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 89, Loss: 79.239914\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 90, Loss: 82.992027\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 91, Loss: 81.261879\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 92, Loss: 84.255356\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 93, Loss: 79.539330\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 94, Loss: 83.121376\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 95, Loss: 82.932625\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 96, Loss: 81.209610\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 97, Loss: 78.836632\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 98, Loss: 81.180496\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 99, Loss: 82.550179\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 100, Loss: 80.809341\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 101, Loss: 79.659111\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 102, Loss: 79.807137\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 103, Loss: 80.641609\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 104, Loss: 79.167648\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 105, Loss: 80.474251\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 106, Loss: 79.558220\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 107, Loss: 80.154037\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 108, Loss: 81.448326\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 109, Loss: 80.620667\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 110, Loss: 83.131775\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 111, Loss: 78.616722\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 112, Loss: 80.875679\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 113, Loss: 81.923393\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 114, Loss: 79.211418\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 115, Loss: 79.720497\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 116, Loss: 81.162865\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 117, Loss: 79.592064\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 118, Loss: 79.425926\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 119, Loss: 80.565598\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 120, Loss: 81.536072\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 121, Loss: 80.632240\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 122, Loss: 78.861320\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 123, Loss: 78.615372\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 124, Loss: 79.100197\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 125, Loss: 77.393501\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 126, Loss: 79.727386\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 127, Loss: 76.750908\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 128, Loss: 77.669830\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 129, Loss: 77.670204\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 130, Loss: 80.265465\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 131, Loss: 78.569656\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 132, Loss: 77.708931\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 133, Loss: 79.649696\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 134, Loss: 78.161079\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 135, Loss: 81.179375\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 136, Loss: 78.287926\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 137, Loss: 79.035149\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 138, Loss: 78.588379\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 139, Loss: 79.484924\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 140, Loss: 76.575928\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 141, Loss: 76.199455\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 142, Loss: 78.281540\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 143, Loss: 77.426537\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 144, Loss: 79.492165\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 145, Loss: 79.739929\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 146, Loss: 77.910110\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 147, Loss: 81.651291\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 148, Loss: 77.432510\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 149, Loss: 78.340775\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 150, Loss: 79.590645\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 151, Loss: 75.915344\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 152, Loss: 78.046776\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 153, Loss: 73.380020\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 154, Loss: 77.931274\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 155, Loss: 78.910004\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 156, Loss: 77.729263\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 157, Loss: 77.971481\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 158, Loss: 77.139725\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 159, Loss: 78.446312\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 160, Loss: 74.966385\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 161, Loss: 78.256393\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 162, Loss: 77.534500\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 163, Loss: 77.022804\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 164, Loss: 75.918892\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 165, Loss: 76.115372\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 166, Loss: 77.007484\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 167, Loss: 75.112015\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 168, Loss: 78.047318\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 169, Loss: 75.346634\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 170, Loss: 76.664803\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 171, Loss: 78.800774\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 172, Loss: 76.326019\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 173, Loss: 77.046585\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 174, Loss: 74.564430\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 175, Loss: 76.083130\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 176, Loss: 75.398254\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 177, Loss: 77.548111\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 178, Loss: 78.270012\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 179, Loss: 77.406136\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 180, Loss: 75.262543\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 181, Loss: 77.194626\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 182, Loss: 77.519676\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 183, Loss: 78.030411\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 184, Loss: 76.129395\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 185, Loss: 77.868668\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 186, Loss: 77.461586\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 187, Loss: 78.595863\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 188, Loss: 74.877350\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 189, Loss: 74.208061\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 190, Loss: 77.950562\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 191, Loss: 76.029808\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 192, Loss: 76.727516\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 193, Loss: 75.814590\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 194, Loss: 74.505180\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 195, Loss: 77.644600\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 196, Loss: 74.579185\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 197, Loss: 80.623474\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 198, Loss: 77.034904\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 199, Loss: 72.929131\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 200, Loss: 75.976570\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 201, Loss: 76.004784\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 202, Loss: 76.372734\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 203, Loss: 76.485878\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 204, Loss: 76.842819\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 205, Loss: 75.087585\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 206, Loss: 73.794617\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 207, Loss: 73.763435\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 208, Loss: 76.922859\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 209, Loss: 77.190392\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 210, Loss: 74.384995\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 211, Loss: 72.166908\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 212, Loss: 74.345268\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 213, Loss: 74.724983\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 214, Loss: 75.060684\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 215, Loss: 75.850891\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 216, Loss: 74.925453\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 217, Loss: 76.144165\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 218, Loss: 75.188705\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 219, Loss: 76.006111\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 220, Loss: 78.018051\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 221, Loss: 76.333328\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 222, Loss: 77.288216\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 223, Loss: 74.721130\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 224, Loss: 78.360519\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 225, Loss: 74.936562\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 226, Loss: 76.804016\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 227, Loss: 74.888344\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 228, Loss: 75.953613\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 229, Loss: 75.851837\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 230, Loss: 72.263428\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 231, Loss: 73.517616\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 232, Loss: 76.810684\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 233, Loss: 73.786758\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 234, Loss: 75.782219\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 235, Loss: 74.532341\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 236, Loss: 74.079414\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 237, Loss: 75.784897\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 238, Loss: 74.201309\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 239, Loss: 74.003395\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 240, Loss: 73.915154\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 241, Loss: 74.462555\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 242, Loss: 74.993248\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 243, Loss: 75.057343\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 244, Loss: 77.485909\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 245, Loss: 70.372169\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 246, Loss: 75.955826\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 247, Loss: 75.055557\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 248, Loss: 74.835289\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 249, Loss: 76.021408\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 250, Loss: 75.026779\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 251, Loss: 76.345566\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 252, Loss: 75.332611\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 253, Loss: 74.862526\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 254, Loss: 74.490891\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 255, Loss: 74.915779\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 256, Loss: 75.158119\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 257, Loss: 71.934998\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 258, Loss: 74.785408\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 259, Loss: 75.061798\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 260, Loss: 72.278854\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 261, Loss: 76.536133\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 262, Loss: 72.735344\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 263, Loss: 76.312790\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 264, Loss: 75.211090\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 265, Loss: 74.736465\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 266, Loss: 74.464523\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 267, Loss: 76.149521\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 268, Loss: 74.460464\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 269, Loss: 74.390663\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 270, Loss: 73.320511\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 271, Loss: 73.133888\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 272, Loss: 73.339096\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 273, Loss: 74.449326\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 274, Loss: 75.713051\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 275, Loss: 75.230080\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 276, Loss: 75.717018\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 277, Loss: 73.645554\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 278, Loss: 73.333336\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 279, Loss: 73.410202\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 280, Loss: 76.218758\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 281, Loss: 75.117401\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 282, Loss: 72.896011\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 283, Loss: 75.933388\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 284, Loss: 76.132729\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 285, Loss: 76.315147\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 286, Loss: 74.569122\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 287, Loss: 74.807953\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 288, Loss: 75.852852\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 289, Loss: 72.208481\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 290, Loss: 75.448715\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 291, Loss: 76.570580\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 292, Loss: 73.815384\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 293, Loss: 75.402473\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 294, Loss: 74.648392\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 295, Loss: 74.488411\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 296, Loss: 72.743546\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 297, Loss: 76.625450\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 298, Loss: 74.847969\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 299, Loss: 75.584702\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 300, Loss: 76.152824\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 301, Loss: 72.103615\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 302, Loss: 73.223305\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 303, Loss: 74.509499\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 304, Loss: 74.928665\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 305, Loss: 73.373703\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 306, Loss: 76.077469\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 307, Loss: 76.542061\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 308, Loss: 73.136963\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 309, Loss: 75.462059\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 310, Loss: 72.871559\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 311, Loss: 73.752632\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 312, Loss: 73.681190\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 313, Loss: 74.389885\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 314, Loss: 73.498283\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 315, Loss: 76.461395\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 316, Loss: 73.263618\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 317, Loss: 74.348587\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 318, Loss: 74.064186\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 319, Loss: 75.105179\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 320, Loss: 72.179314\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 321, Loss: 74.896217\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 322, Loss: 75.492607\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 323, Loss: 75.021500\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 324, Loss: 74.115250\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 325, Loss: 73.957809\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 326, Loss: 71.005142\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 327, Loss: 74.096092\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 328, Loss: 73.976562\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 329, Loss: 73.631310\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 330, Loss: 72.940979\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 331, Loss: 74.111694\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 332, Loss: 75.927078\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 333, Loss: 73.772369\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 334, Loss: 71.587357\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 335, Loss: 71.981728\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 336, Loss: 71.145813\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 337, Loss: 71.959854\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 338, Loss: 75.127998\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 339, Loss: 73.700050\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 340, Loss: 72.214432\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 341, Loss: 71.984192\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 342, Loss: 73.015182\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 343, Loss: 72.649681\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 344, Loss: 74.899559\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:10, Epoch 345, Loss: 73.676071\n", - "Stopped early after 346 epochs, with loss of 70.372169\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 1, Loss: 176.756058\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 2, Loss: 173.709900\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 3, Loss: 167.435974\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 4, Loss: 160.892273\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 5, Loss: 154.839310\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 6, Loss: 156.946991\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 7, Loss: 153.205231\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 8, Loss: 147.439697\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 9, Loss: 151.576599\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 10, Loss: 145.072433\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 11, Loss: 142.622162\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 12, Loss: 141.937851\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 13, Loss: 141.942795\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 14, Loss: 135.285126\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 15, Loss: 135.510681\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 16, Loss: 135.575287\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 17, Loss: 130.715103\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 18, Loss: 128.428543\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 19, Loss: 129.251846\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 20, Loss: 125.062141\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 21, Loss: 123.552780\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 22, Loss: 123.458481\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 23, Loss: 120.298134\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 24, Loss: 123.649574\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 25, Loss: 122.027870\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 26, Loss: 118.457069\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 27, Loss: 115.310890\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 28, Loss: 120.686958\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 29, Loss: 119.177032\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 30, Loss: 114.448997\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 31, Loss: 114.812149\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 32, Loss: 116.631378\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 33, Loss: 116.119591\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 34, Loss: 114.648552\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 35, Loss: 116.435616\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 36, Loss: 116.950005\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 37, Loss: 117.510948\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 38, Loss: 114.726921\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 39, Loss: 114.025978\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 40, Loss: 112.242134\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 41, Loss: 115.204674\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 42, Loss: 111.634811\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 43, Loss: 114.684578\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 44, Loss: 111.273758\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 45, Loss: 113.702606\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 46, Loss: 113.214821\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 47, Loss: 115.475037\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 48, Loss: 114.744362\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 49, Loss: 114.567596\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 50, Loss: 112.732376\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 51, Loss: 113.542297\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 52, Loss: 110.027191\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 53, Loss: 113.082603\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 54, Loss: 113.371223\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 55, Loss: 112.393959\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 56, Loss: 113.351112\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 57, Loss: 111.908760\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 58, Loss: 109.891479\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 59, Loss: 112.231003\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 60, Loss: 111.312439\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 61, Loss: 111.226807\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 62, Loss: 112.823814\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 63, Loss: 117.431465\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 64, Loss: 111.538101\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 65, Loss: 112.751839\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 66, Loss: 111.806313\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 67, Loss: 112.305443\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 68, Loss: 110.944374\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 69, Loss: 112.372749\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 70, Loss: 112.363785\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 71, Loss: 113.503784\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 72, Loss: 113.532166\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 73, Loss: 114.333191\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 74, Loss: 110.053345\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 75, Loss: 110.549225\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 76, Loss: 111.707115\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 77, Loss: 111.175560\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 78, Loss: 112.950172\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 79, Loss: 112.082047\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 80, Loss: 113.037643\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 81, Loss: 111.861488\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 82, Loss: 110.336136\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 83, Loss: 109.588959\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 84, Loss: 111.564217\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 85, Loss: 111.874550\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 86, Loss: 110.681717\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 87, Loss: 111.772171\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 88, Loss: 108.197113\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 89, Loss: 112.169998\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 90, Loss: 110.169037\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 91, Loss: 110.457115\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 92, Loss: 108.696945\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 93, Loss: 109.723572\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 94, Loss: 107.027489\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 95, Loss: 110.820717\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 96, Loss: 110.671661\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 97, Loss: 111.100830\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 98, Loss: 111.458900\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 99, Loss: 108.263145\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 100, Loss: 108.364189\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 101, Loss: 105.650848\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 102, Loss: 111.948952\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 103, Loss: 112.756737\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 104, Loss: 107.325844\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 105, Loss: 108.944260\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 106, Loss: 107.379425\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 107, Loss: 109.517525\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 108, Loss: 111.055267\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 109, Loss: 108.925415\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 110, Loss: 109.753265\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 111, Loss: 107.378265\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 112, Loss: 108.025742\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 113, Loss: 113.710686\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 114, Loss: 107.156693\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 115, Loss: 109.702446\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 116, Loss: 109.532997\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 117, Loss: 110.147919\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 118, Loss: 107.102661\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 119, Loss: 106.238663\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 120, Loss: 111.881523\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 121, Loss: 110.923431\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 122, Loss: 107.326805\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 123, Loss: 107.083244\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 124, Loss: 107.671753\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 125, Loss: 109.990837\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 126, Loss: 111.670692\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 127, Loss: 107.503876\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 128, Loss: 106.512978\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 129, Loss: 109.783104\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 130, Loss: 108.618546\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 131, Loss: 109.255608\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 132, Loss: 110.398071\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 133, Loss: 107.294609\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 134, Loss: 106.496712\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 135, Loss: 106.899216\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 136, Loss: 107.753181\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 137, Loss: 108.214615\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 138, Loss: 106.708549\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 139, Loss: 106.517700\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 140, Loss: 108.452019\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 141, Loss: 107.613937\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 142, Loss: 110.145340\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 143, Loss: 110.911903\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 144, Loss: 110.818672\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 145, Loss: 109.274612\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 146, Loss: 107.181252\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 147, Loss: 106.979065\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 148, Loss: 110.355736\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 149, Loss: 106.927238\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 150, Loss: 109.091179\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 151, Loss: 105.194588\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 152, Loss: 106.201279\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 153, Loss: 105.791634\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 154, Loss: 107.608101\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 155, Loss: 106.665443\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 156, Loss: 106.685326\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 157, Loss: 107.395401\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 158, Loss: 108.392578\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 159, Loss: 108.991234\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 160, Loss: 109.122314\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 161, Loss: 109.458992\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 162, Loss: 106.558121\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 163, Loss: 109.909935\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 164, Loss: 107.241371\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 165, Loss: 107.048393\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 166, Loss: 110.909233\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 167, Loss: 108.517929\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 168, Loss: 108.021294\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 169, Loss: 107.622353\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 170, Loss: 107.637917\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 171, Loss: 108.697350\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 172, Loss: 103.057785\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 173, Loss: 108.440865\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 174, Loss: 105.247520\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 175, Loss: 105.254829\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 176, Loss: 111.415558\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 177, Loss: 109.605209\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 178, Loss: 107.762260\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 179, Loss: 107.065674\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 180, Loss: 109.055954\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 181, Loss: 107.908188\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 182, Loss: 108.205902\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 183, Loss: 107.817993\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 184, Loss: 106.356636\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 185, Loss: 105.329376\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 186, Loss: 105.637009\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 187, Loss: 108.555161\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 188, Loss: 108.603508\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 189, Loss: 107.282829\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 190, Loss: 110.365067\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 191, Loss: 105.998482\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 192, Loss: 108.620644\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 193, Loss: 111.258644\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 194, Loss: 107.649002\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 195, Loss: 107.440933\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 196, Loss: 105.620224\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 197, Loss: 105.984535\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 198, Loss: 108.552261\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 199, Loss: 106.619553\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 200, Loss: 103.608177\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 201, Loss: 105.076263\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 202, Loss: 109.763130\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 203, Loss: 108.451736\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 204, Loss: 109.103157\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 205, Loss: 107.792824\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 206, Loss: 108.155624\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 207, Loss: 106.530197\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 208, Loss: 111.107841\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 209, Loss: 105.376732\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 210, Loss: 105.459488\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 211, Loss: 107.633911\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 212, Loss: 108.203949\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 213, Loss: 107.439934\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 214, Loss: 106.223473\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 215, Loss: 107.110069\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 216, Loss: 106.412086\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 217, Loss: 109.379570\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 218, Loss: 106.460289\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 219, Loss: 108.540375\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 220, Loss: 106.375473\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 221, Loss: 109.027283\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 222, Loss: 108.080521\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 223, Loss: 106.205544\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 224, Loss: 105.787041\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 225, Loss: 106.461914\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 226, Loss: 107.149040\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 227, Loss: 106.236496\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 228, Loss: 105.335930\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 229, Loss: 105.525681\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 230, Loss: 106.379845\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 231, Loss: 105.680809\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 232, Loss: 106.612755\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 233, Loss: 107.638481\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 234, Loss: 107.693253\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 235, Loss: 108.376923\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 236, Loss: 104.769722\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 237, Loss: 104.521400\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 238, Loss: 104.463486\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 239, Loss: 107.424179\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 240, Loss: 107.091545\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 241, Loss: 105.045677\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 242, Loss: 107.996780\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 243, Loss: 106.457008\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 244, Loss: 106.426636\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 245, Loss: 107.662720\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 246, Loss: 105.560287\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 247, Loss: 105.408447\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 248, Loss: 104.693420\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 249, Loss: 105.029388\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 250, Loss: 107.456375\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 251, Loss: 106.085014\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 252, Loss: 107.005585\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 253, Loss: 105.590385\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 254, Loss: 106.300240\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 255, Loss: 106.706718\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 256, Loss: 106.322205\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 257, Loss: 102.022011\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 258, Loss: 107.445084\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 259, Loss: 106.559891\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 260, Loss: 106.677711\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 261, Loss: 105.166367\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 262, Loss: 106.035469\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 263, Loss: 107.122955\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 264, Loss: 104.246704\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 265, Loss: 105.169937\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 266, Loss: 108.670006\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 267, Loss: 106.572449\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 268, Loss: 106.286133\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 269, Loss: 103.264763\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 270, Loss: 102.973839\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 271, Loss: 105.988823\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 272, Loss: 106.493462\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 273, Loss: 106.297195\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 274, Loss: 107.231339\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 275, Loss: 106.862396\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 276, Loss: 108.909416\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 277, Loss: 103.590767\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 278, Loss: 107.292763\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 279, Loss: 105.258545\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 280, Loss: 107.242638\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 281, Loss: 104.484604\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 282, Loss: 108.751495\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 283, Loss: 107.295105\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 284, Loss: 103.608376\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 285, Loss: 108.206108\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 286, Loss: 105.394012\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 287, Loss: 106.135864\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 288, Loss: 105.462715\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 289, Loss: 104.715233\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 290, Loss: 104.572868\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 291, Loss: 107.608055\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 292, Loss: 102.489281\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 293, Loss: 103.152878\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 294, Loss: 103.893494\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 295, Loss: 104.951233\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 296, Loss: 103.695770\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 297, Loss: 103.995911\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 298, Loss: 105.040596\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 299, Loss: 107.348488\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 300, Loss: 106.508995\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 301, Loss: 105.480942\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 302, Loss: 102.942215\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 303, Loss: 107.277672\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 304, Loss: 105.607643\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 305, Loss: 103.224739\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 306, Loss: 103.394562\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 307, Loss: 103.026634\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 308, Loss: 102.561005\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 309, Loss: 105.255867\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 310, Loss: 104.234924\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 311, Loss: 103.367554\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 312, Loss: 103.390495\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 313, Loss: 108.444519\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 314, Loss: 101.405167\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 315, Loss: 102.509750\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 316, Loss: 103.463226\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 317, Loss: 105.552086\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 318, Loss: 105.183311\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 319, Loss: 106.954300\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 320, Loss: 105.373848\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 321, Loss: 104.990211\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 322, Loss: 102.455063\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 323, Loss: 106.906952\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 324, Loss: 108.089317\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 325, Loss: 106.965279\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 326, Loss: 108.170044\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 327, Loss: 107.844170\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 328, Loss: 104.691521\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 329, Loss: 104.644653\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 330, Loss: 105.560585\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 331, Loss: 105.770821\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 332, Loss: 102.814163\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 333, Loss: 104.113976\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 334, Loss: 103.328133\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 335, Loss: 103.816696\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 336, Loss: 103.081673\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 337, Loss: 104.548645\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 338, Loss: 104.848373\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 339, Loss: 105.203598\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 340, Loss: 101.616867\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 341, Loss: 104.954308\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 342, Loss: 103.431747\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 343, Loss: 104.706047\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 344, Loss: 103.729385\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 345, Loss: 103.884636\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 346, Loss: 100.769547\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 347, Loss: 105.619308\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 348, Loss: 105.664345\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 349, Loss: 105.636833\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 350, Loss: 104.477180\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 351, Loss: 106.336227\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 352, Loss: 106.209625\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 353, Loss: 101.208321\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 354, Loss: 105.821106\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 355, Loss: 104.078079\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 356, Loss: 105.842659\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 357, Loss: 103.628731\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 358, Loss: 104.473770\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 359, Loss: 105.172531\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 360, Loss: 107.206078\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 361, Loss: 103.576530\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 362, Loss: 102.790276\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 363, Loss: 106.096405\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 364, Loss: 103.938187\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 365, Loss: 104.073341\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 366, Loss: 105.158905\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 367, Loss: 103.174133\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 368, Loss: 104.940392\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 369, Loss: 100.307487\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 370, Loss: 106.185501\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 371, Loss: 103.559074\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 372, Loss: 104.618561\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 373, Loss: 105.971474\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 374, Loss: 102.031662\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 375, Loss: 106.157738\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 376, Loss: 103.438393\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 377, Loss: 104.754204\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 378, Loss: 104.532196\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 379, Loss: 104.255394\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 380, Loss: 102.018661\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 381, Loss: 103.071922\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 382, Loss: 105.655960\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 383, Loss: 104.630409\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 384, Loss: 104.621933\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 385, Loss: 105.101944\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 386, Loss: 101.975105\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 387, Loss: 101.799706\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 388, Loss: 103.443062\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 389, Loss: 105.335159\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 390, Loss: 106.304573\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 391, Loss: 104.561485\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 392, Loss: 103.567116\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 393, Loss: 106.413582\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 394, Loss: 107.130486\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 395, Loss: 104.154938\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 396, Loss: 104.594658\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 397, Loss: 105.116539\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 398, Loss: 102.186768\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 399, Loss: 104.510887\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 400, Loss: 102.755577\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 401, Loss: 106.486519\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 402, Loss: 106.413956\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 403, Loss: 104.677544\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 404, Loss: 104.642220\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 405, Loss: 104.362915\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 406, Loss: 104.798065\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 407, Loss: 103.296051\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 408, Loss: 102.117203\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 409, Loss: 105.717278\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 410, Loss: 102.869804\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 411, Loss: 107.183235\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 412, Loss: 105.942657\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 413, Loss: 106.722588\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 414, Loss: 103.554695\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 415, Loss: 100.838463\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 416, Loss: 102.515862\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 417, Loss: 106.065987\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 418, Loss: 102.682846\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 419, Loss: 104.990463\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 420, Loss: 103.657600\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 421, Loss: 103.457489\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 422, Loss: 104.094658\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 423, Loss: 103.704895\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 424, Loss: 102.702965\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 425, Loss: 110.297256\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 426, Loss: 104.646294\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 427, Loss: 105.547440\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 428, Loss: 105.445068\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 429, Loss: 102.521980\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 430, Loss: 103.837776\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 431, Loss: 104.013672\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 432, Loss: 103.488602\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 433, Loss: 103.598343\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 434, Loss: 106.125572\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 435, Loss: 100.896431\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 436, Loss: 103.115463\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 437, Loss: 104.356094\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 438, Loss: 103.721535\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 439, Loss: 103.213921\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 440, Loss: 103.805580\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 441, Loss: 101.725319\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 442, Loss: 102.915695\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 443, Loss: 106.388275\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 444, Loss: 102.703186\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 445, Loss: 102.869102\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 446, Loss: 103.458893\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 447, Loss: 102.916130\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 448, Loss: 104.153145\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 449, Loss: 101.494041\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 450, Loss: 103.959770\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 451, Loss: 102.027977\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 452, Loss: 104.094276\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 453, Loss: 103.928093\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 454, Loss: 105.703537\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 455, Loss: 102.264297\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 456, Loss: 105.013031\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 457, Loss: 99.689194\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 458, Loss: 103.503731\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 459, Loss: 102.815376\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 460, Loss: 102.545135\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 461, Loss: 102.030655\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 462, Loss: 102.001778\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 463, Loss: 102.742432\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 464, Loss: 103.997223\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 465, Loss: 103.132004\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 466, Loss: 104.447403\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 467, Loss: 106.365273\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 468, Loss: 102.121368\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 469, Loss: 102.832314\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 470, Loss: 107.021812\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 471, Loss: 102.062180\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 472, Loss: 98.261978\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 473, Loss: 105.210075\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 474, Loss: 102.070923\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 475, Loss: 103.826538\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 476, Loss: 103.715538\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 477, Loss: 102.446220\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 478, Loss: 103.694756\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 479, Loss: 102.501503\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 480, Loss: 101.843216\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 481, Loss: 101.086052\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 482, Loss: 103.522636\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 483, Loss: 104.386734\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 484, Loss: 102.731194\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 485, Loss: 103.122826\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 486, Loss: 105.015343\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 487, Loss: 103.984207\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 488, Loss: 102.104553\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 489, Loss: 102.787704\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 490, Loss: 103.411873\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 491, Loss: 103.403938\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 492, Loss: 100.981277\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 493, Loss: 101.411369\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 494, Loss: 102.116425\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 495, Loss: 102.336647\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 496, Loss: 104.001488\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 497, Loss: 103.496635\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 498, Loss: 104.542862\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 499, Loss: 101.907578\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 500, Loss: 101.653572\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 501, Loss: 102.446304\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 502, Loss: 102.533012\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 503, Loss: 106.086189\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 504, Loss: 103.981766\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 505, Loss: 101.327538\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 506, Loss: 102.383942\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 507, Loss: 103.067703\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 508, Loss: 105.710182\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 509, Loss: 102.853500\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 510, Loss: 103.289154\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 511, Loss: 103.319313\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 512, Loss: 104.011047\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 513, Loss: 101.807655\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 514, Loss: 104.516563\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 515, Loss: 103.566269\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 516, Loss: 102.861443\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 517, Loss: 105.082146\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 518, Loss: 101.020210\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 519, Loss: 104.122620\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 520, Loss: 102.112030\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 521, Loss: 106.130836\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 522, Loss: 102.994972\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 523, Loss: 104.890854\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 524, Loss: 102.090637\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 525, Loss: 100.975243\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 526, Loss: 101.628044\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 527, Loss: 104.542587\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 528, Loss: 102.377701\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 529, Loss: 104.961472\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 530, Loss: 107.951904\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 531, Loss: 106.341904\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 532, Loss: 102.297562\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 533, Loss: 103.419487\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 534, Loss: 102.590866\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 535, Loss: 103.881561\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 536, Loss: 103.499672\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 537, Loss: 103.528534\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 538, Loss: 105.031448\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 539, Loss: 104.480530\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 540, Loss: 104.559929\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 541, Loss: 105.292381\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 542, Loss: 101.764717\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 543, Loss: 103.373619\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 544, Loss: 102.875076\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 545, Loss: 106.748062\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 546, Loss: 100.967094\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 547, Loss: 103.706200\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 548, Loss: 101.967896\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 549, Loss: 101.949059\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 550, Loss: 103.248795\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 551, Loss: 100.008636\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 552, Loss: 105.093674\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 553, Loss: 102.607086\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 554, Loss: 101.169868\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 555, Loss: 104.711098\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 556, Loss: 103.847610\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 557, Loss: 104.536224\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 558, Loss: 101.209229\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 559, Loss: 104.106537\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 560, Loss: 102.166481\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 561, Loss: 104.256744\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 562, Loss: 102.388100\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 563, Loss: 101.762314\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 564, Loss: 104.894958\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 565, Loss: 101.195717\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 566, Loss: 101.873444\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 567, Loss: 104.140015\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 568, Loss: 101.650742\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 569, Loss: 104.204124\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 570, Loss: 103.583717\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 571, Loss: 102.435234\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:5, Epoch 572, Loss: 102.250069\n", - "Stopped early after 573 epochs, with loss of 98.261978\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1, Loss: 594.102905\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 2, Loss: 572.203369\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 3, Loss: 547.540833\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 4, Loss: 514.603027\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 5, Loss: 480.045807\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 6, Loss: 448.253998\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 7, Loss: 420.326843\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 8, Loss: 391.132263\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 9, Loss: 367.529846\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 10, Loss: 341.253204\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 11, Loss: 318.562958\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 12, Loss: 293.874329\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 13, Loss: 272.039764\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 14, Loss: 249.843094\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 15, Loss: 225.213715\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 16, Loss: 203.722733\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 17, Loss: 186.042923\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 18, Loss: 163.974731\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 19, Loss: 146.582062\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 20, Loss: 128.949585\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 21, Loss: 114.794220\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 22, Loss: 99.795929\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 23, Loss: 87.972015\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 24, Loss: 79.419083\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 25, Loss: 71.000084\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 26, Loss: 63.831676\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 27, Loss: 57.723335\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 28, Loss: 50.160660\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 29, Loss: 47.142677\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 30, Loss: 44.653164\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 31, Loss: 43.061260\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 32, Loss: 41.291603\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 33, Loss: 41.538403\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 34, Loss: 39.088718\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 35, Loss: 37.202877\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 36, Loss: 38.405052\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 37, Loss: 36.537933\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 38, Loss: 35.752857\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 39, Loss: 34.594280\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 40, Loss: 34.726353\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 41, Loss: 34.290771\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 42, Loss: 34.658218\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 43, Loss: 33.361771\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 44, Loss: 33.546844\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 45, Loss: 32.636639\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 46, Loss: 32.058475\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 47, Loss: 31.855053\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 48, Loss: 31.079798\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 49, Loss: 30.921062\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 50, Loss: 30.249180\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 51, Loss: 30.683619\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 52, Loss: 29.280355\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 53, Loss: 29.392368\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 54, Loss: 29.583490\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 55, Loss: 28.539774\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 56, Loss: 28.062738\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 57, Loss: 28.407707\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 58, Loss: 27.466324\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 59, Loss: 28.354996\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 60, Loss: 27.375214\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 61, Loss: 27.773418\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 62, Loss: 26.576725\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 63, Loss: 26.311386\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 64, Loss: 26.689919\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 65, Loss: 26.028639\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 66, Loss: 25.353949\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 67, Loss: 25.635443\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 68, Loss: 25.060333\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 69, Loss: 24.723345\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 70, Loss: 24.426071\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 71, Loss: 25.193699\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 72, Loss: 25.458841\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 73, Loss: 24.742558\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 74, Loss: 24.477610\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 75, Loss: 24.720625\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 76, Loss: 24.921278\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 77, Loss: 24.034807\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 78, Loss: 23.866062\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 79, Loss: 23.473808\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 80, Loss: 24.148218\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 81, Loss: 24.119591\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 82, Loss: 22.704103\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 83, Loss: 23.282549\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 84, Loss: 22.499006\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 85, Loss: 23.086197\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 86, Loss: 22.759584\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 87, Loss: 23.068163\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 88, Loss: 22.070498\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 89, Loss: 22.345598\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 90, Loss: 21.963572\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 91, Loss: 22.800667\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 92, Loss: 21.688740\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 93, Loss: 21.973677\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 94, Loss: 21.740479\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 95, Loss: 21.385532\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 96, Loss: 21.761557\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 97, Loss: 21.135487\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 98, Loss: 21.643810\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 99, Loss: 20.899939\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 100, Loss: 21.288446\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 101, Loss: 20.798521\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 102, Loss: 20.794043\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 103, Loss: 21.310007\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 104, Loss: 21.002060\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 105, Loss: 21.197784\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 106, Loss: 20.381701\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 107, Loss: 21.039375\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 108, Loss: 20.555948\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 109, Loss: 20.368032\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 110, Loss: 20.274925\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 111, Loss: 20.639715\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 112, Loss: 20.525782\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 113, Loss: 20.243711\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 114, Loss: 20.140453\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 115, Loss: 20.154940\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 116, Loss: 19.653484\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 117, Loss: 19.579699\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 118, Loss: 20.072435\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 119, Loss: 18.849964\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 120, Loss: 19.747026\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 121, Loss: 20.184481\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 122, Loss: 19.467575\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 123, Loss: 19.398403\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 124, Loss: 19.674398\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 125, Loss: 19.737982\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 126, Loss: 19.013418\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 127, Loss: 19.465038\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 128, Loss: 18.804682\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 129, Loss: 19.139946\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 130, Loss: 19.068613\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 131, Loss: 19.136023\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 132, Loss: 18.870546\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 133, Loss: 18.795019\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 134, Loss: 18.811478\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 135, Loss: 18.611748\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 136, Loss: 18.580812\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 137, Loss: 18.543480\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 138, Loss: 18.513165\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 139, Loss: 18.322514\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 140, Loss: 18.491785\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 141, Loss: 17.919374\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 142, Loss: 18.121750\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 143, Loss: 17.610750\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 144, Loss: 17.872103\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 145, Loss: 17.991045\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 146, Loss: 17.729658\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 147, Loss: 18.098574\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 148, Loss: 17.853046\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 149, Loss: 17.658884\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 150, Loss: 17.926487\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 151, Loss: 17.674549\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 152, Loss: 17.900335\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 153, Loss: 17.506466\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 154, Loss: 17.309292\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 155, Loss: 17.559511\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 156, Loss: 16.779840\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 157, Loss: 17.371614\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 158, Loss: 17.255981\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 159, Loss: 16.430904\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 160, Loss: 16.652927\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 161, Loss: 16.916195\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 162, Loss: 16.708735\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 163, Loss: 16.120169\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 164, Loss: 16.925791\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 165, Loss: 16.657766\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 166, Loss: 16.943169\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 167, Loss: 16.604887\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 168, Loss: 16.945763\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 169, Loss: 15.936213\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 170, Loss: 16.090708\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 171, Loss: 16.481491\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 172, Loss: 16.907789\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 173, Loss: 16.355211\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 174, Loss: 16.639322\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 175, Loss: 15.992712\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 176, Loss: 16.011036\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 177, Loss: 15.797518\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 178, Loss: 15.654352\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 179, Loss: 15.384931\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 180, Loss: 16.178009\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 181, Loss: 15.858331\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 182, Loss: 15.770385\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 183, Loss: 16.178070\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 184, Loss: 15.220715\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 185, Loss: 15.552095\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 186, Loss: 15.754081\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 187, Loss: 15.614504\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 188, Loss: 15.003561\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 189, Loss: 15.383898\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 190, Loss: 15.649188\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 191, Loss: 15.211061\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 192, Loss: 14.885048\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 193, Loss: 16.144484\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 194, Loss: 15.426796\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 195, Loss: 15.281708\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 196, Loss: 15.772593\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 197, Loss: 14.880158\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 198, Loss: 14.677231\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 199, Loss: 14.411146\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 200, Loss: 14.831011\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 201, Loss: 15.240096\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 202, Loss: 14.106569\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 203, Loss: 14.757049\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 204, Loss: 14.913586\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 205, Loss: 14.146275\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 206, Loss: 14.365488\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 207, Loss: 15.342320\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 208, Loss: 14.460339\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 209, Loss: 14.297147\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 210, Loss: 15.043139\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 211, Loss: 14.562583\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 212, Loss: 14.139945\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 213, Loss: 14.040764\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 214, Loss: 14.086228\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 215, Loss: 14.203058\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 216, Loss: 13.847525\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 217, Loss: 14.218408\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 218, Loss: 13.905642\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 219, Loss: 14.402655\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 220, Loss: 13.999394\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 221, Loss: 13.853738\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 222, Loss: 13.332552\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 223, Loss: 13.522868\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 224, Loss: 12.976323\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 225, Loss: 13.383088\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 226, Loss: 13.609647\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 227, Loss: 13.245418\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 228, Loss: 13.663424\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 229, Loss: 13.660694\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 230, Loss: 13.347996\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 231, Loss: 13.248115\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 232, Loss: 13.327737\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 233, Loss: 13.127330\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 234, Loss: 13.705462\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 235, Loss: 12.971915\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 236, Loss: 12.929533\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 237, Loss: 12.073167\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 238, Loss: 12.883059\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 239, Loss: 12.932280\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 240, Loss: 13.601849\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 241, Loss: 12.945519\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 242, Loss: 12.222495\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 243, Loss: 12.763503\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 244, Loss: 12.722705\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 245, Loss: 12.465033\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 246, Loss: 12.901322\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 247, Loss: 12.121104\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 248, Loss: 12.383644\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 249, Loss: 12.773822\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 250, Loss: 13.065915\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 251, Loss: 12.676949\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 252, Loss: 12.470615\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 253, Loss: 12.807195\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 254, Loss: 12.054707\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 255, Loss: 12.163382\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 256, Loss: 12.215461\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 257, Loss: 11.780334\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 258, Loss: 11.886564\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 259, Loss: 12.060336\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 260, Loss: 12.318678\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 261, Loss: 12.365668\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 262, Loss: 11.782414\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 263, Loss: 11.704342\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 264, Loss: 12.245899\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 265, Loss: 12.034724\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 266, Loss: 12.162788\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 267, Loss: 11.596727\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 268, Loss: 11.581182\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 269, Loss: 11.117987\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 270, Loss: 11.497750\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 271, Loss: 11.797871\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 272, Loss: 11.706269\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 273, Loss: 12.371333\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 274, Loss: 11.133873\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 275, Loss: 11.853389\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 276, Loss: 11.157406\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 277, Loss: 11.864735\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 278, Loss: 12.099936\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 279, Loss: 11.241073\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 280, Loss: 11.491307\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 281, Loss: 10.917689\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 282, Loss: 11.278949\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 283, Loss: 11.465755\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 284, Loss: 11.306491\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 285, Loss: 11.588042\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 286, Loss: 11.410223\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 287, Loss: 10.820073\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 288, Loss: 10.928025\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 289, Loss: 10.821724\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 290, Loss: 10.304450\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 291, Loss: 11.082112\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 292, Loss: 10.708527\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 293, Loss: 11.093048\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 294, Loss: 10.881004\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 295, Loss: 11.326550\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 296, Loss: 11.328926\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 297, Loss: 11.430523\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 298, Loss: 11.017483\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 299, Loss: 10.636785\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 300, Loss: 10.434129\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 301, Loss: 10.284837\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 302, Loss: 10.227849\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 303, Loss: 10.272728\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 304, Loss: 10.935987\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 305, Loss: 10.558677\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 306, Loss: 10.273802\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 307, Loss: 10.594324\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 308, Loss: 10.516073\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 309, Loss: 10.470151\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 310, Loss: 10.805388\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 311, Loss: 10.061717\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 312, Loss: 10.122361\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 313, Loss: 9.817739\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 314, Loss: 9.631600\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 315, Loss: 10.528867\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 316, Loss: 9.597256\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 317, Loss: 9.779529\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 318, Loss: 9.956344\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 319, Loss: 9.739572\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 320, Loss: 8.996144\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 321, Loss: 9.490438\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 322, Loss: 9.221900\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 323, Loss: 9.785865\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 324, Loss: 9.721013\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 325, Loss: 9.768231\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 326, Loss: 9.503493\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 327, Loss: 9.460097\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 328, Loss: 9.437491\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 329, Loss: 9.029030\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 330, Loss: 9.701549\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 331, Loss: 9.247757\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 332, Loss: 9.437390\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 333, Loss: 10.019037\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 334, Loss: 9.354405\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 335, Loss: 9.019067\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 336, Loss: 8.959453\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 337, Loss: 8.994930\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 338, Loss: 9.059335\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 339, Loss: 9.193413\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 340, Loss: 10.326821\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 341, Loss: 8.849710\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 342, Loss: 8.881155\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 343, Loss: 9.693448\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 344, Loss: 9.767798\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 345, Loss: 8.818562\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 346, Loss: 9.152534\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 347, Loss: 8.682126\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 348, Loss: 8.805776\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 349, Loss: 8.389942\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 350, Loss: 8.413364\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 351, Loss: 9.696629\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 352, Loss: 8.759965\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 353, Loss: 9.015930\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 354, Loss: 8.631709\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 355, Loss: 9.156336\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 356, Loss: 8.556662\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 357, Loss: 9.489420\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 358, Loss: 9.040694\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 359, Loss: 8.516365\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 360, Loss: 8.820593\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 361, Loss: 8.848035\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 362, Loss: 8.299634\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 363, Loss: 8.560021\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 364, Loss: 8.287537\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 365, Loss: 8.992137\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 366, Loss: 9.298089\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 367, Loss: 8.853321\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 368, Loss: 8.005245\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 369, Loss: 7.990895\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 370, Loss: 9.400756\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 371, Loss: 8.389370\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 372, Loss: 8.253515\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 373, Loss: 8.413505\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 374, Loss: 8.087420\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 375, Loss: 8.097082\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 376, Loss: 8.016048\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 377, Loss: 8.136191\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 378, Loss: 8.582782\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 379, Loss: 7.955026\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 380, Loss: 7.477106\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 381, Loss: 7.711844\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 382, Loss: 8.287898\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 383, Loss: 8.649843\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 384, Loss: 8.037914\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 385, Loss: 7.723458\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 386, Loss: 8.694750\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 387, Loss: 8.129827\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 388, Loss: 7.978456\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 389, Loss: 7.747262\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 390, Loss: 7.788709\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 391, Loss: 7.419881\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 392, Loss: 7.702562\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 393, Loss: 8.148155\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 394, Loss: 8.362656\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 395, Loss: 7.139371\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 396, Loss: 7.821259\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 397, Loss: 7.113660\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 398, Loss: 8.121333\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 399, Loss: 7.956854\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 400, Loss: 7.181967\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 401, Loss: 7.297998\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 402, Loss: 7.459521\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 403, Loss: 7.870719\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 404, Loss: 7.030128\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 405, Loss: 6.985501\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 406, Loss: 6.989580\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 407, Loss: 7.302107\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 408, Loss: 6.710349\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 409, Loss: 7.247049\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 410, Loss: 6.584412\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 411, Loss: 7.001156\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 412, Loss: 7.370231\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 413, Loss: 6.419929\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 414, Loss: 6.920373\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 415, Loss: 7.043691\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 416, Loss: 6.549156\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 417, Loss: 6.349738\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 418, Loss: 6.468966\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 419, Loss: 7.012332\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 420, Loss: 6.622691\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 421, Loss: 7.024467\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 422, Loss: 7.218713\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 423, Loss: 6.953323\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 424, Loss: 7.521372\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 425, Loss: 7.269371\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 426, Loss: 6.874733\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 427, Loss: 7.375194\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 428, Loss: 7.167768\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 429, Loss: 6.968593\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 430, Loss: 6.517775\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 431, Loss: 6.513129\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 432, Loss: 6.113666\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 433, Loss: 7.275104\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 434, Loss: 7.545722\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 435, Loss: 6.973931\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 436, Loss: 6.751238\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 437, Loss: 6.473552\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 438, Loss: 6.945522\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 439, Loss: 6.213340\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 440, Loss: 7.337320\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 441, Loss: 6.489917\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 442, Loss: 6.219949\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 443, Loss: 7.202824\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 444, Loss: 6.279777\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 445, Loss: 7.305118\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 446, Loss: 6.207058\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 447, Loss: 6.137133\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 448, Loss: 6.112246\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 449, Loss: 6.123094\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 450, Loss: 6.279772\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 451, Loss: 6.531794\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 452, Loss: 6.427414\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 453, Loss: 6.726134\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 454, Loss: 6.421968\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 455, Loss: 5.997665\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 456, Loss: 6.226855\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 457, Loss: 7.395826\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 458, Loss: 6.206891\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 459, Loss: 7.215443\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 460, Loss: 6.020404\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 461, Loss: 6.759239\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 462, Loss: 6.078527\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 463, Loss: 5.789334\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 464, Loss: 6.663891\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 465, Loss: 6.112440\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 466, Loss: 5.805264\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 467, Loss: 5.763596\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 468, Loss: 6.471934\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 469, Loss: 5.544955\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 470, Loss: 5.850551\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 471, Loss: 6.617086\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 472, Loss: 6.059311\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 473, Loss: 7.497190\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 474, Loss: 6.617586\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 475, Loss: 6.126098\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 476, Loss: 5.734056\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 477, Loss: 7.073037\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 478, Loss: 6.009276\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 479, Loss: 6.624795\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 480, Loss: 6.555665\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 481, Loss: 5.704003\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 482, Loss: 5.543290\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 483, Loss: 6.713269\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 484, Loss: 5.727036\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 485, Loss: 6.128291\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 486, Loss: 5.837322\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 487, Loss: 5.293281\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 488, Loss: 5.505682\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 489, Loss: 5.799373\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 490, Loss: 5.500041\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 491, Loss: 5.486084\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 492, Loss: 5.880553\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 493, Loss: 6.907989\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 494, Loss: 5.916969\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 495, Loss: 5.382740\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 496, Loss: 5.684388\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 497, Loss: 5.511908\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 498, Loss: 5.484056\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 499, Loss: 4.909021\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 500, Loss: 5.357299\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 501, Loss: 5.471895\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 502, Loss: 5.540094\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 503, Loss: 5.346362\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 504, Loss: 12.796525\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 505, Loss: 6.837504\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 506, Loss: 6.186251\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 507, Loss: 5.575619\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 508, Loss: 5.353679\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 509, Loss: 5.200446\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 510, Loss: 5.028533\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 511, Loss: 5.323132\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 512, Loss: 5.284953\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 513, Loss: 5.244670\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 514, Loss: 5.007427\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 515, Loss: 5.187001\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 516, Loss: 5.348262\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 517, Loss: 5.656949\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 518, Loss: 5.686844\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 519, Loss: 4.794076\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 520, Loss: 4.560054\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 521, Loss: 4.809113\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 522, Loss: 4.859210\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 523, Loss: 4.925588\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 524, Loss: 5.146189\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 525, Loss: 5.372765\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 526, Loss: 4.917583\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 527, Loss: 4.726658\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 528, Loss: 5.167194\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 529, Loss: 4.656404\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 530, Loss: 4.767821\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 531, Loss: 5.580872\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 532, Loss: 4.808434\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 533, Loss: 4.784752\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 534, Loss: 4.946403\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 535, Loss: 5.373048\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 536, Loss: 6.326024\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 537, Loss: 6.451230\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 538, Loss: 6.523381\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 539, Loss: 5.631996\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 540, Loss: 6.029438\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 541, Loss: 4.872758\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 542, Loss: 4.805066\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 543, Loss: 5.176641\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 544, Loss: 4.895587\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 545, Loss: 5.776009\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 546, Loss: 4.796597\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 547, Loss: 5.336824\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 548, Loss: 5.292253\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 549, Loss: 5.492629\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 550, Loss: 4.886901\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 551, Loss: 5.103385\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 552, Loss: 4.172340\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 553, Loss: 4.517294\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 554, Loss: 4.833818\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 555, Loss: 5.001065\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 556, Loss: 4.574068\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 557, Loss: 4.772458\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 558, Loss: 4.612518\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 559, Loss: 4.636594\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 560, Loss: 4.418660\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 561, Loss: 4.412368\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 562, Loss: 4.705999\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 563, Loss: 4.816650\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 564, Loss: 5.614068\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 565, Loss: 4.925283\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 566, Loss: 4.715051\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 567, Loss: 4.579637\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 568, Loss: 4.339082\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 569, Loss: 5.545737\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 570, Loss: 4.735265\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 571, Loss: 4.675753\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 572, Loss: 4.858788\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 573, Loss: 4.445271\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 574, Loss: 4.649372\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 575, Loss: 4.669378\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 576, Loss: 5.002192\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 577, Loss: 4.413878\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 578, Loss: 5.748388\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 579, Loss: 5.241578\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 580, Loss: 4.385305\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 581, Loss: 4.508264\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 582, Loss: 4.383121\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 583, Loss: 5.127251\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 584, Loss: 5.445754\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 585, Loss: 4.523959\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 586, Loss: 4.768203\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 587, Loss: 4.406690\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 588, Loss: 5.177601\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 589, Loss: 4.848166\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 590, Loss: 4.277044\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 591, Loss: 4.982726\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 592, Loss: 4.330861\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 593, Loss: 5.720808\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 594, Loss: 4.236818\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 595, Loss: 4.341984\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 596, Loss: 4.580262\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 597, Loss: 4.850177\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 598, Loss: 4.736456\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 599, Loss: 5.541554\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 600, Loss: 4.571867\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 601, Loss: 4.333802\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 602, Loss: 4.367252\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 603, Loss: 4.161625\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 604, Loss: 4.262445\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 605, Loss: 4.922024\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 606, Loss: 5.012449\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 607, Loss: 4.581103\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 608, Loss: 5.763460\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 609, Loss: 4.454928\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 610, Loss: 5.423778\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 611, Loss: 4.376235\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 612, Loss: 5.072899\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 613, Loss: 4.513333\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 614, Loss: 4.598217\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 615, Loss: 5.212488\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 616, Loss: 4.833890\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 617, Loss: 3.948048\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 618, Loss: 3.947085\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 619, Loss: 4.039113\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 620, Loss: 4.582672\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 621, Loss: 3.765004\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 622, Loss: 3.900281\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 623, Loss: 4.653641\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 624, Loss: 4.584338\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 625, Loss: 4.118336\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 626, Loss: 4.100297\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 627, Loss: 4.219058\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 628, Loss: 4.476282\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 629, Loss: 3.830417\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 630, Loss: 4.530540\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 631, Loss: 4.095544\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 632, Loss: 3.989672\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 633, Loss: 3.966554\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 634, Loss: 4.619068\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 635, Loss: 4.242450\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 636, Loss: 4.279231\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 637, Loss: 5.413240\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 638, Loss: 4.867226\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 639, Loss: 4.793313\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 640, Loss: 4.443200\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 641, Loss: 4.105928\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 642, Loss: 3.732836\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 643, Loss: 4.052189\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 644, Loss: 4.859815\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 645, Loss: 4.804610\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 646, Loss: 3.719019\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 647, Loss: 4.676232\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 648, Loss: 3.987675\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 649, Loss: 4.048412\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 650, Loss: 4.046337\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 651, Loss: 4.186595\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 652, Loss: 4.725814\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 653, Loss: 5.447746\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 654, Loss: 5.508978\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 655, Loss: 4.084798\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 656, Loss: 3.858189\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 657, Loss: 3.729455\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 658, Loss: 3.976071\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 659, Loss: 4.321547\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 660, Loss: 3.789580\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 661, Loss: 4.905125\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 662, Loss: 4.655972\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 663, Loss: 4.391801\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 664, Loss: 4.177737\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 665, Loss: 4.820885\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 666, Loss: 4.202244\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 667, Loss: 3.829638\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 668, Loss: 3.826989\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 669, Loss: 3.717001\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 670, Loss: 5.486199\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 671, Loss: 5.348483\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 672, Loss: 3.911066\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 673, Loss: 3.783102\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 674, Loss: 3.998265\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 675, Loss: 4.206065\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 676, Loss: 3.849413\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 677, Loss: 3.661473\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 678, Loss: 4.180139\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 679, Loss: 3.806531\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 680, Loss: 4.291570\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 681, Loss: 3.792329\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 682, Loss: 3.194003\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 683, Loss: 3.896720\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 684, Loss: 4.460676\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 685, Loss: 4.456097\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 686, Loss: 4.595372\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 687, Loss: 4.472033\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 688, Loss: 3.726051\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 689, Loss: 3.508826\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 690, Loss: 4.350721\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 691, Loss: 3.771793\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 692, Loss: 4.478050\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 693, Loss: 4.954551\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 694, Loss: 4.539451\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 695, Loss: 4.726155\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 696, Loss: 3.952753\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 697, Loss: 4.517082\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 698, Loss: 4.223363\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 699, Loss: 3.461793\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 700, Loss: 3.994825\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 701, Loss: 3.779865\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 702, Loss: 4.616211\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 703, Loss: 3.517505\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 704, Loss: 4.618678\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 705, Loss: 8.350835\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 706, Loss: 7.342106\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 707, Loss: 5.310013\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 708, Loss: 4.331407\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 709, Loss: 3.735727\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 710, Loss: 4.067108\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 711, Loss: 3.863358\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 712, Loss: 4.335756\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 713, Loss: 3.798653\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 714, Loss: 3.440178\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 715, Loss: 3.316169\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 716, Loss: 3.408395\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 717, Loss: 3.573828\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 718, Loss: 4.316739\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 719, Loss: 3.800312\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 720, Loss: 3.831327\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 721, Loss: 3.765544\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 722, Loss: 3.513189\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 723, Loss: 4.278049\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 724, Loss: 3.334802\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 725, Loss: 3.726645\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 726, Loss: 3.854348\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 727, Loss: 6.236432\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 728, Loss: 4.737229\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 729, Loss: 4.256497\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 730, Loss: 3.937616\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 731, Loss: 3.321804\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 732, Loss: 4.144718\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 733, Loss: 4.215594\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 734, Loss: 3.809931\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 735, Loss: 3.906739\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 736, Loss: 3.649138\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 737, Loss: 3.884629\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 738, Loss: 4.012961\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 739, Loss: 3.349356\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 740, Loss: 3.977073\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 741, Loss: 4.140124\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 742, Loss: 3.917969\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 743, Loss: 4.314207\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 744, Loss: 3.708677\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 745, Loss: 3.630174\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 746, Loss: 3.707738\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 747, Loss: 3.614939\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 748, Loss: 3.346670\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 749, Loss: 3.929218\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 750, Loss: 3.918871\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 751, Loss: 4.306558\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 752, Loss: 3.261908\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 753, Loss: 3.159503\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 754, Loss: 3.745883\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 755, Loss: 4.548328\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 756, Loss: 3.906462\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 757, Loss: 5.460814\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 758, Loss: 3.970249\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 759, Loss: 5.513224\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 760, Loss: 5.247485\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 761, Loss: 4.393011\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 762, Loss: 3.999096\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 763, Loss: 4.109165\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 764, Loss: 3.294809\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 765, Loss: 3.436092\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 766, Loss: 3.363876\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 767, Loss: 3.550320\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 768, Loss: 4.194951\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 769, Loss: 4.037494\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 770, Loss: 3.801108\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 771, Loss: 4.953170\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 772, Loss: 4.051208\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 773, Loss: 3.660598\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 774, Loss: 3.107352\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 775, Loss: 3.352210\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 776, Loss: 4.095847\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 777, Loss: 3.758646\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 778, Loss: 3.834861\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 779, Loss: 4.121563\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 780, Loss: 4.344260\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 781, Loss: 3.503632\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 782, Loss: 3.185349\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 783, Loss: 3.248652\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 784, Loss: 3.833092\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 785, Loss: 4.232776\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 786, Loss: 3.685528\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 787, Loss: 2.981879\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 788, Loss: 3.277823\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 789, Loss: 4.078990\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 790, Loss: 4.099253\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 791, Loss: 3.867671\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 792, Loss: 3.770262\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 793, Loss: 3.537810\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 794, Loss: 4.282360\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 795, Loss: 4.518390\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 796, Loss: 5.440763\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 797, Loss: 3.880642\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 798, Loss: 3.918712\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 799, Loss: 3.374992\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 800, Loss: 5.124664\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 801, Loss: 3.305173\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 802, Loss: 3.440344\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 803, Loss: 3.487459\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 804, Loss: 3.235334\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 805, Loss: 3.558098\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 806, Loss: 3.827480\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 807, Loss: 3.786102\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 808, Loss: 3.226516\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 809, Loss: 3.408685\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 810, Loss: 3.894812\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 811, Loss: 3.172489\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 812, Loss: 3.048286\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 813, Loss: 3.354849\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 814, Loss: 3.542829\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 815, Loss: 3.706652\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 816, Loss: 3.744965\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 817, Loss: 4.064419\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 818, Loss: 3.605378\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 819, Loss: 3.403358\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 820, Loss: 3.557571\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 821, Loss: 3.561935\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 822, Loss: 3.090551\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 823, Loss: 3.304012\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 824, Loss: 4.795497\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 825, Loss: 4.387527\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 826, Loss: 5.804893\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 827, Loss: 4.103527\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 828, Loss: 3.677621\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 829, Loss: 4.310864\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 830, Loss: 4.459624\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 831, Loss: 3.462797\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 832, Loss: 3.029414\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 833, Loss: 3.153288\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 834, Loss: 3.218196\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 835, Loss: 3.785614\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 836, Loss: 3.314016\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 837, Loss: 3.416125\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 838, Loss: 4.106518\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 839, Loss: 3.801781\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 840, Loss: 3.939137\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 841, Loss: 3.577851\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 842, Loss: 4.365786\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 843, Loss: 3.591853\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 844, Loss: 3.204452\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 845, Loss: 2.864838\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 846, Loss: 3.294061\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 847, Loss: 3.500648\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 848, Loss: 3.644664\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 849, Loss: 5.694078\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 850, Loss: 8.197169\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 851, Loss: 4.904871\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 852, Loss: 5.954597\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 853, Loss: 6.264331\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 854, Loss: 4.583189\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 855, Loss: 3.479977\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 856, Loss: 3.404150\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 857, Loss: 4.089279\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 858, Loss: 3.145158\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 859, Loss: 2.951695\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 860, Loss: 3.263335\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 861, Loss: 3.150569\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 862, Loss: 3.500907\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 863, Loss: 3.566039\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 864, Loss: 3.996975\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 865, Loss: 3.145671\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 866, Loss: 4.243296\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 867, Loss: 3.781147\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 868, Loss: 3.192662\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 869, Loss: 3.390567\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 870, Loss: 3.041410\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 871, Loss: 3.103839\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 872, Loss: 3.791206\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 873, Loss: 3.229730\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 874, Loss: 3.518668\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 875, Loss: 3.211523\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 876, Loss: 3.431531\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 877, Loss: 3.831358\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 878, Loss: 3.745214\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 879, Loss: 3.782221\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 880, Loss: 3.699947\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 881, Loss: 3.860124\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 882, Loss: 3.896474\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 883, Loss: 2.857812\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 884, Loss: 3.311728\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 885, Loss: 3.248008\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 886, Loss: 3.290645\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 887, Loss: 3.511521\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 888, Loss: 3.824254\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 889, Loss: 3.085551\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 890, Loss: 4.359038\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 891, Loss: 3.783953\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 892, Loss: 4.000588\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 893, Loss: 2.966416\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 894, Loss: 2.921346\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 895, Loss: 2.902520\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 896, Loss: 3.170374\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 897, Loss: 2.733826\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 898, Loss: 3.007400\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 899, Loss: 3.679256\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 900, Loss: 3.040371\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 901, Loss: 3.786347\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 902, Loss: 4.012906\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 903, Loss: 3.986233\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 904, Loss: 3.005319\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 905, Loss: 3.325739\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 906, Loss: 3.360050\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 907, Loss: 3.210954\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 908, Loss: 3.543653\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 909, Loss: 3.376414\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 910, Loss: 3.379477\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 911, Loss: 4.529507\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 912, Loss: 5.208350\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 913, Loss: 3.520860\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 914, Loss: 3.566484\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 915, Loss: 3.510499\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 916, Loss: 3.629490\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 917, Loss: 3.731704\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 918, Loss: 3.189712\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 919, Loss: 3.155023\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 920, Loss: 3.045183\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 921, Loss: 2.943255\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 922, Loss: 3.473652\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 923, Loss: 3.472476\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 924, Loss: 4.196640\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 925, Loss: 3.939710\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 926, Loss: 3.731907\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 927, Loss: 3.567147\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 928, Loss: 3.010562\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 929, Loss: 2.978894\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 930, Loss: 3.199057\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 931, Loss: 3.460514\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 932, Loss: 3.381642\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 933, Loss: 3.563861\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 934, Loss: 3.900118\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 935, Loss: 4.529031\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 936, Loss: 4.728817\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 937, Loss: 4.169825\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 938, Loss: 3.306112\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 939, Loss: 3.866630\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 940, Loss: 3.446273\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 941, Loss: 3.591953\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 942, Loss: 3.717263\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 943, Loss: 3.301461\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 944, Loss: 2.941484\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 945, Loss: 3.723934\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 946, Loss: 3.834972\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 947, Loss: 4.703962\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 948, Loss: 4.218367\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 949, Loss: 3.641596\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 950, Loss: 5.422562\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 951, Loss: 4.080893\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 952, Loss: 4.480356\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 953, Loss: 3.559165\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 954, Loss: 3.072910\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 955, Loss: 2.754738\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 956, Loss: 4.241036\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 957, Loss: 3.514345\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 958, Loss: 3.203692\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 959, Loss: 3.098230\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 960, Loss: 3.303158\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 961, Loss: 2.644666\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 962, Loss: 3.700784\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 963, Loss: 3.133014\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 964, Loss: 3.328470\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 965, Loss: 2.822819\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 966, Loss: 3.705313\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 967, Loss: 3.152937\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 968, Loss: 2.751741\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 969, Loss: 3.480556\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 970, Loss: 2.797807\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 971, Loss: 2.776138\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 972, Loss: 4.003667\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 973, Loss: 4.525120\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 974, Loss: 3.216951\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 975, Loss: 4.070748\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 976, Loss: 3.407343\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 977, Loss: 3.256290\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 978, Loss: 3.068573\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 979, Loss: 3.505592\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 980, Loss: 3.164631\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 981, Loss: 3.356700\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 982, Loss: 3.266104\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 983, Loss: 3.174262\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 984, Loss: 4.499865\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 985, Loss: 3.667187\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 986, Loss: 3.164231\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 987, Loss: 3.113163\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 988, Loss: 3.503128\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 989, Loss: 4.085855\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 990, Loss: 2.836210\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 991, Loss: 2.837708\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 992, Loss: 3.143991\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 993, Loss: 3.120038\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 994, Loss: 3.861327\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 995, Loss: 3.825027\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 996, Loss: 3.564346\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 997, Loss: 3.098261\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 998, Loss: 3.066289\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 999, Loss: 3.095916\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1000, Loss: 2.793452\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1001, Loss: 2.443196\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1002, Loss: 2.741983\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1003, Loss: 3.131260\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1004, Loss: 2.656527\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1005, Loss: 3.297599\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1006, Loss: 2.977635\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1007, Loss: 3.068628\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1008, Loss: 3.011143\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1009, Loss: 3.122534\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1010, Loss: 2.898773\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1011, Loss: 3.229075\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1012, Loss: 3.051131\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1013, Loss: 3.403949\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1014, Loss: 2.539410\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1015, Loss: 2.969120\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1016, Loss: 2.827074\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1017, Loss: 3.200480\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1018, Loss: 4.006844\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1019, Loss: 3.415411\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1020, Loss: 2.979884\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1021, Loss: 3.474357\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1022, Loss: 3.451071\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1023, Loss: 3.144512\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1024, Loss: 3.458642\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1025, Loss: 2.669405\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1026, Loss: 4.268737\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1027, Loss: 4.873708\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1028, Loss: 3.961441\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1029, Loss: 5.410618\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1030, Loss: 3.675234\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1031, Loss: 2.707221\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1032, Loss: 2.716046\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1033, Loss: 2.661333\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1034, Loss: 3.341325\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1035, Loss: 3.179434\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1036, Loss: 3.461234\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1037, Loss: 3.268339\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1038, Loss: 2.713154\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1039, Loss: 2.506679\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1040, Loss: 2.759962\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1041, Loss: 3.225074\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1042, Loss: 3.073630\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1043, Loss: 2.621642\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1044, Loss: 2.885514\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1045, Loss: 3.321634\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1046, Loss: 3.983612\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1047, Loss: 3.165191\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1048, Loss: 2.471494\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1049, Loss: 3.058350\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1050, Loss: 3.585234\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1051, Loss: 3.425175\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1052, Loss: 2.987238\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1053, Loss: 5.921795\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1054, Loss: 6.507814\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1055, Loss: 9.235835\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1056, Loss: 3.972126\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1057, Loss: 3.713367\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1058, Loss: 3.751222\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1059, Loss: 3.041248\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1060, Loss: 2.512322\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1061, Loss: 4.262268\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1062, Loss: 3.348410\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1063, Loss: 3.603067\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1064, Loss: 2.885971\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1065, Loss: 2.586304\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1066, Loss: 2.483999\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1067, Loss: 2.544561\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1068, Loss: 3.185261\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1069, Loss: 2.740060\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1070, Loss: 2.879325\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1071, Loss: 3.266924\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1072, Loss: 2.998596\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1073, Loss: 3.055020\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1074, Loss: 4.086277\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1075, Loss: 4.431896\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1076, Loss: 3.822174\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1077, Loss: 4.221271\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1078, Loss: 3.231206\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1079, Loss: 3.055201\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1080, Loss: 3.009757\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1081, Loss: 2.746868\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1082, Loss: 3.919449\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1083, Loss: 2.988321\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1084, Loss: 3.069035\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1085, Loss: 2.646136\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1086, Loss: 2.366687\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1087, Loss: 3.894405\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1088, Loss: 3.298726\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1089, Loss: 3.009721\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1090, Loss: 2.692441\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1091, Loss: 2.446603\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1092, Loss: 2.992464\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1093, Loss: 2.638948\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1094, Loss: 3.419980\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1095, Loss: 3.790472\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1096, Loss: 3.398782\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1097, Loss: 3.269597\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1098, Loss: 3.173898\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1099, Loss: 3.091809\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1100, Loss: 2.628745\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1101, Loss: 2.667090\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1102, Loss: 3.164875\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1103, Loss: 3.254799\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1104, Loss: 2.702635\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1105, Loss: 3.264020\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1106, Loss: 2.775103\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1107, Loss: 2.713870\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1108, Loss: 3.835129\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1109, Loss: 4.066150\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1110, Loss: 3.902165\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1111, Loss: 4.241065\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1112, Loss: 3.465883\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1113, Loss: 2.823551\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1114, Loss: 3.001523\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1115, Loss: 2.804639\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1116, Loss: 3.210078\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1117, Loss: 4.149828\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1118, Loss: 3.456495\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1119, Loss: 4.395807\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1120, Loss: 3.410130\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1121, Loss: 3.793714\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1122, Loss: 3.475899\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1123, Loss: 2.648884\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1124, Loss: 3.348024\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1125, Loss: 2.567189\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1126, Loss: 2.580415\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1127, Loss: 2.582973\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1128, Loss: 3.579771\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1129, Loss: 2.943335\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1130, Loss: 2.672801\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1131, Loss: 2.750105\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1132, Loss: 2.879998\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1133, Loss: 3.157719\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1134, Loss: 3.880631\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1135, Loss: 3.086107\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1136, Loss: 2.829372\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1137, Loss: 2.557678\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1138, Loss: 3.458395\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1139, Loss: 3.372483\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1140, Loss: 3.313054\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1141, Loss: 2.720856\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1142, Loss: 3.075444\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1143, Loss: 3.550320\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1144, Loss: 2.754932\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1145, Loss: 2.757091\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1146, Loss: 3.522365\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1147, Loss: 3.149679\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1148, Loss: 3.000017\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1149, Loss: 2.431607\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1150, Loss: 2.544604\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1151, Loss: 2.803689\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1152, Loss: 3.047559\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1153, Loss: 3.295195\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1154, Loss: 2.806382\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1155, Loss: 2.789739\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1156, Loss: 2.596894\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1157, Loss: 2.555043\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1158, Loss: 2.802402\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1159, Loss: 3.459897\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1160, Loss: 3.055952\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1161, Loss: 4.713549\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1162, Loss: 3.128860\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1163, Loss: 2.929198\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1164, Loss: 3.783147\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1165, Loss: 3.034600\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1166, Loss: 3.812788\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1167, Loss: 4.803832\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1168, Loss: 3.719264\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1169, Loss: 2.557235\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1170, Loss: 3.479277\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1171, Loss: 2.366250\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1172, Loss: 3.416659\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1173, Loss: 3.028660\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1174, Loss: 3.842288\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1175, Loss: 3.357632\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1176, Loss: 3.013582\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1177, Loss: 2.475638\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1178, Loss: 2.158128\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1179, Loss: 2.501594\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1180, Loss: 3.480100\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1181, Loss: 2.421229\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1182, Loss: 2.551345\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1183, Loss: 3.326762\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1184, Loss: 3.489571\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1185, Loss: 6.424120\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1186, Loss: 4.143593\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1187, Loss: 3.606203\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1188, Loss: 3.131901\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1189, Loss: 2.449297\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1190, Loss: 2.965281\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1191, Loss: 2.513659\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1192, Loss: 2.351602\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1193, Loss: 2.947619\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1194, Loss: 3.128440\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1195, Loss: 2.672264\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1196, Loss: 2.560895\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1197, Loss: 2.890733\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1198, Loss: 2.099494\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1199, Loss: 3.091387\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1200, Loss: 2.548604\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1201, Loss: 3.442874\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1202, Loss: 3.050069\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1203, Loss: 2.738364\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1204, Loss: 2.955700\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1205, Loss: 3.270607\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1206, Loss: 2.798785\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1207, Loss: 3.109961\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1208, Loss: 3.439282\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1209, Loss: 3.771105\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1210, Loss: 3.797151\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1211, Loss: 2.946770\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1212, Loss: 3.362688\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1213, Loss: 2.485364\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1214, Loss: 2.432344\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1215, Loss: 2.596122\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1216, Loss: 2.710127\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1217, Loss: 3.199003\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1218, Loss: 2.391340\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1219, Loss: 2.620248\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1220, Loss: 2.468476\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1221, Loss: 3.249542\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1222, Loss: 3.572312\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1223, Loss: 2.718492\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1224, Loss: 2.905130\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1225, Loss: 3.031830\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1226, Loss: 2.523710\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1227, Loss: 3.571240\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1228, Loss: 3.485233\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1229, Loss: 2.790746\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1230, Loss: 2.668470\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1231, Loss: 2.837566\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1232, Loss: 2.858296\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1233, Loss: 2.357090\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1234, Loss: 3.097231\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1235, Loss: 2.908222\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1236, Loss: 3.082340\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1237, Loss: 2.406619\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1238, Loss: 2.560024\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1239, Loss: 2.522200\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1240, Loss: 2.973904\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1241, Loss: 3.219195\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1242, Loss: 2.938430\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1243, Loss: 3.010216\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1244, Loss: 3.969943\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1245, Loss: 4.779188\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1246, Loss: 3.819035\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1247, Loss: 3.169802\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1248, Loss: 2.424579\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1249, Loss: 3.807688\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1250, Loss: 3.691145\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1251, Loss: 2.889130\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1252, Loss: 3.495202\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1253, Loss: 2.835759\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1254, Loss: 2.273734\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1255, Loss: 2.485271\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1256, Loss: 2.338761\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1257, Loss: 3.881631\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1258, Loss: 3.431317\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1259, Loss: 2.880536\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1260, Loss: 2.641650\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1261, Loss: 2.786625\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1262, Loss: 3.240767\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1263, Loss: 2.749094\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1264, Loss: 4.060558\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1265, Loss: 2.724755\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1266, Loss: 2.488468\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1267, Loss: 2.352007\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1268, Loss: 2.380224\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1269, Loss: 2.384631\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1270, Loss: 2.723248\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1271, Loss: 2.118448\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1272, Loss: 2.792772\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1273, Loss: 2.421138\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1274, Loss: 2.550928\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1275, Loss: 3.256112\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1276, Loss: 4.209450\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1277, Loss: 3.466814\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1278, Loss: 3.647611\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1279, Loss: 2.997754\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1280, Loss: 2.479276\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1281, Loss: 2.949772\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1282, Loss: 2.686755\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1283, Loss: 2.932691\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1284, Loss: 2.915105\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1285, Loss: 2.471573\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1286, Loss: 2.300992\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1287, Loss: 3.185093\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1288, Loss: 3.562029\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1289, Loss: 2.365755\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1290, Loss: 2.851054\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1291, Loss: 3.566075\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1292, Loss: 3.562800\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1293, Loss: 3.171573\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1294, Loss: 2.741621\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1295, Loss: 2.571573\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1296, Loss: 2.861628\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1297, Loss: 2.592497\n", - "SNR:20, Imbalance Percentage:0, Encoding dimension:50, Epoch 1298, Loss: 2.794800\n", - "Stopped early after 1299 epochs, with loss of 2.099494\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 1, Loss: 594.639893\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 2, Loss: 575.232422\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 3, Loss: 545.744202\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 4, Loss: 512.879395\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 5, Loss: 483.052460\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 6, Loss: 451.759674\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 7, Loss: 423.160950\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 8, Loss: 395.452759\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 9, Loss: 367.430786\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 10, Loss: 344.282928\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 11, Loss: 317.714600\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 12, Loss: 294.769012\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 13, Loss: 271.565430\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 14, Loss: 249.218796\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 15, Loss: 226.159439\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 16, Loss: 204.559875\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 17, Loss: 181.842682\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 18, Loss: 164.519836\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 19, Loss: 147.213867\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 20, Loss: 130.090073\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 21, Loss: 113.858414\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 22, Loss: 99.349915\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 23, Loss: 86.750992\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 24, Loss: 80.242340\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 25, Loss: 70.687325\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 26, Loss: 64.115326\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 27, Loss: 57.033215\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 28, Loss: 51.787556\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 29, Loss: 47.391380\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 30, Loss: 46.983887\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 31, Loss: 43.639217\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 32, Loss: 42.755737\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 33, Loss: 41.453560\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 34, Loss: 39.021229\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 35, Loss: 38.716637\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 36, Loss: 38.526497\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 37, Loss: 36.992935\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 38, Loss: 35.431805\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 39, Loss: 35.892097\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 40, Loss: 34.474949\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 41, Loss: 34.580368\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 42, Loss: 34.776031\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 43, Loss: 33.420486\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 44, Loss: 33.614925\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 45, Loss: 32.276058\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 46, Loss: 32.787388\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 47, Loss: 32.326862\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 48, Loss: 31.720844\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 49, Loss: 31.290575\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 50, Loss: 32.709244\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 51, Loss: 32.282303\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 52, Loss: 31.956034\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 53, Loss: 30.036104\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 54, Loss: 29.742756\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 55, Loss: 30.647106\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 56, Loss: 29.961435\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 57, Loss: 30.346029\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 58, Loss: 30.635761\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 59, Loss: 29.955494\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 60, Loss: 29.352774\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 61, Loss: 29.632635\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 62, Loss: 29.292185\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 63, Loss: 28.516003\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 64, Loss: 30.039370\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 65, Loss: 28.869667\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 66, Loss: 28.779362\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 67, Loss: 28.613550\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 68, Loss: 27.092714\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 69, Loss: 26.710140\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 70, Loss: 28.085869\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 71, Loss: 26.649204\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 72, Loss: 27.129457\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 73, Loss: 27.291481\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 74, Loss: 26.769775\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 75, Loss: 25.934866\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 76, Loss: 25.967968\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 77, Loss: 26.299614\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 78, Loss: 25.573219\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 79, Loss: 25.295601\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 80, Loss: 26.095358\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 81, Loss: 25.786180\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 82, Loss: 25.592445\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 83, Loss: 25.140757\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 84, Loss: 25.270029\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 85, Loss: 25.099995\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 86, Loss: 25.460587\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 87, Loss: 25.304022\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 88, Loss: 24.586649\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 89, Loss: 23.716188\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 90, Loss: 24.744677\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 91, Loss: 25.363657\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 92, Loss: 24.705170\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 93, Loss: 24.330976\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 94, Loss: 24.526981\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 95, Loss: 24.242180\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 96, Loss: 23.947287\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 97, Loss: 23.494774\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 98, Loss: 24.303303\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 99, Loss: 24.829580\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 100, Loss: 25.398273\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 101, Loss: 23.743460\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 102, Loss: 23.687475\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 103, Loss: 23.057730\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 104, Loss: 23.367638\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 105, Loss: 22.702539\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 106, Loss: 22.836645\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 107, Loss: 22.485701\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 108, Loss: 22.541885\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 109, Loss: 23.563395\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 110, Loss: 23.365740\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 111, Loss: 21.738466\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 112, Loss: 22.769632\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 113, Loss: 22.923225\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 114, Loss: 21.661039\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 115, Loss: 22.428274\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 116, Loss: 21.578316\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 117, Loss: 22.150162\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 118, Loss: 21.561819\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 119, Loss: 21.872414\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 120, Loss: 22.566408\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 121, Loss: 21.226402\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 122, Loss: 21.557449\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 123, Loss: 22.245491\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 124, Loss: 21.222750\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 125, Loss: 21.187551\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 126, Loss: 21.413071\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 127, Loss: 21.181412\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 128, Loss: 20.451685\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 129, Loss: 21.779902\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 130, Loss: 20.816895\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 131, Loss: 21.582293\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 132, Loss: 20.498236\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 133, Loss: 21.391665\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 134, Loss: 20.584572\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 135, Loss: 20.460030\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 136, Loss: 21.115499\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 137, Loss: 21.448738\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 138, Loss: 20.399588\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 139, Loss: 19.976580\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 140, Loss: 20.252535\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 141, Loss: 20.243153\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 142, Loss: 20.303854\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 143, Loss: 20.556427\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 144, Loss: 20.201395\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 145, Loss: 20.700832\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 146, Loss: 20.138905\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 147, Loss: 20.329922\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 148, Loss: 19.843992\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 149, Loss: 20.299217\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 150, Loss: 19.737146\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 151, Loss: 19.728184\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 152, Loss: 19.980518\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 153, Loss: 19.736431\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 154, Loss: 21.040379\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 155, Loss: 19.345543\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 156, Loss: 18.953470\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 157, Loss: 19.178810\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 158, Loss: 19.526011\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 159, Loss: 19.829588\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 160, Loss: 19.364883\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 161, Loss: 18.036787\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 162, Loss: 18.915331\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 163, Loss: 19.700048\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 164, Loss: 18.645445\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 165, Loss: 19.905071\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 166, Loss: 18.524193\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 167, Loss: 18.596113\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 168, Loss: 18.961309\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 169, Loss: 18.113935\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 170, Loss: 19.184177\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 171, Loss: 18.867277\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 172, Loss: 18.605228\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 173, Loss: 18.902271\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 174, Loss: 19.334711\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 175, Loss: 20.669395\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 176, Loss: 17.837307\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 177, Loss: 18.347113\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 178, Loss: 18.946207\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 179, Loss: 19.826687\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 180, Loss: 18.640089\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 181, Loss: 18.508736\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 182, Loss: 17.871037\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 183, Loss: 17.639391\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 184, Loss: 18.012215\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 185, Loss: 18.130527\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 186, Loss: 18.067886\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 187, Loss: 18.612581\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 188, Loss: 18.466516\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 189, Loss: 17.647207\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 190, Loss: 18.459929\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 191, Loss: 17.443110\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 192, Loss: 17.240852\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 193, Loss: 18.033688\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 194, Loss: 17.206221\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 195, Loss: 18.291950\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 196, Loss: 17.628323\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 197, Loss: 17.849524\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 198, Loss: 17.555250\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 199, Loss: 16.405277\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 200, Loss: 16.999874\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 201, Loss: 17.401739\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 202, Loss: 17.220966\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 203, Loss: 16.592503\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 204, Loss: 16.599321\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 205, Loss: 17.996914\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 206, Loss: 17.032988\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 207, Loss: 17.091173\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 208, Loss: 17.397715\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 209, Loss: 17.064394\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 210, Loss: 16.938431\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 211, Loss: 17.556536\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 212, Loss: 17.170937\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 213, Loss: 16.609182\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 214, Loss: 16.380419\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 215, Loss: 17.228516\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 216, Loss: 16.014210\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 217, Loss: 16.647409\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 218, Loss: 16.030725\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 219, Loss: 16.908390\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 220, Loss: 15.586251\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 221, Loss: 16.456251\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 222, Loss: 15.915934\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 223, Loss: 15.578612\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 224, Loss: 16.128124\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 225, Loss: 16.885345\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 226, Loss: 16.953978\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 227, Loss: 16.122112\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 228, Loss: 16.330629\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 229, Loss: 15.364251\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 230, Loss: 15.952716\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 231, Loss: 16.004824\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 232, Loss: 15.458632\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 233, Loss: 15.715618\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 234, Loss: 15.519392\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 235, Loss: 15.326743\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 236, Loss: 15.168716\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 237, Loss: 15.360443\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 238, Loss: 15.721286\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 239, Loss: 15.172491\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 240, Loss: 16.182734\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 241, Loss: 15.340355\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 242, Loss: 15.433963\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 243, Loss: 15.100843\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 244, Loss: 15.050554\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 245, Loss: 15.421187\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 246, Loss: 15.094905\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 247, Loss: 15.006946\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 248, Loss: 15.657290\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 249, Loss: 14.623072\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 250, Loss: 15.642507\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 251, Loss: 14.880860\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 252, Loss: 15.608335\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 253, Loss: 14.046036\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 254, Loss: 15.494695\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 255, Loss: 15.321092\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 256, Loss: 14.038360\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 257, Loss: 14.125815\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 258, Loss: 14.453615\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 259, Loss: 15.836182\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 260, Loss: 15.674538\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 261, Loss: 14.662035\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 262, Loss: 14.733577\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 263, Loss: 14.187243\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 264, Loss: 13.568978\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 265, Loss: 13.937920\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 266, Loss: 14.046041\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 267, Loss: 14.618284\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 268, Loss: 14.279103\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 269, Loss: 14.110027\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 270, Loss: 13.757563\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 271, Loss: 13.741017\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 272, Loss: 14.020503\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 273, Loss: 13.985368\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 274, Loss: 14.722904\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 275, Loss: 14.998585\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 276, Loss: 13.197349\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 277, Loss: 13.928975\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 278, Loss: 13.918337\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 279, Loss: 13.714258\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 280, Loss: 14.174420\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 281, Loss: 14.158657\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 282, Loss: 15.065601\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 283, Loss: 13.735214\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 284, Loss: 13.574471\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 285, Loss: 13.711504\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 286, Loss: 13.656285\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 287, Loss: 13.863428\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 288, Loss: 13.992359\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 289, Loss: 14.209298\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 290, Loss: 14.175517\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 291, Loss: 13.613109\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 292, Loss: 14.700981\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 293, Loss: 15.123560\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 294, Loss: 14.422640\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 295, Loss: 13.425291\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 296, Loss: 14.115401\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 297, Loss: 13.403165\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 298, Loss: 13.730690\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 299, Loss: 14.030240\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 300, Loss: 14.173542\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 301, Loss: 13.477983\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 302, Loss: 15.308068\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 303, Loss: 12.787216\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 304, Loss: 12.803468\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 305, Loss: 13.136318\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 306, Loss: 13.364777\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 307, Loss: 12.436713\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 308, Loss: 12.646374\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 309, Loss: 13.022244\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 310, Loss: 12.296658\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 311, Loss: 14.528321\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 312, Loss: 13.160453\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 313, Loss: 12.363956\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 314, Loss: 12.387307\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 315, Loss: 12.385180\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 316, Loss: 12.805687\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 317, Loss: 12.762597\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 318, Loss: 13.531509\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 319, Loss: 14.075402\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 320, Loss: 13.531556\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 321, Loss: 14.054609\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 322, Loss: 12.605062\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 323, Loss: 12.585854\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 324, Loss: 13.122136\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 325, Loss: 12.417300\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 326, Loss: 12.626762\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 327, Loss: 12.397628\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 328, Loss: 12.443369\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 329, Loss: 11.541340\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 330, Loss: 12.208848\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 331, Loss: 12.141210\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 332, Loss: 13.150336\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 333, Loss: 13.200518\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 334, Loss: 12.111912\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 335, Loss: 11.552763\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 336, Loss: 12.993418\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 337, Loss: 12.083138\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 338, Loss: 12.537976\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 339, Loss: 12.521194\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 340, Loss: 12.426844\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 341, Loss: 11.958878\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 342, Loss: 11.880229\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 343, Loss: 10.780565\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 344, Loss: 11.207235\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 345, Loss: 11.850384\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 346, Loss: 12.442029\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 347, Loss: 11.361828\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 348, Loss: 11.987540\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 349, Loss: 11.035725\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 350, Loss: 11.378863\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 351, Loss: 12.339761\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 352, Loss: 11.537182\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 353, Loss: 12.528673\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 354, Loss: 12.217962\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 355, Loss: 12.655201\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 356, Loss: 12.292698\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 357, Loss: 12.016210\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 358, Loss: 11.459436\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 359, Loss: 11.438270\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 360, Loss: 11.348028\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 361, Loss: 11.622559\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 362, Loss: 11.911381\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 363, Loss: 11.345556\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 364, Loss: 11.089528\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 365, Loss: 10.964473\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 366, Loss: 10.761984\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 367, Loss: 10.866063\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 368, Loss: 11.699061\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 369, Loss: 10.431211\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 370, Loss: 11.539299\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 371, Loss: 12.121513\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 372, Loss: 11.427151\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 373, Loss: 11.170986\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 374, Loss: 11.568423\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 375, Loss: 11.908367\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 376, Loss: 10.851684\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 377, Loss: 10.621886\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 378, Loss: 10.754622\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 379, Loss: 10.935515\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 380, Loss: 11.932495\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 381, Loss: 11.816111\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 382, Loss: 11.339147\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 383, Loss: 11.399758\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 384, Loss: 10.372543\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 385, Loss: 11.194123\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 386, Loss: 11.401309\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 387, Loss: 10.164318\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 388, Loss: 10.688001\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 389, Loss: 10.080113\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 390, Loss: 10.190139\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 391, Loss: 10.500344\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 392, Loss: 9.911107\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 393, Loss: 10.267927\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 394, Loss: 10.206855\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 395, Loss: 9.790817\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 396, Loss: 9.249039\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 397, Loss: 10.626131\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 398, Loss: 11.229877\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 399, Loss: 10.154735\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 400, Loss: 10.486974\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 401, Loss: 10.364301\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 402, Loss: 10.260739\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 403, Loss: 10.024758\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 404, Loss: 9.930593\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 405, Loss: 10.221115\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 406, Loss: 9.549939\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 407, Loss: 9.317955\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 408, Loss: 10.242524\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 409, Loss: 10.366076\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 410, Loss: 9.262130\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 411, Loss: 10.965055\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 412, Loss: 10.032849\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 413, Loss: 9.867821\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 414, Loss: 9.618513\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 415, Loss: 11.068623\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 416, Loss: 10.086308\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 417, Loss: 8.642306\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 418, Loss: 9.420969\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 419, Loss: 9.259769\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 420, Loss: 9.510740\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 421, Loss: 9.153639\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 422, Loss: 9.270439\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 423, Loss: 9.323175\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 424, Loss: 8.969302\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 425, Loss: 8.573095\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 426, Loss: 8.867823\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 427, Loss: 8.436907\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 428, Loss: 8.830556\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 429, Loss: 10.099429\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 430, Loss: 9.822271\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 431, Loss: 9.572849\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 432, Loss: 10.842057\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 433, Loss: 9.673181\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 434, Loss: 8.502358\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 435, Loss: 8.397381\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 436, Loss: 9.982183\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 437, Loss: 9.725658\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 438, Loss: 8.962710\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 439, Loss: 9.630851\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 440, Loss: 8.678519\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 441, Loss: 8.884045\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 442, Loss: 9.659873\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 443, Loss: 8.719807\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 444, Loss: 10.064513\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 445, Loss: 9.393506\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 446, Loss: 8.406981\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 447, Loss: 9.111935\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 448, Loss: 9.309242\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 449, Loss: 9.304820\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 450, Loss: 8.378676\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 451, Loss: 10.177364\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 452, Loss: 8.568950\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 453, Loss: 8.348475\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 454, Loss: 9.197234\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 455, Loss: 8.793727\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 456, Loss: 9.164284\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 457, Loss: 10.306684\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 458, Loss: 8.546030\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 459, Loss: 7.841792\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 460, Loss: 8.800433\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 461, Loss: 8.532539\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 462, Loss: 9.045284\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 463, Loss: 8.763215\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 464, Loss: 8.781250\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 465, Loss: 9.768159\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 466, Loss: 9.418898\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 467, Loss: 8.793258\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 468, Loss: 8.725109\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 469, Loss: 8.763237\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 470, Loss: 9.011677\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 471, Loss: 8.695606\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 472, Loss: 9.300088\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 473, Loss: 8.436835\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 474, Loss: 7.379267\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 475, Loss: 8.464965\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 476, Loss: 8.374163\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 477, Loss: 7.718922\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 478, Loss: 8.546302\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 479, Loss: 8.687634\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 480, Loss: 9.472162\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 481, Loss: 10.390482\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 482, Loss: 8.803874\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 483, Loss: 8.139756\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 484, Loss: 8.197568\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 485, Loss: 8.841551\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 486, Loss: 9.430840\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 487, Loss: 8.223736\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 488, Loss: 7.856739\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 489, Loss: 7.771057\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 490, Loss: 7.633189\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 491, Loss: 7.431928\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 492, Loss: 7.423875\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 493, Loss: 8.733154\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 494, Loss: 6.809184\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 495, Loss: 8.023903\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 496, Loss: 7.023137\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 497, Loss: 8.125078\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 498, Loss: 8.754798\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 499, Loss: 8.152596\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 500, Loss: 8.329261\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 501, Loss: 8.428662\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 502, Loss: 8.128785\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 503, Loss: 9.480807\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 504, Loss: 7.351010\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 505, Loss: 8.027491\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 506, Loss: 8.623659\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 507, Loss: 7.611877\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 508, Loss: 7.774537\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 509, Loss: 7.316604\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 510, Loss: 7.971393\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 511, Loss: 7.115062\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 512, Loss: 7.546615\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 513, Loss: 7.136157\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 514, Loss: 7.087364\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 515, Loss: 9.521384\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 516, Loss: 7.747889\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 517, Loss: 8.480134\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 518, Loss: 7.752177\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 519, Loss: 7.353397\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 520, Loss: 7.404245\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 521, Loss: 7.186615\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 522, Loss: 7.360232\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 523, Loss: 7.660366\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 524, Loss: 6.952865\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 525, Loss: 7.633375\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 526, Loss: 8.314148\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 527, Loss: 8.306131\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 528, Loss: 6.821624\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 529, Loss: 7.198838\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 530, Loss: 7.705298\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 531, Loss: 7.540918\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 532, Loss: 7.592138\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 533, Loss: 8.195850\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 534, Loss: 6.697463\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 535, Loss: 7.311661\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 536, Loss: 7.558105\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 537, Loss: 8.943454\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 538, Loss: 7.184761\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 539, Loss: 7.795975\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 540, Loss: 8.010004\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 541, Loss: 7.724412\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 542, Loss: 8.613650\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 543, Loss: 7.627247\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 544, Loss: 7.920095\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 545, Loss: 7.097055\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 546, Loss: 7.833378\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 547, Loss: 6.930510\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 548, Loss: 7.400979\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 549, Loss: 6.641201\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 550, Loss: 6.570042\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 551, Loss: 6.256770\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 552, Loss: 6.637722\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 553, Loss: 5.869680\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 554, Loss: 7.099311\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 555, Loss: 6.813034\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 556, Loss: 8.108534\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 557, Loss: 7.349546\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 558, Loss: 7.101177\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 559, Loss: 6.276380\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 560, Loss: 6.916625\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 561, Loss: 7.928554\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 562, Loss: 6.996735\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 563, Loss: 7.118956\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 564, Loss: 6.740258\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 565, Loss: 7.246848\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 566, Loss: 9.484193\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 567, Loss: 6.703216\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 568, Loss: 7.385262\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 569, Loss: 6.574376\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 570, Loss: 7.022461\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 571, Loss: 8.666053\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 572, Loss: 8.146733\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 573, Loss: 6.258173\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 574, Loss: 6.149898\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 575, Loss: 6.415719\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 576, Loss: 6.093855\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 577, Loss: 6.700932\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 578, Loss: 7.363096\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 579, Loss: 7.139636\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 580, Loss: 6.772638\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 581, Loss: 8.089802\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 582, Loss: 8.130405\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 583, Loss: 7.953337\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 584, Loss: 7.531358\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 585, Loss: 8.079561\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 586, Loss: 7.034838\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 587, Loss: 6.533008\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 588, Loss: 6.658026\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 589, Loss: 6.447379\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 590, Loss: 6.057558\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 591, Loss: 8.421779\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 592, Loss: 6.568286\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 593, Loss: 7.193987\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 594, Loss: 7.199940\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 595, Loss: 6.527869\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 596, Loss: 5.802228\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 597, Loss: 7.193036\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 598, Loss: 6.233879\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 599, Loss: 6.153850\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 600, Loss: 6.870172\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 601, Loss: 5.853318\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 602, Loss: 6.372678\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 603, Loss: 6.038867\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 604, Loss: 8.181565\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 605, Loss: 5.745995\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 606, Loss: 6.243468\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 607, Loss: 6.005899\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 608, Loss: 6.487177\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 609, Loss: 5.763516\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 610, Loss: 5.758489\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 611, Loss: 5.701315\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 612, Loss: 5.783748\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 613, Loss: 6.250449\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 614, Loss: 5.889146\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 615, Loss: 7.261229\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 616, Loss: 6.510460\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 617, Loss: 6.219687\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 618, Loss: 7.075762\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 619, Loss: 6.260602\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 620, Loss: 5.392025\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 621, Loss: 6.651336\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 622, Loss: 6.412628\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 623, Loss: 6.741107\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 624, Loss: 7.116624\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 625, Loss: 6.518511\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 626, Loss: 6.475900\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 627, Loss: 5.827233\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 628, Loss: 6.415835\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 629, Loss: 6.222168\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 630, Loss: 6.449957\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 631, Loss: 6.896624\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 632, Loss: 6.618590\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 633, Loss: 5.545177\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 634, Loss: 5.462649\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 635, Loss: 5.782147\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 636, Loss: 5.436139\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 637, Loss: 5.864604\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 638, Loss: 6.821016\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 639, Loss: 5.668791\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 640, Loss: 6.738871\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 641, Loss: 5.834348\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 642, Loss: 5.469521\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 643, Loss: 5.393954\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 644, Loss: 5.874871\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 645, Loss: 5.035198\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 646, Loss: 7.325079\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 647, Loss: 5.692090\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 648, Loss: 6.739718\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 649, Loss: 6.808805\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 650, Loss: 5.614083\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 651, Loss: 6.836759\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 652, Loss: 7.034674\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 653, Loss: 5.958812\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 654, Loss: 6.281909\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 655, Loss: 5.196512\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 656, Loss: 5.189951\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 657, Loss: 5.816335\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 658, Loss: 6.193158\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 659, Loss: 6.309500\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 660, Loss: 5.661312\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 661, Loss: 6.576848\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 662, Loss: 6.106556\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 663, Loss: 7.309686\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 664, Loss: 6.911311\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 665, Loss: 5.693370\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 666, Loss: 6.286552\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 667, Loss: 5.978039\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 668, Loss: 7.142674\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 669, Loss: 6.675559\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 670, Loss: 5.799304\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 671, Loss: 6.301620\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 672, Loss: 5.547080\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 673, Loss: 5.478110\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 674, Loss: 5.372733\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 675, Loss: 5.902728\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 676, Loss: 5.807336\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 677, Loss: 6.089675\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 678, Loss: 6.082558\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 679, Loss: 7.788847\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 680, Loss: 6.076674\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 681, Loss: 6.296098\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 682, Loss: 5.667743\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 683, Loss: 6.806493\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 684, Loss: 5.931764\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 685, Loss: 5.985042\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 686, Loss: 6.300377\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 687, Loss: 7.161008\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 688, Loss: 6.384624\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 689, Loss: 5.336274\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 690, Loss: 5.038090\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 691, Loss: 5.411977\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 692, Loss: 5.913362\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 693, Loss: 5.370869\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 694, Loss: 6.821678\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 695, Loss: 5.750196\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 696, Loss: 5.154303\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 697, Loss: 6.340495\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 698, Loss: 5.030764\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 699, Loss: 5.257688\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 700, Loss: 5.995038\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 701, Loss: 6.330536\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 702, Loss: 6.114263\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 703, Loss: 4.881114\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 704, Loss: 4.935160\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 705, Loss: 5.657101\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 706, Loss: 5.565704\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 707, Loss: 6.638130\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 708, Loss: 6.601417\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 709, Loss: 7.085193\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 710, Loss: 6.733203\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 711, Loss: 6.078061\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 712, Loss: 6.045932\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 713, Loss: 5.020638\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 714, Loss: 4.729104\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 715, Loss: 6.038948\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 716, Loss: 4.658210\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 717, Loss: 5.411233\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 718, Loss: 4.961081\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 719, Loss: 6.504118\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 720, Loss: 5.445731\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 721, Loss: 6.381100\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 722, Loss: 6.334670\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 723, Loss: 5.601975\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 724, Loss: 5.638893\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 725, Loss: 6.244261\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 726, Loss: 5.399908\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 727, Loss: 5.347174\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 728, Loss: 5.148858\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 729, Loss: 5.844512\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 730, Loss: 4.878356\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 731, Loss: 6.699286\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 732, Loss: 5.675650\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 733, Loss: 6.466321\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 734, Loss: 6.922868\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 735, Loss: 7.358692\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 736, Loss: 5.648529\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 737, Loss: 5.832032\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 738, Loss: 6.276441\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 739, Loss: 6.085687\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 740, Loss: 6.810097\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 741, Loss: 6.488753\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 742, Loss: 5.355389\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 743, Loss: 5.905442\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 744, Loss: 4.919370\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 745, Loss: 5.487198\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 746, Loss: 5.529323\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 747, Loss: 5.192358\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 748, Loss: 5.600463\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 749, Loss: 5.089880\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 750, Loss: 6.252771\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 751, Loss: 5.782669\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 752, Loss: 5.912938\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 753, Loss: 5.258151\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 754, Loss: 5.071774\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 755, Loss: 5.779729\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 756, Loss: 4.971630\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 757, Loss: 5.677466\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 758, Loss: 4.510562\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 759, Loss: 4.152822\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 760, Loss: 5.196743\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 761, Loss: 5.713209\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 762, Loss: 7.144116\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 763, Loss: 5.032248\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 764, Loss: 6.857267\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 765, Loss: 8.200059\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 766, Loss: 7.282990\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 767, Loss: 6.547411\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 768, Loss: 5.725141\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 769, Loss: 6.400786\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 770, Loss: 4.873350\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 771, Loss: 5.893219\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 772, Loss: 5.100472\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 773, Loss: 4.896173\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 774, Loss: 5.080549\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 775, Loss: 6.669576\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 776, Loss: 5.966584\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 777, Loss: 4.803402\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 778, Loss: 5.138791\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 779, Loss: 5.978984\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 780, Loss: 5.488698\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 781, Loss: 4.889996\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 782, Loss: 4.653327\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 783, Loss: 5.032024\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 784, Loss: 5.752181\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 785, Loss: 4.219934\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 786, Loss: 5.735655\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 787, Loss: 4.512479\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 788, Loss: 4.860986\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 789, Loss: 5.722647\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 790, Loss: 4.476399\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 791, Loss: 5.848369\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 792, Loss: 6.289755\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 793, Loss: 5.252820\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 794, Loss: 7.040073\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 795, Loss: 6.405680\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 796, Loss: 5.178263\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 797, Loss: 4.832130\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 798, Loss: 4.930005\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 799, Loss: 6.862048\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 800, Loss: 5.594130\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 801, Loss: 5.322156\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 802, Loss: 4.595714\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 803, Loss: 6.004211\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 804, Loss: 4.576222\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 805, Loss: 5.819077\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 806, Loss: 5.720063\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 807, Loss: 4.922029\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 808, Loss: 5.512209\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 809, Loss: 5.352180\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 810, Loss: 5.472879\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 811, Loss: 4.234909\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 812, Loss: 4.919844\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 813, Loss: 4.968941\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 814, Loss: 5.109442\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 815, Loss: 5.589443\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 816, Loss: 4.492137\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 817, Loss: 4.686922\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 818, Loss: 4.300562\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 819, Loss: 5.062671\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 820, Loss: 4.724552\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 821, Loss: 5.401679\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 822, Loss: 4.728793\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 823, Loss: 5.348985\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 824, Loss: 4.947279\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 825, Loss: 5.030057\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 826, Loss: 5.068966\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 827, Loss: 4.970964\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 828, Loss: 5.961102\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 829, Loss: 5.629807\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 830, Loss: 4.334183\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 831, Loss: 5.254396\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 832, Loss: 5.664501\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 833, Loss: 4.942370\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 834, Loss: 4.785008\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 835, Loss: 4.913291\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 836, Loss: 5.152588\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 837, Loss: 4.750639\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 838, Loss: 5.083825\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 839, Loss: 6.061776\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 840, Loss: 5.846888\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 841, Loss: 5.229183\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 842, Loss: 4.888671\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 843, Loss: 4.755792\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 844, Loss: 6.073556\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 845, Loss: 4.631196\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 846, Loss: 5.021560\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 847, Loss: 4.671173\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 848, Loss: 4.328477\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 849, Loss: 4.733829\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 850, Loss: 4.736129\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 851, Loss: 5.049555\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 852, Loss: 4.578997\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 853, Loss: 5.775893\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 854, Loss: 4.842914\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 855, Loss: 4.396817\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 856, Loss: 5.221151\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 857, Loss: 4.355992\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 858, Loss: 4.580299\n", - "SNR:17, Imbalance Percentage:0, Encoding dimension:50, Epoch 859, Loss: 4.646319\n", - "Stopped early after 860 epochs, with loss of 4.152822\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1, Loss: 593.072388\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 2, Loss: 571.220093\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 3, Loss: 539.044373\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 4, Loss: 509.872589\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 5, Loss: 475.818787\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 6, Loss: 444.903290\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 7, Loss: 417.591888\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 8, Loss: 391.659302\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 9, Loss: 363.614929\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 10, Loss: 340.877686\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 11, Loss: 315.359131\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 12, Loss: 293.752136\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 13, Loss: 268.744995\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 14, Loss: 246.475296\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 15, Loss: 224.260635\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 16, Loss: 202.723892\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 17, Loss: 183.133575\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 18, Loss: 163.323624\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 19, Loss: 144.395935\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 20, Loss: 127.070221\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 21, Loss: 111.481506\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 22, Loss: 97.904388\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 23, Loss: 87.912918\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 24, Loss: 78.524231\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 25, Loss: 69.942719\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 26, Loss: 63.475143\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 27, Loss: 56.505234\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 28, Loss: 51.304737\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 29, Loss: 49.310307\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 30, Loss: 45.776970\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 31, Loss: 44.035175\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 32, Loss: 43.015007\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 33, Loss: 42.020485\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 34, Loss: 41.692055\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 35, Loss: 39.617767\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 36, Loss: 39.914665\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 37, Loss: 39.091755\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 38, Loss: 36.947353\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 39, Loss: 37.007343\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 40, Loss: 35.975132\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 41, Loss: 36.429195\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 42, Loss: 36.040421\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 43, Loss: 35.584877\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 44, Loss: 35.573780\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 45, Loss: 35.791748\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 46, Loss: 36.453857\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 47, Loss: 34.800816\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 48, Loss: 34.842056\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 49, Loss: 34.241570\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 50, Loss: 34.923939\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 51, Loss: 34.593136\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 52, Loss: 34.595585\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 53, Loss: 34.053795\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 54, Loss: 32.850086\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 55, Loss: 32.761757\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 56, Loss: 31.719530\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 57, Loss: 33.510948\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 58, Loss: 33.160160\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 59, Loss: 32.962906\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 60, Loss: 31.351471\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 61, Loss: 32.001854\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 62, Loss: 31.911280\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 63, Loss: 32.895004\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 64, Loss: 31.608404\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 65, Loss: 31.944031\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 66, Loss: 31.092810\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 67, Loss: 30.910030\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 68, Loss: 29.912615\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 69, Loss: 29.453856\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 70, Loss: 30.544991\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 71, Loss: 30.334883\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 72, Loss: 30.231394\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 73, Loss: 29.777752\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 74, Loss: 30.534771\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 75, Loss: 29.154150\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 76, Loss: 29.895811\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 77, Loss: 27.887127\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 78, Loss: 29.978848\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 79, Loss: 28.927782\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 80, Loss: 29.799038\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 81, Loss: 29.188799\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 82, Loss: 28.875792\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 83, Loss: 28.874216\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 84, Loss: 28.188492\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 85, Loss: 30.283926\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 86, Loss: 27.274334\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 87, Loss: 28.662548\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 88, Loss: 27.552454\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 89, Loss: 27.312283\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 90, Loss: 27.828249\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 91, Loss: 27.774153\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 92, Loss: 27.773132\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 93, Loss: 27.495535\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 94, Loss: 28.366718\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 95, Loss: 29.485783\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 96, Loss: 26.589035\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 97, Loss: 26.785950\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 98, Loss: 26.941626\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 99, Loss: 26.535732\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 100, Loss: 26.438904\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 101, Loss: 25.589121\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 102, Loss: 25.317532\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 103, Loss: 26.142666\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 104, Loss: 26.048090\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 105, Loss: 26.060352\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 106, Loss: 25.358803\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 107, Loss: 25.596119\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 108, Loss: 27.009417\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 109, Loss: 26.471844\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 110, Loss: 26.139101\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 111, Loss: 24.917830\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 112, Loss: 26.677824\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 113, Loss: 24.842413\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 114, Loss: 25.151072\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 115, Loss: 25.567116\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 116, Loss: 25.608761\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 117, Loss: 25.595364\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 118, Loss: 24.768993\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 119, Loss: 24.916313\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 120, Loss: 23.382063\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 121, Loss: 25.127796\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 122, Loss: 25.218035\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 123, Loss: 24.570843\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 124, Loss: 24.556509\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 125, Loss: 24.345211\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 126, Loss: 23.675920\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 127, Loss: 24.368553\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 128, Loss: 25.441240\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 129, Loss: 25.697519\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 130, Loss: 26.063126\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 131, Loss: 24.701160\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 132, Loss: 23.287029\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 133, Loss: 24.465317\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 134, Loss: 23.361456\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 135, Loss: 24.556887\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 136, Loss: 25.508226\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 137, Loss: 24.678219\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 138, Loss: 23.706331\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 139, Loss: 25.305079\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 140, Loss: 23.169710\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 141, Loss: 23.698236\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 142, Loss: 24.396105\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 143, Loss: 22.798223\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 144, Loss: 24.700113\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 145, Loss: 23.277023\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 146, Loss: 22.891779\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 147, Loss: 23.659246\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 148, Loss: 22.465561\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 149, Loss: 24.908049\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 150, Loss: 24.672672\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 151, Loss: 23.512598\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 152, Loss: 23.587166\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 153, Loss: 23.982136\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 154, Loss: 23.305758\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 155, Loss: 22.454803\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 156, Loss: 22.568539\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 157, Loss: 23.370953\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 158, Loss: 23.510218\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 159, Loss: 24.651859\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 160, Loss: 23.063738\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 161, Loss: 21.879477\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 162, Loss: 23.572386\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 163, Loss: 22.515564\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 164, Loss: 23.366186\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 165, Loss: 24.252254\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 166, Loss: 23.874886\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 167, Loss: 23.641336\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 168, Loss: 23.013935\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 169, Loss: 21.871466\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 170, Loss: 22.352217\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 171, Loss: 22.799974\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 172, Loss: 24.324476\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 173, Loss: 21.694151\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 174, Loss: 21.815958\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 175, Loss: 22.545137\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 176, Loss: 21.970549\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 177, Loss: 21.821854\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 178, Loss: 22.185223\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 179, Loss: 22.980122\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 180, Loss: 22.658424\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 181, Loss: 21.680984\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 182, Loss: 21.910110\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 183, Loss: 21.673777\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 184, Loss: 21.790325\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 185, Loss: 20.875679\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 186, Loss: 20.236946\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 187, Loss: 22.682610\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 188, Loss: 21.844666\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 189, Loss: 21.050880\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 190, Loss: 21.027739\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 191, Loss: 21.775707\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 192, Loss: 21.204054\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 193, Loss: 20.390293\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 194, Loss: 21.303823\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 195, Loss: 21.009422\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 196, Loss: 23.748035\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 197, Loss: 19.440187\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 198, Loss: 20.592014\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 199, Loss: 21.581284\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 200, Loss: 21.055758\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 201, Loss: 21.064461\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 202, Loss: 21.152622\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 203, Loss: 21.466581\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 204, Loss: 21.737879\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 205, Loss: 20.594379\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 206, Loss: 21.137665\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 207, Loss: 20.906462\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 208, Loss: 20.164577\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 209, Loss: 19.825829\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 210, Loss: 22.097950\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 211, Loss: 21.742300\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 212, Loss: 20.400105\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 213, Loss: 21.346252\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 214, Loss: 19.358049\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 215, Loss: 19.892563\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 216, Loss: 19.411556\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 217, Loss: 20.397963\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 218, Loss: 19.885689\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 219, Loss: 21.054403\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 220, Loss: 20.458748\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 221, Loss: 20.294807\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 222, Loss: 21.621090\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 223, Loss: 19.694069\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 224, Loss: 20.920675\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 225, Loss: 19.474531\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 226, Loss: 19.539604\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 227, Loss: 19.581425\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 228, Loss: 20.335690\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 229, Loss: 20.670513\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 230, Loss: 19.947195\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 231, Loss: 20.695200\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 232, Loss: 21.139780\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 233, Loss: 20.831455\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 234, Loss: 19.525721\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 235, Loss: 20.426817\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 236, Loss: 20.202085\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 237, Loss: 18.080015\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 238, Loss: 20.998091\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 239, Loss: 18.296234\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 240, Loss: 19.821276\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 241, Loss: 19.342190\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 242, Loss: 19.720312\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 243, Loss: 19.219980\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 244, Loss: 19.999063\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 245, Loss: 19.408957\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 246, Loss: 19.313162\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 247, Loss: 18.893236\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 248, Loss: 19.540512\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 249, Loss: 20.210627\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 250, Loss: 19.205366\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 251, Loss: 19.349787\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 252, Loss: 19.278664\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 253, Loss: 18.484379\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 254, Loss: 20.428717\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 255, Loss: 19.338520\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 256, Loss: 19.038002\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 257, Loss: 19.898216\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 258, Loss: 18.861307\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 259, Loss: 18.879847\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 260, Loss: 19.519287\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 261, Loss: 19.158146\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 262, Loss: 19.472435\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 263, Loss: 20.015432\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 264, Loss: 18.522200\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 265, Loss: 18.392736\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 266, Loss: 19.999420\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 267, Loss: 20.262897\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 268, Loss: 21.128817\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 269, Loss: 19.356554\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 270, Loss: 18.620111\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 271, Loss: 20.537539\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 272, Loss: 19.322128\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 273, Loss: 19.445925\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 274, Loss: 18.989712\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 275, Loss: 19.783295\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 276, Loss: 18.981661\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 277, Loss: 18.323542\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 278, Loss: 18.050003\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 279, Loss: 20.117088\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 280, Loss: 19.231619\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 281, Loss: 18.027401\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 282, Loss: 17.557924\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 283, Loss: 18.193342\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 284, Loss: 17.521757\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 285, Loss: 17.588270\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 286, Loss: 17.635500\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 287, Loss: 19.004030\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 288, Loss: 17.922197\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 289, Loss: 18.312546\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 290, Loss: 17.666048\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 291, Loss: 18.571606\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 292, Loss: 17.041719\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 293, Loss: 18.731064\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 294, Loss: 19.063227\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 295, Loss: 18.778261\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 296, Loss: 18.564491\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 297, Loss: 17.049301\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 298, Loss: 19.508684\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 299, Loss: 17.013069\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 300, Loss: 17.932226\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 301, Loss: 17.938303\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 302, Loss: 17.055511\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 303, Loss: 17.254179\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 304, Loss: 17.502802\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 305, Loss: 17.306385\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 306, Loss: 16.877718\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 307, Loss: 17.248196\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 308, Loss: 18.076857\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 309, Loss: 17.034906\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 310, Loss: 18.165096\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 311, Loss: 19.224953\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 312, Loss: 19.398899\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 313, Loss: 18.369120\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 314, Loss: 18.443186\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 315, Loss: 17.567574\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 316, Loss: 18.711725\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 317, Loss: 18.351486\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 318, Loss: 17.206861\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 319, Loss: 20.278311\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 320, Loss: 19.404539\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 321, Loss: 19.201029\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 322, Loss: 18.796160\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 323, Loss: 17.141523\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 324, Loss: 15.832365\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 325, Loss: 17.105030\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 326, Loss: 17.300051\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 327, Loss: 17.783741\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 328, Loss: 17.668846\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 329, Loss: 17.769623\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 330, Loss: 16.641066\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 331, Loss: 17.304020\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 332, Loss: 16.780302\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 333, Loss: 19.736950\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 334, Loss: 16.204523\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 335, Loss: 17.673275\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 336, Loss: 16.703098\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 337, Loss: 17.938066\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 338, Loss: 16.796864\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 339, Loss: 19.347137\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 340, Loss: 19.364202\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 341, Loss: 17.003248\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 342, Loss: 18.117958\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 343, Loss: 17.740021\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 344, Loss: 17.754204\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 345, Loss: 17.165855\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 346, Loss: 16.507853\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 347, Loss: 15.493464\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 348, Loss: 18.555693\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 349, Loss: 16.121830\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 350, Loss: 16.608255\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 351, Loss: 15.695162\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 352, Loss: 17.313995\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 353, Loss: 17.517189\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 354, Loss: 18.351856\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 355, Loss: 15.662858\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 356, Loss: 17.398172\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 357, Loss: 16.861870\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 358, Loss: 18.699041\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 359, Loss: 17.005926\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 360, Loss: 16.608969\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 361, Loss: 17.210794\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 362, Loss: 16.017359\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 363, Loss: 15.791836\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 364, Loss: 16.232740\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 365, Loss: 17.030367\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 366, Loss: 16.267242\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 367, Loss: 16.743732\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 368, Loss: 16.641069\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 369, Loss: 17.377935\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 370, Loss: 16.056824\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 371, Loss: 15.983033\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 372, Loss: 15.322955\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 373, Loss: 14.906340\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 374, Loss: 16.063871\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 375, Loss: 16.679132\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 376, Loss: 16.954607\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 377, Loss: 17.778339\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 378, Loss: 16.033381\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 379, Loss: 18.069174\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 380, Loss: 18.006273\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 381, Loss: 16.619490\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 382, Loss: 15.445305\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 383, Loss: 15.845526\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 384, Loss: 15.110784\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 385, Loss: 16.222086\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 386, Loss: 14.348384\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 387, Loss: 17.805908\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 388, Loss: 15.675506\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 389, Loss: 16.060377\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 390, Loss: 15.821179\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 391, Loss: 16.242092\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 392, Loss: 15.010904\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 393, Loss: 14.957747\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 394, Loss: 16.149940\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 395, Loss: 15.012156\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 396, Loss: 13.866966\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 397, Loss: 15.700928\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 398, Loss: 15.709351\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 399, Loss: 14.984492\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 400, Loss: 15.558729\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 401, Loss: 17.336363\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 402, Loss: 15.251819\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 403, Loss: 16.556326\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 404, Loss: 19.217592\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 405, Loss: 15.375810\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 406, Loss: 16.808123\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 407, Loss: 14.677046\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 408, Loss: 14.086061\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 409, Loss: 17.603771\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 410, Loss: 16.232462\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 411, Loss: 15.777484\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 412, Loss: 15.340494\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 413, Loss: 15.023753\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 414, Loss: 17.607327\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 415, Loss: 13.665062\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 416, Loss: 14.797503\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 417, Loss: 17.391439\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 418, Loss: 16.738335\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 419, Loss: 15.464649\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 420, Loss: 16.267233\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 421, Loss: 13.683877\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 422, Loss: 15.810035\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 423, Loss: 16.359303\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 424, Loss: 15.797360\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 425, Loss: 15.403666\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 426, Loss: 15.245998\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 427, Loss: 14.909890\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 428, Loss: 15.399731\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 429, Loss: 14.562189\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 430, Loss: 16.015009\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 431, Loss: 16.511351\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 432, Loss: 13.457685\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 433, Loss: 17.682922\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 434, Loss: 15.269872\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 435, Loss: 13.885245\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 436, Loss: 15.543062\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 437, Loss: 13.728984\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 438, Loss: 15.247528\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 439, Loss: 13.735357\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 440, Loss: 14.436027\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 441, Loss: 13.865590\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 442, Loss: 13.742043\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 443, Loss: 14.422900\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 444, Loss: 14.503741\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 445, Loss: 14.629472\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 446, Loss: 14.569948\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 447, Loss: 13.387187\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 448, Loss: 14.146091\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 449, Loss: 14.344151\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 450, Loss: 14.134432\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 451, Loss: 14.290499\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 452, Loss: 14.578480\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 453, Loss: 14.529125\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 454, Loss: 14.430800\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 455, Loss: 12.534075\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 456, Loss: 16.452421\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 457, Loss: 12.820683\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 458, Loss: 13.640315\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 459, Loss: 13.907857\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 460, Loss: 13.730521\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 461, Loss: 15.264278\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 462, Loss: 13.190580\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 463, Loss: 12.923622\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 464, Loss: 13.929419\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 465, Loss: 13.388214\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 466, Loss: 16.683878\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 467, Loss: 15.336508\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 468, Loss: 13.832676\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 469, Loss: 14.480366\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 470, Loss: 16.444801\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 471, Loss: 15.032381\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 472, Loss: 12.739169\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 473, Loss: 12.882396\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 474, Loss: 15.102943\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 475, Loss: 14.075792\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 476, Loss: 14.807820\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 477, Loss: 14.268079\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 478, Loss: 13.409391\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 479, Loss: 15.045649\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 480, Loss: 14.259350\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 481, Loss: 13.211814\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 482, Loss: 14.030807\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 483, Loss: 13.144177\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 484, Loss: 16.041466\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 485, Loss: 14.469358\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 486, Loss: 12.992909\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 487, Loss: 14.533298\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 488, Loss: 13.300806\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 489, Loss: 12.947727\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 490, Loss: 13.933907\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 491, Loss: 12.526365\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 492, Loss: 13.706870\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 493, Loss: 13.941690\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 494, Loss: 12.407255\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 495, Loss: 12.046684\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 496, Loss: 13.315388\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 497, Loss: 11.807736\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 498, Loss: 13.170266\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 499, Loss: 12.783990\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 500, Loss: 12.642725\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 501, Loss: 12.946910\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 502, Loss: 13.976271\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 503, Loss: 13.577879\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 504, Loss: 12.329604\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 505, Loss: 13.777747\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 506, Loss: 13.658308\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 507, Loss: 14.399364\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 508, Loss: 12.583394\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 509, Loss: 13.737641\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 510, Loss: 12.531878\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 511, Loss: 13.034471\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 512, Loss: 14.604624\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 513, Loss: 13.365409\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 514, Loss: 13.438419\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 515, Loss: 12.720047\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 516, Loss: 12.837846\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 517, Loss: 12.629428\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 518, Loss: 11.645782\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 519, Loss: 14.376502\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 520, Loss: 11.558189\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 521, Loss: 12.789643\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 522, Loss: 13.480188\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 523, Loss: 13.001491\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 524, Loss: 13.222822\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 525, Loss: 11.339454\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 526, Loss: 12.087129\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 527, Loss: 11.691210\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 528, Loss: 11.440285\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 529, Loss: 11.361012\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 530, Loss: 12.069879\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 531, Loss: 11.425789\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 532, Loss: 11.473759\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 533, Loss: 12.168996\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 534, Loss: 12.144369\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 535, Loss: 12.819606\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 536, Loss: 13.587346\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 537, Loss: 11.930373\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 538, Loss: 14.199569\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 539, Loss: 12.135280\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 540, Loss: 10.661564\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 541, Loss: 12.099546\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 542, Loss: 12.518737\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 543, Loss: 12.032831\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 544, Loss: 14.127892\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 545, Loss: 11.056007\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 546, Loss: 12.926376\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 547, Loss: 12.269934\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 548, Loss: 11.888173\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 549, Loss: 11.126606\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 550, Loss: 13.647575\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 551, Loss: 13.158424\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 552, Loss: 11.208020\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 553, Loss: 12.596585\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 554, Loss: 11.623570\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 555, Loss: 11.827685\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 556, Loss: 11.866659\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 557, Loss: 11.724901\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 558, Loss: 12.335705\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 559, Loss: 10.576327\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 560, Loss: 12.861204\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 561, Loss: 14.043884\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 562, Loss: 11.767271\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 563, Loss: 11.743726\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 564, Loss: 11.050759\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 565, Loss: 11.010603\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 566, Loss: 11.357503\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 567, Loss: 13.522499\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 568, Loss: 11.793481\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 569, Loss: 11.694222\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 570, Loss: 11.312545\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 571, Loss: 11.957069\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 572, Loss: 10.738589\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 573, Loss: 10.334638\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 574, Loss: 11.750181\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 575, Loss: 12.000586\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 576, Loss: 9.797560\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 577, Loss: 11.803086\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 578, Loss: 12.758110\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 579, Loss: 11.338410\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 580, Loss: 10.688745\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 581, Loss: 11.491833\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 582, Loss: 11.783070\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 583, Loss: 12.174940\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 584, Loss: 11.526114\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 585, Loss: 11.943542\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 586, Loss: 11.173170\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 587, Loss: 11.960925\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 588, Loss: 11.984248\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 589, Loss: 12.214909\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 590, Loss: 14.382497\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 591, Loss: 11.545429\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 592, Loss: 14.539180\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 593, Loss: 12.297259\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 594, Loss: 11.051282\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 595, Loss: 11.622158\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 596, Loss: 12.006578\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 597, Loss: 11.018590\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 598, Loss: 11.178205\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 599, Loss: 13.710876\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 600, Loss: 10.627822\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 601, Loss: 10.506643\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 602, Loss: 10.700732\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 603, Loss: 11.034429\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 604, Loss: 10.256549\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 605, Loss: 11.616564\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 606, Loss: 12.493211\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 607, Loss: 9.731610\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 608, Loss: 12.277374\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 609, Loss: 10.360207\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 610, Loss: 11.651739\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 611, Loss: 12.397822\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 612, Loss: 10.119235\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 613, Loss: 10.678441\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 614, Loss: 9.553945\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 615, Loss: 11.420099\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 616, Loss: 12.530789\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 617, Loss: 9.327276\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 618, Loss: 10.523796\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 619, Loss: 10.680963\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 620, Loss: 11.200785\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 621, Loss: 9.644114\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 622, Loss: 11.488704\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 623, Loss: 10.303404\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 624, Loss: 12.113649\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 625, Loss: 10.003418\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 626, Loss: 10.597015\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 627, Loss: 11.196285\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 628, Loss: 10.893422\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 629, Loss: 10.246558\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 630, Loss: 9.588653\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 631, Loss: 10.560034\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 632, Loss: 10.660078\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 633, Loss: 10.009618\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 634, Loss: 11.030760\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 635, Loss: 10.231527\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 636, Loss: 9.574796\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 637, Loss: 13.210733\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 638, Loss: 10.562406\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 639, Loss: 10.476241\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 640, Loss: 11.448506\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 641, Loss: 10.525017\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 642, Loss: 9.600136\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 643, Loss: 11.407877\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 644, Loss: 9.481568\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 645, Loss: 9.539940\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 646, Loss: 14.283331\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 647, Loss: 10.515044\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 648, Loss: 9.462378\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 649, Loss: 9.388527\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 650, Loss: 10.034938\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 651, Loss: 9.561741\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 652, Loss: 10.461781\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 653, Loss: 9.306861\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 654, Loss: 9.490103\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 655, Loss: 10.688220\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 656, Loss: 9.334364\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 657, Loss: 11.362337\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 658, Loss: 12.293575\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 659, Loss: 11.381236\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 660, Loss: 10.899121\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 661, Loss: 9.785596\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 662, Loss: 9.640687\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 663, Loss: 8.250677\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 664, Loss: 9.308214\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 665, Loss: 10.169795\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 666, Loss: 10.714211\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 667, Loss: 8.906669\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 668, Loss: 8.935405\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 669, Loss: 8.927958\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 670, Loss: 11.223548\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 671, Loss: 10.170938\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 672, Loss: 7.959282\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 673, Loss: 10.229628\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 674, Loss: 10.340532\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 675, Loss: 10.323054\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 676, Loss: 10.647073\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 677, Loss: 10.942259\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 678, Loss: 9.113441\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 679, Loss: 11.821754\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 680, Loss: 9.014201\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 681, Loss: 10.490371\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 682, Loss: 8.418060\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 683, Loss: 10.173529\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 684, Loss: 8.115171\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 685, Loss: 9.368865\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 686, Loss: 8.754400\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 687, Loss: 10.662183\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 688, Loss: 9.402004\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 689, Loss: 8.806468\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 690, Loss: 10.375822\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 691, Loss: 10.058024\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 692, Loss: 11.743531\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 693, Loss: 9.943144\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 694, Loss: 10.294695\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 695, Loss: 9.500293\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 696, Loss: 11.516185\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 697, Loss: 11.004589\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 698, Loss: 8.606855\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 699, Loss: 10.277734\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 700, Loss: 9.743515\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 701, Loss: 11.251351\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 702, Loss: 10.438380\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 703, Loss: 8.064484\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 704, Loss: 9.727499\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 705, Loss: 9.922019\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 706, Loss: 9.660924\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 707, Loss: 9.310372\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 708, Loss: 9.180606\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 709, Loss: 12.843172\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 710, Loss: 10.889731\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 711, Loss: 10.101319\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 712, Loss: 9.708294\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 713, Loss: 9.377664\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 714, Loss: 9.940370\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 715, Loss: 9.521332\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 716, Loss: 8.776911\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 717, Loss: 8.753922\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 718, Loss: 8.564304\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 719, Loss: 11.050591\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 720, Loss: 7.037584\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 721, Loss: 9.739767\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 722, Loss: 9.739460\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 723, Loss: 9.513968\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 724, Loss: 9.442155\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 725, Loss: 8.669008\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 726, Loss: 9.423752\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 727, Loss: 10.242363\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 728, Loss: 8.477656\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 729, Loss: 9.142386\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 730, Loss: 9.703474\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 731, Loss: 8.605663\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 732, Loss: 9.401279\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 733, Loss: 9.876429\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 734, Loss: 10.235342\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 735, Loss: 10.233047\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 736, Loss: 11.786407\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 737, Loss: 10.821179\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 738, Loss: 10.625976\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 739, Loss: 8.116454\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 740, Loss: 8.643763\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 741, Loss: 9.025370\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 742, Loss: 8.682320\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 743, Loss: 9.508684\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 744, Loss: 8.265537\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 745, Loss: 10.055468\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 746, Loss: 9.443352\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 747, Loss: 8.402540\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 748, Loss: 7.534197\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 749, Loss: 10.260080\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 750, Loss: 8.793426\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 751, Loss: 8.350716\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 752, Loss: 7.550567\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 753, Loss: 8.514874\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 754, Loss: 8.588834\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 755, Loss: 8.656446\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 756, Loss: 9.471093\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 757, Loss: 8.293612\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 758, Loss: 9.266383\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 759, Loss: 9.722163\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 760, Loss: 10.109635\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 761, Loss: 10.943898\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 762, Loss: 8.679423\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 763, Loss: 10.327888\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 764, Loss: 9.615992\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 765, Loss: 11.351665\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 766, Loss: 9.657120\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 767, Loss: 9.888374\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 768, Loss: 9.802295\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 769, Loss: 7.549894\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 770, Loss: 8.176022\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 771, Loss: 9.599631\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 772, Loss: 7.870402\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 773, Loss: 8.569164\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 774, Loss: 9.336034\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 775, Loss: 8.998721\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 776, Loss: 9.516575\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 777, Loss: 8.158456\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 778, Loss: 8.166006\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 779, Loss: 8.768907\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 780, Loss: 8.435233\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 781, Loss: 9.767718\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 782, Loss: 8.542564\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 783, Loss: 11.608993\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 784, Loss: 9.333539\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 785, Loss: 10.846798\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 786, Loss: 9.105956\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 787, Loss: 8.446214\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 788, Loss: 8.340978\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 789, Loss: 7.510399\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 790, Loss: 6.912902\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 791, Loss: 10.033069\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 792, Loss: 8.272873\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 793, Loss: 8.991196\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 794, Loss: 7.380542\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 795, Loss: 8.103102\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 796, Loss: 8.116377\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 797, Loss: 9.707966\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 798, Loss: 9.072953\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 799, Loss: 9.758541\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 800, Loss: 10.469186\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 801, Loss: 10.494802\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 802, Loss: 9.451381\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 803, Loss: 8.638041\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 804, Loss: 8.304389\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 805, Loss: 8.199572\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 806, Loss: 7.156180\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 807, Loss: 9.514960\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 808, Loss: 8.584104\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 809, Loss: 9.731879\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 810, Loss: 8.170696\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 811, Loss: 6.968989\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 812, Loss: 8.714315\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 813, Loss: 9.056257\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 814, Loss: 7.603789\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 815, Loss: 7.453172\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 816, Loss: 8.893702\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 817, Loss: 8.645870\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 818, Loss: 9.557216\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 819, Loss: 8.161943\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 820, Loss: 11.169976\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 821, Loss: 7.838792\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 822, Loss: 8.606341\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 823, Loss: 8.843021\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 824, Loss: 9.253339\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 825, Loss: 7.861606\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 826, Loss: 10.234518\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 827, Loss: 9.082520\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 828, Loss: 8.987169\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 829, Loss: 8.648679\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 830, Loss: 7.867022\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 831, Loss: 8.488505\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 832, Loss: 8.247123\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 833, Loss: 8.208192\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 834, Loss: 11.155522\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 835, Loss: 10.341152\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 836, Loss: 9.124560\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 837, Loss: 8.335372\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 838, Loss: 7.663232\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 839, Loss: 8.933658\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 840, Loss: 11.196883\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 841, Loss: 8.384691\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 842, Loss: 8.510213\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 843, Loss: 7.547024\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 844, Loss: 8.475610\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 845, Loss: 7.773025\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 846, Loss: 9.164577\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 847, Loss: 7.854285\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 848, Loss: 8.232638\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 849, Loss: 8.550889\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 850, Loss: 7.396897\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 851, Loss: 9.291962\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 852, Loss: 9.464426\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 853, Loss: 7.160296\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 854, Loss: 7.967021\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 855, Loss: 7.169912\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 856, Loss: 7.343166\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 857, Loss: 8.823906\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 858, Loss: 9.352829\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 859, Loss: 7.651575\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 860, Loss: 7.705785\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 861, Loss: 11.346847\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 862, Loss: 9.185071\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 863, Loss: 8.128662\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 864, Loss: 9.209348\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 865, Loss: 9.099183\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 866, Loss: 9.045375\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 867, Loss: 7.129469\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 868, Loss: 7.916426\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 869, Loss: 7.678178\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 870, Loss: 8.880607\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 871, Loss: 7.277672\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 872, Loss: 7.922806\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 873, Loss: 7.601537\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 874, Loss: 10.934754\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 875, Loss: 8.509269\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 876, Loss: 7.996182\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 877, Loss: 8.271731\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 878, Loss: 7.895418\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 879, Loss: 8.355124\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 880, Loss: 8.402732\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 881, Loss: 8.332094\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 882, Loss: 7.202960\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 883, Loss: 8.843686\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 884, Loss: 7.596416\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 885, Loss: 6.837517\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 886, Loss: 7.747964\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 887, Loss: 9.264927\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 888, Loss: 7.613747\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 889, Loss: 8.690775\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 890, Loss: 7.740536\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 891, Loss: 7.793677\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 892, Loss: 7.054568\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 893, Loss: 7.097172\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 894, Loss: 8.042013\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 895, Loss: 9.210662\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 896, Loss: 9.203928\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 897, Loss: 9.141297\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 898, Loss: 8.010346\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 899, Loss: 7.467629\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 900, Loss: 7.837258\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 901, Loss: 6.266317\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 902, Loss: 9.546917\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 903, Loss: 8.012390\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 904, Loss: 10.844731\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 905, Loss: 8.985556\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 906, Loss: 7.755092\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 907, Loss: 8.524701\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 908, Loss: 8.335794\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 909, Loss: 8.872910\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 910, Loss: 7.731305\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 911, Loss: 8.379056\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 912, Loss: 9.178687\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 913, Loss: 6.357515\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 914, Loss: 9.502442\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 915, Loss: 9.293030\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 916, Loss: 9.210846\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 917, Loss: 11.100274\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 918, Loss: 8.934282\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 919, Loss: 7.572188\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 920, Loss: 7.892005\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 921, Loss: 7.930780\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 922, Loss: 8.056495\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 923, Loss: 8.280036\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 924, Loss: 8.050991\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 925, Loss: 7.959547\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 926, Loss: 8.421679\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 927, Loss: 7.919049\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 928, Loss: 8.927897\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 929, Loss: 6.603360\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 930, Loss: 6.709868\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 931, Loss: 7.207462\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 932, Loss: 7.460428\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 933, Loss: 6.353100\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 934, Loss: 6.836983\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 935, Loss: 8.196158\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 936, Loss: 6.814286\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 937, Loss: 7.514614\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 938, Loss: 8.556982\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 939, Loss: 8.924750\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 940, Loss: 8.470985\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 941, Loss: 7.424606\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 942, Loss: 7.506484\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 943, Loss: 7.781964\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 944, Loss: 8.945619\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 945, Loss: 9.642703\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 946, Loss: 8.205667\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 947, Loss: 7.424786\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 948, Loss: 6.945283\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 949, Loss: 8.188521\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 950, Loss: 7.170248\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 951, Loss: 7.757102\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 952, Loss: 7.816066\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 953, Loss: 7.746596\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 954, Loss: 8.479219\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 955, Loss: 7.588252\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 956, Loss: 8.048375\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 957, Loss: 7.787094\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 958, Loss: 8.735384\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 959, Loss: 6.337387\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 960, Loss: 7.673718\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 961, Loss: 8.779475\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 962, Loss: 7.113128\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 963, Loss: 7.579429\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 964, Loss: 8.429239\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 965, Loss: 8.260295\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 966, Loss: 9.010393\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 967, Loss: 7.212451\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 968, Loss: 8.313077\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 969, Loss: 8.100530\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 970, Loss: 8.034011\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 971, Loss: 7.405901\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 972, Loss: 9.106516\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 973, Loss: 6.093298\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 974, Loss: 7.514913\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 975, Loss: 8.468239\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 976, Loss: 7.061135\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 977, Loss: 6.987869\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 978, Loss: 6.613303\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 979, Loss: 6.851511\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 980, Loss: 7.603094\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 981, Loss: 6.878148\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 982, Loss: 6.487921\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 983, Loss: 8.215177\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 984, Loss: 6.675086\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 985, Loss: 8.436515\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 986, Loss: 8.356104\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 987, Loss: 7.929754\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 988, Loss: 7.050149\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 989, Loss: 7.832212\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 990, Loss: 7.953135\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 991, Loss: 7.016287\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 992, Loss: 7.441249\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 993, Loss: 7.016452\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 994, Loss: 8.054298\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 995, Loss: 8.319961\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 996, Loss: 7.911375\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 997, Loss: 10.149647\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 998, Loss: 8.423682\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 999, Loss: 7.258798\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1000, Loss: 8.749298\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1001, Loss: 6.936984\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1002, Loss: 7.513880\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1003, Loss: 7.379272\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1004, Loss: 8.670536\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1005, Loss: 7.840573\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1006, Loss: 8.197629\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1007, Loss: 6.474467\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1008, Loss: 7.013732\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1009, Loss: 7.077044\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1010, Loss: 7.476112\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1011, Loss: 7.254078\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1012, Loss: 7.048505\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1013, Loss: 6.876112\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1014, Loss: 7.078892\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1015, Loss: 10.054131\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1016, Loss: 7.301302\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1017, Loss: 6.970652\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1018, Loss: 8.408538\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1019, Loss: 8.081262\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1020, Loss: 9.084825\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1021, Loss: 7.951795\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1022, Loss: 10.330283\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1023, Loss: 6.739496\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1024, Loss: 7.800066\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1025, Loss: 7.795263\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1026, Loss: 6.865484\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1027, Loss: 8.141017\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1028, Loss: 7.998606\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1029, Loss: 6.861808\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1030, Loss: 9.207690\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1031, Loss: 7.272445\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1032, Loss: 9.385327\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1033, Loss: 8.425086\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1034, Loss: 8.352285\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1035, Loss: 7.548450\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1036, Loss: 7.813269\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1037, Loss: 6.467385\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1038, Loss: 5.973841\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1039, Loss: 9.588086\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1040, Loss: 10.919248\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1041, Loss: 9.402523\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1042, Loss: 7.333742\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1043, Loss: 6.427742\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1044, Loss: 7.716303\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1045, Loss: 8.681756\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1046, Loss: 8.101543\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1047, Loss: 8.434857\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1048, Loss: 8.459711\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1049, Loss: 8.007819\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1050, Loss: 7.046751\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1051, Loss: 7.537737\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1052, Loss: 8.187508\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1053, Loss: 7.035248\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1054, Loss: 8.231130\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1055, Loss: 6.673572\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1056, Loss: 8.367208\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1057, Loss: 8.329041\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1058, Loss: 6.832726\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1059, Loss: 6.885329\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1060, Loss: 7.461857\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1061, Loss: 7.576745\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1062, Loss: 7.360915\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1063, Loss: 6.513860\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1064, Loss: 8.076729\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1065, Loss: 6.955448\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1066, Loss: 6.066595\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1067, Loss: 8.306500\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1068, Loss: 7.321918\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1069, Loss: 7.735410\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1070, Loss: 7.323226\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1071, Loss: 7.248536\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1072, Loss: 8.341613\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1073, Loss: 9.501980\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1074, Loss: 8.866120\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1075, Loss: 7.080910\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1076, Loss: 8.378253\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1077, Loss: 8.669053\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1078, Loss: 7.497900\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1079, Loss: 8.540977\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1080, Loss: 6.733154\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1081, Loss: 7.814452\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1082, Loss: 7.129210\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1083, Loss: 8.596010\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1084, Loss: 6.416382\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1085, Loss: 9.360886\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1086, Loss: 6.630719\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1087, Loss: 7.784080\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1088, Loss: 6.286427\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1089, Loss: 6.398163\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1090, Loss: 6.865520\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1091, Loss: 7.309590\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1092, Loss: 6.577370\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1093, Loss: 7.334502\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1094, Loss: 7.744514\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1095, Loss: 6.711012\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1096, Loss: 6.268374\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1097, Loss: 7.980824\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1098, Loss: 7.401938\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1099, Loss: 7.344802\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1100, Loss: 7.348678\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1101, Loss: 7.795117\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1102, Loss: 6.765279\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1103, Loss: 7.411812\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1104, Loss: 6.635240\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1105, Loss: 10.154928\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1106, Loss: 7.552562\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1107, Loss: 7.683791\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1108, Loss: 6.859297\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1109, Loss: 7.161742\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1110, Loss: 9.103688\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1111, Loss: 10.101864\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1112, Loss: 8.808757\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1113, Loss: 8.643300\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1114, Loss: 7.033585\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1115, Loss: 6.270107\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1116, Loss: 7.117428\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1117, Loss: 7.796918\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1118, Loss: 6.633635\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1119, Loss: 6.195274\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1120, Loss: 6.857629\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1121, Loss: 7.003866\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1122, Loss: 6.984133\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1123, Loss: 6.981495\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1124, Loss: 7.172901\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1125, Loss: 8.098133\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1126, Loss: 8.343528\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1127, Loss: 7.974185\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1128, Loss: 8.563287\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1129, Loss: 5.876516\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1130, Loss: 8.012988\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1131, Loss: 7.042454\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1132, Loss: 6.818920\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1133, Loss: 7.876978\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1134, Loss: 6.222264\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1135, Loss: 5.772653\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1136, Loss: 7.634657\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1137, Loss: 5.928710\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1138, Loss: 5.799714\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1139, Loss: 7.841642\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1140, Loss: 6.196646\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1141, Loss: 6.732135\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1142, Loss: 7.075359\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1143, Loss: 7.211893\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1144, Loss: 7.840795\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1145, Loss: 5.969415\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1146, Loss: 7.063520\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1147, Loss: 7.640180\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1148, Loss: 6.488565\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1149, Loss: 7.934309\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1150, Loss: 8.287726\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1151, Loss: 8.452693\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1152, Loss: 7.376402\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1153, Loss: 6.132716\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1154, Loss: 9.998330\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1155, Loss: 8.510095\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1156, Loss: 6.720429\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1157, Loss: 7.065431\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1158, Loss: 6.068806\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1159, Loss: 8.284531\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1160, Loss: 6.694881\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1161, Loss: 7.380184\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1162, Loss: 7.213673\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1163, Loss: 6.681586\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1164, Loss: 6.448502\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1165, Loss: 6.515519\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1166, Loss: 6.371683\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1167, Loss: 7.459750\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1168, Loss: 6.557852\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1169, Loss: 7.167356\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1170, Loss: 6.927118\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1171, Loss: 9.017487\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1172, Loss: 9.249171\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1173, Loss: 8.026866\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1174, Loss: 8.321066\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1175, Loss: 7.967607\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1176, Loss: 7.945820\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1177, Loss: 7.027294\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1178, Loss: 8.020152\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1179, Loss: 6.811204\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1180, Loss: 7.585224\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1181, Loss: 8.618514\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1182, Loss: 5.749571\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1183, Loss: 6.256999\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1184, Loss: 5.667206\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1185, Loss: 7.010927\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1186, Loss: 8.076878\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1187, Loss: 6.373789\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1188, Loss: 7.455114\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1189, Loss: 6.193717\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1190, Loss: 5.802101\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1191, Loss: 6.768904\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1192, Loss: 7.053176\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1193, Loss: 7.307599\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1194, Loss: 6.360531\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1195, Loss: 7.749443\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1196, Loss: 7.952294\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1197, Loss: 7.307652\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1198, Loss: 7.856747\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1199, Loss: 5.914952\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1200, Loss: 6.862473\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1201, Loss: 5.966386\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1202, Loss: 8.952726\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1203, Loss: 7.381376\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1204, Loss: 6.232265\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1205, Loss: 7.125588\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1206, Loss: 7.148923\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1207, Loss: 7.469183\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1208, Loss: 7.025672\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1209, Loss: 6.888362\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1210, Loss: 6.174036\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1211, Loss: 7.707140\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1212, Loss: 8.218190\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1213, Loss: 7.390126\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1214, Loss: 6.038329\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1215, Loss: 7.153862\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1216, Loss: 6.258643\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1217, Loss: 7.447822\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1218, Loss: 7.749879\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1219, Loss: 8.794642\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1220, Loss: 7.970667\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1221, Loss: 7.773409\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1222, Loss: 9.717035\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1223, Loss: 7.642496\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1224, Loss: 6.528027\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1225, Loss: 7.072311\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1226, Loss: 7.300949\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1227, Loss: 8.758934\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1228, Loss: 5.857124\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1229, Loss: 7.238688\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1230, Loss: 6.618490\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1231, Loss: 7.376355\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1232, Loss: 7.088140\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1233, Loss: 7.864350\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1234, Loss: 6.347750\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1235, Loss: 7.068844\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1236, Loss: 7.689342\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1237, Loss: 6.405208\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1238, Loss: 7.094967\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1239, Loss: 5.247365\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1240, Loss: 5.516798\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1241, Loss: 6.861540\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1242, Loss: 8.651903\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1243, Loss: 7.237334\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1244, Loss: 10.894412\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1245, Loss: 10.712794\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1246, Loss: 9.033111\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1247, Loss: 7.060293\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1248, Loss: 7.371490\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1249, Loss: 5.523907\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1250, Loss: 6.486523\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1251, Loss: 6.927355\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1252, Loss: 7.371520\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1253, Loss: 6.786994\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1254, Loss: 7.748773\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1255, Loss: 8.676717\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1256, Loss: 9.312524\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1257, Loss: 8.069680\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1258, Loss: 8.153968\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1259, Loss: 6.856427\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1260, Loss: 7.434235\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1261, Loss: 7.113339\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1262, Loss: 7.131772\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1263, Loss: 6.659421\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1264, Loss: 8.355402\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1265, Loss: 6.610208\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1266, Loss: 6.487060\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1267, Loss: 7.194786\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1268, Loss: 7.505395\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1269, Loss: 6.816099\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1270, Loss: 6.206948\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1271, Loss: 6.523530\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1272, Loss: 6.485398\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1273, Loss: 6.315853\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1274, Loss: 6.692812\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1275, Loss: 6.397010\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1276, Loss: 5.730696\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1277, Loss: 6.419198\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1278, Loss: 6.851607\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1279, Loss: 6.793989\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1280, Loss: 6.937440\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1281, Loss: 7.654762\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1282, Loss: 6.399658\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1283, Loss: 7.138417\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1284, Loss: 7.802728\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1285, Loss: 8.700645\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1286, Loss: 6.384517\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1287, Loss: 7.876754\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1288, Loss: 8.781459\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1289, Loss: 9.109251\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1290, Loss: 8.020154\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1291, Loss: 6.645036\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1292, Loss: 6.192299\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1293, Loss: 7.936487\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1294, Loss: 5.852814\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1295, Loss: 7.070330\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1296, Loss: 7.553851\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1297, Loss: 7.392682\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1298, Loss: 6.375299\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1299, Loss: 5.600990\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1300, Loss: 9.087958\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1301, Loss: 7.355675\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1302, Loss: 8.681280\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1303, Loss: 6.717299\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1304, Loss: 8.575282\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1305, Loss: 6.821041\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1306, Loss: 7.686006\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1307, Loss: 6.416540\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1308, Loss: 7.229742\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1309, Loss: 7.263822\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1310, Loss: 6.927605\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1311, Loss: 7.642811\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1312, Loss: 7.653889\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1313, Loss: 5.666830\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1314, Loss: 6.018787\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1315, Loss: 6.032676\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1316, Loss: 7.249631\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1317, Loss: 6.601531\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1318, Loss: 8.486582\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1319, Loss: 6.545135\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1320, Loss: 6.227525\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1321, Loss: 5.923953\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1322, Loss: 7.224366\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1323, Loss: 7.313949\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1324, Loss: 8.518476\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1325, Loss: 7.391291\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1326, Loss: 6.975162\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1327, Loss: 7.537117\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1328, Loss: 6.729561\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1329, Loss: 6.301255\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1330, Loss: 6.360247\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1331, Loss: 7.473725\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1332, Loss: 7.962213\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1333, Loss: 5.897363\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1334, Loss: 7.104330\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1335, Loss: 7.725303\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1336, Loss: 6.200192\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1337, Loss: 6.894408\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1338, Loss: 7.002884\n", - "SNR:14, Imbalance Percentage:0, Encoding dimension:50, Epoch 1339, Loss: 6.355187\n", - "Stopped early after 1340 epochs, with loss of 5.247365\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 1, Loss: 600.300903\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 2, Loss: 577.920837\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 3, Loss: 553.576599\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 4, Loss: 522.282776\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 5, Loss: 488.906555\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 6, Loss: 459.517670\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 7, Loss: 429.213013\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 8, Loss: 403.453705\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 9, Loss: 376.849487\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 10, Loss: 352.371674\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 11, Loss: 325.585785\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 12, Loss: 303.584167\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 13, Loss: 280.413086\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 14, Loss: 258.017303\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 15, Loss: 233.561066\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 16, Loss: 213.098251\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 17, Loss: 193.100876\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 18, Loss: 173.192780\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 19, Loss: 154.597900\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 20, Loss: 138.455841\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 21, Loss: 121.472260\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 22, Loss: 107.907440\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 23, Loss: 96.143402\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 24, Loss: 87.331917\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 25, Loss: 77.561089\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 26, Loss: 71.932556\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 27, Loss: 67.463234\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 28, Loss: 61.122135\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 29, Loss: 54.738029\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 30, Loss: 54.261276\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 31, Loss: 52.350571\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 32, Loss: 49.116489\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 33, Loss: 50.921448\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 34, Loss: 48.710819\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 35, Loss: 50.861683\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 36, Loss: 47.691998\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 37, Loss: 46.570629\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 38, Loss: 46.679688\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 39, Loss: 45.113438\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 40, Loss: 45.327751\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 41, Loss: 44.156391\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 42, Loss: 44.208672\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 43, Loss: 44.326675\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 44, Loss: 46.262264\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 45, Loss: 44.320389\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 46, Loss: 43.549332\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 47, Loss: 42.699863\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 48, Loss: 43.969021\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 49, Loss: 42.439465\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 50, Loss: 44.278351\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 51, Loss: 42.753738\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 52, Loss: 42.493156\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 53, Loss: 42.620277\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 54, Loss: 40.795322\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 55, Loss: 41.576401\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 56, Loss: 41.613880\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 57, Loss: 41.062435\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 58, Loss: 41.436008\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 59, Loss: 41.544373\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 60, Loss: 39.256496\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 61, Loss: 38.577873\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 62, Loss: 41.066547\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 63, Loss: 38.340603\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 64, Loss: 40.569294\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 65, Loss: 38.262104\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 66, Loss: 38.380451\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 67, Loss: 41.171688\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 68, Loss: 37.926834\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 69, Loss: 38.914730\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 70, Loss: 38.297630\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 71, Loss: 38.516087\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 72, Loss: 41.691364\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 73, Loss: 36.658089\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 74, Loss: 37.388691\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 75, Loss: 36.602562\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 76, Loss: 36.897133\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 77, Loss: 37.419575\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 78, Loss: 35.316914\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 79, Loss: 36.961918\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 80, Loss: 38.332214\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 81, Loss: 39.533382\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 82, Loss: 37.191555\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 83, Loss: 36.143074\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 84, Loss: 35.286118\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 85, Loss: 36.130558\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 86, Loss: 34.737354\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 87, Loss: 35.948322\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 88, Loss: 35.839916\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 89, Loss: 36.113968\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 90, Loss: 34.549709\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 91, Loss: 33.789814\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 92, Loss: 36.772346\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 93, Loss: 34.190792\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 94, Loss: 34.302952\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 95, Loss: 34.926727\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 96, Loss: 35.734596\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 97, Loss: 35.247124\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 98, Loss: 35.352871\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 99, Loss: 36.383095\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 100, Loss: 35.072178\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 101, Loss: 35.753651\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 102, Loss: 33.010170\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 103, Loss: 33.767895\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 104, Loss: 33.699215\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 105, Loss: 32.909035\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 106, Loss: 33.379478\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 107, Loss: 31.976820\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 108, Loss: 34.244221\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 109, Loss: 33.573677\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 110, Loss: 33.940804\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 111, Loss: 34.403587\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 112, Loss: 33.843750\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 113, Loss: 32.257935\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 114, Loss: 33.090946\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 115, Loss: 31.982019\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 116, Loss: 34.444881\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 117, Loss: 30.721258\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 118, Loss: 33.285416\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 119, Loss: 31.618605\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 120, Loss: 33.529396\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 121, Loss: 31.952934\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 122, Loss: 32.747364\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 123, Loss: 30.539778\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 124, Loss: 34.272778\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 125, Loss: 32.495075\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 126, Loss: 31.417175\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 127, Loss: 33.276985\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 128, Loss: 31.431658\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 129, Loss: 31.385738\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 130, Loss: 31.186291\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 131, Loss: 29.920967\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 132, Loss: 29.620871\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 133, Loss: 30.847599\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 134, Loss: 32.712040\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 135, Loss: 31.400961\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 136, Loss: 30.704693\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 137, Loss: 31.384993\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 138, Loss: 32.614410\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 139, Loss: 30.571922\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 140, Loss: 33.501011\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 141, Loss: 31.885736\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 142, Loss: 30.873755\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 143, Loss: 31.634062\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 144, Loss: 32.613049\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 145, Loss: 28.174040\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 146, Loss: 28.921219\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 147, Loss: 29.297039\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 148, Loss: 27.823792\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 149, Loss: 30.756310\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 150, Loss: 33.023697\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 151, Loss: 32.376736\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 152, Loss: 28.601246\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 153, Loss: 29.565220\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 154, Loss: 30.479195\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 155, Loss: 29.654577\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 156, Loss: 29.004110\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 157, Loss: 30.490822\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 158, Loss: 29.371569\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 159, Loss: 31.175369\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 160, Loss: 29.919363\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 161, Loss: 32.744701\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 162, Loss: 29.395676\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 163, Loss: 30.490520\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 164, Loss: 29.773729\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 165, Loss: 28.826408\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 166, Loss: 30.174210\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 167, Loss: 29.075743\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 168, Loss: 29.910982\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 169, Loss: 29.760439\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 170, Loss: 29.395451\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 171, Loss: 29.276505\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 172, Loss: 30.963140\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 173, Loss: 30.420088\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 174, Loss: 29.759668\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 175, Loss: 29.427246\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 176, Loss: 31.475088\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 177, Loss: 30.945982\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 178, Loss: 29.410929\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 179, Loss: 34.317116\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 180, Loss: 30.657841\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 181, Loss: 28.295137\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 182, Loss: 27.761644\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 183, Loss: 28.688004\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 184, Loss: 28.031944\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 185, Loss: 26.932076\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 186, Loss: 28.579405\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 187, Loss: 27.571356\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 188, Loss: 27.247070\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 189, Loss: 28.022938\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 190, Loss: 29.297499\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 191, Loss: 28.492416\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 192, Loss: 30.077633\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 193, Loss: 29.264187\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 194, Loss: 28.239479\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 195, Loss: 28.920799\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 196, Loss: 27.165295\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 197, Loss: 28.419538\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 198, Loss: 28.850149\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 199, Loss: 28.759655\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 200, Loss: 30.717484\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 201, Loss: 28.531479\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 202, Loss: 30.075344\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 203, Loss: 28.925262\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 204, Loss: 26.400665\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 205, Loss: 30.896868\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 206, Loss: 28.975780\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 207, Loss: 27.397600\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 208, Loss: 27.487787\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 209, Loss: 27.547997\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 210, Loss: 28.035412\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 211, Loss: 27.139297\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 212, Loss: 25.332457\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 213, Loss: 28.614822\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 214, Loss: 28.478996\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 215, Loss: 26.085026\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 216, Loss: 29.065073\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 217, Loss: 27.471767\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 218, Loss: 28.832912\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 219, Loss: 27.325668\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 220, Loss: 28.006210\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 221, Loss: 25.608007\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 222, Loss: 27.530003\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 223, Loss: 27.866917\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 224, Loss: 29.900623\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 225, Loss: 27.499397\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 226, Loss: 28.237907\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 227, Loss: 27.707903\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 228, Loss: 27.607706\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 229, Loss: 31.546934\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 230, Loss: 27.702602\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 231, Loss: 28.286421\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 232, Loss: 26.375311\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 233, Loss: 28.140614\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 234, Loss: 28.666061\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 235, Loss: 25.779484\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 236, Loss: 28.119993\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 237, Loss: 28.060976\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 238, Loss: 26.413361\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 239, Loss: 29.083374\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 240, Loss: 26.772390\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 241, Loss: 26.463224\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 242, Loss: 27.141636\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 243, Loss: 28.751848\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 244, Loss: 25.753469\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 245, Loss: 26.486635\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 246, Loss: 26.900379\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 247, Loss: 28.002510\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 248, Loss: 27.861914\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 249, Loss: 27.860664\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 250, Loss: 29.127729\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 251, Loss: 26.491047\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 252, Loss: 28.667326\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 253, Loss: 28.141085\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 254, Loss: 27.200186\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 255, Loss: 26.509874\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 256, Loss: 27.250875\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 257, Loss: 26.536419\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 258, Loss: 26.675819\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 259, Loss: 26.697226\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 260, Loss: 26.367174\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 261, Loss: 28.556761\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 262, Loss: 27.784021\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 263, Loss: 30.426477\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 264, Loss: 26.567465\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 265, Loss: 28.173143\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 266, Loss: 24.687479\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 267, Loss: 26.363182\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 268, Loss: 28.855345\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 269, Loss: 29.933161\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 270, Loss: 26.353174\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 271, Loss: 26.501255\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 272, Loss: 25.374105\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 273, Loss: 26.647572\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 274, Loss: 26.019543\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 275, Loss: 28.021364\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 276, Loss: 26.886059\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 277, Loss: 26.255142\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 278, Loss: 27.599440\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 279, Loss: 24.028517\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 280, Loss: 25.199156\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 281, Loss: 26.094656\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 282, Loss: 26.917686\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 283, Loss: 24.846302\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 284, Loss: 27.116190\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 285, Loss: 27.588655\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 286, Loss: 28.378004\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 287, Loss: 25.534798\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 288, Loss: 27.712759\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 289, Loss: 27.946842\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 290, Loss: 25.496761\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 291, Loss: 27.822039\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 292, Loss: 25.320650\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 293, Loss: 26.093632\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 294, Loss: 26.965353\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 295, Loss: 26.853960\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 296, Loss: 24.958496\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 297, Loss: 26.639030\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 298, Loss: 25.354916\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 299, Loss: 26.397224\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 300, Loss: 25.258450\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 301, Loss: 25.285137\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 302, Loss: 25.150091\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 303, Loss: 26.621210\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 304, Loss: 25.025963\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 305, Loss: 23.510321\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 306, Loss: 24.632021\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 307, Loss: 24.498652\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 308, Loss: 27.837078\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 309, Loss: 25.070343\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 310, Loss: 24.414534\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 311, Loss: 28.337786\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 312, Loss: 26.062021\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 313, Loss: 28.114351\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 314, Loss: 27.525236\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 315, Loss: 29.714857\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 316, Loss: 27.740318\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 317, Loss: 27.529922\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 318, Loss: 23.801245\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 319, Loss: 27.541410\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 320, Loss: 25.439171\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 321, Loss: 25.256092\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 322, Loss: 24.041000\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 323, Loss: 24.716028\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 324, Loss: 26.239637\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 325, Loss: 25.649731\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 326, Loss: 24.346354\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 327, Loss: 27.454498\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 328, Loss: 25.786350\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 329, Loss: 24.030079\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 330, Loss: 24.655544\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 331, Loss: 24.464334\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 332, Loss: 24.385330\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 333, Loss: 26.304129\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 334, Loss: 24.959305\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 335, Loss: 24.619699\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 336, Loss: 23.385160\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 337, Loss: 27.237522\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 338, Loss: 25.185043\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 339, Loss: 27.621765\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 340, Loss: 23.688711\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 341, Loss: 22.344574\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 342, Loss: 26.872129\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 343, Loss: 22.676342\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 344, Loss: 25.637913\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 345, Loss: 27.395260\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 346, Loss: 24.298717\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 347, Loss: 23.229567\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 348, Loss: 23.328051\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 349, Loss: 25.883963\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 350, Loss: 27.296541\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 351, Loss: 27.897919\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 352, Loss: 23.753063\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 353, Loss: 25.887526\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 354, Loss: 25.286818\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 355, Loss: 25.231951\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 356, Loss: 24.802094\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 357, Loss: 26.625313\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 358, Loss: 24.476151\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 359, Loss: 24.878086\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 360, Loss: 23.972952\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 361, Loss: 24.562132\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 362, Loss: 22.848934\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 363, Loss: 24.953535\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 364, Loss: 22.767235\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 365, Loss: 24.622126\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 366, Loss: 22.713205\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 367, Loss: 25.305298\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 368, Loss: 23.382208\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 369, Loss: 22.713810\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 370, Loss: 22.982113\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 371, Loss: 23.141956\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 372, Loss: 24.432140\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 373, Loss: 22.042057\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 374, Loss: 23.164509\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 375, Loss: 26.103476\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 376, Loss: 23.756657\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 377, Loss: 22.228380\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 378, Loss: 24.513279\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 379, Loss: 27.096613\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 380, Loss: 25.555992\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 381, Loss: 23.685829\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 382, Loss: 24.812719\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 383, Loss: 23.336077\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 384, Loss: 24.010803\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 385, Loss: 24.013302\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 386, Loss: 28.094255\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 387, Loss: 22.899107\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 388, Loss: 23.751762\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 389, Loss: 24.811096\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 390, Loss: 24.420860\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 391, Loss: 24.135761\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 392, Loss: 24.963776\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 393, Loss: 22.697500\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 394, Loss: 23.020159\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 395, Loss: 25.240007\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 396, Loss: 23.781042\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 397, Loss: 24.637566\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 398, Loss: 27.449629\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 399, Loss: 23.837395\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 400, Loss: 21.772633\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 401, Loss: 24.064342\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 402, Loss: 22.790419\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 403, Loss: 26.050230\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 404, Loss: 23.771460\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 405, Loss: 22.678648\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 406, Loss: 23.818350\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 407, Loss: 24.406221\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 408, Loss: 21.850460\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 409, Loss: 23.985064\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 410, Loss: 23.348814\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 411, Loss: 22.667866\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 412, Loss: 23.198984\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 413, Loss: 23.950186\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 414, Loss: 26.376188\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 415, Loss: 21.890942\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 416, Loss: 22.917822\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 417, Loss: 26.029364\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 418, Loss: 25.528267\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 419, Loss: 26.441513\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 420, Loss: 24.854107\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 421, Loss: 23.363573\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 422, Loss: 24.260799\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 423, Loss: 22.844839\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 424, Loss: 23.054050\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 425, Loss: 23.619694\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 426, Loss: 22.380081\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 427, Loss: 24.170242\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 428, Loss: 23.018068\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 429, Loss: 24.974995\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 430, Loss: 22.309906\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 431, Loss: 23.789421\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 432, Loss: 24.306459\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 433, Loss: 22.568710\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 434, Loss: 23.786989\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 435, Loss: 23.354446\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 436, Loss: 22.683678\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 437, Loss: 22.519646\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 438, Loss: 22.756596\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 439, Loss: 25.080008\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 440, Loss: 22.477793\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 441, Loss: 23.336065\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 442, Loss: 21.167259\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 443, Loss: 23.827610\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 444, Loss: 22.797968\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 445, Loss: 24.465452\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 446, Loss: 21.493929\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 447, Loss: 23.174124\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 448, Loss: 23.551582\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 449, Loss: 23.680740\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 450, Loss: 24.023027\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 451, Loss: 22.915174\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 452, Loss: 26.012112\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 453, Loss: 22.875191\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 454, Loss: 23.523447\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 455, Loss: 22.509449\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 456, Loss: 21.689585\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 457, Loss: 22.723671\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 458, Loss: 23.007200\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 459, Loss: 22.467319\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 460, Loss: 23.234259\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 461, Loss: 19.471170\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 462, Loss: 23.257492\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 463, Loss: 22.772516\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 464, Loss: 21.317326\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 465, Loss: 22.911615\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 466, Loss: 22.735006\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 467, Loss: 20.919395\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 468, Loss: 24.855398\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 469, Loss: 23.014845\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 470, Loss: 21.688351\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 471, Loss: 23.943199\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 472, Loss: 25.540094\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 473, Loss: 22.966204\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 474, Loss: 20.006018\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 475, Loss: 24.309752\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 476, Loss: 24.303024\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 477, Loss: 20.463997\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 478, Loss: 20.050343\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 479, Loss: 23.411552\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 480, Loss: 23.159555\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 481, Loss: 20.877600\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 482, Loss: 24.013123\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 483, Loss: 23.671064\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 484, Loss: 25.877377\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 485, Loss: 22.447929\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 486, Loss: 20.432253\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 487, Loss: 21.464012\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 488, Loss: 22.549435\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 489, Loss: 23.390930\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 490, Loss: 19.719213\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 491, Loss: 22.213478\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 492, Loss: 20.268213\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 493, Loss: 23.408571\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 494, Loss: 21.835173\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 495, Loss: 23.155470\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 496, Loss: 21.452810\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 497, Loss: 25.365614\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 498, Loss: 19.572252\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 499, Loss: 22.580185\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 500, Loss: 23.274237\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 501, Loss: 23.109825\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 502, Loss: 22.889915\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 503, Loss: 23.244434\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 504, Loss: 19.214924\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 505, Loss: 21.152880\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 506, Loss: 23.018211\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 507, Loss: 21.240738\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 508, Loss: 24.308420\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 509, Loss: 20.761620\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 510, Loss: 22.326723\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 511, Loss: 20.303064\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 512, Loss: 21.499907\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 513, Loss: 20.974203\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 514, Loss: 21.328169\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 515, Loss: 20.938902\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 516, Loss: 22.060795\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 517, Loss: 24.636808\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 518, Loss: 19.102814\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 519, Loss: 19.563923\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 520, Loss: 22.567530\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 521, Loss: 22.551357\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 522, Loss: 22.481987\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 523, Loss: 22.255127\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 524, Loss: 21.850370\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 525, Loss: 21.036211\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 526, Loss: 21.478224\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 527, Loss: 21.757904\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 528, Loss: 21.021254\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 529, Loss: 23.695728\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 530, Loss: 21.153967\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 531, Loss: 20.183737\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 532, Loss: 18.279921\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 533, Loss: 20.134733\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 534, Loss: 21.220089\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 535, Loss: 19.962036\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 536, Loss: 19.505594\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 537, Loss: 22.741785\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 538, Loss: 22.691048\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 539, Loss: 20.486153\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 540, Loss: 20.400625\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 541, Loss: 18.281351\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 542, Loss: 22.992441\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 543, Loss: 21.863174\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 544, Loss: 20.069443\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 545, Loss: 21.808418\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 546, Loss: 21.016722\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 547, Loss: 20.914593\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 548, Loss: 20.193998\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 549, Loss: 22.660049\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 550, Loss: 20.555000\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 551, Loss: 22.153990\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 552, Loss: 21.241304\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 553, Loss: 21.364870\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 554, Loss: 19.179359\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 555, Loss: 20.475483\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 556, Loss: 22.245127\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 557, Loss: 20.781092\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 558, Loss: 21.264137\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 559, Loss: 21.932274\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 560, Loss: 21.440037\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 561, Loss: 23.622936\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 562, Loss: 19.904366\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 563, Loss: 18.750248\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 564, Loss: 20.945204\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 565, Loss: 18.489216\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 566, Loss: 21.102884\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 567, Loss: 21.333601\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 568, Loss: 19.788698\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 569, Loss: 20.665096\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 570, Loss: 18.857756\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 571, Loss: 20.830267\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 572, Loss: 22.022163\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 573, Loss: 20.133495\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 574, Loss: 21.974989\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 575, Loss: 20.523104\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 576, Loss: 20.820904\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 577, Loss: 22.019207\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 578, Loss: 24.019819\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 579, Loss: 19.925142\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 580, Loss: 20.509188\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 581, Loss: 21.957617\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 582, Loss: 20.226448\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 583, Loss: 22.493074\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 584, Loss: 19.517847\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 585, Loss: 22.071898\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 586, Loss: 19.736559\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 587, Loss: 19.282139\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 588, Loss: 19.347282\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 589, Loss: 19.714211\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 590, Loss: 20.713911\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 591, Loss: 22.345169\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 592, Loss: 19.395155\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 593, Loss: 22.870268\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 594, Loss: 19.658318\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 595, Loss: 19.231466\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 596, Loss: 22.488703\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 597, Loss: 21.236113\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 598, Loss: 20.881445\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 599, Loss: 20.541023\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 600, Loss: 21.570286\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 601, Loss: 20.211103\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 602, Loss: 18.407221\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 603, Loss: 21.321968\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 604, Loss: 19.485266\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 605, Loss: 21.077480\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 606, Loss: 20.204365\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 607, Loss: 20.108709\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 608, Loss: 21.804651\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 609, Loss: 21.483040\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 610, Loss: 20.511345\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 611, Loss: 19.969881\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 612, Loss: 21.793524\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 613, Loss: 17.963680\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 614, Loss: 19.483175\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 615, Loss: 19.099928\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 616, Loss: 19.879862\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 617, Loss: 17.260733\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 618, Loss: 20.546289\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 619, Loss: 18.982832\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 620, Loss: 20.213091\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 621, Loss: 20.495897\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 622, Loss: 21.121798\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 623, Loss: 18.345718\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 624, Loss: 18.629295\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 625, Loss: 19.910536\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 626, Loss: 24.033569\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 627, Loss: 22.048632\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 628, Loss: 19.861372\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 629, Loss: 21.866026\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 630, Loss: 22.283678\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 631, Loss: 20.141329\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 632, Loss: 17.187309\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 633, Loss: 18.009848\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 634, Loss: 20.691383\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 635, Loss: 19.311350\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 636, Loss: 21.096382\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 637, Loss: 17.744413\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 638, Loss: 19.297588\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 639, Loss: 18.510963\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 640, Loss: 22.554968\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 641, Loss: 17.227188\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 642, Loss: 21.172482\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 643, Loss: 20.339453\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 644, Loss: 17.657061\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 645, Loss: 18.969450\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 646, Loss: 19.798485\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 647, Loss: 18.633610\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 648, Loss: 19.370600\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 649, Loss: 20.059425\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 650, Loss: 17.417881\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 651, Loss: 17.986277\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 652, Loss: 19.332027\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 653, Loss: 19.074724\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 654, Loss: 20.825468\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 655, Loss: 18.336937\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 656, Loss: 19.179153\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 657, Loss: 19.815020\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 658, Loss: 19.147497\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 659, Loss: 18.275415\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 660, Loss: 18.314856\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 661, Loss: 18.693707\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 662, Loss: 19.804951\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 663, Loss: 19.232708\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 664, Loss: 22.400434\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 665, Loss: 21.023224\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 666, Loss: 19.918287\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 667, Loss: 19.623762\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 668, Loss: 22.274317\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 669, Loss: 18.012667\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 670, Loss: 18.627085\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 671, Loss: 18.898569\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 672, Loss: 18.123304\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 673, Loss: 18.997742\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 674, Loss: 19.076849\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 675, Loss: 20.064030\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 676, Loss: 17.510235\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 677, Loss: 21.846476\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 678, Loss: 18.816114\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 679, Loss: 19.782253\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 680, Loss: 21.471361\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 681, Loss: 20.105364\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 682, Loss: 16.565130\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 683, Loss: 20.798763\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 684, Loss: 16.877089\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 685, Loss: 17.549267\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 686, Loss: 19.939648\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 687, Loss: 20.593130\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 688, Loss: 16.113731\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 689, Loss: 20.039152\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 690, Loss: 18.955408\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 691, Loss: 17.720827\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 692, Loss: 19.559679\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 693, Loss: 15.062792\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 694, Loss: 19.102934\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 695, Loss: 19.843596\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 696, Loss: 19.770052\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 697, Loss: 17.531284\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 698, Loss: 17.540279\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 699, Loss: 18.807673\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 700, Loss: 18.894438\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 701, Loss: 20.228460\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 702, Loss: 18.396870\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 703, Loss: 19.324291\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 704, Loss: 22.633442\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 705, Loss: 18.772863\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 706, Loss: 19.501146\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 707, Loss: 16.285852\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 708, Loss: 19.886166\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 709, Loss: 17.750706\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 710, Loss: 18.329977\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 711, Loss: 18.600685\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 712, Loss: 17.497320\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 713, Loss: 16.859726\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 714, Loss: 16.700619\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 715, Loss: 19.812256\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 716, Loss: 19.672050\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 717, Loss: 19.561016\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 718, Loss: 18.941433\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 719, Loss: 17.914087\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 720, Loss: 18.008408\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 721, Loss: 17.964729\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 722, Loss: 17.459595\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 723, Loss: 19.705074\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 724, Loss: 17.293297\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 725, Loss: 16.403193\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 726, Loss: 20.959766\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 727, Loss: 16.555372\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 728, Loss: 18.669950\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 729, Loss: 17.436398\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 730, Loss: 17.687346\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 731, Loss: 18.050110\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 732, Loss: 19.009109\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 733, Loss: 16.888588\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 734, Loss: 16.196884\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 735, Loss: 18.988401\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 736, Loss: 17.658295\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 737, Loss: 19.494322\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 738, Loss: 19.349306\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 739, Loss: 15.075728\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 740, Loss: 16.925400\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 741, Loss: 17.478916\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 742, Loss: 18.501963\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 743, Loss: 15.862723\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 744, Loss: 19.073303\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 745, Loss: 20.372198\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 746, Loss: 16.552601\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 747, Loss: 16.699921\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 748, Loss: 18.476099\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 749, Loss: 16.592331\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 750, Loss: 17.605650\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 751, Loss: 19.596003\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 752, Loss: 17.168499\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 753, Loss: 16.742348\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 754, Loss: 16.066826\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 755, Loss: 17.186953\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 756, Loss: 19.362408\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 757, Loss: 18.643354\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 758, Loss: 18.939039\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 759, Loss: 17.045996\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 760, Loss: 18.282839\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 761, Loss: 20.327654\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 762, Loss: 17.702168\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 763, Loss: 17.908781\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 764, Loss: 18.009176\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 765, Loss: 17.472109\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 766, Loss: 17.046707\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 767, Loss: 18.460758\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 768, Loss: 17.508142\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 769, Loss: 18.226974\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 770, Loss: 15.991915\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 771, Loss: 16.960300\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 772, Loss: 17.264551\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 773, Loss: 19.801992\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 774, Loss: 17.693932\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 775, Loss: 17.425928\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 776, Loss: 19.544954\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 777, Loss: 15.068478\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 778, Loss: 18.997660\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 779, Loss: 19.268312\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 780, Loss: 16.372295\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 781, Loss: 17.060284\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 782, Loss: 15.305927\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 783, Loss: 17.654348\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 784, Loss: 17.095388\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 785, Loss: 17.924576\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 786, Loss: 17.425751\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 787, Loss: 17.391388\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 788, Loss: 16.708698\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 789, Loss: 21.953888\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 790, Loss: 17.861374\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 791, Loss: 19.031845\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 792, Loss: 18.428928\n", - "SNR:11, Imbalance Percentage:0, Encoding dimension:50, Epoch 793, Loss: 17.827841\n", - "Stopped early after 794 epochs, with loss of 15.062792\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 1, Loss: 588.288574\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 2, Loss: 569.691895\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 3, Loss: 542.737610\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 4, Loss: 514.001831\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 5, Loss: 480.260803\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 6, Loss: 452.403809\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 7, Loss: 425.601074\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 8, Loss: 399.521484\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 9, Loss: 376.629486\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 10, Loss: 349.271332\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 11, Loss: 325.949158\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 12, Loss: 303.411926\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 13, Loss: 280.499359\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 14, Loss: 259.961761\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 15, Loss: 233.287628\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 16, Loss: 216.880096\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 17, Loss: 194.680893\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 18, Loss: 178.208832\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 19, Loss: 159.384064\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 20, Loss: 145.210358\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 21, Loss: 123.742981\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 22, Loss: 112.268120\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 23, Loss: 103.977676\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 24, Loss: 93.308205\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 25, Loss: 87.828827\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 26, Loss: 81.036438\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 27, Loss: 74.889282\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 28, Loss: 70.077309\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 29, Loss: 63.406956\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 30, Loss: 63.802090\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 31, Loss: 59.944462\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 32, Loss: 60.834301\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 33, Loss: 61.590992\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 34, Loss: 57.504494\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 35, Loss: 58.640850\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 36, Loss: 56.732128\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 37, Loss: 58.080814\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 38, Loss: 60.676136\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 39, Loss: 51.584705\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 40, Loss: 52.196480\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 41, Loss: 53.579239\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 42, Loss: 57.705883\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 43, Loss: 53.446434\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 44, Loss: 52.538319\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 45, Loss: 51.891064\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 46, Loss: 52.694534\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 47, Loss: 57.834244\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 48, Loss: 53.191578\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 49, Loss: 52.476372\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 50, Loss: 54.133495\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 51, Loss: 55.323940\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 52, Loss: 47.440071\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 53, Loss: 51.290924\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 54, Loss: 52.301460\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 55, Loss: 48.682098\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 56, Loss: 46.567490\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 57, Loss: 48.798740\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 58, Loss: 47.973564\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 59, Loss: 46.594784\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 60, Loss: 51.655220\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 61, Loss: 50.554218\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 62, Loss: 44.097973\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 63, Loss: 52.671379\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 64, Loss: 46.687466\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 65, Loss: 48.708908\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 66, Loss: 46.539158\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 67, Loss: 53.447128\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 68, Loss: 47.827538\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 69, Loss: 48.668488\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 70, Loss: 45.943451\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 71, Loss: 47.026081\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 72, Loss: 47.622383\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 73, Loss: 45.535507\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 74, Loss: 43.683510\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 75, Loss: 45.772141\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 76, Loss: 48.264015\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 77, Loss: 44.122559\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 78, Loss: 45.247425\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 79, Loss: 47.117035\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 80, Loss: 44.212357\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 81, Loss: 43.140865\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 82, Loss: 44.474861\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 83, Loss: 44.163143\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 84, Loss: 42.395958\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 85, Loss: 47.965965\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 86, Loss: 48.323193\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 87, Loss: 42.878269\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 88, Loss: 43.844120\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 89, Loss: 45.245514\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 90, Loss: 45.572884\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 91, Loss: 47.241394\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 92, Loss: 44.045975\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 93, Loss: 49.185692\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 94, Loss: 45.436501\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 95, Loss: 43.756516\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 96, Loss: 45.428188\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 97, Loss: 47.204224\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 98, Loss: 44.722397\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 99, Loss: 41.960602\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 100, Loss: 44.099621\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 101, Loss: 41.889717\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 102, Loss: 44.246525\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 103, Loss: 42.874393\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 104, Loss: 42.044483\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 105, Loss: 43.600594\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 106, Loss: 44.110775\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 107, Loss: 41.120007\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 108, Loss: 48.295322\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 109, Loss: 43.495010\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 110, Loss: 45.596767\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 111, Loss: 41.107113\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 112, Loss: 44.276184\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 113, Loss: 45.080978\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 114, Loss: 45.297939\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 115, Loss: 41.641899\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 116, Loss: 44.139236\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 117, Loss: 44.032833\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 118, Loss: 44.677582\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 119, Loss: 45.574181\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 120, Loss: 44.240593\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 121, Loss: 40.591999\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 122, Loss: 40.677853\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 123, Loss: 42.943253\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 124, Loss: 42.300797\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 125, Loss: 40.823261\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 126, Loss: 44.484818\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 127, Loss: 45.818123\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 128, Loss: 43.039242\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 129, Loss: 41.567928\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 130, Loss: 49.470890\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 131, Loss: 42.281956\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 132, Loss: 44.912369\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 133, Loss: 38.243858\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 134, Loss: 43.999207\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 135, Loss: 41.533203\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 136, Loss: 43.249111\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 137, Loss: 38.329899\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 138, Loss: 41.899826\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 139, Loss: 40.960819\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 140, Loss: 46.055428\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 141, Loss: 40.890263\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 142, Loss: 43.179428\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 143, Loss: 41.189316\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 144, Loss: 39.183613\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 145, Loss: 37.415054\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 146, Loss: 40.133884\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 147, Loss: 41.501350\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 148, Loss: 44.101597\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 149, Loss: 43.226749\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 150, Loss: 40.008434\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 151, Loss: 44.386215\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 152, Loss: 41.975742\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 153, Loss: 43.457848\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 154, Loss: 39.547340\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 155, Loss: 42.148354\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 156, Loss: 43.196968\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 157, Loss: 40.611954\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 158, Loss: 39.651566\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 159, Loss: 38.830555\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 160, Loss: 42.037369\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 161, Loss: 40.751930\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 162, Loss: 42.735161\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 163, Loss: 39.108421\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 164, Loss: 42.902111\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 165, Loss: 42.582405\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 166, Loss: 39.585487\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 167, Loss: 38.416439\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 168, Loss: 39.673016\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 169, Loss: 39.253380\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 170, Loss: 42.134163\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 171, Loss: 38.641094\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 172, Loss: 39.360596\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 173, Loss: 41.307873\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 174, Loss: 41.582954\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 175, Loss: 40.213161\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 176, Loss: 41.344532\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 177, Loss: 39.407223\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 178, Loss: 40.823563\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 179, Loss: 36.254776\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 180, Loss: 39.797203\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 181, Loss: 38.684464\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 182, Loss: 40.469719\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 183, Loss: 39.324802\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 184, Loss: 42.407429\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 185, Loss: 42.337440\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 186, Loss: 38.126022\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 187, Loss: 43.506115\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 188, Loss: 42.074574\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 189, Loss: 39.015354\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 190, Loss: 40.395905\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 191, Loss: 38.254261\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 192, Loss: 42.927586\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 193, Loss: 37.220783\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 194, Loss: 41.290321\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 195, Loss: 37.305275\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 196, Loss: 37.340683\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 197, Loss: 43.246777\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 198, Loss: 38.157722\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 199, Loss: 39.322716\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 200, Loss: 40.668671\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 201, Loss: 37.473980\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 202, Loss: 38.459763\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 203, Loss: 39.558754\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 204, Loss: 39.680481\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 205, Loss: 38.505547\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 206, Loss: 39.401730\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 207, Loss: 37.412998\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 208, Loss: 39.428452\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 209, Loss: 40.239208\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 210, Loss: 37.585487\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 211, Loss: 39.949909\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 212, Loss: 42.421322\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 213, Loss: 39.873177\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 214, Loss: 44.677052\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 215, Loss: 40.155663\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 216, Loss: 39.173664\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 217, Loss: 36.925686\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 218, Loss: 40.153622\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 219, Loss: 39.355530\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 220, Loss: 37.561646\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 221, Loss: 41.175632\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 222, Loss: 37.866467\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 223, Loss: 39.998341\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 224, Loss: 38.628059\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 225, Loss: 39.231262\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 226, Loss: 33.912201\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 227, Loss: 39.169960\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 228, Loss: 37.059238\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 229, Loss: 39.066151\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 230, Loss: 37.841736\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 231, Loss: 37.265163\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 232, Loss: 36.285629\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 233, Loss: 40.951244\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 234, Loss: 38.460133\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 235, Loss: 36.061459\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 236, Loss: 41.309914\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 237, Loss: 38.460350\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 238, Loss: 35.730865\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 239, Loss: 38.747555\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 240, Loss: 38.415329\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 241, Loss: 37.936775\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 242, Loss: 38.934505\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 243, Loss: 35.117889\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 244, Loss: 35.628914\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 245, Loss: 38.502579\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 246, Loss: 36.865807\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 247, Loss: 37.702824\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 248, Loss: 37.552536\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 249, Loss: 39.307556\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 250, Loss: 40.293877\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 251, Loss: 39.265656\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 252, Loss: 41.221283\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 253, Loss: 40.341972\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 254, Loss: 39.782665\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 255, Loss: 40.318359\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 256, Loss: 40.016113\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 257, Loss: 37.110844\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 258, Loss: 36.252148\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 259, Loss: 37.561161\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 260, Loss: 36.300503\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 261, Loss: 37.623215\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 262, Loss: 40.871410\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 263, Loss: 38.813633\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 264, Loss: 38.802578\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 265, Loss: 36.629963\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 266, Loss: 42.327858\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 267, Loss: 37.342449\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 268, Loss: 39.507618\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 269, Loss: 35.497425\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 270, Loss: 39.793938\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 271, Loss: 40.126694\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 272, Loss: 37.108955\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 273, Loss: 35.875103\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 274, Loss: 37.924927\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 275, Loss: 40.286247\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 276, Loss: 35.830856\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 277, Loss: 39.898750\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 278, Loss: 38.801151\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 279, Loss: 41.500145\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 280, Loss: 36.474102\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 281, Loss: 37.233875\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 282, Loss: 41.197166\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 283, Loss: 37.156338\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 284, Loss: 44.171646\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 285, Loss: 39.256420\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 286, Loss: 38.993038\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 287, Loss: 37.435078\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 288, Loss: 37.660847\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 289, Loss: 38.054764\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 290, Loss: 36.060791\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 291, Loss: 35.719597\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 292, Loss: 35.951794\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 293, Loss: 36.516087\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 294, Loss: 39.985233\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 295, Loss: 41.294628\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 296, Loss: 37.819660\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 297, Loss: 36.814354\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 298, Loss: 35.820660\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 299, Loss: 38.201355\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 300, Loss: 36.974827\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 301, Loss: 40.596104\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 302, Loss: 38.240772\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 303, Loss: 36.711853\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 304, Loss: 39.425583\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 305, Loss: 35.616039\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 306, Loss: 33.988178\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 307, Loss: 34.616310\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 308, Loss: 34.758049\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 309, Loss: 37.623749\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 310, Loss: 39.566364\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 311, Loss: 40.615772\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 312, Loss: 38.619503\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 313, Loss: 35.224712\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 314, Loss: 34.659119\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 315, Loss: 36.727543\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 316, Loss: 41.000324\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 317, Loss: 37.248486\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 318, Loss: 35.266327\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 319, Loss: 35.281036\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 320, Loss: 38.853470\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 321, Loss: 38.922443\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 322, Loss: 34.385910\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 323, Loss: 37.904953\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 324, Loss: 37.488945\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 325, Loss: 34.217686\n", - "SNR:8, Imbalance Percentage:0, Encoding dimension:50, Epoch 326, Loss: 35.375420\n", - "Stopped early after 327 epochs, with loss of 33.912201\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 1, Loss: 593.641418\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 2, Loss: 566.592285\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 3, Loss: 547.768799\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 4, Loss: 526.961060\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 5, Loss: 504.344116\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 6, Loss: 477.096985\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 7, Loss: 450.776794\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 8, Loss: 424.228271\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 9, Loss: 401.044312\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 10, Loss: 373.672516\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 11, Loss: 351.258942\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 12, Loss: 326.760742\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 13, Loss: 310.035706\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 14, Loss: 279.408356\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 15, Loss: 260.117065\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 16, Loss: 240.725739\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 17, Loss: 224.197891\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 18, Loss: 206.370026\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 19, Loss: 180.450226\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 20, Loss: 160.391907\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 21, Loss: 145.745544\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 22, Loss: 133.913544\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 23, Loss: 122.163177\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 24, Loss: 116.558167\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 25, Loss: 112.079163\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 26, Loss: 100.504547\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 27, Loss: 91.942207\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 28, Loss: 89.723633\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 29, Loss: 87.465660\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 30, Loss: 87.615616\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 31, Loss: 83.352287\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 32, Loss: 78.967430\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 33, Loss: 80.374367\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 34, Loss: 78.369690\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 35, Loss: 78.787674\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 36, Loss: 77.170921\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 37, Loss: 80.095764\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 38, Loss: 76.802353\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 39, Loss: 73.260559\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 40, Loss: 77.832237\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 41, Loss: 79.852577\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 42, Loss: 77.964928\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 43, Loss: 71.175819\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 44, Loss: 68.397667\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 45, Loss: 73.742897\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 46, Loss: 71.917206\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 47, Loss: 71.413712\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 48, Loss: 73.193153\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 49, Loss: 67.681404\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 50, Loss: 71.709984\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 51, Loss: 71.299026\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 52, Loss: 70.460098\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 53, Loss: 66.294540\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 54, Loss: 70.346359\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 55, Loss: 70.441254\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 56, Loss: 73.891045\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 57, Loss: 69.140289\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 58, Loss: 70.375374\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 59, Loss: 65.519836\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 60, Loss: 69.597435\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 61, Loss: 67.637489\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 62, Loss: 61.550690\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 63, Loss: 63.675545\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 64, Loss: 65.627647\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 65, Loss: 66.159027\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 66, Loss: 70.159027\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 67, Loss: 65.267532\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 68, Loss: 74.429726\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 69, Loss: 68.321388\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 70, Loss: 66.841454\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 71, Loss: 67.169693\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 72, Loss: 61.730000\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 73, Loss: 64.375931\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 74, Loss: 66.074867\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 75, Loss: 61.075077\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 76, Loss: 62.717854\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 77, Loss: 61.030178\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 78, Loss: 66.336807\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 79, Loss: 63.814529\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 80, Loss: 65.814476\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 81, Loss: 62.898098\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 82, Loss: 65.551338\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 83, Loss: 63.507469\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 84, Loss: 64.047775\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 85, Loss: 59.276714\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 86, Loss: 61.570660\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 87, Loss: 64.008385\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 88, Loss: 63.516693\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 89, Loss: 64.681290\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 90, Loss: 61.126652\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 91, Loss: 55.783329\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 92, Loss: 62.428810\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 93, Loss: 64.645973\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 94, Loss: 61.843693\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 95, Loss: 69.442215\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 96, Loss: 61.340637\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 97, Loss: 61.303562\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 98, Loss: 59.039150\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 99, Loss: 62.494389\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 100, Loss: 62.604248\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 101, Loss: 58.359741\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 102, Loss: 64.217003\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 103, Loss: 63.860130\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 104, Loss: 63.031052\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 105, Loss: 62.643547\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 106, Loss: 64.503387\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 107, Loss: 62.662247\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 108, Loss: 58.503349\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 109, Loss: 59.461449\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 110, Loss: 63.524487\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 111, Loss: 60.545303\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 112, Loss: 63.904366\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 113, Loss: 60.034065\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 114, Loss: 59.069397\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 115, Loss: 62.983837\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 116, Loss: 57.651550\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 117, Loss: 61.146107\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 118, Loss: 56.159676\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 119, Loss: 56.963402\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 120, Loss: 58.953411\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 121, Loss: 59.986008\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 122, Loss: 61.794453\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 123, Loss: 58.303516\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 124, Loss: 57.982826\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 125, Loss: 58.788818\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 126, Loss: 59.794441\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 127, Loss: 57.651192\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 128, Loss: 54.220387\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 129, Loss: 54.566689\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 130, Loss: 61.038399\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 131, Loss: 57.615440\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 132, Loss: 60.666626\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 133, Loss: 60.863323\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 134, Loss: 59.960175\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 135, Loss: 55.657780\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 136, Loss: 59.688725\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 137, Loss: 55.882713\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 138, Loss: 56.074783\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 139, Loss: 60.192425\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 140, Loss: 56.928764\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 141, Loss: 63.769230\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 142, Loss: 59.970955\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 143, Loss: 58.864117\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 144, Loss: 60.380863\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 145, Loss: 59.239414\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 146, Loss: 59.238102\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 147, Loss: 60.533947\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 148, Loss: 57.360390\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 149, Loss: 56.986252\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 150, Loss: 58.888069\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 151, Loss: 59.592274\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 152, Loss: 64.412865\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 153, Loss: 56.521351\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 154, Loss: 56.686676\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 155, Loss: 58.210350\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 156, Loss: 57.537395\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 157, Loss: 56.305611\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 158, Loss: 58.883484\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 159, Loss: 58.242046\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 160, Loss: 57.045650\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 161, Loss: 59.585476\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 162, Loss: 56.335918\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 163, Loss: 57.414871\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 164, Loss: 58.760433\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 165, Loss: 56.751415\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 166, Loss: 59.748707\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 167, Loss: 55.965321\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 168, Loss: 59.582081\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 169, Loss: 54.572479\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 170, Loss: 59.576904\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 171, Loss: 56.352566\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 172, Loss: 61.207489\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 173, Loss: 57.497585\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 174, Loss: 59.659397\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 175, Loss: 63.683033\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 176, Loss: 55.922054\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 177, Loss: 55.615616\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 178, Loss: 59.716152\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 179, Loss: 56.801327\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 180, Loss: 62.006550\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 181, Loss: 58.627907\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 182, Loss: 56.966251\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 183, Loss: 60.156490\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 184, Loss: 58.642666\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 185, Loss: 56.949196\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 186, Loss: 61.173508\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 187, Loss: 58.633480\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 188, Loss: 60.299469\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 189, Loss: 55.765472\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 190, Loss: 58.627171\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 191, Loss: 59.715149\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 192, Loss: 55.010403\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 193, Loss: 61.850842\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 194, Loss: 55.005005\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 195, Loss: 53.322868\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 196, Loss: 55.097889\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 197, Loss: 53.912525\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 198, Loss: 57.580547\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 199, Loss: 57.805977\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 200, Loss: 60.079941\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 201, Loss: 55.352020\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 202, Loss: 58.222263\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 203, Loss: 58.727741\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 204, Loss: 58.359447\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 205, Loss: 57.040024\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 206, Loss: 57.591423\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 207, Loss: 54.658012\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 208, Loss: 56.841835\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 209, Loss: 57.381828\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 210, Loss: 54.602062\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 211, Loss: 60.721569\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 212, Loss: 57.587540\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 213, Loss: 54.693665\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 214, Loss: 56.324188\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 215, Loss: 57.810089\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 216, Loss: 57.491310\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 217, Loss: 57.498314\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 218, Loss: 61.269001\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 219, Loss: 60.528255\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 220, Loss: 53.107525\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 221, Loss: 61.392471\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 222, Loss: 54.528252\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 223, Loss: 53.908195\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 224, Loss: 59.797318\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 225, Loss: 59.800026\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 226, Loss: 54.910828\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 227, Loss: 54.900970\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 228, Loss: 53.368015\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 229, Loss: 52.465244\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 230, Loss: 54.214092\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 231, Loss: 55.104939\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 232, Loss: 57.184364\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 233, Loss: 56.666534\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 234, Loss: 49.660763\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 235, Loss: 56.540878\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 236, Loss: 57.730030\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 237, Loss: 57.445847\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 238, Loss: 57.078236\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 239, Loss: 57.648602\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 240, Loss: 53.970287\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 241, Loss: 55.255901\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 242, Loss: 59.101742\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 243, Loss: 52.986584\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 244, Loss: 56.755203\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 245, Loss: 50.286621\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 246, Loss: 57.850029\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 247, Loss: 58.001366\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 248, Loss: 55.503422\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 249, Loss: 59.217556\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 250, Loss: 59.573391\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 251, Loss: 56.640896\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 252, Loss: 52.524830\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 253, Loss: 62.623947\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 254, Loss: 61.492363\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 255, Loss: 54.051464\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 256, Loss: 62.541676\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 257, Loss: 55.197037\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 258, Loss: 54.291073\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 259, Loss: 53.181583\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 260, Loss: 53.739361\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 261, Loss: 59.506668\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 262, Loss: 55.572037\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 263, Loss: 56.936127\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 264, Loss: 55.124912\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 265, Loss: 54.380009\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 266, Loss: 59.567814\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 267, Loss: 52.506546\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 268, Loss: 52.382862\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 269, Loss: 52.995739\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 270, Loss: 58.047501\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 271, Loss: 52.782280\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 272, Loss: 57.089943\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 273, Loss: 51.563072\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 274, Loss: 60.330276\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 275, Loss: 48.788372\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 276, Loss: 51.165600\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 277, Loss: 52.572601\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 278, Loss: 55.033554\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 279, Loss: 53.966591\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 280, Loss: 55.462383\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 281, Loss: 54.593838\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 282, Loss: 53.361927\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 283, Loss: 59.140877\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 284, Loss: 55.215569\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 285, Loss: 54.060349\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 286, Loss: 54.808769\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 287, Loss: 54.278290\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 288, Loss: 53.994545\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 289, Loss: 52.114838\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 290, Loss: 51.200752\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 291, Loss: 52.079834\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 292, Loss: 52.074696\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 293, Loss: 54.590561\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 294, Loss: 50.138794\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 295, Loss: 55.073055\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 296, Loss: 53.081234\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 297, Loss: 53.381287\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 298, Loss: 52.907120\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 299, Loss: 59.709099\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 300, Loss: 52.408669\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 301, Loss: 56.951351\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 302, Loss: 54.746426\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 303, Loss: 51.109318\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 304, Loss: 51.417545\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 305, Loss: 53.677135\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 306, Loss: 53.771507\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 307, Loss: 54.628002\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 308, Loss: 56.748398\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 309, Loss: 49.744503\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 310, Loss: 52.159828\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 311, Loss: 51.588120\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 312, Loss: 51.815430\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 313, Loss: 51.978748\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 314, Loss: 53.636105\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 315, Loss: 50.913223\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 316, Loss: 49.257469\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 317, Loss: 48.552517\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 318, Loss: 48.687317\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 319, Loss: 53.451706\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 320, Loss: 52.619736\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 321, Loss: 62.434174\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 322, Loss: 57.321907\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 323, Loss: 52.889515\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 324, Loss: 48.306278\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 325, Loss: 56.586742\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 326, Loss: 51.754509\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 327, Loss: 48.413937\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 328, Loss: 46.927792\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 329, Loss: 50.161911\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 330, Loss: 57.736694\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 331, Loss: 50.591652\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 332, Loss: 55.512306\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 333, Loss: 50.256096\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 334, Loss: 48.776287\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 335, Loss: 51.674706\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 336, Loss: 51.253822\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 337, Loss: 51.130890\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 338, Loss: 55.093018\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 339, Loss: 53.899944\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 340, Loss: 49.408066\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 341, Loss: 47.594303\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 342, Loss: 57.109142\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 343, Loss: 54.768898\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 344, Loss: 53.067287\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 345, Loss: 58.001148\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 346, Loss: 51.606579\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 347, Loss: 47.831543\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 348, Loss: 51.710136\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 349, Loss: 47.916142\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 350, Loss: 56.767136\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 351, Loss: 57.120392\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 352, Loss: 54.679298\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 353, Loss: 57.498554\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 354, Loss: 50.591251\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 355, Loss: 54.410427\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 356, Loss: 56.875721\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 357, Loss: 50.781887\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 358, Loss: 48.521385\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 359, Loss: 53.272572\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 360, Loss: 52.871372\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 361, Loss: 50.831635\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 362, Loss: 53.844097\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 363, Loss: 52.347111\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 364, Loss: 52.768711\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 365, Loss: 47.987930\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 366, Loss: 52.606377\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 367, Loss: 52.161369\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 368, Loss: 51.308651\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 369, Loss: 51.054802\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 370, Loss: 50.632202\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 371, Loss: 47.344116\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 372, Loss: 53.180386\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 373, Loss: 51.666771\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 374, Loss: 56.237022\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 375, Loss: 52.257317\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 376, Loss: 53.703556\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 377, Loss: 56.123947\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 378, Loss: 47.851810\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 379, Loss: 49.194397\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 380, Loss: 47.714947\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 381, Loss: 54.050663\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 382, Loss: 63.554329\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 383, Loss: 55.901386\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 384, Loss: 58.611382\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 385, Loss: 49.005402\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 386, Loss: 49.892750\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 387, Loss: 54.822224\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 388, Loss: 53.200176\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 389, Loss: 48.151302\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 390, Loss: 53.159565\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 391, Loss: 53.554539\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 392, Loss: 55.108498\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 393, Loss: 62.074837\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 394, Loss: 50.343433\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 395, Loss: 52.426502\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 396, Loss: 53.161419\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 397, Loss: 49.828419\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 398, Loss: 54.030964\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 399, Loss: 52.605812\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 400, Loss: 52.078152\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 401, Loss: 54.363529\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 402, Loss: 47.950531\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 403, Loss: 52.295132\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 404, Loss: 48.062351\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 405, Loss: 54.738705\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 406, Loss: 51.854717\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 407, Loss: 49.646767\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 408, Loss: 49.469086\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 409, Loss: 51.912617\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 410, Loss: 54.286217\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 411, Loss: 51.757275\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 412, Loss: 49.661224\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 413, Loss: 51.523674\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 414, Loss: 54.599155\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 415, Loss: 51.228386\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 416, Loss: 54.029873\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 417, Loss: 52.547153\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 418, Loss: 46.154713\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 419, Loss: 50.744442\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 420, Loss: 50.977211\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 421, Loss: 53.145248\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 422, Loss: 52.564892\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 423, Loss: 48.289818\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 424, Loss: 50.676647\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 425, Loss: 52.148609\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 426, Loss: 46.142071\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 427, Loss: 49.819450\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 428, Loss: 53.861603\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 429, Loss: 52.519741\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 430, Loss: 53.492455\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 431, Loss: 54.557732\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 432, Loss: 50.642086\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 433, Loss: 47.679222\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 434, Loss: 51.042961\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 435, Loss: 53.097450\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 436, Loss: 49.786438\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 437, Loss: 51.669323\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 438, Loss: 51.116589\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 439, Loss: 46.467495\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 440, Loss: 50.740570\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 441, Loss: 50.937862\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 442, Loss: 51.443577\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 443, Loss: 48.862335\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 444, Loss: 51.254944\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 445, Loss: 55.415478\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 446, Loss: 53.984688\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 447, Loss: 49.833580\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 448, Loss: 47.052532\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 449, Loss: 49.562695\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 450, Loss: 47.307713\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 451, Loss: 48.719734\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 452, Loss: 49.347145\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 453, Loss: 47.889885\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 454, Loss: 48.528519\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 455, Loss: 53.289623\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 456, Loss: 51.766632\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 457, Loss: 49.117439\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 458, Loss: 50.207291\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 459, Loss: 49.334831\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 460, Loss: 49.328732\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 461, Loss: 50.625969\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 462, Loss: 53.498264\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 463, Loss: 52.990902\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 464, Loss: 49.411263\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 465, Loss: 55.429733\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 466, Loss: 49.705563\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 467, Loss: 51.753651\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 468, Loss: 46.471191\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 469, Loss: 48.752987\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 470, Loss: 52.181961\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 471, Loss: 50.132412\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 472, Loss: 48.982510\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 473, Loss: 49.447018\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 474, Loss: 50.073536\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 475, Loss: 47.165123\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 476, Loss: 51.333866\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 477, Loss: 54.134167\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 478, Loss: 51.213257\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 479, Loss: 54.514935\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 480, Loss: 48.533688\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 481, Loss: 48.445763\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 482, Loss: 46.767735\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 483, Loss: 50.210815\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 484, Loss: 53.633099\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 485, Loss: 53.287846\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 486, Loss: 58.478489\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 487, Loss: 48.416565\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 488, Loss: 48.630363\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 489, Loss: 49.558548\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 490, Loss: 49.270126\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 491, Loss: 47.317501\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 492, Loss: 52.968025\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 493, Loss: 47.918793\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 494, Loss: 50.982998\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 495, Loss: 51.971500\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 496, Loss: 54.865788\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 497, Loss: 45.847054\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 498, Loss: 48.762653\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 499, Loss: 45.073490\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 500, Loss: 51.506096\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 501, Loss: 46.121651\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 502, Loss: 53.165936\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 503, Loss: 44.960865\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 504, Loss: 49.365292\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 505, Loss: 51.339928\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 506, Loss: 47.944874\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 507, Loss: 47.931622\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 508, Loss: 52.342762\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 509, Loss: 48.093452\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 510, Loss: 51.275883\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 511, Loss: 49.053246\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 512, Loss: 51.209473\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 513, Loss: 50.113945\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 514, Loss: 43.116261\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 515, Loss: 50.138340\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 516, Loss: 53.914440\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 517, Loss: 50.814148\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 518, Loss: 46.399143\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 519, Loss: 47.644573\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 520, Loss: 47.271801\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 521, Loss: 47.354862\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 522, Loss: 48.887939\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 523, Loss: 50.667721\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 524, Loss: 47.416515\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 525, Loss: 51.898556\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 526, Loss: 60.505234\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 527, Loss: 53.097347\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 528, Loss: 49.949924\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 529, Loss: 47.000938\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 530, Loss: 54.361485\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 531, Loss: 54.744884\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 532, Loss: 51.395336\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 533, Loss: 48.069767\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 534, Loss: 50.001808\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 535, Loss: 50.310009\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 536, Loss: 51.875782\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 537, Loss: 45.703629\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 538, Loss: 51.813038\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 539, Loss: 47.982880\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 540, Loss: 54.024509\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 541, Loss: 45.186501\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 542, Loss: 49.427959\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 543, Loss: 51.259094\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 544, Loss: 50.700882\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 545, Loss: 52.929649\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 546, Loss: 45.523258\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 547, Loss: 46.684147\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 548, Loss: 44.867363\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 549, Loss: 53.703537\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 550, Loss: 47.825962\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 551, Loss: 48.800797\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 552, Loss: 51.936890\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 553, Loss: 46.857498\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 554, Loss: 50.621151\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 555, Loss: 52.404537\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 556, Loss: 53.321239\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 557, Loss: 47.040237\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 558, Loss: 46.253849\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 559, Loss: 52.553352\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 560, Loss: 46.053047\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 561, Loss: 48.859535\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 562, Loss: 45.821526\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 563, Loss: 49.611576\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 564, Loss: 49.276199\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 565, Loss: 54.656933\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 566, Loss: 50.573383\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 567, Loss: 46.641342\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 568, Loss: 48.220390\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 569, Loss: 54.185127\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 570, Loss: 46.401031\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 571, Loss: 51.171844\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 572, Loss: 48.440422\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 573, Loss: 49.962570\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 574, Loss: 50.512753\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 575, Loss: 50.539440\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 576, Loss: 45.579639\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 577, Loss: 49.775936\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 578, Loss: 47.284969\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 579, Loss: 47.359772\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 580, Loss: 46.770920\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 581, Loss: 50.109924\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 582, Loss: 45.681461\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 583, Loss: 47.813255\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 584, Loss: 50.648174\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 585, Loss: 47.651066\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 586, Loss: 47.619839\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 587, Loss: 49.389576\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 588, Loss: 46.847137\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 589, Loss: 45.737137\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 590, Loss: 47.528236\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 591, Loss: 51.881496\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 592, Loss: 48.807159\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 593, Loss: 45.805748\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 594, Loss: 51.949226\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 595, Loss: 49.049885\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 596, Loss: 47.073730\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 597, Loss: 45.321484\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 598, Loss: 51.004333\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 599, Loss: 45.564316\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 600, Loss: 52.327335\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 601, Loss: 45.836613\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 602, Loss: 47.360603\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 603, Loss: 55.028519\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 604, Loss: 48.364609\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 605, Loss: 44.818405\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 606, Loss: 56.468811\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 607, Loss: 54.096321\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 608, Loss: 47.732586\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 609, Loss: 48.448074\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 610, Loss: 52.735474\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 611, Loss: 45.165173\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 612, Loss: 46.512146\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 613, Loss: 52.890697\n", - "SNR:5, Imbalance Percentage:0, Encoding dimension:50, Epoch 614, Loss: 47.678844\n", - "Stopped early after 615 epochs, with loss of 43.116261\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 1, Loss: 596.673096\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 2, Loss: 570.000916\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 3, Loss: 552.079224\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 4, Loss: 530.569824\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 5, Loss: 512.353210\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 6, Loss: 490.749603\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 7, Loss: 471.322266\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 8, Loss: 445.751526\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 9, Loss: 420.582367\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 10, Loss: 403.041626\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 11, Loss: 378.677856\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 12, Loss: 359.405426\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 13, Loss: 333.689850\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 14, Loss: 311.694641\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 15, Loss: 288.906036\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 16, Loss: 268.467224\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 17, Loss: 251.925018\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 18, Loss: 232.150330\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 19, Loss: 213.586807\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 20, Loss: 194.201370\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 21, Loss: 181.027435\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 22, Loss: 161.650635\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 23, Loss: 157.699524\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 24, Loss: 147.389343\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 25, Loss: 139.117432\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 26, Loss: 128.089279\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 27, Loss: 123.740425\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 28, Loss: 123.223900\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 29, Loss: 117.901001\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 30, Loss: 112.896408\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 31, Loss: 113.833504\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 32, Loss: 107.833015\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 33, Loss: 111.889229\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 34, Loss: 103.631256\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 35, Loss: 109.991302\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 36, Loss: 104.139977\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 37, Loss: 104.727386\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 38, Loss: 105.003021\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 39, Loss: 109.475403\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 40, Loss: 103.001701\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 41, Loss: 105.590431\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 42, Loss: 102.347786\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 43, Loss: 105.965080\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 44, Loss: 99.921478\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 45, Loss: 104.610092\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 46, Loss: 105.421700\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 47, Loss: 104.341713\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 48, Loss: 107.291557\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 49, Loss: 103.923187\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 50, Loss: 110.237595\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 51, Loss: 107.038040\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 52, Loss: 99.398666\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 53, Loss: 113.314514\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 54, Loss: 99.776840\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 55, Loss: 101.359390\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 56, Loss: 108.808388\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 57, Loss: 99.122635\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 58, Loss: 103.927826\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 59, Loss: 100.275047\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 60, Loss: 102.824364\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 61, Loss: 98.315224\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 62, Loss: 105.832550\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 63, Loss: 100.968948\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 64, Loss: 93.451645\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 65, Loss: 98.742035\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 66, Loss: 103.619301\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 67, Loss: 99.710403\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 68, Loss: 101.485580\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 69, Loss: 100.281136\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 70, Loss: 96.284050\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 71, Loss: 102.000229\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 72, Loss: 95.975174\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 73, Loss: 96.026054\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 74, Loss: 98.510483\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 75, Loss: 102.152237\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 76, Loss: 94.786804\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 77, Loss: 101.448013\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 78, Loss: 102.315033\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 79, Loss: 96.235542\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 80, Loss: 98.200706\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 81, Loss: 93.953995\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 82, Loss: 103.150063\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 83, Loss: 101.849953\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 84, Loss: 100.463715\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 85, Loss: 97.501686\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 86, Loss: 92.897171\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 87, Loss: 99.451744\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 88, Loss: 90.695129\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 89, Loss: 100.589432\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 90, Loss: 104.024406\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 91, Loss: 91.696487\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 92, Loss: 94.737671\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 93, Loss: 97.869209\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 94, Loss: 96.934875\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 95, Loss: 99.312569\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 96, Loss: 100.910889\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 97, Loss: 93.619820\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 98, Loss: 92.437874\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 99, Loss: 94.498619\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 100, Loss: 93.314110\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 101, Loss: 97.606079\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 102, Loss: 95.485497\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 103, Loss: 90.435654\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 104, Loss: 93.115379\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 105, Loss: 95.190292\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 106, Loss: 93.681046\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 107, Loss: 95.243622\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 108, Loss: 96.772156\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 109, Loss: 91.723686\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 110, Loss: 96.259117\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 111, Loss: 98.881218\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 112, Loss: 94.739204\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 113, Loss: 88.506340\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 114, Loss: 106.051041\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 115, Loss: 90.508003\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 116, Loss: 95.562981\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 117, Loss: 93.575218\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 118, Loss: 86.252632\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 119, Loss: 96.380257\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 120, Loss: 84.124046\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 121, Loss: 84.088966\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 122, Loss: 96.812355\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 123, Loss: 90.962151\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 124, Loss: 87.352234\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 125, Loss: 88.822266\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 126, Loss: 90.176552\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 127, Loss: 100.286484\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 128, Loss: 96.921394\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 129, Loss: 91.344788\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 130, Loss: 90.076904\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 131, Loss: 94.570206\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 132, Loss: 95.272636\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 133, Loss: 88.259117\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 134, Loss: 98.834885\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 135, Loss: 90.007942\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 136, Loss: 88.603477\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 137, Loss: 96.715820\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 138, Loss: 92.592499\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 139, Loss: 90.619461\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 140, Loss: 92.627319\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 141, Loss: 94.243210\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 142, Loss: 89.059608\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 143, Loss: 102.364380\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 144, Loss: 92.085304\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 145, Loss: 91.274406\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 146, Loss: 92.367661\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 147, Loss: 90.362198\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 148, Loss: 94.066116\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 149, Loss: 89.442307\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 150, Loss: 91.885605\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 151, Loss: 89.188591\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 152, Loss: 93.548805\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 153, Loss: 95.909462\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 154, Loss: 88.025993\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 155, Loss: 86.757301\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 156, Loss: 87.084373\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 157, Loss: 98.068771\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 158, Loss: 87.713455\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 159, Loss: 93.585358\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 160, Loss: 91.047554\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 161, Loss: 92.800743\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 162, Loss: 82.931664\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 163, Loss: 91.900093\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 164, Loss: 88.841362\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 165, Loss: 93.947670\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 166, Loss: 88.773331\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 167, Loss: 90.874069\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 168, Loss: 86.613403\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 169, Loss: 94.863167\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 170, Loss: 88.224525\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 171, Loss: 88.723610\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 172, Loss: 87.419624\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 173, Loss: 89.757332\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 174, Loss: 81.458694\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 175, Loss: 98.126114\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 176, Loss: 91.858421\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 177, Loss: 87.260529\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 178, Loss: 86.178200\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 179, Loss: 91.575302\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 180, Loss: 87.752167\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 181, Loss: 84.264145\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 182, Loss: 86.126678\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 183, Loss: 87.198936\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 184, Loss: 85.384193\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 185, Loss: 80.281693\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 186, Loss: 87.791954\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 187, Loss: 78.381927\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 188, Loss: 96.485687\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 189, Loss: 100.416260\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 190, Loss: 86.812187\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 191, Loss: 84.614388\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 192, Loss: 80.441483\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 193, Loss: 85.713554\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 194, Loss: 81.904045\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 195, Loss: 84.903824\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 196, Loss: 85.584564\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 197, Loss: 99.071281\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 198, Loss: 86.737816\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 199, Loss: 78.278275\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 200, Loss: 96.954659\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 201, Loss: 82.107048\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 202, Loss: 83.108788\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 203, Loss: 86.020523\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 204, Loss: 83.802246\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 205, Loss: 88.174644\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 206, Loss: 88.935150\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 207, Loss: 91.338165\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 208, Loss: 82.807236\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 209, Loss: 91.857857\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 210, Loss: 88.790047\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 211, Loss: 83.187492\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 212, Loss: 86.541267\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 213, Loss: 82.144440\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 214, Loss: 78.966293\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 215, Loss: 90.831032\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 216, Loss: 89.929642\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 217, Loss: 81.885902\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 218, Loss: 88.571754\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 219, Loss: 87.258781\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 220, Loss: 84.619606\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 221, Loss: 86.594414\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 222, Loss: 83.463242\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 223, Loss: 84.621780\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 224, Loss: 82.263756\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 225, Loss: 82.431755\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 226, Loss: 87.435539\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 227, Loss: 79.181442\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 228, Loss: 92.259468\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 229, Loss: 83.406776\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 230, Loss: 80.683006\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 231, Loss: 81.953262\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 232, Loss: 82.933418\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 233, Loss: 78.672333\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 234, Loss: 77.216896\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 235, Loss: 85.858406\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 236, Loss: 78.061195\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 237, Loss: 86.531876\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 238, Loss: 80.176445\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 239, Loss: 87.376083\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 240, Loss: 84.732353\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 241, Loss: 81.999283\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 242, Loss: 84.756081\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 243, Loss: 78.919579\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 244, Loss: 81.241165\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 245, Loss: 83.740746\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 246, Loss: 76.050095\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 247, Loss: 82.771820\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 248, Loss: 74.673286\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 249, Loss: 87.499481\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 250, Loss: 82.817719\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 251, Loss: 81.934891\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 252, Loss: 84.651909\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 253, Loss: 87.046951\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 254, Loss: 80.877762\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 255, Loss: 84.114456\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 256, Loss: 78.928543\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 257, Loss: 96.250610\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 258, Loss: 76.547752\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 259, Loss: 86.503578\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 260, Loss: 85.245918\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 261, Loss: 78.594696\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 262, Loss: 78.720955\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 263, Loss: 85.853394\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 264, Loss: 86.140831\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 265, Loss: 78.515457\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 266, Loss: 89.129364\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 267, Loss: 86.638168\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 268, Loss: 75.951996\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 269, Loss: 81.002663\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 270, Loss: 78.974747\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 271, Loss: 79.951469\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 272, Loss: 74.810989\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 273, Loss: 79.643738\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 274, Loss: 88.113884\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 275, Loss: 79.727310\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 276, Loss: 78.077850\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 277, Loss: 86.501030\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 278, Loss: 84.858650\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 279, Loss: 79.465858\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 280, Loss: 77.125267\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 281, Loss: 85.344025\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 282, Loss: 90.475304\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 283, Loss: 80.562073\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 284, Loss: 79.573921\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 285, Loss: 79.259010\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 286, Loss: 83.142799\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 287, Loss: 87.898552\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 288, Loss: 76.362617\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 289, Loss: 78.252777\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 290, Loss: 78.615509\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 291, Loss: 74.118088\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 292, Loss: 76.127991\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 293, Loss: 83.319870\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 294, Loss: 87.346916\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 295, Loss: 80.984093\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 296, Loss: 80.839478\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 297, Loss: 74.287857\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 298, Loss: 81.015717\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 299, Loss: 73.745476\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 300, Loss: 82.037140\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 301, Loss: 76.248512\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 302, Loss: 88.983498\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 303, Loss: 72.143974\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 304, Loss: 75.486916\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 305, Loss: 92.197166\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 306, Loss: 84.802704\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 307, Loss: 80.019981\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 308, Loss: 86.520157\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 309, Loss: 81.092934\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 310, Loss: 82.552696\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 311, Loss: 73.861198\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 312, Loss: 78.631165\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 313, Loss: 76.821663\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 314, Loss: 79.885864\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 315, Loss: 78.779297\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 316, Loss: 78.664261\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 317, Loss: 81.993530\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 318, Loss: 85.096550\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 319, Loss: 85.183731\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 320, Loss: 76.069572\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 321, Loss: 76.873672\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 322, Loss: 78.724342\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 323, Loss: 75.674812\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 324, Loss: 71.263954\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 325, Loss: 79.983994\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 326, Loss: 70.817093\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 327, Loss: 80.281197\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 328, Loss: 82.306496\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 329, Loss: 77.676231\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 330, Loss: 86.448380\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 331, Loss: 80.035728\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 332, Loss: 80.742149\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 333, Loss: 81.675758\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 334, Loss: 77.905823\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 335, Loss: 80.152481\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 336, Loss: 82.276291\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 337, Loss: 74.620163\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 338, Loss: 80.998650\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 339, Loss: 78.067909\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 340, Loss: 72.052727\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 341, Loss: 79.693832\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 342, Loss: 74.084305\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 343, Loss: 81.236145\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 344, Loss: 84.007530\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 345, Loss: 75.384209\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 346, Loss: 83.570221\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 347, Loss: 87.524857\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 348, Loss: 78.559914\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 349, Loss: 83.200981\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 350, Loss: 81.273682\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 351, Loss: 83.566498\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 352, Loss: 75.713051\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 353, Loss: 77.500351\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 354, Loss: 74.879745\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 355, Loss: 76.442551\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 356, Loss: 76.341080\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 357, Loss: 75.752792\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 358, Loss: 75.711823\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 359, Loss: 76.590790\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 360, Loss: 84.885345\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 361, Loss: 72.547783\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 362, Loss: 87.826950\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 363, Loss: 78.009552\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 364, Loss: 84.407562\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 365, Loss: 79.571281\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 366, Loss: 75.594048\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 367, Loss: 74.753029\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 368, Loss: 85.998466\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 369, Loss: 77.293854\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 370, Loss: 82.570770\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 371, Loss: 84.217941\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 372, Loss: 75.892990\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 373, Loss: 78.589951\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 374, Loss: 73.612709\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 375, Loss: 78.969879\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 376, Loss: 79.369987\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 377, Loss: 74.832336\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 378, Loss: 84.021088\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 379, Loss: 79.434280\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 380, Loss: 81.304710\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 381, Loss: 83.746010\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 382, Loss: 80.480515\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 383, Loss: 75.505753\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 384, Loss: 75.460480\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 385, Loss: 80.435638\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 386, Loss: 78.670303\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 387, Loss: 71.453850\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 388, Loss: 79.210815\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 389, Loss: 76.692650\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 390, Loss: 73.792709\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 391, Loss: 86.294418\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 392, Loss: 83.322151\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 393, Loss: 83.589149\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 394, Loss: 84.095367\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 395, Loss: 88.730095\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 396, Loss: 75.649315\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 397, Loss: 73.658432\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 398, Loss: 88.360748\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 399, Loss: 71.893982\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 400, Loss: 78.732193\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 401, Loss: 78.596977\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 402, Loss: 75.899818\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 403, Loss: 75.483871\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 404, Loss: 75.452766\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 405, Loss: 81.817619\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 406, Loss: 86.469582\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 407, Loss: 82.418602\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 408, Loss: 82.332184\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 409, Loss: 89.492767\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 410, Loss: 72.253555\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 411, Loss: 80.795860\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 412, Loss: 73.794556\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 413, Loss: 72.661507\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 414, Loss: 73.696686\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 415, Loss: 80.629776\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 416, Loss: 71.861481\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 417, Loss: 71.951416\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 418, Loss: 83.474434\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 419, Loss: 76.368484\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 420, Loss: 78.230583\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 421, Loss: 73.425819\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 422, Loss: 78.379303\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 423, Loss: 83.571480\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 424, Loss: 79.428429\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 425, Loss: 82.356621\n", - "SNR:2, Imbalance Percentage:0, Encoding dimension:50, Epoch 426, Loss: 82.763908\n", - "Stopped early after 427 epochs, with loss of 70.817093\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 1, Loss: 596.893066\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 2, Loss: 571.152161\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 3, Loss: 541.734375\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 4, Loss: 508.245941\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 5, Loss: 474.578369\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 6, Loss: 443.709351\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 7, Loss: 415.736816\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 8, Loss: 390.546570\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 9, Loss: 364.121704\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 10, Loss: 337.735077\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 11, Loss: 312.741333\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 12, Loss: 289.066895\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 13, Loss: 265.115479\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 14, Loss: 243.182755\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 15, Loss: 220.206924\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 16, Loss: 200.190948\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 17, Loss: 178.659592\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 18, Loss: 157.914886\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 19, Loss: 140.868622\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 20, Loss: 124.841148\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 21, Loss: 108.826721\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 22, Loss: 94.914116\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 23, Loss: 81.715317\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 24, Loss: 74.478371\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 25, Loss: 66.246933\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 26, Loss: 59.881645\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 27, Loss: 53.866161\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 28, Loss: 47.835266\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 29, Loss: 43.712051\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 30, Loss: 42.616482\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 31, Loss: 41.274563\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 32, Loss: 40.156120\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 33, Loss: 38.693771\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 34, Loss: 37.009010\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 35, Loss: 35.803009\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 36, Loss: 35.871601\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 37, Loss: 34.733963\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 38, Loss: 33.160954\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 39, Loss: 33.487820\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 40, Loss: 33.427399\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 41, Loss: 32.421295\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 42, Loss: 32.550758\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 43, Loss: 32.328396\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 44, Loss: 31.331966\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 45, Loss: 31.010326\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 46, Loss: 30.045675\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 47, Loss: 31.004801\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 48, Loss: 31.954443\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 49, Loss: 30.214069\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 50, Loss: 30.092615\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 51, Loss: 29.994532\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 52, Loss: 29.655777\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 53, Loss: 28.532150\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 54, Loss: 28.188911\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 55, Loss: 28.800774\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 56, Loss: 29.055376\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 57, Loss: 28.317665\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 58, Loss: 28.074804\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 59, Loss: 28.379999\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 60, Loss: 27.963598\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 61, Loss: 27.395550\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 62, Loss: 27.571960\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 63, Loss: 25.918383\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 64, Loss: 26.589457\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 65, Loss: 25.983437\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 66, Loss: 26.228924\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 67, Loss: 25.152718\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 68, Loss: 25.096418\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 69, Loss: 25.234890\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 70, Loss: 25.056398\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 71, Loss: 25.042910\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 72, Loss: 24.601568\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 73, Loss: 24.593767\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 74, Loss: 24.199614\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 75, Loss: 24.548697\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 76, Loss: 24.152878\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 77, Loss: 24.167273\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 78, Loss: 23.675470\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 79, Loss: 23.773703\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 80, Loss: 23.439383\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 81, Loss: 23.090246\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 82, Loss: 22.775454\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 83, Loss: 22.973209\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 84, Loss: 22.169069\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 85, Loss: 21.671520\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 86, Loss: 22.450064\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 87, Loss: 22.409019\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 88, Loss: 22.255041\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 89, Loss: 21.429693\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 90, Loss: 21.506298\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 91, Loss: 21.888187\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 92, Loss: 21.618313\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 93, Loss: 21.662609\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 94, Loss: 21.234844\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 95, Loss: 21.066608\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 96, Loss: 20.235062\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 97, Loss: 20.432753\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 98, Loss: 20.491800\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 99, Loss: 20.796663\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 100, Loss: 20.218491\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 101, Loss: 20.631029\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 102, Loss: 20.273254\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 103, Loss: 20.188805\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 104, Loss: 20.384741\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 105, Loss: 19.773064\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 106, Loss: 19.713320\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 107, Loss: 19.732800\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 108, Loss: 19.891649\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 109, Loss: 19.269932\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 110, Loss: 19.274708\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 111, Loss: 19.504269\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 112, Loss: 19.501383\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 113, Loss: 19.295483\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 114, Loss: 18.649391\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 115, Loss: 18.826336\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 116, Loss: 19.155491\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 117, Loss: 18.763927\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 118, Loss: 18.606625\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 119, Loss: 17.913401\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 120, Loss: 18.971785\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 121, Loss: 19.007595\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 122, Loss: 18.563440\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 123, Loss: 18.654234\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 124, Loss: 17.732773\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 125, Loss: 18.289949\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 126, Loss: 18.494905\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 127, Loss: 18.409893\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 128, Loss: 18.455170\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 129, Loss: 17.833784\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 130, Loss: 17.714241\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 131, Loss: 17.504175\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 132, Loss: 17.690092\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 133, Loss: 17.201962\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 134, Loss: 17.305916\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 135, Loss: 17.051138\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 136, Loss: 16.923275\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 137, Loss: 16.560558\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 138, Loss: 16.945398\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 139, Loss: 16.201391\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 140, Loss: 17.222788\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 141, Loss: 16.614264\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 142, Loss: 16.951738\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 143, Loss: 16.909887\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 144, Loss: 16.869003\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 145, Loss: 17.152227\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 146, Loss: 16.634878\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 147, Loss: 16.234074\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 148, Loss: 16.752356\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 149, Loss: 16.276209\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 150, Loss: 16.091118\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 151, Loss: 15.960551\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 152, Loss: 15.557089\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 153, Loss: 16.517292\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 154, Loss: 15.979303\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 155, Loss: 16.218468\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 156, Loss: 16.607986\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 157, Loss: 15.561753\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 158, Loss: 15.836659\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 159, Loss: 14.973087\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 160, Loss: 15.472219\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 161, Loss: 15.105565\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 162, Loss: 15.932209\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 163, Loss: 15.525755\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 164, Loss: 15.487960\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 165, Loss: 15.097274\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 166, Loss: 15.087997\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 167, Loss: 15.215208\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 168, Loss: 15.147551\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 169, Loss: 15.107616\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 170, Loss: 14.694237\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 171, Loss: 15.151814\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 172, Loss: 15.017869\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 173, Loss: 14.976048\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 174, Loss: 14.984245\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 175, Loss: 14.794029\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 176, Loss: 15.202215\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 177, Loss: 14.828441\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 178, Loss: 14.788728\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 179, Loss: 14.453805\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 180, Loss: 13.824928\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 181, Loss: 14.542673\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 182, Loss: 14.452722\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 183, Loss: 14.675784\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 184, Loss: 14.663654\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 185, Loss: 13.774076\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 186, Loss: 14.535222\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 187, Loss: 14.313236\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 188, Loss: 14.369199\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 189, Loss: 13.856345\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 190, Loss: 13.762880\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 191, Loss: 13.718151\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 192, Loss: 13.742321\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 193, Loss: 13.643191\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 194, Loss: 13.544227\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 195, Loss: 13.672921\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 196, Loss: 13.003912\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 197, Loss: 13.094071\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 198, Loss: 13.875258\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 199, Loss: 13.134939\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 200, Loss: 13.342033\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 201, Loss: 13.080742\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 202, Loss: 13.387942\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 203, Loss: 12.799379\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 204, Loss: 13.250993\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 205, Loss: 13.098760\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 206, Loss: 12.892748\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 207, Loss: 12.998956\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 208, Loss: 12.623356\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 209, Loss: 12.886857\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 210, Loss: 12.638595\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 211, Loss: 12.540938\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 212, Loss: 12.461095\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 213, Loss: 13.093040\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 214, Loss: 12.451290\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 215, Loss: 12.169937\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 216, Loss: 12.641390\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 217, Loss: 12.049070\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 218, Loss: 12.466281\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 219, Loss: 12.270379\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 220, Loss: 12.111439\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 221, Loss: 12.450389\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 222, Loss: 11.903385\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 223, Loss: 11.740706\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 224, Loss: 12.285245\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 225, Loss: 12.117482\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 226, Loss: 12.509219\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 227, Loss: 12.268326\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 228, Loss: 11.588961\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 229, Loss: 12.263969\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 230, Loss: 11.880699\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 231, Loss: 11.576443\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 232, Loss: 11.404257\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 233, Loss: 11.276622\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 234, Loss: 11.420570\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 235, Loss: 11.501762\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 236, Loss: 11.239312\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 237, Loss: 11.135887\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 238, Loss: 11.091035\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 239, Loss: 11.377102\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 240, Loss: 11.295416\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 241, Loss: 11.259583\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 242, Loss: 11.190503\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 243, Loss: 11.388918\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 244, Loss: 11.383278\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 245, Loss: 10.947021\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 246, Loss: 10.548825\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 247, Loss: 10.754228\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 248, Loss: 10.526397\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 249, Loss: 10.801735\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 250, Loss: 10.633853\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 251, Loss: 10.641586\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 252, Loss: 10.820086\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 253, Loss: 10.404592\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 254, Loss: 10.242164\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 255, Loss: 10.476639\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 256, Loss: 10.126584\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 257, Loss: 9.949790\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 258, Loss: 10.212912\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 259, Loss: 9.934050\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 260, Loss: 10.223420\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 261, Loss: 10.497026\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 262, Loss: 10.268694\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 263, Loss: 10.169770\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 264, Loss: 9.953289\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 265, Loss: 9.689136\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 266, Loss: 9.736809\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 267, Loss: 9.667285\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 268, Loss: 9.616534\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 269, Loss: 9.615179\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 270, Loss: 9.239745\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 271, Loss: 9.862524\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 272, Loss: 9.547729\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 273, Loss: 9.568625\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 274, Loss: 9.908061\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 275, Loss: 9.171755\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 276, Loss: 9.249331\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 277, Loss: 9.192967\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 278, Loss: 9.302359\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 279, Loss: 8.923498\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 280, Loss: 9.461754\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 281, Loss: 8.895731\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 282, Loss: 9.052126\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 283, Loss: 8.740266\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 284, Loss: 8.795976\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 285, Loss: 9.633882\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 286, Loss: 8.770415\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 287, Loss: 8.893936\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 288, Loss: 9.110607\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 289, Loss: 8.470067\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 290, Loss: 8.769495\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 291, Loss: 8.742157\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 292, Loss: 8.767901\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 293, Loss: 8.705929\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 294, Loss: 9.086560\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 295, Loss: 8.198127\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 296, Loss: 8.319673\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 297, Loss: 8.551082\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 298, Loss: 8.508289\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 299, Loss: 8.143953\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 300, Loss: 8.302380\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 301, Loss: 7.977432\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 302, Loss: 7.797345\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 303, Loss: 8.058471\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 304, Loss: 8.831423\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 305, Loss: 8.310978\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 306, Loss: 8.062737\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 307, Loss: 8.003685\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 308, Loss: 7.658083\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 309, Loss: 7.702531\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 310, Loss: 7.267835\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 311, Loss: 7.512872\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 312, Loss: 7.191972\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 313, Loss: 7.611280\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 314, Loss: 7.506024\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 315, Loss: 7.650373\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 316, Loss: 7.323592\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 317, Loss: 7.704602\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 318, Loss: 7.697826\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 319, Loss: 7.835695\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 320, Loss: 7.732288\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 321, Loss: 7.458184\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 322, Loss: 7.361086\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 323, Loss: 7.272240\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 324, Loss: 7.105028\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 325, Loss: 7.286299\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 326, Loss: 7.081870\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 327, Loss: 6.846311\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 328, Loss: 7.265931\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 329, Loss: 6.915021\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 330, Loss: 7.356802\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 331, Loss: 7.163179\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 332, Loss: 6.855593\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 333, Loss: 6.450063\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 334, Loss: 6.804564\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 335, Loss: 6.375460\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 336, Loss: 6.528030\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 337, Loss: 6.490835\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 338, Loss: 6.389886\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 339, Loss: 6.333646\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 340, Loss: 6.480282\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 341, Loss: 6.160398\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 342, Loss: 5.988247\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 343, Loss: 6.147058\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 344, Loss: 5.865318\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 345, Loss: 7.126366\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 346, Loss: 6.512022\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 347, Loss: 5.648075\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 348, Loss: 5.996059\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 349, Loss: 5.925674\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 350, Loss: 6.557565\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 351, Loss: 6.745251\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 352, Loss: 6.716335\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 353, Loss: 6.282039\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 354, Loss: 5.739299\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 355, Loss: 6.278224\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 356, Loss: 5.550247\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 357, Loss: 5.646365\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 358, Loss: 5.807209\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 359, Loss: 5.978958\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 360, Loss: 5.555931\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 361, Loss: 5.203523\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 362, Loss: 5.636393\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 363, Loss: 5.473405\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 364, Loss: 5.401248\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 365, Loss: 5.326340\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 366, Loss: 5.271309\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 367, Loss: 5.275467\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 368, Loss: 5.444360\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 369, Loss: 5.267401\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 370, Loss: 5.146760\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 371, Loss: 5.159005\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 372, Loss: 5.297122\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 373, Loss: 4.981820\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 374, Loss: 4.925728\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 375, Loss: 5.107366\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 376, Loss: 5.389894\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 377, Loss: 5.364807\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 378, Loss: 5.740372\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 379, Loss: 5.163461\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 380, Loss: 5.262973\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 381, Loss: 5.398002\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 382, Loss: 5.102802\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 383, Loss: 4.723604\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 384, Loss: 4.461478\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 385, Loss: 4.920785\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 386, Loss: 5.280292\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 387, Loss: 5.242100\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 388, Loss: 5.020067\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 389, Loss: 5.044953\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 390, Loss: 4.383113\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 391, Loss: 4.515879\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 392, Loss: 4.601551\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 393, Loss: 4.678182\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 394, Loss: 4.376949\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 395, Loss: 4.327113\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 396, Loss: 4.331738\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 397, Loss: 4.569313\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 398, Loss: 4.418655\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 399, Loss: 3.955624\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 400, Loss: 4.517392\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 401, Loss: 4.547060\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 402, Loss: 4.220784\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 403, Loss: 4.392449\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 404, Loss: 4.480208\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 405, Loss: 4.125288\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 406, Loss: 5.104706\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 407, Loss: 5.132930\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 408, Loss: 4.883349\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 409, Loss: 4.248263\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 410, Loss: 4.378425\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 411, Loss: 4.372323\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 412, Loss: 4.069981\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 413, Loss: 3.776760\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 414, Loss: 4.013367\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 415, Loss: 4.068753\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 416, Loss: 3.862445\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 417, Loss: 4.142339\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 418, Loss: 4.090668\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 419, Loss: 3.935795\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 420, Loss: 4.005173\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 421, Loss: 3.796383\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 422, Loss: 4.348527\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 423, Loss: 3.990801\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 424, Loss: 3.771629\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 425, Loss: 4.007941\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 426, Loss: 3.777687\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 427, Loss: 3.818053\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 428, Loss: 4.233115\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 429, Loss: 3.870588\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 430, Loss: 3.798167\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 431, Loss: 3.780513\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 432, Loss: 3.648690\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 433, Loss: 3.773133\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 434, Loss: 3.925385\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 435, Loss: 4.204555\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 436, Loss: 3.899909\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 437, Loss: 3.744115\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 438, Loss: 3.577648\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 439, Loss: 3.983206\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 440, Loss: 3.767093\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 441, Loss: 5.123704\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 442, Loss: 4.809839\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 443, Loss: 4.294469\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 444, Loss: 3.836644\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 445, Loss: 3.945914\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 446, Loss: 3.684847\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 447, Loss: 4.026559\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 448, Loss: 3.471614\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 449, Loss: 3.630424\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 450, Loss: 3.539667\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 451, Loss: 3.347423\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 452, Loss: 3.157628\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 453, Loss: 3.228871\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 454, Loss: 3.246304\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 455, Loss: 3.272518\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 456, Loss: 3.186008\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 457, Loss: 2.986627\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 458, Loss: 3.202795\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 459, Loss: 3.724094\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 460, Loss: 3.697562\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 461, Loss: 4.420035\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 462, Loss: 4.049299\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 463, Loss: 3.259570\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 464, Loss: 3.207385\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 465, Loss: 3.297573\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 466, Loss: 3.235654\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 467, Loss: 2.969465\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 468, Loss: 4.314532\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 469, Loss: 3.629794\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 470, Loss: 3.069947\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 471, Loss: 3.000323\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 472, Loss: 2.909053\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 473, Loss: 3.214814\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 474, Loss: 3.358604\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 475, Loss: 3.261523\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 476, Loss: 3.093122\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 477, Loss: 2.914689\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 478, Loss: 3.399172\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 479, Loss: 3.324663\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 480, Loss: 3.854670\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 481, Loss: 3.729290\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 482, Loss: 3.093811\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 483, Loss: 2.685033\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 484, Loss: 2.891300\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 485, Loss: 3.075022\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 486, Loss: 3.374722\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 487, Loss: 3.200108\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 488, Loss: 2.863056\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 489, Loss: 3.148845\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 490, Loss: 2.841839\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 491, Loss: 3.205249\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 492, Loss: 3.144961\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 493, Loss: 2.845318\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 494, Loss: 3.003083\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 495, Loss: 2.834876\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 496, Loss: 3.028857\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 497, Loss: 3.123358\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 498, Loss: 3.171746\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 499, Loss: 3.615072\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 500, Loss: 4.140579\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 501, Loss: 2.976241\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 502, Loss: 2.919986\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 503, Loss: 2.724711\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 504, Loss: 2.549598\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 505, Loss: 2.877256\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 506, Loss: 3.633199\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 507, Loss: 4.055722\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 508, Loss: 3.251589\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 509, Loss: 2.828869\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 510, Loss: 2.757100\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 511, Loss: 2.720708\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 512, Loss: 2.795403\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 513, Loss: 2.790774\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 514, Loss: 2.606263\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 515, Loss: 2.631366\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 516, Loss: 2.846037\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 517, Loss: 2.641982\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 518, Loss: 3.458299\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 519, Loss: 2.733550\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 520, Loss: 2.792284\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 521, Loss: 2.661735\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 522, Loss: 2.558243\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 523, Loss: 2.452244\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 524, Loss: 2.621198\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 525, Loss: 2.803721\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 526, Loss: 2.449263\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 527, Loss: 2.410006\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 528, Loss: 2.642507\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 529, Loss: 2.844910\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 530, Loss: 2.495702\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 531, Loss: 2.429148\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 532, Loss: 2.386099\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 533, Loss: 3.579012\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 534, Loss: 4.211283\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 535, Loss: 2.498174\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 536, Loss: 3.776079\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 537, Loss: 3.028872\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 538, Loss: 2.960582\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 539, Loss: 2.459327\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 540, Loss: 2.437052\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 541, Loss: 2.597225\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 542, Loss: 2.877069\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 543, Loss: 2.594923\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 544, Loss: 2.489443\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 545, Loss: 2.455488\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 546, Loss: 3.070340\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 547, Loss: 2.917869\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 548, Loss: 2.731738\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 549, Loss: 2.398427\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 550, Loss: 2.391912\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 551, Loss: 2.409707\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 552, Loss: 2.758057\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 553, Loss: 4.426370\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 554, Loss: 2.782766\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 555, Loss: 3.363191\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 556, Loss: 2.850037\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 557, Loss: 3.310858\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 558, Loss: 2.647593\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 559, Loss: 2.282804\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 560, Loss: 2.210452\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 561, Loss: 2.192467\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 562, Loss: 2.004712\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 563, Loss: 2.448426\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 564, Loss: 3.672997\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 565, Loss: 5.328064\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 566, Loss: 3.492530\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 567, Loss: 2.567043\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 568, Loss: 2.867047\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 569, Loss: 2.569098\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 570, Loss: 2.240810\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 571, Loss: 2.284624\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 572, Loss: 2.079840\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 573, Loss: 2.123386\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 574, Loss: 2.001419\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 575, Loss: 2.057551\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 576, Loss: 2.061184\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 577, Loss: 2.003594\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 578, Loss: 2.407680\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 579, Loss: 2.029568\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 580, Loss: 2.135989\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 581, Loss: 2.084934\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 582, Loss: 2.050194\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 583, Loss: 4.130061\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 584, Loss: 4.255425\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 585, Loss: 2.559604\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 586, Loss: 2.674757\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 587, Loss: 2.626971\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 588, Loss: 2.208116\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 589, Loss: 2.254349\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 590, Loss: 2.770996\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 591, Loss: 2.276581\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 592, Loss: 2.132093\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 593, Loss: 2.257204\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 594, Loss: 2.333694\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 595, Loss: 2.060649\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 596, Loss: 2.029440\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 597, Loss: 2.141503\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 598, Loss: 1.931203\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 599, Loss: 2.261467\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 600, Loss: 2.397253\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 601, Loss: 2.274436\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 602, Loss: 2.748596\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 603, Loss: 3.005126\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 604, Loss: 2.256710\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 605, Loss: 2.546833\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 606, Loss: 2.087515\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 607, Loss: 2.059348\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 608, Loss: 2.040509\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 609, Loss: 2.117873\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 610, Loss: 2.207619\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 611, Loss: 2.045364\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 612, Loss: 2.065707\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 613, Loss: 2.909796\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 614, Loss: 2.228225\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 615, Loss: 2.140697\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 616, Loss: 2.409076\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 617, Loss: 2.789433\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 618, Loss: 4.091500\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 619, Loss: 3.130806\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 620, Loss: 2.346277\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 621, Loss: 2.151876\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 622, Loss: 2.294321\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 623, Loss: 2.231455\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 624, Loss: 2.008558\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 625, Loss: 2.088563\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 626, Loss: 1.991622\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 627, Loss: 2.123744\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 628, Loss: 1.790613\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 629, Loss: 1.850342\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 630, Loss: 2.193341\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 631, Loss: 2.871737\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 632, Loss: 2.570601\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 633, Loss: 2.301184\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 634, Loss: 2.326281\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 635, Loss: 2.368139\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 636, Loss: 2.112521\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 637, Loss: 2.491471\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 638, Loss: 2.002476\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 639, Loss: 1.925741\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 640, Loss: 2.327656\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 641, Loss: 2.177040\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 642, Loss: 2.199864\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 643, Loss: 2.167850\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 644, Loss: 1.950531\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 645, Loss: 2.716599\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 646, Loss: 2.117973\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 647, Loss: 1.981497\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 648, Loss: 2.217633\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 649, Loss: 2.710795\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 650, Loss: 2.716075\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 651, Loss: 2.245191\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 652, Loss: 2.116722\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 653, Loss: 1.884875\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 654, Loss: 1.989419\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 655, Loss: 2.802772\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 656, Loss: 1.800011\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 657, Loss: 1.712371\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 658, Loss: 1.705281\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 659, Loss: 1.774050\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 660, Loss: 5.262718\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 661, Loss: 4.918429\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 662, Loss: 2.855290\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 663, Loss: 2.438707\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 664, Loss: 1.991095\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 665, Loss: 1.803246\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 666, Loss: 1.944874\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 667, Loss: 1.855848\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 668, Loss: 2.026783\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 669, Loss: 2.129303\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 670, Loss: 1.849035\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 671, Loss: 1.930043\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 672, Loss: 2.017780\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 673, Loss: 2.033941\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 674, Loss: 1.734815\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 675, Loss: 1.833369\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 676, Loss: 1.790289\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 677, Loss: 2.793069\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 678, Loss: 1.785408\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 679, Loss: 1.926535\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 680, Loss: 1.863589\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 681, Loss: 1.766788\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 682, Loss: 2.070653\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 683, Loss: 2.143922\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 684, Loss: 1.872663\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 685, Loss: 1.798349\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 686, Loss: 1.717297\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 687, Loss: 1.779868\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 688, Loss: 1.651856\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 689, Loss: 1.870269\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 690, Loss: 2.253765\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 691, Loss: 2.680454\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 692, Loss: 3.829600\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 693, Loss: 2.362527\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 694, Loss: 2.199368\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 695, Loss: 1.782826\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 696, Loss: 1.968806\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 697, Loss: 2.013200\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 698, Loss: 1.955283\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 699, Loss: 1.859662\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 700, Loss: 1.661071\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 701, Loss: 2.053208\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 702, Loss: 2.732438\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 703, Loss: 2.591430\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 704, Loss: 2.222773\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 705, Loss: 2.158584\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 706, Loss: 1.887681\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 707, Loss: 2.013010\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 708, Loss: 3.105504\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 709, Loss: 1.932125\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 710, Loss: 1.814677\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 711, Loss: 1.912781\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 712, Loss: 1.766179\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 713, Loss: 1.743034\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 714, Loss: 1.549011\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 715, Loss: 1.878922\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 716, Loss: 2.018737\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 717, Loss: 2.523514\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 718, Loss: 4.086546\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 719, Loss: 2.265857\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 720, Loss: 2.351320\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 721, Loss: 1.803370\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 722, Loss: 1.933158\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 723, Loss: 1.887099\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 724, Loss: 1.751515\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 725, Loss: 1.592589\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 726, Loss: 1.619603\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 727, Loss: 1.673617\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 728, Loss: 1.547108\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 729, Loss: 1.699354\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 730, Loss: 1.956549\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 731, Loss: 2.000257\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 732, Loss: 1.684037\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 733, Loss: 1.623103\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 734, Loss: 1.734134\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 735, Loss: 1.846060\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 736, Loss: 1.539316\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 737, Loss: 1.604488\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 738, Loss: 1.820735\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 739, Loss: 5.023755\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 740, Loss: 3.067082\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 741, Loss: 2.168875\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 742, Loss: 1.656788\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 743, Loss: 2.807857\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 744, Loss: 1.832799\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 745, Loss: 1.620531\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 746, Loss: 1.554101\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 747, Loss: 1.410195\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 748, Loss: 1.494228\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 749, Loss: 1.486604\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 750, Loss: 1.545458\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 751, Loss: 1.513412\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 752, Loss: 1.454903\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 753, Loss: 2.378372\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 754, Loss: 3.876779\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 755, Loss: 2.391655\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 756, Loss: 1.923293\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 757, Loss: 2.612416\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 758, Loss: 1.862388\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 759, Loss: 2.095665\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 760, Loss: 1.977142\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 761, Loss: 2.025512\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 762, Loss: 1.871692\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 763, Loss: 1.881889\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 764, Loss: 1.516968\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 765, Loss: 1.610423\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 766, Loss: 2.168358\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 767, Loss: 3.196339\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 768, Loss: 2.332193\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 769, Loss: 2.065856\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 770, Loss: 1.742743\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 771, Loss: 1.764288\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 772, Loss: 1.533193\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 773, Loss: 1.698756\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 774, Loss: 1.380463\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 775, Loss: 1.229040\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 776, Loss: 1.415256\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 777, Loss: 1.504568\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 778, Loss: 1.434117\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 779, Loss: 1.475128\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 780, Loss: 1.450671\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 781, Loss: 2.307641\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 782, Loss: 2.241455\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 783, Loss: 2.990186\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 784, Loss: 2.015475\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 785, Loss: 1.736897\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 786, Loss: 1.654885\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 787, Loss: 1.566051\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 788, Loss: 2.391581\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 789, Loss: 1.962237\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 790, Loss: 1.742022\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 791, Loss: 1.648588\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 792, Loss: 1.599158\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 793, Loss: 2.546489\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 794, Loss: 1.943988\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 795, Loss: 1.607159\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 796, Loss: 1.837522\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 797, Loss: 1.807006\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 798, Loss: 1.702193\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 799, Loss: 1.855176\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 800, Loss: 2.036571\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 801, Loss: 1.694183\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 802, Loss: 1.855385\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 803, Loss: 1.604636\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 804, Loss: 1.423080\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 805, Loss: 1.439273\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 806, Loss: 1.437195\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 807, Loss: 1.381504\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 808, Loss: 1.458721\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 809, Loss: 1.461399\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 810, Loss: 2.353383\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 811, Loss: 3.117236\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 812, Loss: 2.658866\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 813, Loss: 2.556078\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 814, Loss: 1.741507\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 815, Loss: 1.534457\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 816, Loss: 1.395723\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 817, Loss: 1.612280\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 818, Loss: 1.457993\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 819, Loss: 2.232786\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 820, Loss: 1.589356\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 821, Loss: 1.426525\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 822, Loss: 1.404617\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 823, Loss: 1.398420\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 824, Loss: 1.548717\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 825, Loss: 2.392184\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 826, Loss: 1.741009\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 827, Loss: 1.627256\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 828, Loss: 1.497670\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 829, Loss: 1.556339\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 830, Loss: 1.652963\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 831, Loss: 1.638193\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 832, Loss: 1.759570\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 833, Loss: 2.102379\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 834, Loss: 2.182299\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 835, Loss: 1.847117\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 836, Loss: 1.987612\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 837, Loss: 1.454497\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 838, Loss: 1.382668\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 839, Loss: 1.369828\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 840, Loss: 1.255486\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 841, Loss: 1.653992\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 842, Loss: 1.695664\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 843, Loss: 1.433923\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 844, Loss: 1.638017\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 845, Loss: 1.510857\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 846, Loss: 1.348591\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 847, Loss: 1.654499\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 848, Loss: 1.259233\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 849, Loss: 1.340989\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 850, Loss: 1.354413\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 851, Loss: 1.979908\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 852, Loss: 1.770416\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 853, Loss: 1.654425\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 854, Loss: 1.630472\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 855, Loss: 1.540809\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 856, Loss: 1.524346\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 857, Loss: 2.228507\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 858, Loss: 2.933151\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 859, Loss: 2.070007\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 860, Loss: 2.217207\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 861, Loss: 1.689041\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 862, Loss: 1.381479\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 863, Loss: 1.640894\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 864, Loss: 1.374206\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 865, Loss: 1.352853\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 866, Loss: 1.383244\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 867, Loss: 2.201579\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 868, Loss: 1.948391\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 869, Loss: 1.432628\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 870, Loss: 1.353203\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 871, Loss: 1.236794\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 872, Loss: 1.761239\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 873, Loss: 3.125604\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 874, Loss: 2.493126\n", - "SNR:inf, Imbalance Percentage:0, Encoding dimension:50, Epoch 875, Loss: 1.839550\n", - "Stopped early after 876 epochs, with loss of 1.229040\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1, Loss: 592.161377\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 2, Loss: 568.755615\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 3, Loss: 539.168884\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 4, Loss: 507.030762\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 5, Loss: 474.345215\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 6, Loss: 443.099670\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 7, Loss: 416.016571\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 8, Loss: 386.081177\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 9, Loss: 361.362000\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 10, Loss: 338.685059\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 11, Loss: 312.782074\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 12, Loss: 290.287292\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 13, Loss: 266.360199\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 14, Loss: 245.516739\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 15, Loss: 222.691055\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 16, Loss: 200.247620\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 17, Loss: 181.735199\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 18, Loss: 161.118713\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 19, Loss: 144.377792\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 20, Loss: 126.153931\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 21, Loss: 109.462418\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 22, Loss: 94.532227\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 23, Loss: 84.112488\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 24, Loss: 73.755508\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 25, Loss: 66.418579\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 26, Loss: 58.798752\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 27, Loss: 52.592476\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 28, Loss: 46.596886\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 29, Loss: 42.073463\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 30, Loss: 41.656261\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 31, Loss: 39.930687\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 32, Loss: 38.652725\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 33, Loss: 37.329231\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 34, Loss: 36.675404\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 35, Loss: 36.136902\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 36, Loss: 34.071873\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 37, Loss: 33.072189\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 38, Loss: 31.705877\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 39, Loss: 33.328407\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 40, Loss: 31.877710\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 41, Loss: 31.900669\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 42, Loss: 32.008350\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 43, Loss: 31.002230\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 44, Loss: 32.446808\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 45, Loss: 31.200832\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 46, Loss: 30.938934\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 47, Loss: 30.947348\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 48, Loss: 30.947086\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 49, Loss: 30.215456\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 50, Loss: 30.709780\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 51, Loss: 29.194475\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 52, Loss: 29.898455\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 53, Loss: 29.741941\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 54, Loss: 29.100569\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 55, Loss: 28.768078\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 56, Loss: 27.826328\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 57, Loss: 28.541103\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 58, Loss: 28.185028\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 59, Loss: 27.365292\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 60, Loss: 28.779976\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 61, Loss: 27.644894\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 62, Loss: 27.721209\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 63, Loss: 27.194818\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 64, Loss: 27.636627\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 65, Loss: 28.211370\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 66, Loss: 27.051729\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 67, Loss: 27.158028\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 68, Loss: 26.720978\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 69, Loss: 26.669727\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 70, Loss: 26.386469\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 71, Loss: 26.286644\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 72, Loss: 26.297894\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 73, Loss: 25.564089\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 74, Loss: 25.838943\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 75, Loss: 25.519178\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 76, Loss: 25.730974\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 77, Loss: 24.719107\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 78, Loss: 24.273998\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 79, Loss: 25.285006\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 80, Loss: 24.038765\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 81, Loss: 23.729553\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 82, Loss: 24.252220\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 83, Loss: 23.704315\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 84, Loss: 23.839979\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 85, Loss: 23.596161\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 86, Loss: 23.654032\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 87, Loss: 23.429281\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 88, Loss: 23.426846\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 89, Loss: 22.519203\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 90, Loss: 23.502251\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 91, Loss: 22.376307\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 92, Loss: 22.397429\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 93, Loss: 22.119471\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 94, Loss: 22.796650\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 95, Loss: 21.374079\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 96, Loss: 21.614536\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 97, Loss: 21.545818\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 98, Loss: 21.234873\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 99, Loss: 21.274164\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 100, Loss: 21.345036\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 101, Loss: 21.355511\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 102, Loss: 21.203098\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 103, Loss: 21.413858\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 104, Loss: 20.792175\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 105, Loss: 20.379562\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 106, Loss: 20.630781\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 107, Loss: 20.406965\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 108, Loss: 20.745354\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 109, Loss: 20.487701\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 110, Loss: 20.177774\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 111, Loss: 20.648628\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 112, Loss: 19.910490\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 113, Loss: 20.090017\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 114, Loss: 19.414703\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 115, Loss: 19.876345\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 116, Loss: 19.465223\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 117, Loss: 19.418386\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 118, Loss: 19.145027\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 119, Loss: 19.707539\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 120, Loss: 19.236408\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 121, Loss: 18.930559\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 122, Loss: 18.791859\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 123, Loss: 19.053955\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 124, Loss: 18.335522\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 125, Loss: 18.524868\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 126, Loss: 18.501572\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 127, Loss: 18.923588\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 128, Loss: 18.961391\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 129, Loss: 17.849558\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 130, Loss: 17.969002\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 131, Loss: 17.790640\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 132, Loss: 18.528078\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 133, Loss: 18.074162\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 134, Loss: 18.101000\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 135, Loss: 17.647831\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 136, Loss: 18.382547\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 137, Loss: 17.416853\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 138, Loss: 17.405027\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 139, Loss: 17.524691\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 140, Loss: 17.145206\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 141, Loss: 16.691442\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 142, Loss: 18.009569\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 143, Loss: 16.859570\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 144, Loss: 17.243172\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 145, Loss: 16.621811\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 146, Loss: 16.842394\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 147, Loss: 16.747913\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 148, Loss: 16.263004\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 149, Loss: 17.259069\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 150, Loss: 16.332060\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 151, Loss: 16.700468\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 152, Loss: 16.118858\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 153, Loss: 16.595695\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 154, Loss: 15.750510\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 155, Loss: 16.452877\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 156, Loss: 15.742629\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 157, Loss: 15.479585\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 158, Loss: 16.196457\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 159, Loss: 15.766988\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 160, Loss: 15.760969\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 161, Loss: 15.626833\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 162, Loss: 16.023310\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 163, Loss: 15.497652\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 164, Loss: 15.105300\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 165, Loss: 15.544195\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 166, Loss: 15.219069\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 167, Loss: 15.196134\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 168, Loss: 14.760284\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 169, Loss: 14.889765\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 170, Loss: 14.988837\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 171, Loss: 14.604325\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 172, Loss: 14.954994\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 173, Loss: 14.479988\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 174, Loss: 14.768034\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 175, Loss: 14.232067\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 176, Loss: 15.147913\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 177, Loss: 13.843356\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 178, Loss: 14.492905\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 179, Loss: 14.151564\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 180, Loss: 14.346712\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 181, Loss: 13.714994\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 182, Loss: 14.139638\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 183, Loss: 13.992652\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 184, Loss: 13.929191\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 185, Loss: 14.307858\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 186, Loss: 13.661556\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 187, Loss: 14.028602\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 188, Loss: 13.681510\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 189, Loss: 13.810691\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 190, Loss: 13.773797\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 191, Loss: 13.480847\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 192, Loss: 13.238157\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 193, Loss: 13.311526\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 194, Loss: 13.271876\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 195, Loss: 13.543214\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 196, Loss: 13.161931\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 197, Loss: 13.004236\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 198, Loss: 13.059867\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 199, Loss: 13.456378\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 200, Loss: 12.614313\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 201, Loss: 13.240669\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 202, Loss: 12.385616\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 203, Loss: 13.068974\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 204, Loss: 13.013431\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 205, Loss: 12.518924\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 206, Loss: 12.789931\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 207, Loss: 12.490222\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 208, Loss: 12.892307\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 209, Loss: 12.699881\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 210, Loss: 12.100439\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 211, Loss: 11.869892\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 212, Loss: 12.313847\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 213, Loss: 11.757262\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 214, Loss: 12.342441\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 215, Loss: 12.208271\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 216, Loss: 11.990351\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 217, Loss: 11.913916\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 218, Loss: 11.664225\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 219, Loss: 11.859334\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 220, Loss: 11.785373\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 221, Loss: 11.545882\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 222, Loss: 11.303346\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 223, Loss: 11.943356\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 224, Loss: 11.367709\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 225, Loss: 11.539370\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 226, Loss: 11.692729\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 227, Loss: 11.548572\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 228, Loss: 11.189706\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 229, Loss: 11.251731\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 230, Loss: 10.867702\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 231, Loss: 11.388095\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 232, Loss: 11.023755\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 233, Loss: 10.670291\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 234, Loss: 10.809776\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 235, Loss: 11.369610\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 236, Loss: 11.038214\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 237, Loss: 11.126346\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 238, Loss: 10.515726\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 239, Loss: 10.374631\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 240, Loss: 10.422979\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 241, Loss: 10.399130\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 242, Loss: 10.258495\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 243, Loss: 10.148367\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 244, Loss: 10.444239\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 245, Loss: 10.372464\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 246, Loss: 10.133555\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 247, Loss: 10.567289\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 248, Loss: 10.632195\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 249, Loss: 9.978121\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 250, Loss: 9.792212\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 251, Loss: 9.907137\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 252, Loss: 9.967941\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 253, Loss: 9.869131\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 254, Loss: 9.829319\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 255, Loss: 9.745192\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 256, Loss: 9.565166\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 257, Loss: 9.396138\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 258, Loss: 9.662428\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 259, Loss: 9.412290\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 260, Loss: 9.231668\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 261, Loss: 9.630906\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 262, Loss: 9.382681\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 263, Loss: 9.184233\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 264, Loss: 9.301682\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 265, Loss: 9.280516\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 266, Loss: 9.238305\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 267, Loss: 9.000626\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 268, Loss: 9.140183\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 269, Loss: 8.963053\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 270, Loss: 9.132330\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 271, Loss: 8.865229\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 272, Loss: 8.956408\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 273, Loss: 9.014563\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 274, Loss: 8.775754\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 275, Loss: 8.651250\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 276, Loss: 8.642016\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 277, Loss: 8.932518\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 278, Loss: 8.652851\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 279, Loss: 8.266154\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 280, Loss: 8.623182\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 281, Loss: 8.334796\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 282, Loss: 8.515535\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 283, Loss: 8.306789\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 284, Loss: 8.174952\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 285, Loss: 8.133031\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 286, Loss: 8.229795\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 287, Loss: 8.343881\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 288, Loss: 7.999966\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 289, Loss: 8.004185\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 290, Loss: 7.950870\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 291, Loss: 8.061323\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 292, Loss: 8.035401\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 293, Loss: 7.956158\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 294, Loss: 8.091925\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 295, Loss: 7.427398\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 296, Loss: 7.574800\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 297, Loss: 7.599093\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 298, Loss: 7.634661\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 299, Loss: 7.590137\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 300, Loss: 7.560822\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 301, Loss: 7.371531\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 302, Loss: 7.529441\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 303, Loss: 7.622363\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 304, Loss: 7.186974\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 305, Loss: 7.703480\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 306, Loss: 7.149443\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 307, Loss: 7.544362\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 308, Loss: 7.204543\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 309, Loss: 6.961470\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 310, Loss: 6.971843\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 311, Loss: 6.782956\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 312, Loss: 7.224628\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 313, Loss: 7.007572\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 314, Loss: 7.040291\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 315, Loss: 7.187337\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 316, Loss: 6.698782\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 317, Loss: 6.956630\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 318, Loss: 6.919256\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 319, Loss: 6.960927\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 320, Loss: 7.682809\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 321, Loss: 7.002563\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 322, Loss: 7.230721\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 323, Loss: 7.351561\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 324, Loss: 6.796671\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 325, Loss: 6.376133\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 326, Loss: 6.542252\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 327, Loss: 6.419029\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 328, Loss: 6.386483\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 329, Loss: 6.758603\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 330, Loss: 6.734529\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 331, Loss: 6.238233\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 332, Loss: 6.085039\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 333, Loss: 6.005520\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 334, Loss: 6.240358\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 335, Loss: 6.640105\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 336, Loss: 6.078382\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 337, Loss: 5.877548\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 338, Loss: 6.201614\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 339, Loss: 5.902043\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 340, Loss: 5.891737\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 341, Loss: 6.045727\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 342, Loss: 6.319438\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 343, Loss: 5.933501\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 344, Loss: 5.919712\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 345, Loss: 5.969505\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 346, Loss: 5.515654\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 347, Loss: 5.479078\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 348, Loss: 5.577665\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 349, Loss: 5.934999\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 350, Loss: 5.901611\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 351, Loss: 5.545981\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 352, Loss: 5.846859\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 353, Loss: 5.588166\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 354, Loss: 5.452322\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 355, Loss: 5.746927\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 356, Loss: 5.929990\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 357, Loss: 6.007340\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 358, Loss: 5.485295\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 359, Loss: 5.770137\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 360, Loss: 5.550668\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 361, Loss: 5.368765\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 362, Loss: 5.014454\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 363, Loss: 5.253712\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 364, Loss: 5.436216\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 365, Loss: 4.996228\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 366, Loss: 5.109416\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 367, Loss: 4.993970\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 368, Loss: 4.936556\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 369, Loss: 4.925854\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 370, Loss: 4.888841\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 371, Loss: 5.116696\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 372, Loss: 4.838865\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 373, Loss: 4.883028\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 374, Loss: 5.243313\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 375, Loss: 4.837676\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 376, Loss: 4.808451\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 377, Loss: 4.899262\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 378, Loss: 4.810209\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 379, Loss: 5.536776\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 380, Loss: 6.297797\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 381, Loss: 5.501246\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 382, Loss: 5.261658\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 383, Loss: 4.991925\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 384, Loss: 4.578553\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 385, Loss: 4.515451\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 386, Loss: 4.441892\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 387, Loss: 4.652952\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 388, Loss: 4.558827\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 389, Loss: 4.498509\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 390, Loss: 4.891665\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 391, Loss: 4.806384\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 392, Loss: 4.557511\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 393, Loss: 4.765894\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 394, Loss: 4.672540\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 395, Loss: 4.467257\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 396, Loss: 4.417896\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 397, Loss: 4.510881\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 398, Loss: 4.378937\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 399, Loss: 4.618394\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 400, Loss: 4.223348\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 401, Loss: 3.939587\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 402, Loss: 3.910508\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 403, Loss: 4.027143\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 404, Loss: 3.905396\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 405, Loss: 4.069026\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 406, Loss: 3.891488\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 407, Loss: 4.155493\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 408, Loss: 3.885746\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 409, Loss: 5.247572\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 410, Loss: 5.400526\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 411, Loss: 5.829426\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 412, Loss: 4.786063\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 413, Loss: 4.916408\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 414, Loss: 4.725698\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 415, Loss: 4.185885\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 416, Loss: 3.840296\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 417, Loss: 3.874928\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 418, Loss: 4.534258\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 419, Loss: 4.036375\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 420, Loss: 3.841664\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 421, Loss: 3.755762\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 422, Loss: 4.148594\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 423, Loss: 5.092204\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 424, Loss: 4.038806\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 425, Loss: 4.690188\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 426, Loss: 4.472779\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 427, Loss: 4.811259\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 428, Loss: 4.350870\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 429, Loss: 4.342517\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 430, Loss: 4.062326\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 431, Loss: 3.754362\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 432, Loss: 5.623938\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 433, Loss: 4.166104\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 434, Loss: 3.678841\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 435, Loss: 3.517803\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 436, Loss: 3.873232\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 437, Loss: 3.649488\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 438, Loss: 3.585055\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 439, Loss: 3.372380\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 440, Loss: 3.384650\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 441, Loss: 3.422190\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 442, Loss: 3.717927\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 443, Loss: 3.591448\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 444, Loss: 3.528295\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 445, Loss: 3.506882\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 446, Loss: 3.349941\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 447, Loss: 3.488253\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 448, Loss: 3.585460\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 449, Loss: 4.097625\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 450, Loss: 3.654352\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 451, Loss: 13.508872\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 452, Loss: 6.142990\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 453, Loss: 5.376052\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 454, Loss: 4.199425\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 455, Loss: 3.939666\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 456, Loss: 3.340742\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 457, Loss: 3.271644\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 458, Loss: 3.437237\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 459, Loss: 3.200563\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 460, Loss: 3.336068\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 461, Loss: 3.306694\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 462, Loss: 3.204110\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 463, Loss: 3.170797\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 464, Loss: 3.302493\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 465, Loss: 3.301567\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 466, Loss: 3.140070\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 467, Loss: 3.130231\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 468, Loss: 3.025623\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 469, Loss: 3.308866\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 470, Loss: 3.212184\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 471, Loss: 3.094564\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 472, Loss: 3.318744\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 473, Loss: 3.157449\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 474, Loss: 3.212023\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 475, Loss: 3.364843\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 476, Loss: 4.072347\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 477, Loss: 3.775517\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 478, Loss: 3.618096\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 479, Loss: 3.897243\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 480, Loss: 3.353727\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 481, Loss: 3.332505\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 482, Loss: 3.324683\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 483, Loss: 2.997434\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 484, Loss: 3.097251\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 485, Loss: 3.167652\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 486, Loss: 3.005862\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 487, Loss: 3.202692\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 488, Loss: 3.004108\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 489, Loss: 2.908670\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 490, Loss: 3.107467\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 491, Loss: 3.127206\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 492, Loss: 2.999808\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 493, Loss: 2.830822\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 494, Loss: 2.974702\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 495, Loss: 3.149441\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 496, Loss: 3.285798\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 497, Loss: 3.120980\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 498, Loss: 2.984295\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 499, Loss: 3.131749\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 500, Loss: 3.443129\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 501, Loss: 2.917901\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 502, Loss: 2.905900\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 503, Loss: 3.329070\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 504, Loss: 3.698624\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 505, Loss: 4.196537\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 506, Loss: 3.342695\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 507, Loss: 3.170918\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 508, Loss: 3.001243\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 509, Loss: 2.933985\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 510, Loss: 2.836174\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 511, Loss: 2.728442\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 512, Loss: 2.668538\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 513, Loss: 2.622432\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 514, Loss: 2.772544\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 515, Loss: 2.727474\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 516, Loss: 2.605883\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 517, Loss: 2.655218\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 518, Loss: 2.940802\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 519, Loss: 3.039616\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 520, Loss: 6.086467\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 521, Loss: 3.437824\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 522, Loss: 3.304334\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 523, Loss: 2.913734\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 524, Loss: 3.470629\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 525, Loss: 3.008284\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 526, Loss: 2.816296\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 527, Loss: 2.708750\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 528, Loss: 2.689223\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 529, Loss: 2.536732\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 530, Loss: 2.678499\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 531, Loss: 2.861961\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 532, Loss: 4.356954\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 533, Loss: 3.222480\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 534, Loss: 2.980192\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 535, Loss: 3.460027\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 536, Loss: 3.172440\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 537, Loss: 2.730301\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 538, Loss: 2.713988\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 539, Loss: 2.712871\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 540, Loss: 2.532120\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 541, Loss: 2.447571\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 542, Loss: 2.928369\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 543, Loss: 2.653904\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 544, Loss: 2.839401\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 545, Loss: 2.533303\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 546, Loss: 2.653768\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 547, Loss: 2.530634\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 548, Loss: 2.580741\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 549, Loss: 2.874409\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 550, Loss: 2.863348\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 551, Loss: 3.347769\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 552, Loss: 2.933564\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 553, Loss: 3.063600\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 554, Loss: 3.018833\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 555, Loss: 2.441662\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 556, Loss: 2.280237\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 557, Loss: 2.523397\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 558, Loss: 2.414173\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 559, Loss: 2.568198\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 560, Loss: 2.821676\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 561, Loss: 3.503744\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 562, Loss: 2.610759\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 563, Loss: 2.408958\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 564, Loss: 2.665585\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 565, Loss: 2.479500\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 566, Loss: 2.375412\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 567, Loss: 2.503822\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 568, Loss: 2.430837\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 569, Loss: 2.420301\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 570, Loss: 2.367873\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 571, Loss: 2.626899\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 572, Loss: 2.573111\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 573, Loss: 2.460192\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 574, Loss: 2.970019\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 575, Loss: 2.970719\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 576, Loss: 2.325594\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 577, Loss: 2.590194\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 578, Loss: 2.529451\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 579, Loss: 2.450197\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 580, Loss: 2.418068\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 581, Loss: 2.222742\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 582, Loss: 2.263759\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 583, Loss: 2.328473\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 584, Loss: 2.874921\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 585, Loss: 3.135482\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 586, Loss: 3.085958\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 587, Loss: 2.680626\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 588, Loss: 2.668511\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 589, Loss: 2.462486\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 590, Loss: 4.578589\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 591, Loss: 3.705046\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 592, Loss: 3.520827\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 593, Loss: 2.942849\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 594, Loss: 2.244048\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 595, Loss: 2.937278\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 596, Loss: 3.068348\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 597, Loss: 2.441880\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 598, Loss: 2.583957\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 599, Loss: 2.221854\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 600, Loss: 2.345760\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 601, Loss: 2.215206\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 602, Loss: 2.384101\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 603, Loss: 2.302426\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 604, Loss: 2.173934\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 605, Loss: 2.586580\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 606, Loss: 2.515478\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 607, Loss: 2.315475\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 608, Loss: 2.400899\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 609, Loss: 2.750699\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 610, Loss: 2.266061\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 611, Loss: 2.653683\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 612, Loss: 2.747362\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 613, Loss: 2.401775\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 614, Loss: 2.100995\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 615, Loss: 2.548505\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 616, Loss: 3.075907\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 617, Loss: 2.787536\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 618, Loss: 3.080468\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 619, Loss: 2.855666\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 620, Loss: 2.448517\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 621, Loss: 3.069493\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 622, Loss: 2.293373\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 623, Loss: 2.128271\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 624, Loss: 2.141543\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 625, Loss: 2.191546\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 626, Loss: 2.199082\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 627, Loss: 2.141750\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 628, Loss: 2.054046\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 629, Loss: 2.147308\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 630, Loss: 2.552006\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 631, Loss: 2.673207\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 632, Loss: 2.231377\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 633, Loss: 2.134218\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 634, Loss: 2.222299\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 635, Loss: 2.533411\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 636, Loss: 2.925983\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 637, Loss: 2.957706\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 638, Loss: 2.476685\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 639, Loss: 2.999922\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 640, Loss: 2.386313\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 641, Loss: 2.565539\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 642, Loss: 2.334405\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 643, Loss: 2.329214\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 644, Loss: 2.076716\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 645, Loss: 2.467962\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 646, Loss: 2.012359\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 647, Loss: 2.195479\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 648, Loss: 2.257502\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 649, Loss: 2.050694\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 650, Loss: 2.275393\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 651, Loss: 3.955397\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 652, Loss: 8.198989\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 653, Loss: 4.229755\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 654, Loss: 3.361778\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 655, Loss: 2.497802\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 656, Loss: 3.209654\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 657, Loss: 2.546208\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 658, Loss: 2.311588\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 659, Loss: 2.371266\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 660, Loss: 2.339814\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 661, Loss: 2.067382\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 662, Loss: 2.455082\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 663, Loss: 1.990142\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 664, Loss: 2.031586\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 665, Loss: 2.201935\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 666, Loss: 2.066584\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 667, Loss: 1.953763\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 668, Loss: 1.876841\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 669, Loss: 1.887527\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 670, Loss: 2.051429\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 671, Loss: 2.046849\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 672, Loss: 2.291262\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 673, Loss: 2.622656\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 674, Loss: 2.439410\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 675, Loss: 2.395875\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 676, Loss: 1.980851\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 677, Loss: 3.206956\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 678, Loss: 2.769231\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 679, Loss: 2.514493\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 680, Loss: 2.386274\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 681, Loss: 2.316964\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 682, Loss: 3.492973\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 683, Loss: 2.999724\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 684, Loss: 3.187877\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 685, Loss: 2.833474\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 686, Loss: 2.781396\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 687, Loss: 2.346761\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 688, Loss: 2.063847\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 689, Loss: 1.986981\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 690, Loss: 2.038010\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 691, Loss: 1.996050\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 692, Loss: 1.996979\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 693, Loss: 2.196659\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 694, Loss: 3.798226\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 695, Loss: 3.160398\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 696, Loss: 2.624532\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 697, Loss: 2.109827\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 698, Loss: 1.936528\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 699, Loss: 1.977627\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 700, Loss: 1.912802\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 701, Loss: 2.122244\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 702, Loss: 1.790635\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 703, Loss: 1.934138\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 704, Loss: 2.220417\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 705, Loss: 2.039330\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 706, Loss: 2.016708\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 707, Loss: 1.978296\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 708, Loss: 2.014926\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 709, Loss: 2.023370\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 710, Loss: 2.465237\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 711, Loss: 2.731791\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 712, Loss: 2.367407\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 713, Loss: 4.225678\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 714, Loss: 2.883784\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 715, Loss: 2.837479\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 716, Loss: 2.459206\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 717, Loss: 2.037099\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 718, Loss: 2.022890\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 719, Loss: 1.969003\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 720, Loss: 1.811374\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 721, Loss: 1.583440\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 722, Loss: 1.927546\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 723, Loss: 3.894511\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 724, Loss: 3.671931\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 725, Loss: 2.595478\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 726, Loss: 2.428006\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 727, Loss: 2.236479\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 728, Loss: 1.901036\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 729, Loss: 1.827955\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 730, Loss: 1.809661\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 731, Loss: 1.820064\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 732, Loss: 1.695828\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 733, Loss: 1.899717\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 734, Loss: 2.092453\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 735, Loss: 1.887236\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 736, Loss: 1.917005\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 737, Loss: 1.835517\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 738, Loss: 1.861153\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 739, Loss: 1.811872\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 740, Loss: 1.856466\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 741, Loss: 1.895509\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 742, Loss: 2.345978\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 743, Loss: 2.063549\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 744, Loss: 2.910862\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 745, Loss: 2.593191\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 746, Loss: 2.031336\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 747, Loss: 2.788797\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 748, Loss: 2.741088\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 749, Loss: 2.312740\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 750, Loss: 2.810406\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 751, Loss: 2.082863\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 752, Loss: 2.566483\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 753, Loss: 1.848568\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 754, Loss: 1.705849\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 755, Loss: 1.758380\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 756, Loss: 1.710189\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 757, Loss: 1.656675\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 758, Loss: 1.776756\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 759, Loss: 1.769878\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 760, Loss: 1.879054\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 761, Loss: 1.795699\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 762, Loss: 1.863605\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 763, Loss: 1.760438\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 764, Loss: 1.645471\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 765, Loss: 1.809832\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 766, Loss: 1.931809\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 767, Loss: 1.869013\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 768, Loss: 1.718206\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 769, Loss: 1.646214\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 770, Loss: 1.669970\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 771, Loss: 1.928282\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 772, Loss: 1.943948\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 773, Loss: 4.687208\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 774, Loss: 3.555165\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 775, Loss: 2.341100\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 776, Loss: 1.957126\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 777, Loss: 2.371425\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 778, Loss: 2.496470\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 779, Loss: 2.150845\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 780, Loss: 1.902522\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 781, Loss: 1.767312\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 782, Loss: 1.754069\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 783, Loss: 1.708837\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 784, Loss: 1.493884\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 785, Loss: 2.153003\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 786, Loss: 2.434135\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 787, Loss: 1.805564\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 788, Loss: 2.033969\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 789, Loss: 1.679274\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 790, Loss: 1.755823\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 791, Loss: 1.712680\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 792, Loss: 1.641496\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 793, Loss: 1.800600\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 794, Loss: 2.685186\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 795, Loss: 2.283761\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 796, Loss: 1.938270\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 797, Loss: 1.664344\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 798, Loss: 1.679035\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 799, Loss: 1.758051\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 800, Loss: 1.733933\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 801, Loss: 1.908629\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 802, Loss: 2.501574\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 803, Loss: 2.467758\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 804, Loss: 1.877783\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 805, Loss: 1.768237\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 806, Loss: 4.728313\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 807, Loss: 2.696467\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 808, Loss: 2.271624\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 809, Loss: 1.888733\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 810, Loss: 1.974117\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 811, Loss: 1.838053\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 812, Loss: 1.679442\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 813, Loss: 1.775316\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 814, Loss: 1.578213\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 815, Loss: 1.591825\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 816, Loss: 1.514314\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 817, Loss: 1.670144\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 818, Loss: 1.639684\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 819, Loss: 2.274566\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 820, Loss: 2.030673\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 821, Loss: 2.051228\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 822, Loss: 1.794854\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 823, Loss: 1.847266\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 824, Loss: 1.633208\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 825, Loss: 1.554553\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 826, Loss: 1.809063\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 827, Loss: 1.767716\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 828, Loss: 1.573754\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 829, Loss: 1.734287\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 830, Loss: 1.885952\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 831, Loss: 2.127337\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 832, Loss: 2.716527\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 833, Loss: 2.684787\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 834, Loss: 2.150060\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 835, Loss: 1.744109\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 836, Loss: 1.734449\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 837, Loss: 1.724435\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 838, Loss: 1.827464\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 839, Loss: 1.510995\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 840, Loss: 1.710031\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 841, Loss: 1.594069\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 842, Loss: 1.904210\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 843, Loss: 1.588636\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 844, Loss: 2.479965\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 845, Loss: 2.538541\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 846, Loss: 1.894611\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 847, Loss: 1.513829\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 848, Loss: 1.647453\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 849, Loss: 1.583552\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 850, Loss: 1.540880\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 851, Loss: 1.456240\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 852, Loss: 1.535238\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 853, Loss: 1.455560\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 854, Loss: 1.930104\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 855, Loss: 1.654682\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 856, Loss: 1.527027\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 857, Loss: 1.668595\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 858, Loss: 2.083497\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 859, Loss: 2.618772\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 860, Loss: 1.961604\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 861, Loss: 1.771725\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 862, Loss: 2.018673\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 863, Loss: 1.932479\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 864, Loss: 2.109651\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 865, Loss: 2.446776\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 866, Loss: 1.780989\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 867, Loss: 2.399941\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 868, Loss: 2.057532\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 869, Loss: 2.474953\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 870, Loss: 1.728923\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 871, Loss: 1.757786\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 872, Loss: 1.595764\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 873, Loss: 1.546629\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 874, Loss: 1.522649\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 875, Loss: 1.300988\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 876, Loss: 1.456632\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 877, Loss: 1.735458\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 878, Loss: 1.753315\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 879, Loss: 1.455158\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 880, Loss: 1.722084\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 881, Loss: 1.678248\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 882, Loss: 1.489174\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 883, Loss: 1.402679\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 884, Loss: 1.449675\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 885, Loss: 1.462489\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 886, Loss: 1.543048\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 887, Loss: 1.460811\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 888, Loss: 1.421753\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 889, Loss: 1.680086\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 890, Loss: 1.731885\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 891, Loss: 1.669103\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 892, Loss: 1.560576\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 893, Loss: 1.633291\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 894, Loss: 1.717434\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 895, Loss: 2.304323\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 896, Loss: 2.129095\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 897, Loss: 2.517148\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 898, Loss: 2.220640\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 899, Loss: 1.872098\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 900, Loss: 1.480104\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 901, Loss: 2.556379\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 902, Loss: 1.893735\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 903, Loss: 1.553560\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 904, Loss: 1.608947\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 905, Loss: 1.565053\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 906, Loss: 1.557259\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 907, Loss: 1.638820\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 908, Loss: 1.632966\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 909, Loss: 1.463221\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 910, Loss: 1.448171\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 911, Loss: 1.373662\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 912, Loss: 1.423428\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 913, Loss: 1.480767\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 914, Loss: 2.580713\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 915, Loss: 2.022473\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 916, Loss: 2.176023\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 917, Loss: 1.700199\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 918, Loss: 1.589564\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 919, Loss: 1.419691\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 920, Loss: 2.156560\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 921, Loss: 1.818200\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 922, Loss: 1.834240\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 923, Loss: 1.332063\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 924, Loss: 2.583581\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 925, Loss: 1.955381\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 926, Loss: 1.537940\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 927, Loss: 1.759971\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 928, Loss: 1.660677\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 929, Loss: 1.565403\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 930, Loss: 1.380143\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 931, Loss: 1.513132\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 932, Loss: 1.414474\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 933, Loss: 1.525600\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 934, Loss: 1.527403\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 935, Loss: 1.711854\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 936, Loss: 1.545354\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 937, Loss: 2.510214\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 938, Loss: 3.532636\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 939, Loss: 2.525117\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 940, Loss: 2.373192\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 941, Loss: 3.912889\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 942, Loss: 2.999414\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 943, Loss: 2.234798\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 944, Loss: 1.717795\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 945, Loss: 1.685050\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 946, Loss: 1.453249\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 947, Loss: 1.419282\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 948, Loss: 1.355012\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 949, Loss: 1.598999\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 950, Loss: 1.616517\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 951, Loss: 1.810601\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 952, Loss: 1.370893\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 953, Loss: 1.339130\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 954, Loss: 1.644910\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 955, Loss: 1.430577\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 956, Loss: 1.745117\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 957, Loss: 1.411370\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 958, Loss: 2.797071\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 959, Loss: 1.748803\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 960, Loss: 1.528795\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 961, Loss: 1.423568\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 962, Loss: 1.369122\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 963, Loss: 1.965025\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 964, Loss: 1.481162\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 965, Loss: 1.544714\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 966, Loss: 1.347942\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 967, Loss: 1.555659\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 968, Loss: 3.395783\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 969, Loss: 2.257502\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 970, Loss: 1.964379\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 971, Loss: 1.426962\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 972, Loss: 1.570550\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 973, Loss: 1.451843\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 974, Loss: 1.277188\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 975, Loss: 1.723269\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 976, Loss: 2.341751\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 977, Loss: 1.569801\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 978, Loss: 1.589013\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 979, Loss: 1.313244\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 980, Loss: 1.389587\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 981, Loss: 1.359737\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 982, Loss: 1.429181\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 983, Loss: 1.258598\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 984, Loss: 1.215244\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 985, Loss: 1.436004\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 986, Loss: 6.851865\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 987, Loss: 2.833042\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 988, Loss: 1.688225\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 989, Loss: 1.571300\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 990, Loss: 1.429307\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 991, Loss: 1.697155\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 992, Loss: 1.573766\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 993, Loss: 1.370882\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 994, Loss: 1.438366\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 995, Loss: 1.305604\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 996, Loss: 1.205818\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 997, Loss: 1.175606\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 998, Loss: 1.202445\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 999, Loss: 1.454914\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1000, Loss: 1.695266\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1001, Loss: 3.031926\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1002, Loss: 2.227329\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1003, Loss: 1.554281\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1004, Loss: 1.545437\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1005, Loss: 1.263697\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1006, Loss: 1.350130\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1007, Loss: 1.326839\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1008, Loss: 1.290927\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1009, Loss: 1.358685\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1010, Loss: 1.683840\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1011, Loss: 1.428232\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1012, Loss: 2.670080\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1013, Loss: 2.113421\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1014, Loss: 3.182786\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1015, Loss: 2.768101\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1016, Loss: 1.625771\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1017, Loss: 1.590453\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1018, Loss: 1.596990\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1019, Loss: 1.229695\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1020, Loss: 1.409906\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1021, Loss: 1.414321\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1022, Loss: 1.329012\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1023, Loss: 1.301401\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1024, Loss: 1.344820\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1025, Loss: 1.207232\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1026, Loss: 2.433064\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1027, Loss: 1.868219\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1028, Loss: 1.610967\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1029, Loss: 1.863768\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1030, Loss: 1.472083\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1031, Loss: 1.533621\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1032, Loss: 2.237685\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1033, Loss: 2.219226\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1034, Loss: 4.399694\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1035, Loss: 2.645421\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1036, Loss: 1.794254\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1037, Loss: 1.476561\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1038, Loss: 1.827663\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1039, Loss: 1.259590\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1040, Loss: 1.469737\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1041, Loss: 1.834028\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1042, Loss: 3.050978\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1043, Loss: 1.726454\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1044, Loss: 1.264484\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1045, Loss: 1.256605\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1046, Loss: 1.492724\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1047, Loss: 1.294894\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1048, Loss: 1.227687\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1049, Loss: 1.342446\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1050, Loss: 1.456897\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1051, Loss: 1.324703\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1052, Loss: 1.300445\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1053, Loss: 1.109951\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1054, Loss: 1.451169\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1055, Loss: 1.214225\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1056, Loss: 1.293652\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1057, Loss: 1.185605\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1058, Loss: 1.193918\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1059, Loss: 1.288459\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1060, Loss: 1.182438\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1061, Loss: 1.234144\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1062, Loss: 1.260433\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1063, Loss: 1.245719\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1064, Loss: 1.238687\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1065, Loss: 2.237969\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1066, Loss: 4.350249\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1067, Loss: 3.282247\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1068, Loss: 1.895819\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1069, Loss: 1.620808\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1070, Loss: 1.293107\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1071, Loss: 1.309122\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1072, Loss: 1.150944\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1073, Loss: 1.209449\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1074, Loss: 1.053294\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1075, Loss: 1.154918\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1076, Loss: 1.194721\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1077, Loss: 1.154343\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1078, Loss: 1.427171\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1079, Loss: 3.737843\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1080, Loss: 2.152270\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1081, Loss: 2.005428\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1082, Loss: 1.322815\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1083, Loss: 1.208210\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1084, Loss: 1.210813\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1085, Loss: 1.316547\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1086, Loss: 1.580481\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1087, Loss: 1.850870\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1088, Loss: 1.243569\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1089, Loss: 1.196305\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1090, Loss: 1.146255\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1091, Loss: 1.545375\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1092, Loss: 1.466508\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1093, Loss: 1.393341\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1094, Loss: 1.151156\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1095, Loss: 1.177398\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1096, Loss: 2.322886\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1097, Loss: 2.448468\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1098, Loss: 1.871780\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1099, Loss: 1.373012\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1100, Loss: 1.461680\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1101, Loss: 1.482068\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1102, Loss: 1.151807\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1103, Loss: 1.254187\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1104, Loss: 1.300678\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1105, Loss: 1.517400\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1106, Loss: 1.693905\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1107, Loss: 1.655495\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1108, Loss: 1.870611\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1109, Loss: 1.650573\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1110, Loss: 2.734350\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1111, Loss: 1.391074\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1112, Loss: 1.261049\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1113, Loss: 1.245856\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1114, Loss: 1.209541\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1115, Loss: 1.152390\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1116, Loss: 1.181692\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1117, Loss: 1.397115\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1118, Loss: 1.185543\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1119, Loss: 1.124524\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1120, Loss: 1.194897\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1121, Loss: 1.049853\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1122, Loss: 1.003885\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1123, Loss: 1.346738\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1124, Loss: 1.525726\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1125, Loss: 4.065497\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1126, Loss: 2.555814\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1127, Loss: 2.499419\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1128, Loss: 2.282651\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1129, Loss: 1.572642\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1130, Loss: 1.246413\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1131, Loss: 1.078189\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1132, Loss: 1.203367\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1133, Loss: 1.081380\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1134, Loss: 1.205109\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1135, Loss: 1.158193\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1136, Loss: 1.579800\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1137, Loss: 1.129242\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1138, Loss: 1.189011\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1139, Loss: 1.169396\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1140, Loss: 1.217727\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1141, Loss: 1.646066\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1142, Loss: 1.460666\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1143, Loss: 2.303760\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1144, Loss: 4.388056\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1145, Loss: 2.855897\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1146, Loss: 2.014328\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1147, Loss: 1.676519\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1148, Loss: 1.326821\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1149, Loss: 1.558416\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1150, Loss: 1.407960\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1151, Loss: 1.233741\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1152, Loss: 1.369784\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1153, Loss: 1.276875\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1154, Loss: 1.072992\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1155, Loss: 1.052604\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1156, Loss: 1.172935\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1157, Loss: 1.095407\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1158, Loss: 0.977173\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1159, Loss: 1.099608\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1160, Loss: 1.074011\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1161, Loss: 1.102008\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1162, Loss: 1.072524\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1163, Loss: 1.199341\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1164, Loss: 1.601464\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1165, Loss: 1.197756\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1166, Loss: 1.255363\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1167, Loss: 1.590067\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1168, Loss: 1.327044\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1169, Loss: 1.170280\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1170, Loss: 1.283504\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1171, Loss: 1.126383\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1172, Loss: 1.042669\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1173, Loss: 1.604741\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1174, Loss: 1.553155\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1175, Loss: 1.724701\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1176, Loss: 2.131703\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1177, Loss: 1.934696\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1178, Loss: 1.389649\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1179, Loss: 1.169528\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1180, Loss: 1.104818\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1181, Loss: 1.747812\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1182, Loss: 1.151929\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1183, Loss: 1.180719\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1184, Loss: 1.169570\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1185, Loss: 1.058107\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1186, Loss: 1.157840\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1187, Loss: 1.273968\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1188, Loss: 1.241410\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1189, Loss: 1.740642\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1190, Loss: 2.541307\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1191, Loss: 3.289551\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1192, Loss: 2.399381\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1193, Loss: 1.802322\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1194, Loss: 1.427219\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1195, Loss: 1.243787\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1196, Loss: 2.029469\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1197, Loss: 1.469889\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1198, Loss: 1.192036\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1199, Loss: 1.085366\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1200, Loss: 1.149263\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1201, Loss: 1.797529\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1202, Loss: 1.111601\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1203, Loss: 1.113928\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1204, Loss: 1.034594\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1205, Loss: 1.276610\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1206, Loss: 1.286908\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1207, Loss: 1.264845\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1208, Loss: 1.216398\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1209, Loss: 1.060020\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1210, Loss: 1.072046\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1211, Loss: 1.010148\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1212, Loss: 1.765153\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1213, Loss: 2.567993\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1214, Loss: 4.294014\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1215, Loss: 2.675924\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1216, Loss: 2.147389\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1217, Loss: 1.500498\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1218, Loss: 1.466320\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1219, Loss: 1.343590\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1220, Loss: 1.064007\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1221, Loss: 1.039786\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1222, Loss: 1.032277\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1223, Loss: 0.933639\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1224, Loss: 0.988467\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1225, Loss: 1.073412\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1226, Loss: 0.977431\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1227, Loss: 1.161071\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1228, Loss: 1.118404\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1229, Loss: 1.421698\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1230, Loss: 2.561400\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1231, Loss: 1.772438\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1232, Loss: 1.240755\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1233, Loss: 1.185069\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1234, Loss: 1.866712\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1235, Loss: 1.391322\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1236, Loss: 4.188311\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1237, Loss: 2.161627\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1238, Loss: 1.347231\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1239, Loss: 1.278943\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1240, Loss: 1.300343\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1241, Loss: 1.002237\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1242, Loss: 0.981600\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1243, Loss: 0.925763\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1244, Loss: 0.998528\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1245, Loss: 1.200784\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1246, Loss: 0.964308\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1247, Loss: 1.047715\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1248, Loss: 1.000892\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1249, Loss: 0.993867\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1250, Loss: 1.162930\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1251, Loss: 1.036334\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1252, Loss: 1.234115\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1253, Loss: 1.431594\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1254, Loss: 1.534100\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1255, Loss: 1.243628\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1256, Loss: 1.278932\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1257, Loss: 1.044070\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1258, Loss: 1.406884\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1259, Loss: 1.449439\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1260, Loss: 1.254107\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1261, Loss: 1.138965\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1262, Loss: 0.973212\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1263, Loss: 1.242055\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1264, Loss: 1.190155\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1265, Loss: 1.010575\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1266, Loss: 1.121121\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1267, Loss: 1.229066\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1268, Loss: 1.266673\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1269, Loss: 1.546870\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1270, Loss: 1.541415\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1271, Loss: 1.756157\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1272, Loss: 2.007397\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1273, Loss: 2.219876\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1274, Loss: 2.251775\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1275, Loss: 2.101050\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1276, Loss: 1.422844\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1277, Loss: 1.197782\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1278, Loss: 1.236607\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1279, Loss: 1.230249\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1280, Loss: 1.012014\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1281, Loss: 0.934243\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1282, Loss: 1.004185\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1283, Loss: 0.949044\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1284, Loss: 0.928944\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1285, Loss: 0.949359\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1286, Loss: 0.967447\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1287, Loss: 1.105911\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1288, Loss: 1.075402\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1289, Loss: 0.980895\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1290, Loss: 0.918369\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1291, Loss: 0.922088\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1292, Loss: 1.573253\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1293, Loss: 1.321073\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1294, Loss: 1.336798\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1295, Loss: 1.353858\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1296, Loss: 1.102338\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1297, Loss: 1.067988\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1298, Loss: 1.085925\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1299, Loss: 1.215061\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1300, Loss: 1.077966\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1301, Loss: 1.148721\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1302, Loss: 1.163207\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1303, Loss: 1.383168\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1304, Loss: 1.666651\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1305, Loss: 1.373959\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1306, Loss: 0.969542\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1307, Loss: 0.935458\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1308, Loss: 1.006708\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1309, Loss: 0.928733\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1310, Loss: 0.949839\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1311, Loss: 0.957288\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1312, Loss: 1.388811\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1313, Loss: 5.388085\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1314, Loss: 4.486806\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1315, Loss: 2.382222\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1316, Loss: 1.387940\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1317, Loss: 1.056561\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1318, Loss: 1.073956\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1319, Loss: 0.965407\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1320, Loss: 1.121763\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1321, Loss: 1.160458\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1322, Loss: 1.260063\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1323, Loss: 0.996258\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1324, Loss: 1.037788\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1325, Loss: 1.037942\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1326, Loss: 1.139054\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1327, Loss: 1.102831\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1328, Loss: 1.015029\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1329, Loss: 1.030277\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1330, Loss: 1.120263\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1331, Loss: 1.093835\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1332, Loss: 1.228013\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1333, Loss: 0.976515\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1334, Loss: 0.970778\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1335, Loss: 0.950014\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1336, Loss: 0.887941\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1337, Loss: 0.933286\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1338, Loss: 0.964832\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1339, Loss: 1.076318\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1340, Loss: 1.533448\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1341, Loss: 2.042405\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1342, Loss: 2.013797\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1343, Loss: 1.623111\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1344, Loss: 1.315962\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1345, Loss: 1.218104\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1346, Loss: 1.146219\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1347, Loss: 1.055808\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1348, Loss: 4.292601\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1349, Loss: 1.819721\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1350, Loss: 1.759107\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1351, Loss: 1.327676\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1352, Loss: 1.092895\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1353, Loss: 1.946647\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1354, Loss: 1.327600\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1355, Loss: 0.966118\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1356, Loss: 0.886298\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1357, Loss: 1.280750\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1358, Loss: 1.026143\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1359, Loss: 2.343859\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1360, Loss: 1.810874\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1361, Loss: 4.939964\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1362, Loss: 2.296847\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1363, Loss: 1.460834\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1364, Loss: 1.032715\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1365, Loss: 0.951963\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1366, Loss: 0.972536\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1367, Loss: 0.986072\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1368, Loss: 0.874064\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1369, Loss: 0.944104\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1370, Loss: 0.944068\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1371, Loss: 0.876359\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1372, Loss: 1.144737\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1373, Loss: 0.990012\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1374, Loss: 1.131682\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1375, Loss: 0.948828\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1376, Loss: 1.006602\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1377, Loss: 1.269165\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1378, Loss: 1.198365\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1379, Loss: 1.488575\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1380, Loss: 1.263487\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1381, Loss: 1.007547\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1382, Loss: 1.017265\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1383, Loss: 0.941225\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1384, Loss: 0.951126\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1385, Loss: 2.407886\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1386, Loss: 1.374269\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1387, Loss: 1.304601\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1388, Loss: 1.699446\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1389, Loss: 1.287859\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1390, Loss: 1.189190\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1391, Loss: 1.282091\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1392, Loss: 0.985920\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1393, Loss: 0.911880\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1394, Loss: 0.981717\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1395, Loss: 0.970736\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1396, Loss: 1.037472\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1397, Loss: 1.009073\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1398, Loss: 1.063105\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1399, Loss: 0.974033\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1400, Loss: 0.946247\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1401, Loss: 1.099245\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1402, Loss: 0.935318\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1403, Loss: 0.908405\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1404, Loss: 1.051794\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1405, Loss: 2.030509\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1406, Loss: 1.174263\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1407, Loss: 2.250859\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1408, Loss: 1.611646\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1409, Loss: 1.250063\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1410, Loss: 1.014797\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1411, Loss: 1.147254\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1412, Loss: 1.168326\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1413, Loss: 0.976154\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1414, Loss: 1.120501\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1415, Loss: 1.736575\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1416, Loss: 1.324950\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1417, Loss: 0.874713\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1418, Loss: 0.892791\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1419, Loss: 0.819377\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1420, Loss: 0.955707\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1421, Loss: 1.636603\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1422, Loss: 1.113343\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1423, Loss: 1.066344\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1424, Loss: 1.268044\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1425, Loss: 2.999975\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1426, Loss: 3.285674\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1427, Loss: 1.891925\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1428, Loss: 2.790942\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1429, Loss: 1.878489\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1430, Loss: 1.417409\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1431, Loss: 1.141169\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1432, Loss: 1.003814\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1433, Loss: 0.949955\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1434, Loss: 0.973463\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1435, Loss: 0.880309\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1436, Loss: 0.850778\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1437, Loss: 0.865468\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1438, Loss: 0.797114\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1439, Loss: 0.849443\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1440, Loss: 0.845336\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1441, Loss: 0.804372\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1442, Loss: 1.094159\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1443, Loss: 0.915204\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1444, Loss: 0.922552\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1445, Loss: 0.820559\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1446, Loss: 0.857501\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1447, Loss: 0.835522\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1448, Loss: 0.905246\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1449, Loss: 1.415322\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1450, Loss: 1.824048\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1451, Loss: 1.200320\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1452, Loss: 1.575683\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1453, Loss: 1.246197\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1454, Loss: 1.043810\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1455, Loss: 0.908001\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1456, Loss: 1.063987\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1457, Loss: 1.061810\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1458, Loss: 0.961956\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1459, Loss: 0.966443\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1460, Loss: 1.564865\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1461, Loss: 1.700964\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1462, Loss: 2.163626\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1463, Loss: 1.774227\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1464, Loss: 1.242970\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1465, Loss: 1.144513\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1466, Loss: 0.961059\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1467, Loss: 0.836169\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1468, Loss: 1.377639\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1469, Loss: 1.052943\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1470, Loss: 0.944268\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1471, Loss: 0.826279\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1472, Loss: 0.931084\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1473, Loss: 1.047501\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1474, Loss: 0.990735\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1475, Loss: 1.206396\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1476, Loss: 1.036932\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1477, Loss: 1.057713\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1478, Loss: 1.823174\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1479, Loss: 1.709427\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1480, Loss: 1.257063\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1481, Loss: 1.243520\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1482, Loss: 1.182340\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1483, Loss: 1.086536\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1484, Loss: 0.852156\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1485, Loss: 0.884429\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1486, Loss: 0.852323\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1487, Loss: 0.864046\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1488, Loss: 1.067273\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1489, Loss: 1.075812\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1490, Loss: 1.663844\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1491, Loss: 1.536414\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1492, Loss: 0.997457\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1493, Loss: 0.897971\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1494, Loss: 0.791452\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1495, Loss: 0.857013\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1496, Loss: 0.958915\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1497, Loss: 1.323816\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1498, Loss: 1.823952\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1499, Loss: 1.044968\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1500, Loss: 1.013946\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1501, Loss: 0.979017\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1502, Loss: 0.913297\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1503, Loss: 1.032275\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1504, Loss: 1.065688\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1505, Loss: 0.876632\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1506, Loss: 0.949520\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1507, Loss: 0.976049\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1508, Loss: 1.059385\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1509, Loss: 1.054845\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1510, Loss: 0.993134\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1511, Loss: 1.219073\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1512, Loss: 0.990106\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1513, Loss: 0.843424\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1514, Loss: 0.814546\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1515, Loss: 0.842783\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1516, Loss: 3.111627\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1517, Loss: 1.657366\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1518, Loss: 3.666251\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1519, Loss: 1.783325\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1520, Loss: 1.346898\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1521, Loss: 0.972208\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1522, Loss: 0.948979\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1523, Loss: 0.936846\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1524, Loss: 1.157859\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1525, Loss: 0.887645\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1526, Loss: 0.957592\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1527, Loss: 1.199857\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1528, Loss: 2.022214\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1529, Loss: 1.351204\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1530, Loss: 1.039798\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1531, Loss: 1.270987\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1532, Loss: 1.007891\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1533, Loss: 1.206656\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1534, Loss: 1.277535\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1535, Loss: 1.235809\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1536, Loss: 1.051961\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1537, Loss: 1.074958\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1538, Loss: 0.887065\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1539, Loss: 0.785153\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1540, Loss: 3.082396\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1541, Loss: 2.274240\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1542, Loss: 1.438483\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1543, Loss: 1.126681\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1544, Loss: 0.921902\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1545, Loss: 0.922821\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1546, Loss: 0.891335\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1547, Loss: 0.951516\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1548, Loss: 0.886448\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1549, Loss: 0.790033\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1550, Loss: 0.851545\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1551, Loss: 0.791614\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1552, Loss: 0.989066\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1553, Loss: 0.913550\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1554, Loss: 1.015846\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1555, Loss: 1.146085\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1556, Loss: 1.080249\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1557, Loss: 1.317964\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1558, Loss: 1.140831\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1559, Loss: 0.961709\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1560, Loss: 0.990754\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1561, Loss: 0.910272\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1562, Loss: 0.927065\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1563, Loss: 1.181960\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1564, Loss: 2.021690\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1565, Loss: 1.304651\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1566, Loss: 0.959087\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1567, Loss: 0.925263\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1568, Loss: 0.834146\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1569, Loss: 0.825190\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1570, Loss: 0.766017\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1571, Loss: 0.767445\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1572, Loss: 0.769459\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1573, Loss: 0.822584\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1574, Loss: 1.284937\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1575, Loss: 0.977738\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1576, Loss: 1.083428\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1577, Loss: 1.112592\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1578, Loss: 1.328112\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1579, Loss: 1.183569\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1580, Loss: 0.990076\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1581, Loss: 0.919950\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1582, Loss: 1.086797\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1583, Loss: 1.166230\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1584, Loss: 0.871314\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1585, Loss: 0.942979\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1586, Loss: 0.752134\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1587, Loss: 0.749477\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1588, Loss: 0.817874\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1589, Loss: 1.136956\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1590, Loss: 1.766089\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1591, Loss: 1.991976\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1592, Loss: 1.501626\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1593, Loss: 1.351936\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1594, Loss: 1.182092\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1595, Loss: 1.213169\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1596, Loss: 1.024802\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1597, Loss: 0.823358\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1598, Loss: 0.803334\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1599, Loss: 1.161974\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1600, Loss: 0.851512\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1601, Loss: 0.832721\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1602, Loss: 0.914232\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1603, Loss: 1.525667\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1604, Loss: 1.102830\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1605, Loss: 0.919075\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1606, Loss: 0.814473\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1607, Loss: 0.950391\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1608, Loss: 0.767614\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1609, Loss: 0.800402\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1610, Loss: 0.905691\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1611, Loss: 0.859172\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1612, Loss: 1.216516\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1613, Loss: 1.009077\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1614, Loss: 0.872505\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1615, Loss: 0.907277\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1616, Loss: 1.099634\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1617, Loss: 1.091476\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1618, Loss: 12.058226\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1619, Loss: 4.751280\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1620, Loss: 2.511333\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1621, Loss: 1.523864\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1622, Loss: 1.081138\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1623, Loss: 0.840731\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1624, Loss: 0.880545\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1625, Loss: 0.873135\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1626, Loss: 0.880278\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1627, Loss: 0.819866\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1628, Loss: 0.802905\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1629, Loss: 0.766234\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1630, Loss: 0.798699\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1631, Loss: 0.812452\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1632, Loss: 0.992724\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1633, Loss: 1.088234\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1634, Loss: 0.882822\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1635, Loss: 0.796252\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1636, Loss: 0.870282\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1637, Loss: 0.785476\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1638, Loss: 0.768867\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1639, Loss: 0.765921\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1640, Loss: 0.769670\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1641, Loss: 0.818118\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1642, Loss: 0.848743\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1643, Loss: 1.062683\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1644, Loss: 1.122302\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1645, Loss: 1.174265\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1646, Loss: 0.871331\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1647, Loss: 1.198915\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1648, Loss: 2.875160\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1649, Loss: 2.536196\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1650, Loss: 1.691374\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1651, Loss: 1.406843\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1652, Loss: 0.970403\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1653, Loss: 0.944688\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1654, Loss: 0.926969\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1655, Loss: 0.889255\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1656, Loss: 1.449482\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1657, Loss: 1.032529\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1658, Loss: 0.896259\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1659, Loss: 0.810434\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1660, Loss: 0.973834\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1661, Loss: 1.091178\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1662, Loss: 1.074517\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1663, Loss: 0.878364\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1664, Loss: 0.833072\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1665, Loss: 0.739844\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1666, Loss: 0.798322\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1667, Loss: 1.840235\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1668, Loss: 2.677495\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1669, Loss: 2.067998\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1670, Loss: 1.386355\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1671, Loss: 0.840471\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1672, Loss: 0.821028\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1673, Loss: 0.768808\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1674, Loss: 0.864237\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1675, Loss: 0.863865\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1676, Loss: 0.841624\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1677, Loss: 1.307734\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1678, Loss: 0.805641\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1679, Loss: 0.923965\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1680, Loss: 0.791504\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1681, Loss: 0.852638\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1682, Loss: 0.779404\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1683, Loss: 0.900325\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1684, Loss: 0.809893\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1685, Loss: 0.837683\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1686, Loss: 0.799741\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1687, Loss: 0.913121\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1688, Loss: 0.925517\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1689, Loss: 1.138371\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1690, Loss: 0.933313\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1691, Loss: 0.983807\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1692, Loss: 0.904556\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1693, Loss: 0.862606\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1694, Loss: 0.823488\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1695, Loss: 0.957318\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1696, Loss: 1.679926\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1697, Loss: 1.743979\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1698, Loss: 1.488583\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1699, Loss: 1.526568\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1700, Loss: 1.407084\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1701, Loss: 2.278578\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1702, Loss: 1.284840\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1703, Loss: 1.282385\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1704, Loss: 0.785148\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1705, Loss: 0.848924\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1706, Loss: 0.864485\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1707, Loss: 0.828355\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1708, Loss: 0.796166\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1709, Loss: 0.981223\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1710, Loss: 0.902726\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1711, Loss: 1.081132\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1712, Loss: 0.899843\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1713, Loss: 1.307214\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1714, Loss: 1.070695\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1715, Loss: 0.806432\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1716, Loss: 0.753352\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1717, Loss: 0.964296\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1718, Loss: 0.925037\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1719, Loss: 1.242279\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1720, Loss: 2.262029\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1721, Loss: 1.753827\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1722, Loss: 1.712821\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1723, Loss: 1.043758\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1724, Loss: 0.960564\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1725, Loss: 0.888493\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1726, Loss: 0.838427\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1727, Loss: 0.843341\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1728, Loss: 0.918297\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1729, Loss: 1.386649\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1730, Loss: 1.150237\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1731, Loss: 0.918671\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1732, Loss: 1.094089\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1733, Loss: 0.894617\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1734, Loss: 0.805038\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1735, Loss: 0.745838\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1736, Loss: 0.730729\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1737, Loss: 1.162107\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1738, Loss: 1.674004\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1739, Loss: 1.118949\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1740, Loss: 0.882032\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1741, Loss: 0.879211\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1742, Loss: 1.481486\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1743, Loss: 1.411578\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1744, Loss: 1.032976\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1745, Loss: 0.768449\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1746, Loss: 0.827620\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1747, Loss: 0.807120\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1748, Loss: 0.737415\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1749, Loss: 1.114842\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1750, Loss: 0.851168\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1751, Loss: 0.691294\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1752, Loss: 1.115005\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1753, Loss: 0.751079\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1754, Loss: 0.811324\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1755, Loss: 0.739951\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1756, Loss: 0.897477\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1757, Loss: 0.957073\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1758, Loss: 1.254048\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1759, Loss: 1.381692\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1760, Loss: 0.867102\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1761, Loss: 0.894761\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1762, Loss: 1.982695\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1763, Loss: 1.613056\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1764, Loss: 1.807277\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1765, Loss: 1.358326\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1766, Loss: 0.953880\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1767, Loss: 0.875351\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1768, Loss: 1.469135\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1769, Loss: 1.170395\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1770, Loss: 1.749598\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1771, Loss: 2.307506\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1772, Loss: 1.327344\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1773, Loss: 1.114821\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1774, Loss: 0.995989\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1775, Loss: 0.981594\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1776, Loss: 1.603456\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1777, Loss: 1.097510\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1778, Loss: 0.990043\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1779, Loss: 0.801685\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1780, Loss: 0.759289\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1781, Loss: 0.731900\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1782, Loss: 0.745970\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1783, Loss: 0.885190\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1784, Loss: 0.943604\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1785, Loss: 0.725391\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1786, Loss: 0.738563\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1787, Loss: 0.897808\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1788, Loss: 0.848075\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1789, Loss: 0.755392\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1790, Loss: 0.916173\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1791, Loss: 1.194847\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1792, Loss: 0.828748\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1793, Loss: 1.126250\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1794, Loss: 0.894110\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1795, Loss: 0.768506\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1796, Loss: 0.846555\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1797, Loss: 1.101370\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1798, Loss: 1.580147\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1799, Loss: 3.566996\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1800, Loss: 5.341339\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1801, Loss: 4.045323\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1802, Loss: 1.910452\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1803, Loss: 1.268827\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1804, Loss: 1.327960\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1805, Loss: 1.613134\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1806, Loss: 1.296093\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1807, Loss: 1.049211\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1808, Loss: 0.819762\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1809, Loss: 0.760438\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1810, Loss: 0.837098\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1811, Loss: 0.753285\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1812, Loss: 0.767757\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1813, Loss: 0.692888\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1814, Loss: 0.845499\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1815, Loss: 0.971632\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1816, Loss: 0.981093\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1817, Loss: 0.773652\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1818, Loss: 0.611816\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1819, Loss: 0.695679\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1820, Loss: 0.671506\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1821, Loss: 0.711916\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1822, Loss: 0.662743\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1823, Loss: 0.816349\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1824, Loss: 0.667424\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1825, Loss: 0.768714\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1826, Loss: 1.017986\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1827, Loss: 0.705808\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1828, Loss: 0.703357\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1829, Loss: 0.686878\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1830, Loss: 0.692660\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1831, Loss: 0.699047\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1832, Loss: 0.722114\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1833, Loss: 0.653193\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1834, Loss: 0.701397\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1835, Loss: 0.743420\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1836, Loss: 0.904176\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1837, Loss: 0.814842\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1838, Loss: 2.651322\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1839, Loss: 1.605611\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1840, Loss: 0.953539\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1841, Loss: 0.970635\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1842, Loss: 1.261809\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1843, Loss: 1.022141\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1844, Loss: 0.952435\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1845, Loss: 2.086448\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1846, Loss: 1.045732\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1847, Loss: 0.847039\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1848, Loss: 0.815402\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1849, Loss: 0.748360\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1850, Loss: 0.780198\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1851, Loss: 0.699220\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1852, Loss: 0.822696\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1853, Loss: 0.669389\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1854, Loss: 0.682896\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1855, Loss: 1.287956\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1856, Loss: 1.492599\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1857, Loss: 1.083140\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1858, Loss: 0.776384\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1859, Loss: 0.865944\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1860, Loss: 0.872015\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1861, Loss: 0.853007\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1862, Loss: 0.721414\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1863, Loss: 0.713471\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1864, Loss: 1.892520\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1865, Loss: 1.902015\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1866, Loss: 2.823474\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1867, Loss: 1.844665\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1868, Loss: 1.256455\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1869, Loss: 1.361404\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1870, Loss: 1.114226\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1871, Loss: 1.302476\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1872, Loss: 0.738072\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1873, Loss: 0.947485\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1874, Loss: 1.093114\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1875, Loss: 0.749277\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1876, Loss: 0.624883\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1877, Loss: 0.665789\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1878, Loss: 0.636332\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1879, Loss: 0.668152\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1880, Loss: 0.720277\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1881, Loss: 0.633247\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1882, Loss: 0.696050\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1883, Loss: 0.641491\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1884, Loss: 0.657098\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1885, Loss: 0.667828\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1886, Loss: 0.995638\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1887, Loss: 1.324923\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1888, Loss: 2.333840\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1889, Loss: 1.445474\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1890, Loss: 1.530514\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1891, Loss: 1.168192\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1892, Loss: 0.803150\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1893, Loss: 0.863670\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1894, Loss: 0.731139\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1895, Loss: 0.676646\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1896, Loss: 0.640037\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1897, Loss: 0.766864\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1898, Loss: 0.737695\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1899, Loss: 0.680992\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1900, Loss: 0.645105\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1901, Loss: 0.737821\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1902, Loss: 0.823124\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1903, Loss: 0.836115\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1904, Loss: 1.185194\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1905, Loss: 4.977492\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1906, Loss: 3.644590\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1907, Loss: 1.424993\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1908, Loss: 0.905849\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1909, Loss: 0.981100\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1910, Loss: 0.916337\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1911, Loss: 0.753325\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1912, Loss: 0.785268\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1913, Loss: 0.673266\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1914, Loss: 0.679618\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1915, Loss: 0.651390\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1916, Loss: 0.677752\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1917, Loss: 0.671597\n", - "SNR:inf, Imbalance Percentage:0.04, Encoding dimension:50, Epoch 1918, Loss: 0.679299\n", - "Stopped early after 1919 epochs, with loss of 0.611816\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1, Loss: 604.571899\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 2, Loss: 581.991821\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 3, Loss: 552.391235\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 4, Loss: 518.853088\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 5, Loss: 486.893585\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 6, Loss: 455.037811\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 7, Loss: 424.708160\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 8, Loss: 401.142578\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 9, Loss: 373.678772\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 10, Loss: 345.530273\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 11, Loss: 321.366608\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 12, Loss: 297.749542\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 13, Loss: 275.908386\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 14, Loss: 251.813461\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 15, Loss: 228.619690\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 16, Loss: 206.024063\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 17, Loss: 186.919800\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 18, Loss: 166.788895\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 19, Loss: 148.158508\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 20, Loss: 129.902954\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 21, Loss: 114.698532\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 22, Loss: 99.924805\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 23, Loss: 87.907852\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 24, Loss: 78.805794\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 25, Loss: 71.524826\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 26, Loss: 64.462524\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 27, Loss: 57.254204\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 28, Loss: 52.838676\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 29, Loss: 48.311707\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 30, Loss: 46.331535\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 31, Loss: 44.402237\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 32, Loss: 41.933720\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 33, Loss: 41.229057\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 34, Loss: 40.404228\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 35, Loss: 39.026703\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 36, Loss: 38.631561\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 37, Loss: 38.671715\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 38, Loss: 37.268631\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 39, Loss: 36.430191\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 40, Loss: 36.687908\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 41, Loss: 35.373581\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 42, Loss: 34.958687\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 43, Loss: 35.027454\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 44, Loss: 34.126137\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 45, Loss: 34.088596\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 46, Loss: 32.647942\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 47, Loss: 32.647781\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 48, Loss: 33.893871\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 49, Loss: 31.654375\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 50, Loss: 32.486877\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 51, Loss: 32.434700\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 52, Loss: 31.261612\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 53, Loss: 31.008587\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 54, Loss: 30.809731\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 55, Loss: 29.762905\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 56, Loss: 29.141293\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 57, Loss: 28.827768\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 58, Loss: 29.466122\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 59, Loss: 29.004845\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 60, Loss: 28.418137\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 61, Loss: 28.331104\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 62, Loss: 27.559128\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 63, Loss: 26.438772\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 64, Loss: 27.131119\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 65, Loss: 26.792534\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 66, Loss: 26.190411\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 67, Loss: 26.369272\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 68, Loss: 26.654049\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 69, Loss: 25.882763\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 70, Loss: 25.787109\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 71, Loss: 25.345854\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 72, Loss: 25.110008\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 73, Loss: 26.285490\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 74, Loss: 25.307673\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 75, Loss: 24.767406\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 76, Loss: 24.869354\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 77, Loss: 24.031534\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 78, Loss: 23.970667\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 79, Loss: 23.754221\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 80, Loss: 23.752914\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 81, Loss: 23.355080\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 82, Loss: 23.668070\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 83, Loss: 23.425928\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 84, Loss: 23.435568\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 85, Loss: 22.837046\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 86, Loss: 22.938900\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 87, Loss: 22.372969\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 88, Loss: 22.458731\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 89, Loss: 22.335672\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 90, Loss: 22.574114\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 91, Loss: 22.490431\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 92, Loss: 21.671204\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 93, Loss: 21.874508\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 94, Loss: 21.888140\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 95, Loss: 21.891237\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 96, Loss: 21.761248\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 97, Loss: 20.783335\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 98, Loss: 21.268028\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 99, Loss: 20.862616\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 100, Loss: 20.566322\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 101, Loss: 20.828342\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 102, Loss: 20.813641\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 103, Loss: 20.578960\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 104, Loss: 20.623796\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 105, Loss: 19.811214\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 106, Loss: 20.628853\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 107, Loss: 20.502138\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 108, Loss: 19.954617\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 109, Loss: 19.681969\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 110, Loss: 20.212423\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 111, Loss: 19.135502\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 112, Loss: 19.130636\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 113, Loss: 19.416147\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 114, Loss: 19.848812\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 115, Loss: 18.877319\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 116, Loss: 19.127939\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 117, Loss: 19.026016\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 118, Loss: 19.108837\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 119, Loss: 18.507086\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 120, Loss: 18.608074\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 121, Loss: 18.650162\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 122, Loss: 18.640455\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 123, Loss: 18.145411\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 124, Loss: 18.355295\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 125, Loss: 18.251005\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 126, Loss: 18.693537\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 127, Loss: 17.739182\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 128, Loss: 18.311356\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 129, Loss: 17.502420\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 130, Loss: 18.091555\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 131, Loss: 17.964399\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 132, Loss: 17.526091\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 133, Loss: 17.567295\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 134, Loss: 17.406219\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 135, Loss: 16.953342\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 136, Loss: 17.968163\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 137, Loss: 17.834999\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 138, Loss: 16.749603\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 139, Loss: 17.287882\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 140, Loss: 17.514231\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 141, Loss: 16.925041\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 142, Loss: 16.781050\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 143, Loss: 17.601656\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 144, Loss: 16.761768\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 145, Loss: 16.717113\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 146, Loss: 16.516930\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 147, Loss: 17.083160\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 148, Loss: 16.404383\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 149, Loss: 16.443192\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 150, Loss: 16.060820\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 151, Loss: 16.544294\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 152, Loss: 15.970490\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 153, Loss: 16.025753\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 154, Loss: 15.843838\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 155, Loss: 15.471520\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 156, Loss: 15.883134\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 157, Loss: 16.224993\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 158, Loss: 15.711398\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 159, Loss: 16.300158\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 160, Loss: 15.870123\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 161, Loss: 15.457021\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 162, Loss: 15.649043\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 163, Loss: 15.140239\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 164, Loss: 15.142404\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 165, Loss: 14.925256\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 166, Loss: 15.262640\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 167, Loss: 15.196489\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 168, Loss: 14.812803\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 169, Loss: 15.197351\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 170, Loss: 15.398377\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 171, Loss: 14.597105\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 172, Loss: 14.530283\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 173, Loss: 14.646670\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 174, Loss: 14.478089\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 175, Loss: 14.047362\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 176, Loss: 14.454099\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 177, Loss: 14.889805\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 178, Loss: 14.733792\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 179, Loss: 14.610428\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 180, Loss: 14.325641\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 181, Loss: 13.867467\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 182, Loss: 14.761890\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 183, Loss: 14.359063\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 184, Loss: 13.739625\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 185, Loss: 14.551681\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 186, Loss: 14.296009\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 187, Loss: 13.805283\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 188, Loss: 14.162185\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 189, Loss: 13.709764\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 190, Loss: 13.326619\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 191, Loss: 13.625330\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 192, Loss: 13.686251\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 193, Loss: 13.785918\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 194, Loss: 13.445854\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 195, Loss: 13.399106\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 196, Loss: 12.881874\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 197, Loss: 13.542597\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 198, Loss: 13.417319\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 199, Loss: 13.584002\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 200, Loss: 12.908378\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 201, Loss: 13.498744\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 202, Loss: 12.887905\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 203, Loss: 12.590278\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 204, Loss: 13.051414\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 205, Loss: 12.910812\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 206, Loss: 13.162951\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 207, Loss: 12.551237\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 208, Loss: 12.832880\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 209, Loss: 13.034146\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 210, Loss: 12.566545\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 211, Loss: 12.910666\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 212, Loss: 12.417470\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 213, Loss: 12.649879\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 214, Loss: 12.310786\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 215, Loss: 12.259867\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 216, Loss: 12.413187\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 217, Loss: 11.805025\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 218, Loss: 12.313654\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 219, Loss: 12.167661\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 220, Loss: 11.629805\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 221, Loss: 11.924620\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 222, Loss: 11.853842\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 223, Loss: 11.752433\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 224, Loss: 11.485098\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 225, Loss: 11.765560\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 226, Loss: 11.598611\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 227, Loss: 11.526712\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 228, Loss: 11.251917\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 229, Loss: 11.266520\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 230, Loss: 11.535364\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 231, Loss: 11.099672\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 232, Loss: 11.205184\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 233, Loss: 11.584893\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 234, Loss: 11.289469\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 235, Loss: 11.068903\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 236, Loss: 11.007696\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 237, Loss: 11.173563\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 238, Loss: 11.105618\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 239, Loss: 11.025790\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 240, Loss: 10.686642\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 241, Loss: 10.580873\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 242, Loss: 10.729967\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 243, Loss: 10.566984\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 244, Loss: 10.482386\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 245, Loss: 10.762926\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 246, Loss: 10.473214\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 247, Loss: 10.414032\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 248, Loss: 10.357361\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 249, Loss: 10.366238\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 250, Loss: 10.526006\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 251, Loss: 9.971865\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 252, Loss: 10.367670\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 253, Loss: 10.356028\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 254, Loss: 9.992628\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 255, Loss: 10.082292\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 256, Loss: 10.002590\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 257, Loss: 10.337149\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 258, Loss: 9.536069\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 259, Loss: 10.069955\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 260, Loss: 9.942698\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 261, Loss: 9.841898\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 262, Loss: 9.874425\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 263, Loss: 9.994864\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 264, Loss: 9.597772\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 265, Loss: 9.811452\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 266, Loss: 9.503117\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 267, Loss: 9.744844\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 268, Loss: 9.368083\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 269, Loss: 9.327047\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 270, Loss: 9.461476\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 271, Loss: 8.941697\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 272, Loss: 9.321405\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 273, Loss: 9.285548\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 274, Loss: 9.170596\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 275, Loss: 8.735293\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 276, Loss: 9.228793\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 277, Loss: 9.124429\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 278, Loss: 9.011640\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 279, Loss: 9.516982\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 280, Loss: 9.023171\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 281, Loss: 8.555285\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 282, Loss: 8.966942\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 283, Loss: 8.873371\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 284, Loss: 9.030442\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 285, Loss: 9.004148\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 286, Loss: 8.780738\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 287, Loss: 8.730870\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 288, Loss: 8.250400\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 289, Loss: 8.616908\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 290, Loss: 8.310790\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 291, Loss: 8.526088\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 292, Loss: 8.561341\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 293, Loss: 8.485867\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 294, Loss: 8.752036\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 295, Loss: 8.593792\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 296, Loss: 8.329545\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 297, Loss: 8.174889\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 298, Loss: 8.632718\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 299, Loss: 7.858459\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 300, Loss: 8.164400\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 301, Loss: 7.651234\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 302, Loss: 7.883337\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 303, Loss: 7.853208\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 304, Loss: 7.336358\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 305, Loss: 7.607396\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 306, Loss: 8.004818\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 307, Loss: 7.612996\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 308, Loss: 7.703987\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 309, Loss: 7.615988\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 310, Loss: 7.790724\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 311, Loss: 7.657073\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 312, Loss: 7.339243\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 313, Loss: 7.449421\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 314, Loss: 7.644704\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 315, Loss: 7.409257\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 316, Loss: 7.161381\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 317, Loss: 7.095777\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 318, Loss: 7.359446\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 319, Loss: 7.024468\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 320, Loss: 7.662535\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 321, Loss: 7.197114\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 322, Loss: 6.857343\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 323, Loss: 6.892045\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 324, Loss: 6.959819\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 325, Loss: 6.809647\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 326, Loss: 7.207941\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 327, Loss: 6.654912\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 328, Loss: 7.194149\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 329, Loss: 7.314638\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 330, Loss: 6.521955\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 331, Loss: 7.015795\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 332, Loss: 6.727684\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 333, Loss: 6.809677\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 334, Loss: 7.210432\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 335, Loss: 6.320725\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 336, Loss: 6.855586\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 337, Loss: 6.532084\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 338, Loss: 6.407507\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 339, Loss: 6.454927\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 340, Loss: 6.665007\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 341, Loss: 6.905743\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 342, Loss: 6.445486\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 343, Loss: 6.222437\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 344, Loss: 5.936737\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 345, Loss: 6.151563\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 346, Loss: 6.157633\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 347, Loss: 6.182956\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 348, Loss: 5.935320\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 349, Loss: 5.878152\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 350, Loss: 6.183857\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 351, Loss: 6.575607\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 352, Loss: 6.912367\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 353, Loss: 6.723012\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 354, Loss: 6.341450\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 355, Loss: 5.885409\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 356, Loss: 5.520852\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 357, Loss: 5.652464\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 358, Loss: 5.956191\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 359, Loss: 5.719049\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 360, Loss: 5.697879\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 361, Loss: 5.625560\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 362, Loss: 6.263934\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 363, Loss: 5.759595\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 364, Loss: 5.552166\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 365, Loss: 5.173131\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 366, Loss: 5.308111\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 367, Loss: 5.557193\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 368, Loss: 5.296594\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 369, Loss: 5.366420\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 370, Loss: 6.048778\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 371, Loss: 6.059299\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 372, Loss: 5.741878\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 373, Loss: 5.333113\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 374, Loss: 5.050173\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 375, Loss: 5.122440\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 376, Loss: 5.087668\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 377, Loss: 4.939101\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 378, Loss: 5.054269\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 379, Loss: 5.601753\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 380, Loss: 4.782170\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 381, Loss: 5.109132\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 382, Loss: 4.838579\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 383, Loss: 4.556327\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 384, Loss: 4.851715\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 385, Loss: 4.801427\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 386, Loss: 4.917370\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 387, Loss: 4.633929\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 388, Loss: 5.142984\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 389, Loss: 4.722654\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 390, Loss: 4.934124\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 391, Loss: 5.114694\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 392, Loss: 5.442145\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 393, Loss: 5.109970\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 394, Loss: 5.155703\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 395, Loss: 4.644772\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 396, Loss: 4.646803\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 397, Loss: 4.807275\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 398, Loss: 4.877191\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 399, Loss: 5.788220\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 400, Loss: 5.896491\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 401, Loss: 4.841097\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 402, Loss: 4.583791\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 403, Loss: 4.064824\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 404, Loss: 4.432497\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 405, Loss: 4.275480\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 406, Loss: 4.495377\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 407, Loss: 6.973719\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 408, Loss: 5.055614\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 409, Loss: 5.081724\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 410, Loss: 5.294589\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 411, Loss: 4.153687\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 412, Loss: 4.254503\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 413, Loss: 4.307372\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 414, Loss: 4.284467\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 415, Loss: 3.985709\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 416, Loss: 4.066463\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 417, Loss: 4.001171\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 418, Loss: 4.126648\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 419, Loss: 4.087227\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 420, Loss: 3.950674\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 421, Loss: 3.856207\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 422, Loss: 3.833323\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 423, Loss: 4.184461\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 424, Loss: 3.960827\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 425, Loss: 4.356930\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 426, Loss: 6.376155\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 427, Loss: 5.592365\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 428, Loss: 6.126781\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 429, Loss: 6.633995\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 430, Loss: 4.817702\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 431, Loss: 4.499515\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 432, Loss: 4.062502\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 433, Loss: 3.751086\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 434, Loss: 3.718313\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 435, Loss: 3.769996\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 436, Loss: 3.687261\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 437, Loss: 3.578452\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 438, Loss: 3.546134\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 439, Loss: 3.517821\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 440, Loss: 3.447449\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 441, Loss: 3.283274\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 442, Loss: 3.412546\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 443, Loss: 3.518782\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 444, Loss: 3.312094\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 445, Loss: 3.342808\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 446, Loss: 3.717778\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 447, Loss: 3.583665\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 448, Loss: 3.943232\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 449, Loss: 3.845448\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 450, Loss: 3.827554\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 451, Loss: 4.255842\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 452, Loss: 3.792163\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 453, Loss: 4.255204\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 454, Loss: 3.875562\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 455, Loss: 4.258262\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 456, Loss: 3.618896\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 457, Loss: 3.915540\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 458, Loss: 3.593715\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 459, Loss: 3.874175\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 460, Loss: 4.869012\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 461, Loss: 3.992619\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 462, Loss: 3.266860\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 463, Loss: 3.968130\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 464, Loss: 3.401365\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 465, Loss: 3.077048\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 466, Loss: 3.233966\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 467, Loss: 3.076706\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 468, Loss: 3.002259\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 469, Loss: 3.627018\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 470, Loss: 3.334582\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 471, Loss: 3.361353\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 472, Loss: 3.377645\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 473, Loss: 3.518659\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 474, Loss: 3.292737\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 475, Loss: 2.994912\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 476, Loss: 3.178530\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 477, Loss: 3.303659\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 478, Loss: 3.019506\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 479, Loss: 3.129416\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 480, Loss: 3.003540\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 481, Loss: 2.962290\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 482, Loss: 2.976849\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 483, Loss: 2.949956\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 484, Loss: 3.011043\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 485, Loss: 6.679165\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 486, Loss: 6.334713\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 487, Loss: 4.102855\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 488, Loss: 3.171125\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 489, Loss: 3.526709\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 490, Loss: 3.138115\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 491, Loss: 2.923468\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 492, Loss: 2.783582\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 493, Loss: 3.145639\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 494, Loss: 3.690317\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 495, Loss: 3.535028\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 496, Loss: 3.148312\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 497, Loss: 2.825047\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 498, Loss: 2.783416\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 499, Loss: 4.580191\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 500, Loss: 3.799782\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 501, Loss: 3.510763\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 502, Loss: 3.548407\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 503, Loss: 2.960615\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 504, Loss: 2.782107\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 505, Loss: 2.771836\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 506, Loss: 2.708930\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 507, Loss: 2.790882\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 508, Loss: 2.622476\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 509, Loss: 2.572801\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 510, Loss: 2.566395\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 511, Loss: 2.441472\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 512, Loss: 2.624378\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 513, Loss: 2.991731\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 514, Loss: 3.015967\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 515, Loss: 3.056156\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 516, Loss: 3.310138\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 517, Loss: 2.877376\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 518, Loss: 2.919019\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 519, Loss: 2.613738\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 520, Loss: 2.674783\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 521, Loss: 3.166463\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 522, Loss: 3.168895\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 523, Loss: 2.671916\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 524, Loss: 3.135728\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 525, Loss: 2.693048\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 526, Loss: 3.493469\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 527, Loss: 3.215472\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 528, Loss: 2.772610\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 529, Loss: 3.423897\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 530, Loss: 2.922710\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 531, Loss: 2.783081\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 532, Loss: 2.541628\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 533, Loss: 2.509472\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 534, Loss: 2.618982\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 535, Loss: 2.698464\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 536, Loss: 3.010204\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 537, Loss: 2.601852\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 538, Loss: 2.246647\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 539, Loss: 2.824619\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 540, Loss: 3.161997\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 541, Loss: 3.738184\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 542, Loss: 3.225279\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 543, Loss: 4.609280\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 544, Loss: 3.876880\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 545, Loss: 2.664264\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 546, Loss: 2.960851\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 547, Loss: 2.683225\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 548, Loss: 2.316268\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 549, Loss: 2.419631\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 550, Loss: 2.196396\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 551, Loss: 2.413423\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 552, Loss: 2.358774\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 553, Loss: 2.216952\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 554, Loss: 2.423617\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 555, Loss: 2.378374\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 556, Loss: 2.361418\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 557, Loss: 2.368841\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 558, Loss: 2.496993\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 559, Loss: 2.479678\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 560, Loss: 3.106393\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 561, Loss: 2.432316\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 562, Loss: 2.285295\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 563, Loss: 3.711207\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 564, Loss: 3.188491\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 565, Loss: 2.779003\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 566, Loss: 2.474946\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 567, Loss: 2.488245\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 568, Loss: 2.426774\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 569, Loss: 2.369764\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 570, Loss: 3.187987\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 571, Loss: 2.624301\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 572, Loss: 2.483592\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 573, Loss: 2.773290\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 574, Loss: 2.378498\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 575, Loss: 2.314831\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 576, Loss: 2.103123\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 577, Loss: 2.112824\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 578, Loss: 2.218878\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 579, Loss: 2.383814\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 580, Loss: 2.229915\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 581, Loss: 2.232400\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 582, Loss: 2.372422\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 583, Loss: 2.689326\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 584, Loss: 3.073351\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 585, Loss: 2.814243\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 586, Loss: 3.472278\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 587, Loss: 3.010743\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 588, Loss: 2.237010\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 589, Loss: 2.269246\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 590, Loss: 2.560156\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 591, Loss: 2.052456\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 592, Loss: 1.975323\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 593, Loss: 2.217468\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 594, Loss: 2.955983\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 595, Loss: 2.480550\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 596, Loss: 2.928669\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 597, Loss: 2.687049\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 598, Loss: 2.484921\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 599, Loss: 2.259202\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 600, Loss: 2.363752\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 601, Loss: 2.364016\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 602, Loss: 2.426500\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 603, Loss: 2.443470\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 604, Loss: 2.554378\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 605, Loss: 3.166660\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 606, Loss: 2.735139\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 607, Loss: 2.720877\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 608, Loss: 2.084512\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 609, Loss: 2.280910\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 610, Loss: 2.169285\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 611, Loss: 2.046930\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 612, Loss: 1.933513\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 613, Loss: 2.242631\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 614, Loss: 2.292406\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 615, Loss: 1.989018\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 616, Loss: 1.988454\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 617, Loss: 2.130883\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 618, Loss: 1.990960\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 619, Loss: 1.902995\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 620, Loss: 2.100308\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 621, Loss: 2.866183\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 622, Loss: 2.768388\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 623, Loss: 2.477242\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 624, Loss: 4.041329\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 625, Loss: 4.306207\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 626, Loss: 3.405955\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 627, Loss: 2.744976\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 628, Loss: 2.173872\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 629, Loss: 2.117783\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 630, Loss: 2.227142\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 631, Loss: 2.332834\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 632, Loss: 2.841494\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 633, Loss: 1.900860\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 634, Loss: 1.919085\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 635, Loss: 2.023090\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 636, Loss: 2.008994\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 637, Loss: 2.300258\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 638, Loss: 2.151530\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 639, Loss: 2.531290\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 640, Loss: 2.047307\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 641, Loss: 2.147549\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 642, Loss: 1.975055\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 643, Loss: 1.956734\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 644, Loss: 1.957110\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 645, Loss: 1.950893\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 646, Loss: 1.994679\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 647, Loss: 2.082496\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 648, Loss: 1.870340\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 649, Loss: 1.933055\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 650, Loss: 1.994159\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 651, Loss: 2.329528\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 652, Loss: 2.413122\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 653, Loss: 2.374487\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 654, Loss: 5.207655\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 655, Loss: 4.952940\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 656, Loss: 2.995152\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 657, Loss: 2.426568\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 658, Loss: 2.314744\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 659, Loss: 3.284655\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 660, Loss: 3.151418\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 661, Loss: 2.597663\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 662, Loss: 2.303086\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 663, Loss: 1.983127\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 664, Loss: 1.949945\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 665, Loss: 1.744518\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 666, Loss: 1.688060\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 667, Loss: 1.868095\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 668, Loss: 1.674653\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 669, Loss: 1.775013\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 670, Loss: 1.846460\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 671, Loss: 1.651866\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 672, Loss: 1.837349\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 673, Loss: 2.992887\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 674, Loss: 2.215909\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 675, Loss: 2.241158\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 676, Loss: 4.723118\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 677, Loss: 4.368413\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 678, Loss: 3.729187\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 679, Loss: 2.648916\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 680, Loss: 2.177576\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 681, Loss: 2.483418\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 682, Loss: 1.819054\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 683, Loss: 1.682453\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 684, Loss: 1.861039\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 685, Loss: 2.248374\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 686, Loss: 1.882509\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 687, Loss: 1.929624\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 688, Loss: 1.612025\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 689, Loss: 1.785692\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 690, Loss: 1.843609\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 691, Loss: 2.167566\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 692, Loss: 2.996821\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 693, Loss: 2.223153\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 694, Loss: 2.038535\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 695, Loss: 1.865358\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 696, Loss: 2.079203\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 697, Loss: 1.781383\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 698, Loss: 1.767087\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 699, Loss: 1.662313\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 700, Loss: 1.851096\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 701, Loss: 1.802261\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 702, Loss: 1.921013\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 703, Loss: 1.939564\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 704, Loss: 2.337889\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 705, Loss: 2.041939\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 706, Loss: 2.498100\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 707, Loss: 1.703984\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 708, Loss: 1.874900\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 709, Loss: 1.826143\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 710, Loss: 1.741611\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 711, Loss: 2.963933\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 712, Loss: 2.083707\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 713, Loss: 2.484884\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 714, Loss: 2.147172\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 715, Loss: 1.722989\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 716, Loss: 1.608518\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 717, Loss: 1.824688\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 718, Loss: 1.549782\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 719, Loss: 1.758575\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 720, Loss: 1.636979\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 721, Loss: 1.698076\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 722, Loss: 2.090242\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 723, Loss: 2.466812\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 724, Loss: 1.881194\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 725, Loss: 2.101604\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 726, Loss: 1.735832\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 727, Loss: 1.876110\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 728, Loss: 2.095139\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 729, Loss: 3.297295\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 730, Loss: 2.926573\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 731, Loss: 1.950615\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 732, Loss: 2.187627\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 733, Loss: 1.877125\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 734, Loss: 1.680424\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 735, Loss: 1.841073\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 736, Loss: 1.944853\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 737, Loss: 2.836283\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 738, Loss: 2.183646\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 739, Loss: 2.135303\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 740, Loss: 1.973199\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 741, Loss: 2.175720\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 742, Loss: 2.019436\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 743, Loss: 2.607895\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 744, Loss: 2.304336\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 745, Loss: 1.882025\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 746, Loss: 1.978294\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 747, Loss: 1.997202\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 748, Loss: 1.740243\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 749, Loss: 1.602740\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 750, Loss: 1.799802\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 751, Loss: 1.627936\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 752, Loss: 1.537116\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 753, Loss: 1.556858\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 754, Loss: 2.788773\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 755, Loss: 6.402681\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 756, Loss: 3.402629\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 757, Loss: 2.176175\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 758, Loss: 1.917035\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 759, Loss: 2.497836\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 760, Loss: 1.817492\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 761, Loss: 1.854456\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 762, Loss: 1.592708\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 763, Loss: 1.443806\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 764, Loss: 1.505252\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 765, Loss: 1.552833\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 766, Loss: 1.527942\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 767, Loss: 1.487015\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 768, Loss: 1.525911\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 769, Loss: 1.466745\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 770, Loss: 1.685475\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 771, Loss: 2.049915\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 772, Loss: 2.337606\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 773, Loss: 2.190779\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 774, Loss: 2.141535\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 775, Loss: 1.754395\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 776, Loss: 1.587815\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 777, Loss: 1.596072\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 778, Loss: 1.948393\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 779, Loss: 2.059820\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 780, Loss: 1.518029\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 781, Loss: 1.519798\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 782, Loss: 1.552254\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 783, Loss: 1.622926\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 784, Loss: 1.587922\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 785, Loss: 1.766114\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 786, Loss: 1.519286\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 787, Loss: 1.398331\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 788, Loss: 1.670545\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 789, Loss: 2.321689\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 790, Loss: 2.226907\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 791, Loss: 1.696620\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 792, Loss: 2.226522\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 793, Loss: 2.537245\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 794, Loss: 2.083763\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 795, Loss: 1.946450\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 796, Loss: 1.848870\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 797, Loss: 2.347627\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 798, Loss: 1.681113\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 799, Loss: 2.489581\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 800, Loss: 1.730271\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 801, Loss: 1.708790\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 802, Loss: 1.471289\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 803, Loss: 1.384711\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 804, Loss: 1.558854\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 805, Loss: 1.534745\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 806, Loss: 2.622152\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 807, Loss: 1.727286\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 808, Loss: 1.726423\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 809, Loss: 2.481079\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 810, Loss: 1.808488\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 811, Loss: 3.349928\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 812, Loss: 3.698446\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 813, Loss: 2.379425\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 814, Loss: 1.863753\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 815, Loss: 1.636267\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 816, Loss: 1.531436\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 817, Loss: 1.433583\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 818, Loss: 1.387434\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 819, Loss: 1.373736\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 820, Loss: 1.391478\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 821, Loss: 1.408825\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 822, Loss: 1.550249\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 823, Loss: 1.688004\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 824, Loss: 1.419227\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 825, Loss: 1.668098\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 826, Loss: 1.579367\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 827, Loss: 1.950350\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 828, Loss: 1.466816\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 829, Loss: 1.482391\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 830, Loss: 1.595230\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 831, Loss: 1.478210\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 832, Loss: 1.412764\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 833, Loss: 1.489629\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 834, Loss: 1.665767\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 835, Loss: 1.507923\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 836, Loss: 3.475180\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 837, Loss: 3.713572\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 838, Loss: 1.935316\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 839, Loss: 2.235839\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 840, Loss: 2.706376\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 841, Loss: 1.975584\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 842, Loss: 1.683761\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 843, Loss: 1.631591\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 844, Loss: 1.529757\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 845, Loss: 1.336790\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 846, Loss: 1.353409\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 847, Loss: 1.762093\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 848, Loss: 1.526525\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 849, Loss: 1.629939\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 850, Loss: 1.413749\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 851, Loss: 1.531576\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 852, Loss: 1.695956\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 853, Loss: 1.561104\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 854, Loss: 1.620123\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 855, Loss: 1.787496\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 856, Loss: 1.441762\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 857, Loss: 1.732611\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 858, Loss: 1.712106\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 859, Loss: 1.525757\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 860, Loss: 1.586493\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 861, Loss: 1.710091\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 862, Loss: 14.830046\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 863, Loss: 6.983996\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 864, Loss: 3.320950\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 865, Loss: 2.616794\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 866, Loss: 1.838389\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 867, Loss: 1.632145\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 868, Loss: 1.447620\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 869, Loss: 1.316134\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 870, Loss: 1.353116\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 871, Loss: 1.335242\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 872, Loss: 1.346685\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 873, Loss: 1.360185\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 874, Loss: 1.333085\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 875, Loss: 1.360812\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 876, Loss: 1.285233\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 877, Loss: 1.268415\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 878, Loss: 1.302528\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 879, Loss: 1.292355\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 880, Loss: 1.391617\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 881, Loss: 1.819969\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 882, Loss: 1.965022\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 883, Loss: 1.371616\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 884, Loss: 1.372553\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 885, Loss: 1.349285\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 886, Loss: 1.315858\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 887, Loss: 1.429273\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 888, Loss: 1.308777\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 889, Loss: 1.862067\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 890, Loss: 1.809417\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 891, Loss: 1.828868\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 892, Loss: 1.716272\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 893, Loss: 2.500239\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 894, Loss: 1.899711\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 895, Loss: 1.748951\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 896, Loss: 2.257888\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 897, Loss: 3.816880\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 898, Loss: 3.004860\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 899, Loss: 2.619871\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 900, Loss: 1.625330\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 901, Loss: 1.519454\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 902, Loss: 1.387749\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 903, Loss: 1.586366\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 904, Loss: 1.253314\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 905, Loss: 1.673794\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 906, Loss: 1.631701\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 907, Loss: 1.522202\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 908, Loss: 1.347250\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 909, Loss: 1.666036\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 910, Loss: 1.528865\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 911, Loss: 1.207583\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 912, Loss: 3.562960\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 913, Loss: 1.599170\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 914, Loss: 1.428891\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 915, Loss: 1.304334\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 916, Loss: 1.713935\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 917, Loss: 1.353371\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 918, Loss: 1.204224\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 919, Loss: 1.376566\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 920, Loss: 1.425018\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 921, Loss: 1.297142\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 922, Loss: 1.225801\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 923, Loss: 1.206889\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 924, Loss: 1.228704\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 925, Loss: 1.328278\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 926, Loss: 1.283461\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 927, Loss: 1.753501\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 928, Loss: 2.008821\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 929, Loss: 1.682061\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 930, Loss: 1.660400\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 931, Loss: 1.520980\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 932, Loss: 1.303934\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 933, Loss: 1.167563\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 934, Loss: 1.289502\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 935, Loss: 1.299451\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 936, Loss: 1.278812\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 937, Loss: 1.316278\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 938, Loss: 1.201226\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 939, Loss: 1.502511\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 940, Loss: 1.829635\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 941, Loss: 2.813580\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 942, Loss: 2.898142\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 943, Loss: 2.583351\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 944, Loss: 1.750174\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 945, Loss: 1.406665\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 946, Loss: 1.455086\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 947, Loss: 1.274976\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 948, Loss: 1.886349\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 949, Loss: 1.724979\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 950, Loss: 2.257409\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 951, Loss: 1.498543\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 952, Loss: 2.038027\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 953, Loss: 1.532697\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 954, Loss: 1.295733\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 955, Loss: 1.273624\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 956, Loss: 1.218821\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 957, Loss: 1.218284\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 958, Loss: 1.127190\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 959, Loss: 1.090414\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 960, Loss: 1.193727\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 961, Loss: 1.117033\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 962, Loss: 1.083652\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 963, Loss: 1.228707\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 964, Loss: 1.384605\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 965, Loss: 1.289789\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 966, Loss: 1.166611\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 967, Loss: 1.473381\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 968, Loss: 2.785568\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 969, Loss: 2.017375\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 970, Loss: 1.955213\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 971, Loss: 1.406452\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 972, Loss: 1.344940\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 973, Loss: 1.192455\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 974, Loss: 1.436646\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 975, Loss: 1.605080\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 976, Loss: 1.531665\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 977, Loss: 2.311577\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 978, Loss: 1.758291\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 979, Loss: 2.732974\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 980, Loss: 2.237481\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 981, Loss: 1.587950\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 982, Loss: 1.319624\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 983, Loss: 1.259915\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 984, Loss: 1.228966\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 985, Loss: 1.140493\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 986, Loss: 1.126479\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 987, Loss: 1.189199\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 988, Loss: 1.200069\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 989, Loss: 1.313148\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 990, Loss: 1.148414\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 991, Loss: 1.125970\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 992, Loss: 2.063970\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 993, Loss: 1.659389\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 994, Loss: 2.166955\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 995, Loss: 2.232279\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 996, Loss: 1.452961\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 997, Loss: 1.451225\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 998, Loss: 1.244915\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 999, Loss: 1.169960\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1000, Loss: 1.121900\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1001, Loss: 1.049008\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1002, Loss: 1.182851\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1003, Loss: 1.337607\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1004, Loss: 1.086175\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1005, Loss: 2.820199\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1006, Loss: 3.715127\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1007, Loss: 3.141446\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1008, Loss: 1.996938\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1009, Loss: 1.883542\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1010, Loss: 2.085160\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1011, Loss: 2.073934\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1012, Loss: 1.465663\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1013, Loss: 1.550157\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1014, Loss: 1.403446\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1015, Loss: 1.261431\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1016, Loss: 1.178893\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1017, Loss: 1.085066\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1018, Loss: 1.937501\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1019, Loss: 1.389051\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1020, Loss: 1.515856\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1021, Loss: 1.351265\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1022, Loss: 1.363230\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1023, Loss: 1.225533\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1024, Loss: 1.260792\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1025, Loss: 1.239230\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1026, Loss: 1.217782\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1027, Loss: 1.157453\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1028, Loss: 1.208568\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1029, Loss: 1.119272\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1030, Loss: 1.259329\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1031, Loss: 1.268086\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1032, Loss: 1.160889\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1033, Loss: 1.115662\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1034, Loss: 2.167899\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1035, Loss: 1.785962\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1036, Loss: 2.011597\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1037, Loss: 4.220921\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1038, Loss: 2.846291\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1039, Loss: 2.284817\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1040, Loss: 1.874871\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1041, Loss: 1.419443\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1042, Loss: 1.347491\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1043, Loss: 1.270972\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1044, Loss: 1.136661\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1045, Loss: 1.093942\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1046, Loss: 1.104411\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1047, Loss: 1.068038\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1048, Loss: 1.129787\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1049, Loss: 1.030903\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1050, Loss: 0.962281\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1051, Loss: 1.162004\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1052, Loss: 1.316919\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1053, Loss: 1.383273\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1054, Loss: 1.413205\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1055, Loss: 1.578267\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1056, Loss: 1.562693\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1057, Loss: 2.223360\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1058, Loss: 1.906175\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1059, Loss: 1.609251\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1060, Loss: 1.232651\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1061, Loss: 1.893319\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1062, Loss: 1.608530\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1063, Loss: 1.281083\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1064, Loss: 1.138584\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1065, Loss: 1.000596\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1066, Loss: 1.327206\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1067, Loss: 1.160745\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1068, Loss: 1.492183\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1069, Loss: 1.639407\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1070, Loss: 1.435411\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1071, Loss: 1.355909\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1072, Loss: 1.251379\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1073, Loss: 1.472898\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1074, Loss: 1.190213\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1075, Loss: 1.069528\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1076, Loss: 1.058960\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1077, Loss: 1.080297\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1078, Loss: 1.031958\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1079, Loss: 0.939439\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1080, Loss: 0.979575\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1081, Loss: 1.016619\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1082, Loss: 1.098755\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1083, Loss: 1.104356\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1084, Loss: 1.283867\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1085, Loss: 1.152000\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1086, Loss: 1.481610\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1087, Loss: 1.234946\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1088, Loss: 1.114277\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1089, Loss: 1.108625\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1090, Loss: 0.984237\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1091, Loss: 1.186776\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1092, Loss: 1.151306\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1093, Loss: 2.088025\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1094, Loss: 3.600903\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1095, Loss: 3.104868\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1096, Loss: 2.642430\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1097, Loss: 1.864042\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1098, Loss: 2.780208\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1099, Loss: 2.166439\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1100, Loss: 1.493764\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1101, Loss: 1.209265\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1102, Loss: 1.066500\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1103, Loss: 1.160761\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1104, Loss: 1.133509\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1105, Loss: 2.127490\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1106, Loss: 1.501563\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1107, Loss: 1.236060\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1108, Loss: 1.087739\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1109, Loss: 1.035789\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1110, Loss: 1.545985\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1111, Loss: 1.184379\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1112, Loss: 1.114792\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1113, Loss: 0.991906\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1114, Loss: 0.947927\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1115, Loss: 1.456690\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1116, Loss: 2.092406\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1117, Loss: 1.233034\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1118, Loss: 1.399036\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1119, Loss: 1.210418\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1120, Loss: 1.570544\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1121, Loss: 3.282312\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1122, Loss: 2.308717\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1123, Loss: 2.022215\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1124, Loss: 1.084346\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1125, Loss: 1.086449\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1126, Loss: 1.128367\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1127, Loss: 1.005357\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1128, Loss: 1.075809\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1129, Loss: 0.974790\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1130, Loss: 1.375821\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1131, Loss: 1.442465\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1132, Loss: 1.066468\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1133, Loss: 1.116627\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1134, Loss: 1.081380\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1135, Loss: 0.998306\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1136, Loss: 0.935565\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1137, Loss: 1.067594\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1138, Loss: 0.949906\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1139, Loss: 1.452612\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1140, Loss: 2.103436\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1141, Loss: 2.828546\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1142, Loss: 1.749171\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1143, Loss: 1.425583\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1144, Loss: 1.169300\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1145, Loss: 1.228858\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1146, Loss: 1.024841\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1147, Loss: 1.398278\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1148, Loss: 0.997238\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1149, Loss: 1.025703\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1150, Loss: 1.008014\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1151, Loss: 0.899592\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1152, Loss: 0.964570\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1153, Loss: 1.056534\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1154, Loss: 1.181972\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1155, Loss: 1.127477\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1156, Loss: 1.196202\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1157, Loss: 1.415045\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1158, Loss: 1.130947\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1159, Loss: 1.608530\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1160, Loss: 1.199114\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1161, Loss: 1.029386\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1162, Loss: 1.268451\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1163, Loss: 1.423846\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1164, Loss: 1.113094\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1165, Loss: 1.292207\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1166, Loss: 1.565076\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1167, Loss: 2.474482\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1168, Loss: 1.980738\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1169, Loss: 1.603834\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1170, Loss: 1.598871\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1171, Loss: 1.431365\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1172, Loss: 1.918399\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1173, Loss: 1.580583\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1174, Loss: 1.283161\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1175, Loss: 1.112997\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1176, Loss: 0.934783\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1177, Loss: 3.058654\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1178, Loss: 1.622278\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1179, Loss: 1.229189\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1180, Loss: 1.033197\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1181, Loss: 0.894193\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1182, Loss: 0.896935\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1183, Loss: 0.948367\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1184, Loss: 1.032887\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1185, Loss: 0.913316\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1186, Loss: 1.246897\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1187, Loss: 1.010317\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1188, Loss: 1.123260\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1189, Loss: 0.885397\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1190, Loss: 1.270147\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1191, Loss: 1.110420\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1192, Loss: 1.175382\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1193, Loss: 2.700871\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1194, Loss: 1.652080\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1195, Loss: 1.660817\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1196, Loss: 1.703884\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1197, Loss: 1.357961\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1198, Loss: 1.643190\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1199, Loss: 2.003055\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1200, Loss: 1.618228\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1201, Loss: 2.198990\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1202, Loss: 1.701432\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1203, Loss: 1.359935\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1204, Loss: 1.162962\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1205, Loss: 1.176309\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1206, Loss: 1.004664\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1207, Loss: 0.996194\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1208, Loss: 1.316655\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1209, Loss: 1.879331\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1210, Loss: 1.814772\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1211, Loss: 1.467220\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1212, Loss: 2.557433\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1213, Loss: 1.757929\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1214, Loss: 1.326000\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1215, Loss: 1.049502\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1216, Loss: 1.102095\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1217, Loss: 1.395531\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1218, Loss: 0.966124\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1219, Loss: 1.151499\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1220, Loss: 1.151902\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1221, Loss: 1.142303\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1222, Loss: 1.634341\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1223, Loss: 1.717202\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1224, Loss: 1.038891\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1225, Loss: 1.726001\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1226, Loss: 1.485817\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1227, Loss: 1.062274\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1228, Loss: 0.975402\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1229, Loss: 0.927970\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1230, Loss: 0.902853\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1231, Loss: 0.874091\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1232, Loss: 0.847221\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1233, Loss: 0.858311\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1234, Loss: 0.865189\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1235, Loss: 0.935686\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1236, Loss: 0.898864\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1237, Loss: 1.247871\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1238, Loss: 1.024821\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1239, Loss: 1.047012\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1240, Loss: 0.969318\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1241, Loss: 1.032906\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1242, Loss: 1.034414\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1243, Loss: 0.991895\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1244, Loss: 1.472050\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1245, Loss: 1.743063\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1246, Loss: 3.213435\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1247, Loss: 2.234506\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1248, Loss: 1.909355\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1249, Loss: 1.579104\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1250, Loss: 2.381271\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1251, Loss: 2.056342\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1252, Loss: 1.297130\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1253, Loss: 1.407174\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1254, Loss: 1.236201\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1255, Loss: 1.548001\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1256, Loss: 1.241248\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1257, Loss: 1.244070\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1258, Loss: 0.930232\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1259, Loss: 1.021858\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1260, Loss: 0.982005\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1261, Loss: 0.814701\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1262, Loss: 0.839278\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1263, Loss: 0.791333\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1264, Loss: 0.837280\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1265, Loss: 0.956679\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1266, Loss: 1.068924\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1267, Loss: 0.974628\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1268, Loss: 1.020629\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1269, Loss: 1.477098\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1270, Loss: 0.984616\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1271, Loss: 0.821324\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1272, Loss: 0.842736\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1273, Loss: 0.865739\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1274, Loss: 1.114254\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1275, Loss: 1.576536\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1276, Loss: 1.568305\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1277, Loss: 1.884587\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1278, Loss: 1.552171\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1279, Loss: 1.279155\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1280, Loss: 1.056894\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1281, Loss: 0.982180\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1282, Loss: 1.690456\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1283, Loss: 1.130042\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1284, Loss: 1.125013\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1285, Loss: 1.504784\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1286, Loss: 1.082098\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1287, Loss: 0.966562\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1288, Loss: 1.356272\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1289, Loss: 0.994987\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1290, Loss: 0.930026\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1291, Loss: 0.955394\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1292, Loss: 1.101823\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1293, Loss: 1.181485\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1294, Loss: 0.985691\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1295, Loss: 0.966495\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1296, Loss: 1.093093\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1297, Loss: 1.667643\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1298, Loss: 1.753331\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1299, Loss: 1.695107\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1300, Loss: 3.692650\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1301, Loss: 2.627334\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1302, Loss: 1.913196\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1303, Loss: 1.162892\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1304, Loss: 1.016493\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1305, Loss: 1.049001\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1306, Loss: 1.011224\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1307, Loss: 1.514746\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1308, Loss: 1.057110\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1309, Loss: 0.950695\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1310, Loss: 0.950552\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1311, Loss: 0.864096\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1312, Loss: 0.924144\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1313, Loss: 0.894764\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1314, Loss: 0.940927\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1315, Loss: 5.324384\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1316, Loss: 3.889366\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1317, Loss: 1.987361\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1318, Loss: 1.254356\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1319, Loss: 1.062128\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1320, Loss: 1.062787\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1321, Loss: 1.293169\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1322, Loss: 1.223076\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1323, Loss: 1.067832\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1324, Loss: 0.836755\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1325, Loss: 0.798037\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1326, Loss: 0.809137\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1327, Loss: 0.917804\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1328, Loss: 0.851979\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1329, Loss: 1.004898\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1330, Loss: 0.891325\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1331, Loss: 0.931561\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1332, Loss: 0.929089\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1333, Loss: 1.308722\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1334, Loss: 1.054738\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1335, Loss: 0.955200\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1336, Loss: 0.861407\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1337, Loss: 0.774733\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1338, Loss: 0.901211\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1339, Loss: 1.078121\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1340, Loss: 1.285700\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1341, Loss: 3.461908\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1342, Loss: 2.860421\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1343, Loss: 2.287803\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1344, Loss: 1.595397\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1345, Loss: 1.798933\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1346, Loss: 1.868392\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1347, Loss: 1.231042\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1348, Loss: 1.078895\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1349, Loss: 0.966931\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1350, Loss: 0.966343\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1351, Loss: 1.005658\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1352, Loss: 0.963015\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1353, Loss: 0.847324\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1354, Loss: 0.785723\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1355, Loss: 0.868948\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1356, Loss: 0.794353\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1357, Loss: 1.376267\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1358, Loss: 1.220593\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1359, Loss: 1.316137\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1360, Loss: 1.143923\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1361, Loss: 3.341795\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1362, Loss: 2.002597\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1363, Loss: 1.584607\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1364, Loss: 1.216289\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1365, Loss: 1.160651\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1366, Loss: 0.986995\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1367, Loss: 1.369803\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1368, Loss: 2.727022\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1369, Loss: 1.854390\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1370, Loss: 1.516249\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1371, Loss: 1.110599\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1372, Loss: 1.042176\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1373, Loss: 0.830852\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1374, Loss: 3.289957\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1375, Loss: 1.573737\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1376, Loss: 1.085996\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1377, Loss: 0.844146\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1378, Loss: 0.764174\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1379, Loss: 0.757377\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1380, Loss: 0.752945\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1381, Loss: 0.914590\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1382, Loss: 0.858342\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1383, Loss: 1.282254\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1384, Loss: 0.938299\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1385, Loss: 0.754257\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1386, Loss: 0.756098\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1387, Loss: 0.778875\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1388, Loss: 0.869047\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1389, Loss: 0.893731\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1390, Loss: 1.079285\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1391, Loss: 0.974865\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1392, Loss: 0.928631\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1393, Loss: 0.842482\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1394, Loss: 3.184594\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1395, Loss: 2.751091\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1396, Loss: 2.429432\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1397, Loss: 1.481676\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1398, Loss: 1.100977\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1399, Loss: 1.004399\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1400, Loss: 0.987723\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1401, Loss: 1.165105\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1402, Loss: 1.015403\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1403, Loss: 0.778239\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1404, Loss: 0.859162\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1405, Loss: 0.984720\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1406, Loss: 0.977471\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1407, Loss: 0.918686\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1408, Loss: 0.916955\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1409, Loss: 0.805720\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1410, Loss: 0.758612\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1411, Loss: 0.805360\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1412, Loss: 1.076655\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1413, Loss: 1.480299\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1414, Loss: 2.247870\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1415, Loss: 1.643687\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1416, Loss: 3.658433\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1417, Loss: 2.562171\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1418, Loss: 1.615832\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1419, Loss: 1.408096\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1420, Loss: 0.996952\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1421, Loss: 0.837115\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1422, Loss: 0.870680\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1423, Loss: 0.907604\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1424, Loss: 0.793988\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1425, Loss: 0.926257\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1426, Loss: 1.852159\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1427, Loss: 1.355776\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1428, Loss: 1.117443\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1429, Loss: 1.706443\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1430, Loss: 1.010256\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1431, Loss: 0.868494\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1432, Loss: 1.107837\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1433, Loss: 0.952682\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1434, Loss: 0.950439\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1435, Loss: 0.985886\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1436, Loss: 0.849956\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1437, Loss: 1.279145\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1438, Loss: 2.377840\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1439, Loss: 1.276888\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1440, Loss: 1.273927\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1441, Loss: 0.992160\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1442, Loss: 0.985758\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1443, Loss: 1.663905\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1444, Loss: 1.483392\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1445, Loss: 1.022558\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1446, Loss: 0.918131\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1447, Loss: 0.813499\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1448, Loss: 0.900414\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1449, Loss: 0.894808\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1450, Loss: 0.939670\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1451, Loss: 0.857920\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1452, Loss: 1.492950\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1453, Loss: 1.558767\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1454, Loss: 1.447859\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1455, Loss: 1.240791\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1456, Loss: 1.414430\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1457, Loss: 0.953910\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1458, Loss: 0.918329\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1459, Loss: 0.882239\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1460, Loss: 0.886068\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1461, Loss: 0.928196\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1462, Loss: 0.833556\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1463, Loss: 0.836314\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1464, Loss: 0.915321\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1465, Loss: 1.484565\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1466, Loss: 0.961905\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1467, Loss: 1.441827\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1468, Loss: 1.810687\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1469, Loss: 1.749267\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1470, Loss: 1.622629\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1471, Loss: 1.148659\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1472, Loss: 1.000302\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1473, Loss: 0.881813\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1474, Loss: 0.993018\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1475, Loss: 0.812608\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1476, Loss: 0.759097\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1477, Loss: 0.780459\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1478, Loss: 0.964314\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1479, Loss: 1.119984\n", - "SNR:inf, Imbalance Percentage:0.1, Encoding dimension:50, Epoch 1480, Loss: 0.813739\n", - "Stopped early after 1481 epochs, with loss of 0.752945\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1, Loss: 587.288391\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 2, Loss: 565.916382\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 3, Loss: 536.863403\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 4, Loss: 501.984375\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 5, Loss: 469.521667\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 6, Loss: 439.591064\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 7, Loss: 412.497528\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 8, Loss: 385.556122\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 9, Loss: 360.667786\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 10, Loss: 337.493103\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 11, Loss: 309.130188\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 12, Loss: 287.366272\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 13, Loss: 264.634674\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 14, Loss: 242.655914\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 15, Loss: 219.139832\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 16, Loss: 196.786072\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 17, Loss: 176.428085\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 18, Loss: 158.963745\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 19, Loss: 141.558762\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 20, Loss: 123.808609\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 21, Loss: 107.452080\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 22, Loss: 95.660812\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 23, Loss: 83.558182\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 24, Loss: 73.891937\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 25, Loss: 65.564407\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 26, Loss: 59.332874\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 27, Loss: 54.260765\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 28, Loss: 47.986191\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 29, Loss: 44.662575\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 30, Loss: 42.699806\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 31, Loss: 40.169525\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 32, Loss: 39.405605\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 33, Loss: 38.392452\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 34, Loss: 37.835205\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 35, Loss: 36.561184\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 36, Loss: 34.617657\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 37, Loss: 34.578903\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 38, Loss: 34.321320\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 39, Loss: 33.870903\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 40, Loss: 32.742222\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 41, Loss: 32.581470\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 42, Loss: 33.650471\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 43, Loss: 32.761600\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 44, Loss: 31.853336\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 45, Loss: 31.369293\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 46, Loss: 30.834627\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 47, Loss: 30.924364\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 48, Loss: 30.993645\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 49, Loss: 29.892160\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 50, Loss: 29.487848\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 51, Loss: 29.676092\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 52, Loss: 29.765574\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 53, Loss: 29.049841\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 54, Loss: 28.357605\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 55, Loss: 28.755960\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 56, Loss: 28.109121\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 57, Loss: 28.721426\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 58, Loss: 28.585333\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 59, Loss: 27.229975\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 60, Loss: 27.124750\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 61, Loss: 27.638887\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 62, Loss: 27.017084\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 63, Loss: 27.055365\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 64, Loss: 26.309631\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 65, Loss: 26.305935\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 66, Loss: 26.507872\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 67, Loss: 25.694071\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 68, Loss: 25.886181\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 69, Loss: 26.253798\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 70, Loss: 26.165380\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 71, Loss: 24.772631\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 72, Loss: 24.924767\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 73, Loss: 24.856720\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 74, Loss: 25.853735\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 75, Loss: 24.820307\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 76, Loss: 24.215731\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 77, Loss: 24.250324\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 78, Loss: 23.962519\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 79, Loss: 24.012468\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 80, Loss: 24.047808\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 81, Loss: 24.012058\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 82, Loss: 23.719692\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 83, Loss: 23.462679\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 84, Loss: 22.871376\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 85, Loss: 23.526545\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 86, Loss: 23.617298\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 87, Loss: 23.168882\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 88, Loss: 22.578001\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 89, Loss: 22.431263\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 90, Loss: 22.085089\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 91, Loss: 22.322609\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 92, Loss: 23.276159\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 93, Loss: 21.457075\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 94, Loss: 22.539955\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 95, Loss: 21.858034\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 96, Loss: 21.238316\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 97, Loss: 22.177204\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 98, Loss: 21.657854\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 99, Loss: 21.222347\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 100, Loss: 21.494112\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 101, Loss: 21.026134\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 102, Loss: 20.607441\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 103, Loss: 21.221716\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 104, Loss: 20.633587\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 105, Loss: 21.123566\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 106, Loss: 20.301912\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 107, Loss: 20.266691\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 108, Loss: 20.077314\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 109, Loss: 20.296658\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 110, Loss: 19.871122\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 111, Loss: 19.679510\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 112, Loss: 20.196287\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 113, Loss: 19.632225\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 114, Loss: 20.500904\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 115, Loss: 19.693422\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 116, Loss: 19.935333\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 117, Loss: 19.885750\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 118, Loss: 19.250771\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 119, Loss: 19.015026\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 120, Loss: 19.451357\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 121, Loss: 19.712929\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 122, Loss: 18.968767\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 123, Loss: 18.609676\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 124, Loss: 19.103403\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 125, Loss: 19.002214\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 126, Loss: 18.855446\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 127, Loss: 18.908276\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 128, Loss: 18.979540\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 129, Loss: 18.654371\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 130, Loss: 18.775190\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 131, Loss: 18.832249\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 132, Loss: 18.266979\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 133, Loss: 17.803032\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 134, Loss: 18.024763\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 135, Loss: 17.705387\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 136, Loss: 17.913364\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 137, Loss: 17.647926\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 138, Loss: 17.585449\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 139, Loss: 18.047907\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 140, Loss: 17.302145\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 141, Loss: 17.823803\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 142, Loss: 17.960876\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 143, Loss: 17.006351\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 144, Loss: 17.468813\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 145, Loss: 16.909004\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 146, Loss: 17.275784\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 147, Loss: 17.087969\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 148, Loss: 16.487648\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 149, Loss: 17.275810\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 150, Loss: 16.540998\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 151, Loss: 16.821260\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 152, Loss: 17.081682\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 153, Loss: 16.754551\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 154, Loss: 16.806410\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 155, Loss: 16.548222\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 156, Loss: 16.625746\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 157, Loss: 16.207249\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 158, Loss: 15.899527\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 159, Loss: 16.349476\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 160, Loss: 16.581247\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 161, Loss: 16.507671\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 162, Loss: 16.485447\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 163, Loss: 15.958956\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 164, Loss: 15.949930\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 165, Loss: 15.709927\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 166, Loss: 15.141552\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 167, Loss: 15.471984\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 168, Loss: 15.378902\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 169, Loss: 15.547540\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 170, Loss: 15.978064\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 171, Loss: 15.251736\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 172, Loss: 15.078217\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 173, Loss: 15.543753\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 174, Loss: 15.461933\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 175, Loss: 14.955197\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 176, Loss: 15.405046\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 177, Loss: 15.166773\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 178, Loss: 14.939947\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 179, Loss: 14.779799\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 180, Loss: 14.722282\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 181, Loss: 15.509207\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 182, Loss: 14.685686\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 183, Loss: 14.659676\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 184, Loss: 14.741107\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 185, Loss: 14.427588\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 186, Loss: 14.704899\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 187, Loss: 14.533563\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 188, Loss: 14.401802\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 189, Loss: 14.270793\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 190, Loss: 14.678964\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 191, Loss: 15.061986\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 192, Loss: 14.532972\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 193, Loss: 14.356179\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 194, Loss: 14.028475\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 195, Loss: 14.503887\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 196, Loss: 14.373210\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 197, Loss: 14.194570\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 198, Loss: 13.795075\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 199, Loss: 13.424559\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 200, Loss: 14.030423\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 201, Loss: 13.688928\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 202, Loss: 13.811919\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 203, Loss: 13.586290\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 204, Loss: 13.763544\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 205, Loss: 13.532583\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 206, Loss: 13.632576\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 207, Loss: 13.657154\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 208, Loss: 13.293423\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 209, Loss: 13.195754\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 210, Loss: 12.735078\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 211, Loss: 12.655646\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 212, Loss: 13.526276\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 213, Loss: 13.122441\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 214, Loss: 12.713384\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 215, Loss: 12.928044\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 216, Loss: 12.950504\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 217, Loss: 12.639281\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 218, Loss: 12.382252\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 219, Loss: 12.812979\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 220, Loss: 12.395585\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 221, Loss: 12.176269\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 222, Loss: 12.565138\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 223, Loss: 12.318741\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 224, Loss: 12.302097\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 225, Loss: 12.307515\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 226, Loss: 11.810464\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 227, Loss: 12.050632\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 228, Loss: 11.944024\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 229, Loss: 12.218356\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 230, Loss: 11.174436\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 231, Loss: 12.008220\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 232, Loss: 11.386904\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 233, Loss: 11.489437\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 234, Loss: 11.163525\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 235, Loss: 11.250597\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 236, Loss: 11.707758\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 237, Loss: 10.694437\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 238, Loss: 11.336637\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 239, Loss: 11.748057\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 240, Loss: 11.544714\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 241, Loss: 11.208544\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 242, Loss: 11.259112\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 243, Loss: 11.417583\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 244, Loss: 11.143548\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 245, Loss: 11.181000\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 246, Loss: 10.648342\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 247, Loss: 11.107882\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 248, Loss: 10.680236\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 249, Loss: 10.447663\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 250, Loss: 10.718660\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 251, Loss: 10.395304\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 252, Loss: 11.249182\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 253, Loss: 10.783481\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 254, Loss: 10.493680\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 255, Loss: 10.441737\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 256, Loss: 10.557135\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 257, Loss: 9.960227\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 258, Loss: 10.344277\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 259, Loss: 9.931089\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 260, Loss: 9.982366\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 261, Loss: 10.615616\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 262, Loss: 10.261214\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 263, Loss: 10.502005\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 264, Loss: 10.159903\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 265, Loss: 9.605533\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 266, Loss: 9.536749\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 267, Loss: 9.837119\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 268, Loss: 9.789680\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 269, Loss: 9.697366\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 270, Loss: 9.283475\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 271, Loss: 9.287187\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 272, Loss: 9.386704\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 273, Loss: 9.681759\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 274, Loss: 9.505673\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 275, Loss: 9.042369\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 276, Loss: 9.371266\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 277, Loss: 9.365376\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 278, Loss: 9.323679\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 279, Loss: 9.178635\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 280, Loss: 9.421272\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 281, Loss: 9.499987\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 282, Loss: 8.899851\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 283, Loss: 9.177614\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 284, Loss: 8.573545\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 285, Loss: 9.153499\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 286, Loss: 8.784934\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 287, Loss: 8.591631\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 288, Loss: 8.565386\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 289, Loss: 8.564011\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 290, Loss: 8.588906\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 291, Loss: 7.996807\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 292, Loss: 8.066252\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 293, Loss: 8.587991\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 294, Loss: 8.035252\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 295, Loss: 8.236911\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 296, Loss: 8.329949\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 297, Loss: 8.228018\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 298, Loss: 7.979165\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 299, Loss: 8.301841\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 300, Loss: 8.150803\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 301, Loss: 7.661591\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 302, Loss: 7.546278\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 303, Loss: 7.739279\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 304, Loss: 8.118311\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 305, Loss: 8.047152\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 306, Loss: 7.935607\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 307, Loss: 7.579993\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 308, Loss: 7.666867\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 309, Loss: 7.182743\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 310, Loss: 7.381531\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 311, Loss: 7.862729\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 312, Loss: 7.367583\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 313, Loss: 7.221112\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 314, Loss: 7.201821\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 315, Loss: 7.165633\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 316, Loss: 7.205492\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 317, Loss: 6.987275\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 318, Loss: 7.536521\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 319, Loss: 7.239568\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 320, Loss: 7.123726\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 321, Loss: 7.133262\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 322, Loss: 6.781586\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 323, Loss: 6.943829\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 324, Loss: 6.727211\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 325, Loss: 7.821025\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 326, Loss: 7.168122\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 327, Loss: 6.515941\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 328, Loss: 6.648610\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 329, Loss: 7.308812\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 330, Loss: 7.197468\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 331, Loss: 6.380223\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 332, Loss: 7.139066\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 333, Loss: 6.639965\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 334, Loss: 6.920519\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 335, Loss: 6.354735\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 336, Loss: 6.220130\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 337, Loss: 6.492801\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 338, Loss: 6.094944\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 339, Loss: 6.171895\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 340, Loss: 5.882783\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 341, Loss: 6.092453\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 342, Loss: 5.779339\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 343, Loss: 6.014908\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 344, Loss: 5.989275\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 345, Loss: 6.448620\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 346, Loss: 6.266026\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 347, Loss: 6.305263\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 348, Loss: 5.826853\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 349, Loss: 6.497267\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 350, Loss: 6.111578\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 351, Loss: 5.901691\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 352, Loss: 5.236080\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 353, Loss: 5.535751\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 354, Loss: 5.233978\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 355, Loss: 5.463773\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 356, Loss: 6.115098\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 357, Loss: 5.764278\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 358, Loss: 5.722855\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 359, Loss: 5.851171\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 360, Loss: 5.530999\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 361, Loss: 6.160386\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 362, Loss: 5.186368\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 363, Loss: 5.361317\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 364, Loss: 5.479401\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 365, Loss: 5.677233\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 366, Loss: 5.350725\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 367, Loss: 4.983439\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 368, Loss: 5.885124\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 369, Loss: 5.370198\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 370, Loss: 5.369153\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 371, Loss: 5.026857\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 372, Loss: 5.558771\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 373, Loss: 5.308367\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 374, Loss: 5.192925\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 375, Loss: 5.002152\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 376, Loss: 4.816093\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 377, Loss: 4.524382\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 378, Loss: 4.670675\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 379, Loss: 4.829093\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 380, Loss: 4.381162\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 381, Loss: 4.767654\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 382, Loss: 4.689739\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 383, Loss: 4.387776\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 384, Loss: 4.587050\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 385, Loss: 4.699609\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 386, Loss: 4.538692\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 387, Loss: 4.092491\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 388, Loss: 5.288100\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 389, Loss: 5.200585\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 390, Loss: 4.533698\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 391, Loss: 4.531153\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 392, Loss: 4.409310\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 393, Loss: 4.988380\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 394, Loss: 5.146290\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 395, Loss: 4.442688\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 396, Loss: 4.069796\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 397, Loss: 4.235779\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 398, Loss: 4.130236\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 399, Loss: 4.224040\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 400, Loss: 4.009198\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 401, Loss: 4.100725\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 402, Loss: 3.963301\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 403, Loss: 4.177795\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 404, Loss: 4.127394\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 405, Loss: 4.047287\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 406, Loss: 4.377960\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 407, Loss: 4.841861\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 408, Loss: 4.056910\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 409, Loss: 4.080280\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 410, Loss: 3.981665\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 411, Loss: 3.568931\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 412, Loss: 3.514713\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 413, Loss: 3.693335\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 414, Loss: 3.584884\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 415, Loss: 4.130382\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 416, Loss: 3.948678\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 417, Loss: 4.005113\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 418, Loss: 3.882372\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 419, Loss: 3.732381\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 420, Loss: 3.650773\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 421, Loss: 4.298378\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 422, Loss: 3.565206\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 423, Loss: 3.491354\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 424, Loss: 4.437503\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 425, Loss: 3.673601\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 426, Loss: 4.849385\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 427, Loss: 4.876483\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 428, Loss: 3.686564\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 429, Loss: 3.523413\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 430, Loss: 6.848142\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 431, Loss: 5.384828\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 432, Loss: 4.609344\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 433, Loss: 3.674058\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 434, Loss: 3.107593\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 435, Loss: 3.475655\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 436, Loss: 3.660923\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 437, Loss: 3.494053\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 438, Loss: 3.587548\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 439, Loss: 3.113651\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 440, Loss: 2.889220\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 441, Loss: 2.846079\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 442, Loss: 2.970340\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 443, Loss: 3.156276\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 444, Loss: 3.078147\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 445, Loss: 3.070395\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 446, Loss: 3.299150\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 447, Loss: 3.435278\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 448, Loss: 4.741927\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 449, Loss: 4.174058\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 450, Loss: 3.922636\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 451, Loss: 3.036246\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 452, Loss: 3.355028\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 453, Loss: 3.242960\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 454, Loss: 2.847987\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 455, Loss: 3.967715\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 456, Loss: 3.112347\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 457, Loss: 3.051459\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 458, Loss: 2.817241\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 459, Loss: 3.013488\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 460, Loss: 2.707542\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 461, Loss: 3.006453\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 462, Loss: 3.005053\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 463, Loss: 2.780407\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 464, Loss: 2.597096\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 465, Loss: 2.659431\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 466, Loss: 2.760056\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 467, Loss: 2.857019\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 468, Loss: 3.697213\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 469, Loss: 2.766522\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 470, Loss: 3.223181\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 471, Loss: 3.100311\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 472, Loss: 2.826083\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 473, Loss: 3.149812\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 474, Loss: 6.669705\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 475, Loss: 4.208627\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 476, Loss: 2.918071\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 477, Loss: 2.825944\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 478, Loss: 3.144142\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 479, Loss: 3.964959\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 480, Loss: 3.609036\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 481, Loss: 3.174330\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 482, Loss: 2.961129\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 483, Loss: 2.473494\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 484, Loss: 2.355382\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 485, Loss: 2.547619\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 486, Loss: 2.678792\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 487, Loss: 3.408386\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 488, Loss: 3.856006\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 489, Loss: 3.259747\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 490, Loss: 2.718199\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 491, Loss: 2.881478\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 492, Loss: 2.636679\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 493, Loss: 2.669991\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 494, Loss: 3.066842\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 495, Loss: 2.656817\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 496, Loss: 2.831623\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 497, Loss: 2.848524\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 498, Loss: 2.532454\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 499, Loss: 2.764701\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 500, Loss: 2.445142\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 501, Loss: 2.264240\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 502, Loss: 2.420355\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 503, Loss: 2.291110\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 504, Loss: 2.647536\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 505, Loss: 2.444524\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 506, Loss: 2.062979\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 507, Loss: 2.041907\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 508, Loss: 2.330312\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 509, Loss: 3.830086\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 510, Loss: 2.633815\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 511, Loss: 3.566336\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 512, Loss: 2.696600\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 513, Loss: 2.231504\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 514, Loss: 2.798337\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 515, Loss: 2.187211\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 516, Loss: 2.433252\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 517, Loss: 3.237788\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 518, Loss: 2.712731\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 519, Loss: 4.330974\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 520, Loss: 2.736626\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 521, Loss: 2.209090\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 522, Loss: 2.144344\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 523, Loss: 2.070236\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 524, Loss: 2.565442\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 525, Loss: 2.218561\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 526, Loss: 2.471081\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 527, Loss: 2.512308\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 528, Loss: 2.207985\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 529, Loss: 1.980382\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 530, Loss: 2.386196\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 531, Loss: 2.156146\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 532, Loss: 2.498228\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 533, Loss: 2.451157\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 534, Loss: 2.175305\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 535, Loss: 2.114744\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 536, Loss: 2.729861\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 537, Loss: 3.554907\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 538, Loss: 3.073754\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 539, Loss: 2.460775\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 540, Loss: 2.437800\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 541, Loss: 2.262440\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 542, Loss: 2.422982\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 543, Loss: 2.292405\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 544, Loss: 2.365210\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 545, Loss: 2.223185\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 546, Loss: 2.291840\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 547, Loss: 2.864193\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 548, Loss: 2.229298\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 549, Loss: 1.901685\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 550, Loss: 1.841626\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 551, Loss: 2.693703\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 552, Loss: 3.798473\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 553, Loss: 2.209332\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 554, Loss: 2.155343\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 555, Loss: 2.401576\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 556, Loss: 1.986139\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 557, Loss: 2.029642\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 558, Loss: 1.979445\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 559, Loss: 1.924906\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 560, Loss: 1.952538\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 561, Loss: 1.809876\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 562, Loss: 1.793662\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 563, Loss: 2.158887\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 564, Loss: 2.186207\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 565, Loss: 2.145801\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 566, Loss: 3.000527\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 567, Loss: 2.694384\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 568, Loss: 2.045650\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 569, Loss: 1.900749\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 570, Loss: 2.330488\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 571, Loss: 2.475435\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 572, Loss: 2.382735\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 573, Loss: 3.114637\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 574, Loss: 3.793970\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 575, Loss: 3.466032\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 576, Loss: 3.390129\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 577, Loss: 2.431392\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 578, Loss: 1.840484\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 579, Loss: 1.790714\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 580, Loss: 1.777899\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 581, Loss: 1.812381\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 582, Loss: 1.908512\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 583, Loss: 1.965649\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 584, Loss: 2.214727\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 585, Loss: 1.888428\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 586, Loss: 1.806552\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 587, Loss: 2.022441\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 588, Loss: 2.481593\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 589, Loss: 3.000220\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 590, Loss: 2.482729\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 591, Loss: 2.339599\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 592, Loss: 1.847749\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 593, Loss: 1.903438\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 594, Loss: 2.031830\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 595, Loss: 2.994556\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 596, Loss: 1.864331\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 597, Loss: 1.890128\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 598, Loss: 2.192238\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 599, Loss: 1.938198\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 600, Loss: 1.977548\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 601, Loss: 2.055184\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 602, Loss: 2.104067\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 603, Loss: 1.940160\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 604, Loss: 1.712924\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 605, Loss: 1.673444\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 606, Loss: 1.711384\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 607, Loss: 2.305413\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 608, Loss: 1.886381\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 609, Loss: 1.818504\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 610, Loss: 1.774560\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 611, Loss: 1.914286\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 612, Loss: 4.009378\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 613, Loss: 2.260719\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 614, Loss: 2.676556\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 615, Loss: 1.965287\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 616, Loss: 2.005617\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 617, Loss: 1.786258\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 618, Loss: 1.567012\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 619, Loss: 1.591751\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 620, Loss: 1.666633\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 621, Loss: 1.778490\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 622, Loss: 2.472066\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 623, Loss: 2.556019\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 624, Loss: 1.839783\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 625, Loss: 1.690841\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 626, Loss: 1.729644\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 627, Loss: 1.901087\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 628, Loss: 1.920327\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 629, Loss: 1.635834\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 630, Loss: 1.825903\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 631, Loss: 1.625248\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 632, Loss: 1.844900\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 633, Loss: 2.092119\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 634, Loss: 1.702453\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 635, Loss: 1.826888\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 636, Loss: 1.555488\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 637, Loss: 8.090261\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 638, Loss: 3.003262\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 639, Loss: 2.105715\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 640, Loss: 1.778580\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 641, Loss: 1.547086\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 642, Loss: 1.752031\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 643, Loss: 1.838274\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 644, Loss: 1.705994\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 645, Loss: 1.535624\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 646, Loss: 1.309610\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 647, Loss: 1.567088\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 648, Loss: 1.368258\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 649, Loss: 1.370831\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 650, Loss: 1.465992\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 651, Loss: 1.471845\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 652, Loss: 1.405314\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 653, Loss: 1.514366\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 654, Loss: 1.500558\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 655, Loss: 1.914350\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 656, Loss: 1.668071\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 657, Loss: 7.384049\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 658, Loss: 5.279261\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 659, Loss: 4.125176\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 660, Loss: 2.666614\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 661, Loss: 1.954489\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 662, Loss: 1.814985\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 663, Loss: 1.571016\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 664, Loss: 1.640829\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 665, Loss: 2.036848\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 666, Loss: 1.571847\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 667, Loss: 2.019561\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 668, Loss: 1.767669\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 669, Loss: 3.048164\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 670, Loss: 2.826544\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 671, Loss: 2.713163\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 672, Loss: 2.064524\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 673, Loss: 1.655045\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 674, Loss: 1.746036\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 675, Loss: 1.814461\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 676, Loss: 1.502726\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 677, Loss: 1.413292\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 678, Loss: 1.315858\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 679, Loss: 1.226283\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 680, Loss: 1.499374\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 681, Loss: 1.967079\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 682, Loss: 1.791659\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 683, Loss: 1.741230\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 684, Loss: 1.542387\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 685, Loss: 1.344634\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 686, Loss: 1.310641\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 687, Loss: 1.332276\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 688, Loss: 1.428578\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 689, Loss: 1.350557\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 690, Loss: 1.403077\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 691, Loss: 1.409782\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 692, Loss: 1.482748\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 693, Loss: 1.683494\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 694, Loss: 1.412650\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 695, Loss: 1.315370\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 696, Loss: 1.395433\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 697, Loss: 2.047817\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 698, Loss: 6.366814\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 699, Loss: 6.403071\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 700, Loss: 3.253268\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 701, Loss: 1.998313\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 702, Loss: 1.900262\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 703, Loss: 1.418501\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 704, Loss: 1.391981\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 705, Loss: 1.624921\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 706, Loss: 1.494529\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 707, Loss: 3.458121\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 708, Loss: 1.893212\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 709, Loss: 1.960701\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 710, Loss: 1.547721\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 711, Loss: 1.415472\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 712, Loss: 1.463810\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 713, Loss: 1.624335\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 714, Loss: 1.279724\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 715, Loss: 1.281139\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 716, Loss: 1.301194\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 717, Loss: 1.217686\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 718, Loss: 1.203539\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 719, Loss: 1.295288\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 720, Loss: 1.251524\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 721, Loss: 1.188586\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 722, Loss: 1.233637\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 723, Loss: 1.248417\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 724, Loss: 1.223677\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 725, Loss: 1.608982\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 726, Loss: 2.689278\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 727, Loss: 2.871868\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 728, Loss: 1.931057\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 729, Loss: 1.580165\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 730, Loss: 2.253896\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 731, Loss: 2.151175\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 732, Loss: 2.179600\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 733, Loss: 2.313228\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 734, Loss: 1.472463\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 735, Loss: 1.435335\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 736, Loss: 1.435540\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 737, Loss: 1.349098\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 738, Loss: 1.395535\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 739, Loss: 1.699578\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 740, Loss: 2.510364\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 741, Loss: 4.227315\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 742, Loss: 2.198467\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 743, Loss: 1.924629\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 744, Loss: 1.961789\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 745, Loss: 2.994926\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 746, Loss: 1.959211\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 747, Loss: 1.540733\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 748, Loss: 1.332265\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 749, Loss: 1.126296\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 750, Loss: 1.229737\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 751, Loss: 1.302213\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 752, Loss: 1.509325\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 753, Loss: 1.253271\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 754, Loss: 1.173327\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 755, Loss: 1.244415\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 756, Loss: 1.264546\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 757, Loss: 1.287805\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 758, Loss: 1.271603\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 759, Loss: 1.555305\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 760, Loss: 1.202920\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 761, Loss: 1.189680\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 762, Loss: 1.259644\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 763, Loss: 1.562100\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 764, Loss: 1.640292\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 765, Loss: 1.891455\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 766, Loss: 1.761809\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 767, Loss: 1.856613\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 768, Loss: 5.965694\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 769, Loss: 2.593521\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 770, Loss: 2.132472\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 771, Loss: 1.439940\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 772, Loss: 1.469966\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 773, Loss: 1.625036\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 774, Loss: 1.624361\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 775, Loss: 1.278772\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 776, Loss: 1.121743\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 777, Loss: 1.112361\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 778, Loss: 1.277729\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 779, Loss: 1.969725\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 780, Loss: 3.933440\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 781, Loss: 2.993749\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 782, Loss: 1.888512\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 783, Loss: 1.708228\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 784, Loss: 2.892364\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 785, Loss: 1.923622\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 786, Loss: 1.319519\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 787, Loss: 1.223040\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 788, Loss: 1.503280\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 789, Loss: 1.289547\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 790, Loss: 1.239058\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 791, Loss: 1.305551\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 792, Loss: 1.142222\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 793, Loss: 1.106562\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 794, Loss: 1.233153\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 795, Loss: 1.234007\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 796, Loss: 1.143243\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 797, Loss: 1.257411\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 798, Loss: 1.143584\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 799, Loss: 1.523900\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 800, Loss: 1.146684\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 801, Loss: 1.097038\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 802, Loss: 1.162203\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 803, Loss: 2.385222\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 804, Loss: 1.249854\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 805, Loss: 1.984840\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 806, Loss: 1.466307\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 807, Loss: 3.674106\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 808, Loss: 3.994590\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 809, Loss: 3.223259\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 810, Loss: 3.318534\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 811, Loss: 1.779557\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 812, Loss: 1.247487\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 813, Loss: 1.338923\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 814, Loss: 1.676238\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 815, Loss: 1.448019\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 816, Loss: 1.207889\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 817, Loss: 1.169264\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 818, Loss: 1.327927\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 819, Loss: 1.389519\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 820, Loss: 1.326662\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 821, Loss: 2.129120\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 822, Loss: 1.556329\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 823, Loss: 1.222327\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 824, Loss: 1.096242\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 825, Loss: 1.079887\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 826, Loss: 1.064833\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 827, Loss: 1.317841\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 828, Loss: 1.823954\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 829, Loss: 2.234555\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 830, Loss: 2.294152\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 831, Loss: 2.287813\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 832, Loss: 1.973709\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 833, Loss: 1.460147\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 834, Loss: 1.169461\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 835, Loss: 1.191166\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 836, Loss: 1.479789\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 837, Loss: 1.187845\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 838, Loss: 1.058158\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 839, Loss: 1.175319\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 840, Loss: 1.552195\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 841, Loss: 1.723850\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 842, Loss: 4.938438\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 843, Loss: 2.353212\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 844, Loss: 2.222985\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 845, Loss: 1.507650\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 846, Loss: 1.298885\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 847, Loss: 1.193870\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 848, Loss: 1.273636\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 849, Loss: 1.089053\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 850, Loss: 1.067011\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 851, Loss: 1.064191\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 852, Loss: 1.027472\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 853, Loss: 1.009155\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 854, Loss: 1.105433\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 855, Loss: 0.993974\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 856, Loss: 1.078964\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 857, Loss: 1.099004\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 858, Loss: 1.020379\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 859, Loss: 1.183785\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 860, Loss: 0.993959\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 861, Loss: 1.136922\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 862, Loss: 1.411463\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 863, Loss: 1.361830\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 864, Loss: 1.641276\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 865, Loss: 1.510452\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 866, Loss: 1.655226\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 867, Loss: 1.581145\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 868, Loss: 1.421811\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 869, Loss: 1.330974\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 870, Loss: 1.247755\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 871, Loss: 1.360447\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 872, Loss: 1.227890\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 873, Loss: 1.398797\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 874, Loss: 2.748903\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 875, Loss: 1.510593\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 876, Loss: 2.147066\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 877, Loss: 1.461640\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 878, Loss: 1.555255\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 879, Loss: 1.372905\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 880, Loss: 1.116781\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 881, Loss: 1.136492\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 882, Loss: 1.868669\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 883, Loss: 1.158336\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 884, Loss: 1.679782\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 885, Loss: 3.455360\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 886, Loss: 1.641153\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 887, Loss: 2.158681\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 888, Loss: 2.113053\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 889, Loss: 4.738683\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 890, Loss: 1.852662\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 891, Loss: 1.752590\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 892, Loss: 2.005631\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 893, Loss: 3.087275\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 894, Loss: 2.245156\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 895, Loss: 1.876191\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 896, Loss: 2.509524\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 897, Loss: 2.596335\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 898, Loss: 2.031824\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 899, Loss: 1.256589\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 900, Loss: 1.157147\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 901, Loss: 1.039003\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 902, Loss: 1.189340\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 903, Loss: 1.128419\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 904, Loss: 1.065452\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 905, Loss: 1.216394\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 906, Loss: 1.037948\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 907, Loss: 0.981412\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 908, Loss: 0.899613\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 909, Loss: 1.010659\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 910, Loss: 0.905448\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 911, Loss: 0.990324\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 912, Loss: 1.034794\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 913, Loss: 0.966491\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 914, Loss: 1.243407\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 915, Loss: 1.826756\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 916, Loss: 1.264547\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 917, Loss: 1.111870\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 918, Loss: 0.917786\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 919, Loss: 1.267591\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 920, Loss: 1.496930\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 921, Loss: 1.594992\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 922, Loss: 1.521631\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 923, Loss: 3.864038\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 924, Loss: 4.416735\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 925, Loss: 2.878641\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 926, Loss: 1.985229\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 927, Loss: 1.537907\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 928, Loss: 1.169300\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 929, Loss: 1.305743\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 930, Loss: 2.019966\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 931, Loss: 1.133938\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 932, Loss: 1.064650\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 933, Loss: 0.961833\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 934, Loss: 0.997647\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 935, Loss: 1.061250\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 936, Loss: 1.224531\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 937, Loss: 1.446416\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 938, Loss: 1.376356\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 939, Loss: 1.138349\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 940, Loss: 1.017608\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 941, Loss: 1.044642\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 942, Loss: 1.000776\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 943, Loss: 1.015022\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 944, Loss: 1.325330\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 945, Loss: 1.221857\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 946, Loss: 1.034907\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 947, Loss: 1.358846\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 948, Loss: 4.078258\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 949, Loss: 2.320914\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 950, Loss: 1.695986\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 951, Loss: 1.428507\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 952, Loss: 1.079144\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 953, Loss: 1.193733\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 954, Loss: 1.010306\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 955, Loss: 0.923703\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 956, Loss: 1.087561\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 957, Loss: 1.137874\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 958, Loss: 1.091643\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 959, Loss: 1.058355\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 960, Loss: 0.905262\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 961, Loss: 0.935080\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 962, Loss: 0.977711\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 963, Loss: 0.899733\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 964, Loss: 0.964784\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 965, Loss: 1.488861\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 966, Loss: 1.567008\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 967, Loss: 1.190152\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 968, Loss: 0.985742\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 969, Loss: 1.233369\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 970, Loss: 1.008291\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 971, Loss: 1.089364\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 972, Loss: 1.026916\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 973, Loss: 0.972018\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 974, Loss: 0.903518\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 975, Loss: 1.424238\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 976, Loss: 1.958144\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 977, Loss: 1.263910\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 978, Loss: 1.507469\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 979, Loss: 1.362672\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 980, Loss: 1.195607\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 981, Loss: 1.457402\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 982, Loss: 5.874525\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 983, Loss: 5.706478\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 984, Loss: 3.239481\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 985, Loss: 1.584069\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 986, Loss: 1.732732\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 987, Loss: 1.303995\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 988, Loss: 1.327021\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 989, Loss: 1.039384\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 990, Loss: 1.043891\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 991, Loss: 1.047693\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 992, Loss: 0.949173\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 993, Loss: 0.897865\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 994, Loss: 0.898993\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 995, Loss: 0.877613\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 996, Loss: 0.825659\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 997, Loss: 0.932982\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 998, Loss: 0.814305\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 999, Loss: 1.051682\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1000, Loss: 0.990749\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1001, Loss: 1.008185\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1002, Loss: 1.419313\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1003, Loss: 1.839740\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1004, Loss: 1.735521\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1005, Loss: 1.947439\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1006, Loss: 1.192681\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1007, Loss: 1.058189\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1008, Loss: 0.983018\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1009, Loss: 0.918287\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1010, Loss: 0.947577\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1011, Loss: 0.837687\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1012, Loss: 0.909221\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1013, Loss: 0.957960\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1014, Loss: 0.871603\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1015, Loss: 0.943003\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1016, Loss: 0.975289\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1017, Loss: 1.199183\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1018, Loss: 1.737740\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1019, Loss: 1.904846\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1020, Loss: 1.713327\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1021, Loss: 1.159741\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1022, Loss: 1.102789\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1023, Loss: 1.583813\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1024, Loss: 1.659637\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1025, Loss: 1.627089\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1026, Loss: 1.063295\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1027, Loss: 1.382132\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1028, Loss: 1.105296\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1029, Loss: 0.872141\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1030, Loss: 0.945278\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1031, Loss: 1.531144\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1032, Loss: 1.096973\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1033, Loss: 1.531087\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1034, Loss: 1.947339\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1035, Loss: 1.266928\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1036, Loss: 2.069620\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1037, Loss: 1.296753\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1038, Loss: 1.192866\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1039, Loss: 1.648118\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1040, Loss: 1.246278\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1041, Loss: 0.836338\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1042, Loss: 0.996320\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1043, Loss: 1.678799\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1044, Loss: 1.350828\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1045, Loss: 1.488099\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1046, Loss: 2.040154\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1047, Loss: 1.852953\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1048, Loss: 1.250914\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1049, Loss: 1.382695\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1050, Loss: 1.307034\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1051, Loss: 1.595450\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1052, Loss: 1.115891\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1053, Loss: 0.939327\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1054, Loss: 0.874286\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1055, Loss: 0.907473\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1056, Loss: 0.794242\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1057, Loss: 0.927396\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1058, Loss: 2.819415\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1059, Loss: 1.757713\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1060, Loss: 1.536511\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1061, Loss: 1.183229\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1062, Loss: 1.832711\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1063, Loss: 0.966919\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1064, Loss: 0.865863\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1065, Loss: 1.020940\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1066, Loss: 1.292799\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1067, Loss: 1.236235\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1068, Loss: 1.558325\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1069, Loss: 3.070804\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1070, Loss: 5.516446\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1071, Loss: 2.863381\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1072, Loss: 2.560724\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1073, Loss: 1.444175\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1074, Loss: 0.993336\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1075, Loss: 1.005060\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1076, Loss: 1.073670\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1077, Loss: 0.956617\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1078, Loss: 0.896718\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1079, Loss: 0.823218\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1080, Loss: 0.881830\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1081, Loss: 0.798461\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1082, Loss: 1.065904\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1083, Loss: 1.052787\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1084, Loss: 0.925096\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1085, Loss: 0.838066\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1086, Loss: 0.916394\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1087, Loss: 0.867580\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1088, Loss: 1.282767\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1089, Loss: 3.107558\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1090, Loss: 1.325127\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1091, Loss: 0.953671\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1092, Loss: 0.907294\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1093, Loss: 0.987384\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1094, Loss: 0.963019\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1095, Loss: 0.833906\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1096, Loss: 0.886138\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1097, Loss: 0.780137\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1098, Loss: 1.790587\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1099, Loss: 2.332222\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1100, Loss: 1.676995\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1101, Loss: 1.627679\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1102, Loss: 1.052750\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1103, Loss: 1.097342\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1104, Loss: 0.933034\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1105, Loss: 0.980581\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1106, Loss: 0.940739\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1107, Loss: 2.202059\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1108, Loss: 1.212170\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1109, Loss: 0.878274\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1110, Loss: 0.850383\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1111, Loss: 0.903262\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1112, Loss: 1.502921\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1113, Loss: 1.257664\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1114, Loss: 0.841472\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1115, Loss: 0.813653\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1116, Loss: 0.826115\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1117, Loss: 0.988870\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1118, Loss: 0.892427\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1119, Loss: 0.880887\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1120, Loss: 5.955127\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1121, Loss: 5.257691\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1122, Loss: 2.485786\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1123, Loss: 1.260221\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1124, Loss: 0.985735\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1125, Loss: 0.965273\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1126, Loss: 0.900566\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1127, Loss: 0.936258\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1128, Loss: 0.881454\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1129, Loss: 0.946416\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1130, Loss: 0.829103\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1131, Loss: 0.840901\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1132, Loss: 1.276900\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1133, Loss: 0.902070\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1134, Loss: 1.787070\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1135, Loss: 2.949301\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1136, Loss: 5.483955\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1137, Loss: 3.162828\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1138, Loss: 4.424860\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1139, Loss: 3.188024\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1140, Loss: 1.372227\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1141, Loss: 1.082524\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1142, Loss: 1.031046\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1143, Loss: 1.045367\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1144, Loss: 0.858058\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1145, Loss: 0.814189\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1146, Loss: 0.914591\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1147, Loss: 0.836205\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1148, Loss: 0.799209\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1149, Loss: 0.741577\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1150, Loss: 0.746735\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1151, Loss: 0.826100\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1152, Loss: 0.780699\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1153, Loss: 0.869658\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1154, Loss: 1.181771\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1155, Loss: 1.755021\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1156, Loss: 2.001247\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1157, Loss: 1.619603\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1158, Loss: 0.985762\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1159, Loss: 0.857751\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1160, Loss: 0.811454\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1161, Loss: 1.047183\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1162, Loss: 1.095294\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1163, Loss: 2.049133\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1164, Loss: 1.779437\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1165, Loss: 0.972217\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1166, Loss: 1.045737\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1167, Loss: 0.920735\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1168, Loss: 0.769275\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1169, Loss: 0.766032\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1170, Loss: 0.856250\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1171, Loss: 0.875583\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1172, Loss: 1.093104\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1173, Loss: 0.796513\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1174, Loss: 2.532594\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1175, Loss: 1.338619\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1176, Loss: 1.836029\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1177, Loss: 2.577613\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1178, Loss: 1.660932\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1179, Loss: 1.486085\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1180, Loss: 1.358003\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1181, Loss: 1.044036\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1182, Loss: 1.190004\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1183, Loss: 0.897747\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1184, Loss: 1.141233\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1185, Loss: 1.126516\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1186, Loss: 0.923559\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1187, Loss: 0.782256\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1188, Loss: 0.738444\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1189, Loss: 0.678957\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1190, Loss: 0.777167\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1191, Loss: 0.796094\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1192, Loss: 0.860016\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1193, Loss: 1.094865\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1194, Loss: 0.883350\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1195, Loss: 0.814908\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1196, Loss: 1.037052\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1197, Loss: 0.853086\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1198, Loss: 0.894042\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1199, Loss: 0.834569\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1200, Loss: 0.990993\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1201, Loss: 2.697608\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1202, Loss: 2.795418\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1203, Loss: 3.683824\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1204, Loss: 2.327959\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1205, Loss: 2.146246\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1206, Loss: 1.373481\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1207, Loss: 1.105024\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1208, Loss: 0.859683\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1209, Loss: 0.771354\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1210, Loss: 0.920107\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1211, Loss: 0.821324\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1212, Loss: 0.763915\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1213, Loss: 2.225168\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1214, Loss: 1.610909\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1215, Loss: 1.217861\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1216, Loss: 0.853992\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1217, Loss: 0.811745\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1218, Loss: 1.149705\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1219, Loss: 1.582941\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1220, Loss: 1.297344\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1221, Loss: 1.147653\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1222, Loss: 1.627221\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1223, Loss: 0.933809\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1224, Loss: 0.822393\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1225, Loss: 0.855392\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1226, Loss: 0.785665\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1227, Loss: 0.723780\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1228, Loss: 0.702663\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1229, Loss: 0.740349\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1230, Loss: 0.742016\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1231, Loss: 1.196586\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1232, Loss: 1.102284\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1233, Loss: 1.167009\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1234, Loss: 0.874365\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1235, Loss: 0.802079\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1236, Loss: 0.748029\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1237, Loss: 1.585982\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1238, Loss: 1.702902\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1239, Loss: 2.252561\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1240, Loss: 1.382667\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1241, Loss: 2.096979\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1242, Loss: 1.383283\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1243, Loss: 1.022832\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1244, Loss: 1.169576\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1245, Loss: 1.016852\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1246, Loss: 0.890359\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1247, Loss: 0.756539\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1248, Loss: 0.678078\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1249, Loss: 1.277531\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1250, Loss: 0.932118\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1251, Loss: 1.097354\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1252, Loss: 1.155777\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1253, Loss: 0.850962\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1254, Loss: 1.436740\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1255, Loss: 2.440337\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1256, Loss: 2.078241\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1257, Loss: 1.433856\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1258, Loss: 0.924814\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1259, Loss: 0.882571\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1260, Loss: 0.857639\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1261, Loss: 0.873849\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1262, Loss: 1.910962\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1263, Loss: 0.958719\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1264, Loss: 0.796950\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1265, Loss: 1.167169\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1266, Loss: 2.132066\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1267, Loss: 1.201374\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1268, Loss: 1.045068\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1269, Loss: 1.751301\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1270, Loss: 0.916649\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1271, Loss: 1.284770\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1272, Loss: 0.878597\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1273, Loss: 0.807227\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1274, Loss: 0.953476\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1275, Loss: 0.777803\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1276, Loss: 0.719553\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1277, Loss: 0.689643\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1278, Loss: 0.732628\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1279, Loss: 0.753116\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1280, Loss: 0.755001\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1281, Loss: 0.720408\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1282, Loss: 0.731592\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1283, Loss: 0.700503\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1284, Loss: 0.781393\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1285, Loss: 3.699477\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1286, Loss: 10.743725\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1287, Loss: 5.466898\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1288, Loss: 2.515268\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1289, Loss: 1.343977\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1290, Loss: 1.017243\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1291, Loss: 1.141371\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1292, Loss: 1.017732\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1293, Loss: 1.421273\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1294, Loss: 1.961884\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1295, Loss: 1.242960\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1296, Loss: 1.122764\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1297, Loss: 0.924494\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1298, Loss: 0.897625\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1299, Loss: 0.826927\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1300, Loss: 0.737741\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1301, Loss: 0.796407\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1302, Loss: 0.718006\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1303, Loss: 0.670598\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1304, Loss: 0.797469\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1305, Loss: 1.550420\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1306, Loss: 1.117447\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1307, Loss: 0.767869\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1308, Loss: 0.793538\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1309, Loss: 1.208404\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1310, Loss: 2.108451\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1311, Loss: 2.317907\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1312, Loss: 1.205070\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1313, Loss: 0.919318\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1314, Loss: 0.758826\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1315, Loss: 0.684148\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1316, Loss: 0.706822\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1317, Loss: 0.701706\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1318, Loss: 1.518232\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1319, Loss: 1.169392\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1320, Loss: 1.123807\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1321, Loss: 1.828531\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1322, Loss: 6.129364\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1323, Loss: 2.905254\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1324, Loss: 1.570675\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1325, Loss: 1.372156\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1326, Loss: 1.878435\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1327, Loss: 1.095481\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1328, Loss: 0.819608\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1329, Loss: 0.787344\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1330, Loss: 0.808660\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1331, Loss: 0.700139\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1332, Loss: 0.744856\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1333, Loss: 0.692466\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1334, Loss: 0.662386\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1335, Loss: 0.626798\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1336, Loss: 0.635706\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1337, Loss: 0.749558\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1338, Loss: 0.657840\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1339, Loss: 0.738437\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1340, Loss: 0.775446\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1341, Loss: 0.775283\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1342, Loss: 0.879341\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1343, Loss: 0.745228\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1344, Loss: 0.882515\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1345, Loss: 1.067004\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1346, Loss: 0.866019\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1347, Loss: 2.080124\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1348, Loss: 4.013313\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1349, Loss: 1.973559\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1350, Loss: 1.350954\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1351, Loss: 1.005716\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1352, Loss: 1.556595\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1353, Loss: 2.590409\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1354, Loss: 1.290714\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1355, Loss: 0.993311\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1356, Loss: 0.984554\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1357, Loss: 0.866236\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1358, Loss: 2.182385\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1359, Loss: 2.506926\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1360, Loss: 1.164665\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1361, Loss: 0.811847\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1362, Loss: 0.688698\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1363, Loss: 0.716603\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1364, Loss: 0.969034\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1365, Loss: 0.740868\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1366, Loss: 1.015538\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1367, Loss: 2.330512\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1368, Loss: 1.405699\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1369, Loss: 1.331156\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1370, Loss: 1.080164\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1371, Loss: 0.864773\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1372, Loss: 0.692821\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1373, Loss: 0.662960\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1374, Loss: 1.229355\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1375, Loss: 0.980628\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1376, Loss: 0.996129\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1377, Loss: 1.327121\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1378, Loss: 1.110339\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1379, Loss: 3.258738\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1380, Loss: 2.580022\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1381, Loss: 1.200166\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1382, Loss: 0.894615\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1383, Loss: 0.800418\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1384, Loss: 0.667440\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1385, Loss: 0.753104\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1386, Loss: 0.707984\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1387, Loss: 0.750088\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1388, Loss: 0.794877\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1389, Loss: 0.860031\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1390, Loss: 0.701958\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1391, Loss: 0.684361\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1392, Loss: 0.725834\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1393, Loss: 1.231499\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1394, Loss: 1.070318\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1395, Loss: 2.378002\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1396, Loss: 1.343402\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1397, Loss: 1.194776\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1398, Loss: 1.381039\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1399, Loss: 1.520392\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1400, Loss: 1.421656\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1401, Loss: 0.883375\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1402, Loss: 0.731766\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1403, Loss: 0.768477\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1404, Loss: 0.682299\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1405, Loss: 0.624380\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1406, Loss: 0.690752\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1407, Loss: 0.760320\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1408, Loss: 0.968580\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1409, Loss: 0.964868\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1410, Loss: 0.938929\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1411, Loss: 0.948965\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1412, Loss: 1.043933\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1413, Loss: 3.468657\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1414, Loss: 1.485965\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1415, Loss: 1.500335\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1416, Loss: 1.107600\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1417, Loss: 0.845528\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1418, Loss: 0.789096\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1419, Loss: 1.173146\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1420, Loss: 1.189661\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1421, Loss: 1.137429\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1422, Loss: 0.750021\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1423, Loss: 0.680736\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1424, Loss: 0.691386\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1425, Loss: 0.640996\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1426, Loss: 1.126612\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1427, Loss: 1.312386\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1428, Loss: 2.887306\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1429, Loss: 1.773289\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1430, Loss: 1.196723\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1431, Loss: 0.908384\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1432, Loss: 0.801812\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1433, Loss: 0.746303\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1434, Loss: 0.696604\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1435, Loss: 1.218325\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1436, Loss: 2.647514\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1437, Loss: 1.797970\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1438, Loss: 1.135415\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1439, Loss: 0.729427\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1440, Loss: 0.920419\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1441, Loss: 1.879387\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1442, Loss: 1.312974\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1443, Loss: 0.783446\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1444, Loss: 0.686811\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1445, Loss: 0.642997\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1446, Loss: 0.686956\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1447, Loss: 0.726991\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1448, Loss: 0.644870\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1449, Loss: 0.724984\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1450, Loss: 0.627207\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1451, Loss: 0.666114\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1452, Loss: 0.643169\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1453, Loss: 0.681001\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1454, Loss: 0.644178\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1455, Loss: 1.540528\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1456, Loss: 1.810682\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1457, Loss: 0.940311\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1458, Loss: 0.698462\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1459, Loss: 0.938873\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1460, Loss: 1.502646\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1461, Loss: 2.681052\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1462, Loss: 1.877600\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1463, Loss: 1.376583\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1464, Loss: 0.871756\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1465, Loss: 0.851982\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1466, Loss: 0.909683\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1467, Loss: 1.300614\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1468, Loss: 0.697013\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1469, Loss: 3.014356\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1470, Loss: 2.243618\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1471, Loss: 0.991707\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1472, Loss: 0.740777\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1473, Loss: 0.680107\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1474, Loss: 0.676178\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1475, Loss: 1.440086\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1476, Loss: 0.809616\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1477, Loss: 0.718246\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1478, Loss: 0.864072\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1479, Loss: 0.680171\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1480, Loss: 0.584125\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1481, Loss: 0.916550\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1482, Loss: 0.616354\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1483, Loss: 0.602356\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1484, Loss: 0.616003\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1485, Loss: 1.100528\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1486, Loss: 2.590433\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1487, Loss: 3.495870\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1488, Loss: 2.519180\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1489, Loss: 1.880527\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1490, Loss: 1.019216\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1491, Loss: 0.762512\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1492, Loss: 0.685594\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1493, Loss: 0.739017\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1494, Loss: 0.638176\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1495, Loss: 0.602139\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1496, Loss: 0.614481\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1497, Loss: 0.581644\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1498, Loss: 0.590363\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1499, Loss: 0.553472\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1500, Loss: 0.587650\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1501, Loss: 0.608844\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1502, Loss: 1.419630\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1503, Loss: 0.874073\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1504, Loss: 0.881871\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1505, Loss: 1.188017\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1506, Loss: 2.961792\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1507, Loss: 1.977915\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1508, Loss: 4.601966\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1509, Loss: 3.339976\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1510, Loss: 2.815815\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1511, Loss: 1.252565\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1512, Loss: 1.068396\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1513, Loss: 0.867110\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1514, Loss: 0.703228\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1515, Loss: 0.716227\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1516, Loss: 0.829153\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1517, Loss: 0.694436\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1518, Loss: 0.713707\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1519, Loss: 0.687749\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1520, Loss: 0.629417\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1521, Loss: 0.618920\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1522, Loss: 0.630487\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1523, Loss: 0.679576\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1524, Loss: 0.692380\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1525, Loss: 0.808114\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1526, Loss: 0.858776\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1527, Loss: 0.999014\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1528, Loss: 0.751219\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1529, Loss: 0.670415\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1530, Loss: 0.617631\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1531, Loss: 0.550796\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1532, Loss: 0.573394\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1533, Loss: 0.604931\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1534, Loss: 0.664250\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1535, Loss: 0.705687\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1536, Loss: 0.753924\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1537, Loss: 3.058892\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1538, Loss: 2.933243\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1539, Loss: 1.536206\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1540, Loss: 0.889363\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1541, Loss: 0.778895\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1542, Loss: 0.698604\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1543, Loss: 0.739135\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1544, Loss: 0.676776\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1545, Loss: 0.937015\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1546, Loss: 0.700411\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1547, Loss: 0.609017\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1548, Loss: 0.655398\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1549, Loss: 0.583720\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1550, Loss: 0.825835\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1551, Loss: 2.079036\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1552, Loss: 1.874912\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1553, Loss: 1.989172\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1554, Loss: 1.034957\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1555, Loss: 0.851032\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1556, Loss: 0.992514\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1557, Loss: 0.717177\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1558, Loss: 0.939463\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1559, Loss: 0.824928\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1560, Loss: 0.812135\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1561, Loss: 0.739553\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1562, Loss: 0.657861\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1563, Loss: 0.666474\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1564, Loss: 0.625930\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1565, Loss: 0.730574\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1566, Loss: 0.820683\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1567, Loss: 0.748064\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1568, Loss: 0.942021\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1569, Loss: 1.451480\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1570, Loss: 2.830803\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1571, Loss: 1.596791\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1572, Loss: 1.360157\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1573, Loss: 0.819584\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1574, Loss: 0.983835\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1575, Loss: 0.717625\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1576, Loss: 0.981264\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1577, Loss: 0.669178\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1578, Loss: 0.659917\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1579, Loss: 0.631869\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1580, Loss: 0.644143\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1581, Loss: 1.384012\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1582, Loss: 1.205660\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1583, Loss: 0.893187\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1584, Loss: 0.718940\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1585, Loss: 0.680854\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1586, Loss: 1.032585\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1587, Loss: 1.993876\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1588, Loss: 2.211004\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1589, Loss: 1.204403\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1590, Loss: 0.990938\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1591, Loss: 0.910651\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1592, Loss: 0.646726\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1593, Loss: 0.866965\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1594, Loss: 0.643884\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1595, Loss: 0.849528\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1596, Loss: 1.605711\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1597, Loss: 1.360733\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1598, Loss: 0.815637\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1599, Loss: 0.718733\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1600, Loss: 1.658120\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1601, Loss: 1.276513\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1602, Loss: 0.840626\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1603, Loss: 0.744051\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1604, Loss: 0.810189\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1605, Loss: 1.010254\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1606, Loss: 1.077695\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1607, Loss: 0.746891\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1608, Loss: 0.686430\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1609, Loss: 0.639841\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1610, Loss: 0.624546\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1611, Loss: 0.577216\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1612, Loss: 0.613106\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1613, Loss: 1.501773\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1614, Loss: 0.861078\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1615, Loss: 0.773234\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1616, Loss: 0.729494\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1617, Loss: 0.637584\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1618, Loss: 0.838983\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1619, Loss: 0.713594\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1620, Loss: 0.649319\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1621, Loss: 0.699081\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1622, Loss: 0.867185\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1623, Loss: 0.794765\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1624, Loss: 1.425380\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1625, Loss: 1.267371\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1626, Loss: 1.958341\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1627, Loss: 1.230222\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1628, Loss: 0.913255\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1629, Loss: 0.809680\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1630, Loss: 0.656999\n", - "SNR:inf, Imbalance Percentage:0.3, Encoding dimension:50, Epoch 1631, Loss: 0.687599\n", - "Stopped early after 1632 epochs, with loss of 0.550796\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 1, Loss: 591.634460\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 2, Loss: 567.370972\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 3, Loss: 538.285583\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 4, Loss: 504.772156\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 5, Loss: 471.981445\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 6, Loss: 438.600464\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 7, Loss: 410.578308\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 8, Loss: 385.487183\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 9, Loss: 359.705353\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 10, Loss: 333.957092\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 11, Loss: 310.437561\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 12, Loss: 287.428925\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 13, Loss: 264.353333\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 14, Loss: 241.135025\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 15, Loss: 219.363617\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 16, Loss: 198.879181\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 17, Loss: 178.951447\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 18, Loss: 160.823334\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 19, Loss: 141.642639\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 20, Loss: 124.672485\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 21, Loss: 109.556076\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 22, Loss: 94.566711\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 23, Loss: 84.492264\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 24, Loss: 74.809723\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 25, Loss: 66.325607\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 26, Loss: 60.662415\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 27, Loss: 53.241379\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 28, Loss: 48.586170\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 29, Loss: 44.711624\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 30, Loss: 42.466255\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 31, Loss: 42.208057\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 32, Loss: 39.422760\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 33, Loss: 37.497799\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 34, Loss: 37.679543\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 35, Loss: 36.306789\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 36, Loss: 35.614212\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 37, Loss: 34.728706\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 38, Loss: 35.549351\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 39, Loss: 35.152847\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 40, Loss: 33.284134\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 41, Loss: 33.575321\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 42, Loss: 31.637972\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 43, Loss: 32.189392\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 44, Loss: 32.447311\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 45, Loss: 32.471359\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 46, Loss: 32.202744\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 47, Loss: 31.427591\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 48, Loss: 31.583870\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 49, Loss: 31.542635\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 50, Loss: 31.775715\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 51, Loss: 30.716732\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 52, Loss: 31.551834\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 53, Loss: 30.306061\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 54, Loss: 29.772963\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 55, Loss: 29.884638\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 56, Loss: 29.053471\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 57, Loss: 29.748730\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 58, Loss: 29.369793\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 59, Loss: 29.451738\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 60, Loss: 29.259367\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 61, Loss: 28.988472\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 62, Loss: 27.837065\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 63, Loss: 28.648161\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 64, Loss: 29.046057\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 65, Loss: 28.349037\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 66, Loss: 28.468889\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 67, Loss: 27.677404\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 68, Loss: 28.428671\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 69, Loss: 27.672462\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 70, Loss: 26.690937\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 71, Loss: 26.534960\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 72, Loss: 27.398178\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 73, Loss: 27.177925\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 74, Loss: 26.457043\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 75, Loss: 26.796867\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 76, Loss: 27.287102\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 77, Loss: 26.169649\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 78, Loss: 25.810320\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 79, Loss: 26.050934\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 80, Loss: 25.837812\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 81, Loss: 25.039740\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 82, Loss: 24.248394\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 83, Loss: 24.978708\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 84, Loss: 25.300961\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 85, Loss: 24.650084\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 86, Loss: 24.683741\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 87, Loss: 24.524200\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 88, Loss: 24.010492\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 89, Loss: 23.817169\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 90, Loss: 23.926044\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 91, Loss: 23.426201\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 92, Loss: 23.307827\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 93, Loss: 24.530787\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 94, Loss: 23.133085\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 95, Loss: 23.456627\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 96, Loss: 22.806932\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 97, Loss: 23.056503\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 98, Loss: 23.061960\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 99, Loss: 22.402372\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 100, Loss: 22.992167\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 101, Loss: 22.772778\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 102, Loss: 22.087294\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 103, Loss: 22.360744\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 104, Loss: 21.838167\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 105, Loss: 21.984964\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 106, Loss: 21.501446\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 107, Loss: 21.586613\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 108, Loss: 22.069201\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 109, Loss: 21.434282\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 110, Loss: 21.254498\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 111, Loss: 21.285196\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 112, Loss: 21.528275\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 113, Loss: 20.794056\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 114, Loss: 21.012045\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 115, Loss: 20.106037\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 116, Loss: 20.992929\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 117, Loss: 20.772459\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 118, Loss: 20.387709\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 119, Loss: 20.886089\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 120, Loss: 20.541405\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 121, Loss: 20.427544\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 122, Loss: 20.341755\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 123, Loss: 20.363174\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 124, Loss: 20.274366\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 125, Loss: 19.683277\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 126, Loss: 19.782576\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 127, Loss: 19.108095\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 128, Loss: 19.179779\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 129, Loss: 18.383175\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 130, Loss: 19.171741\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 131, Loss: 18.931534\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 132, Loss: 19.102819\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 133, Loss: 19.147701\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 134, Loss: 18.408037\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 135, Loss: 18.398869\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 136, Loss: 17.822405\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 137, Loss: 18.236755\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 138, Loss: 18.592207\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 139, Loss: 18.122568\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 140, Loss: 18.616999\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 141, Loss: 18.641047\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 142, Loss: 18.041914\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 143, Loss: 17.816055\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 144, Loss: 18.118467\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 145, Loss: 17.426521\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 146, Loss: 17.393538\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 147, Loss: 17.430397\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 148, Loss: 17.614935\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 149, Loss: 17.014729\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 150, Loss: 17.120623\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 151, Loss: 17.213285\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 152, Loss: 17.512474\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 153, Loss: 17.307644\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 154, Loss: 16.818298\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 155, Loss: 16.617582\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 156, Loss: 16.460760\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 157, Loss: 16.007261\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 158, Loss: 17.031717\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 159, Loss: 16.422918\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 160, Loss: 16.643976\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 161, Loss: 16.032228\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 162, Loss: 16.100328\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 163, Loss: 16.102762\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 164, Loss: 15.661457\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 165, Loss: 15.881571\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 166, Loss: 15.062350\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 167, Loss: 15.918805\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 168, Loss: 15.768576\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 169, Loss: 15.736422\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 170, Loss: 15.337025\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 171, Loss: 15.522422\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 172, Loss: 15.287090\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 173, Loss: 14.845712\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 174, Loss: 15.373644\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 175, Loss: 14.919409\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 176, Loss: 15.351991\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 177, Loss: 15.238149\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 178, Loss: 15.300819\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 179, Loss: 14.721099\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 180, Loss: 14.542773\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 181, Loss: 14.726049\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 182, Loss: 14.563294\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 183, Loss: 14.280702\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 184, Loss: 14.197394\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 185, Loss: 14.982113\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 186, Loss: 14.749578\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 187, Loss: 14.049010\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 188, Loss: 13.708890\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 189, Loss: 14.169862\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 190, Loss: 14.589297\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 191, Loss: 14.455449\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 192, Loss: 13.613660\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 193, Loss: 13.671620\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 194, Loss: 13.692448\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 195, Loss: 13.268544\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 196, Loss: 13.697252\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 197, Loss: 13.226140\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 198, Loss: 13.661975\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 199, Loss: 13.295325\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 200, Loss: 13.346080\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 201, Loss: 13.481361\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 202, Loss: 13.181330\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 203, Loss: 12.915834\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 204, Loss: 13.073786\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 205, Loss: 12.646130\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 206, Loss: 12.891367\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 207, Loss: 12.835878\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 208, Loss: 12.716997\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 209, Loss: 12.913046\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 210, Loss: 12.920977\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 211, Loss: 13.094140\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 212, Loss: 12.108157\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 213, Loss: 12.546342\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 214, Loss: 12.790786\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 215, Loss: 12.570488\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 216, Loss: 12.421021\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 217, Loss: 12.094490\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 218, Loss: 12.483902\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 219, Loss: 11.994514\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 220, Loss: 11.838385\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 221, Loss: 12.295649\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 222, Loss: 12.120702\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 223, Loss: 11.725660\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 224, Loss: 11.614378\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 225, Loss: 11.669966\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 226, Loss: 10.972096\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 227, Loss: 11.732409\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 228, Loss: 11.713149\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 229, Loss: 11.534873\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 230, Loss: 11.229636\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 231, Loss: 11.481393\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 232, Loss: 10.979835\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 233, Loss: 11.530135\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 234, Loss: 10.959612\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 235, Loss: 10.720970\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 236, Loss: 10.972940\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 237, Loss: 10.613230\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 238, Loss: 10.434781\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 239, Loss: 10.555180\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 240, Loss: 10.157498\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 241, Loss: 10.472193\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 242, Loss: 10.515918\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 243, Loss: 10.572307\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 244, Loss: 10.335894\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 245, Loss: 10.324817\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 246, Loss: 10.145676\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 247, Loss: 10.119613\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 248, Loss: 10.266177\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 249, Loss: 10.076650\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 250, Loss: 10.392750\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 251, Loss: 10.225518\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 252, Loss: 10.607452\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 253, Loss: 10.308147\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 254, Loss: 10.065931\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 255, Loss: 9.611928\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 256, Loss: 10.115664\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 257, Loss: 9.802656\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 258, Loss: 9.310791\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 259, Loss: 9.501152\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 260, Loss: 9.409081\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 261, Loss: 9.861286\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 262, Loss: 8.930583\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 263, Loss: 9.533704\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 264, Loss: 9.391555\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 265, Loss: 8.948906\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 266, Loss: 9.266992\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 267, Loss: 8.979490\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 268, Loss: 9.191626\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 269, Loss: 9.100156\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 270, Loss: 8.817378\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 271, Loss: 8.641394\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 272, Loss: 8.838615\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 273, Loss: 8.877903\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 274, Loss: 8.584185\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 275, Loss: 8.370924\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 276, Loss: 8.622576\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 277, Loss: 8.283082\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 278, Loss: 8.283443\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 279, Loss: 8.495720\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 280, Loss: 8.378758\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 281, Loss: 8.262880\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 282, Loss: 8.752125\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 283, Loss: 8.005924\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 284, Loss: 7.682065\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 285, Loss: 8.125925\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 286, Loss: 7.718509\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 287, Loss: 7.738291\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 288, Loss: 8.729579\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 289, Loss: 8.379672\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 290, Loss: 7.320155\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 291, Loss: 8.027872\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 292, Loss: 7.219403\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 293, Loss: 7.655436\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 294, Loss: 7.106474\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 295, Loss: 7.794365\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 296, Loss: 7.438581\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 297, Loss: 7.181752\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 298, Loss: 7.240832\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 299, Loss: 7.068280\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 300, Loss: 6.906489\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 301, Loss: 7.124559\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 302, Loss: 6.985807\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 303, Loss: 9.177066\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 304, Loss: 7.643617\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 305, Loss: 7.273336\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 306, Loss: 6.576838\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 307, Loss: 6.702369\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 308, Loss: 6.824560\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 309, Loss: 7.798975\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 310, Loss: 6.827059\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 311, Loss: 6.375836\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 312, Loss: 6.579080\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 313, Loss: 6.953390\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 314, Loss: 6.811780\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 315, Loss: 6.496274\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 316, Loss: 6.539471\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 317, Loss: 6.502752\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 318, Loss: 7.005617\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 319, Loss: 6.680541\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 320, Loss: 6.159845\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 321, Loss: 6.421999\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 322, Loss: 5.853850\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 323, Loss: 5.654148\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 324, Loss: 6.357448\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 325, Loss: 5.904278\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 326, Loss: 6.273158\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 327, Loss: 5.910454\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 328, Loss: 5.781354\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 329, Loss: 6.031870\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 330, Loss: 5.402054\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 331, Loss: 5.374622\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 332, Loss: 5.805655\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 333, Loss: 5.517520\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 334, Loss: 5.392718\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 335, Loss: 5.809292\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 336, Loss: 7.904532\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 337, Loss: 5.643239\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 338, Loss: 5.345553\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 339, Loss: 6.391363\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 340, Loss: 5.524646\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 341, Loss: 5.235290\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 342, Loss: 5.687513\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 343, Loss: 5.537402\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 344, Loss: 4.974133\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 345, Loss: 4.784499\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 346, Loss: 4.889984\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 347, Loss: 5.228829\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 348, Loss: 5.563276\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 349, Loss: 5.136489\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 350, Loss: 4.944563\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 351, Loss: 4.639585\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 352, Loss: 5.030720\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 353, Loss: 4.988933\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 354, Loss: 4.732687\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 355, Loss: 4.630054\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 356, Loss: 4.499070\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 357, Loss: 4.296806\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 358, Loss: 4.833472\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 359, Loss: 5.185349\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 360, Loss: 4.546938\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 361, Loss: 5.066309\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 362, Loss: 5.122932\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 363, Loss: 4.717606\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 364, Loss: 4.957386\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 365, Loss: 5.037003\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 366, Loss: 4.762725\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 367, Loss: 4.447629\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 368, Loss: 5.651401\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 369, Loss: 4.743954\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 370, Loss: 4.298548\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 371, Loss: 4.419862\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 372, Loss: 4.308081\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 373, Loss: 3.990154\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 374, Loss: 4.143805\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 375, Loss: 5.036783\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 376, Loss: 5.076149\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 377, Loss: 4.742607\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 378, Loss: 5.745605\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 379, Loss: 4.450594\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 380, Loss: 4.268696\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 381, Loss: 4.133345\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 382, Loss: 3.863949\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 383, Loss: 4.428950\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 384, Loss: 4.963346\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 385, Loss: 3.883798\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 386, Loss: 3.897027\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 387, Loss: 3.672361\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 388, Loss: 4.350683\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 389, Loss: 4.389282\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 390, Loss: 3.838738\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 391, Loss: 3.867958\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 392, Loss: 3.814505\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 393, Loss: 3.931942\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 394, Loss: 3.723278\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 395, Loss: 3.813323\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 396, Loss: 3.424262\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 397, Loss: 3.910660\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 398, Loss: 5.101522\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 399, Loss: 4.790751\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 400, Loss: 3.935503\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 401, Loss: 3.908794\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 402, Loss: 3.606148\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 403, Loss: 3.735461\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 404, Loss: 3.552996\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 405, Loss: 4.966451\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 406, Loss: 4.406784\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 407, Loss: 4.000717\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 408, Loss: 3.310917\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 409, Loss: 3.539088\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 410, Loss: 3.550818\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 411, Loss: 4.613178\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 412, Loss: 4.181870\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 413, Loss: 3.781497\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 414, Loss: 3.332452\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 415, Loss: 3.034858\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 416, Loss: 3.314390\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 417, Loss: 3.421185\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 418, Loss: 3.421566\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 419, Loss: 3.416669\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 420, Loss: 3.762239\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 421, Loss: 4.161426\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 422, Loss: 3.612251\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 423, Loss: 3.254222\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 424, Loss: 3.355704\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 425, Loss: 3.154844\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 426, Loss: 3.178324\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 427, Loss: 2.914672\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 428, Loss: 3.056505\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 429, Loss: 2.857928\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 430, Loss: 2.883053\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 431, Loss: 4.204237\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 432, Loss: 4.087325\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 433, Loss: 4.841440\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 434, Loss: 4.504864\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 435, Loss: 3.536570\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 436, Loss: 3.210168\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 437, Loss: 2.857478\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 438, Loss: 3.017271\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 439, Loss: 2.684552\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 440, Loss: 2.643829\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 441, Loss: 2.784030\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 442, Loss: 3.390473\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 443, Loss: 3.537848\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 444, Loss: 3.245388\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 445, Loss: 3.661239\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 446, Loss: 2.870410\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 447, Loss: 3.927179\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 448, Loss: 3.826189\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 449, Loss: 2.775247\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 450, Loss: 3.543834\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 451, Loss: 6.052854\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 452, Loss: 4.578249\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 453, Loss: 3.152852\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 454, Loss: 3.086039\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 455, Loss: 3.245566\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 456, Loss: 2.781903\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 457, Loss: 2.789829\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 458, Loss: 2.817348\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 459, Loss: 2.764468\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 460, Loss: 2.708297\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 461, Loss: 3.131867\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 462, Loss: 2.589054\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 463, Loss: 2.862356\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 464, Loss: 2.727969\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 465, Loss: 3.697553\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 466, Loss: 3.381511\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 467, Loss: 2.769162\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 468, Loss: 3.620238\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 469, Loss: 3.453869\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 470, Loss: 2.826252\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 471, Loss: 2.503374\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 472, Loss: 2.448970\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 473, Loss: 2.304484\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 474, Loss: 2.387956\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 475, Loss: 2.759953\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 476, Loss: 7.812290\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 477, Loss: 3.463595\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 478, Loss: 2.819823\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 479, Loss: 2.676546\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 480, Loss: 2.435325\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 481, Loss: 2.432197\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 482, Loss: 2.512067\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 483, Loss: 2.716288\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 484, Loss: 2.610543\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 485, Loss: 3.392555\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 486, Loss: 2.942303\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 487, Loss: 2.653985\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 488, Loss: 2.691583\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 489, Loss: 2.906375\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 490, Loss: 3.296782\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 491, Loss: 2.624902\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 492, Loss: 2.502256\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 493, Loss: 2.327583\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 494, Loss: 2.580525\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 495, Loss: 2.370390\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 496, Loss: 2.158247\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 497, Loss: 2.337317\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 498, Loss: 2.428239\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 499, Loss: 2.588273\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 500, Loss: 4.528060\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 501, Loss: 4.357861\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 502, Loss: 2.854171\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 503, Loss: 2.709477\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 504, Loss: 2.675038\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 505, Loss: 2.388128\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 506, Loss: 2.302301\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 507, Loss: 2.295798\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 508, Loss: 2.443041\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 509, Loss: 2.782225\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 510, Loss: 2.209592\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 511, Loss: 2.279056\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 512, Loss: 3.078770\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 513, Loss: 2.416781\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 514, Loss: 2.193360\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 515, Loss: 1.994851\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 516, Loss: 2.005517\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 517, Loss: 2.052642\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 518, Loss: 2.039184\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 519, Loss: 2.240649\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 520, Loss: 2.003926\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 521, Loss: 1.991595\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 522, Loss: 2.126365\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 523, Loss: 3.987758\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 524, Loss: 2.606459\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 525, Loss: 3.484847\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 526, Loss: 3.763618\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 527, Loss: 3.162073\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 528, Loss: 2.603630\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 529, Loss: 2.427673\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 530, Loss: 2.198714\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 531, Loss: 2.000924\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 532, Loss: 2.015579\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 533, Loss: 2.045172\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 534, Loss: 2.884589\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 535, Loss: 2.854167\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 536, Loss: 2.306319\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 537, Loss: 3.039150\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 538, Loss: 3.300323\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 539, Loss: 2.557392\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 540, Loss: 2.239537\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 541, Loss: 2.061325\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 542, Loss: 2.202877\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 543, Loss: 2.056707\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 544, Loss: 1.994077\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 545, Loss: 2.210024\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 546, Loss: 2.098127\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 547, Loss: 3.614589\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 548, Loss: 2.968080\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 549, Loss: 3.421265\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 550, Loss: 4.152025\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 551, Loss: 3.527548\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 552, Loss: 2.377989\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 553, Loss: 2.923936\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 554, Loss: 2.615250\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 555, Loss: 1.968062\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 556, Loss: 2.085075\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 557, Loss: 3.673779\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 558, Loss: 2.319281\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 559, Loss: 1.975900\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 560, Loss: 2.304096\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 561, Loss: 3.512590\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 562, Loss: 3.409571\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 563, Loss: 2.879923\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 564, Loss: 2.272031\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 565, Loss: 2.213078\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 566, Loss: 1.935556\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 567, Loss: 2.019310\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 568, Loss: 2.289137\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 569, Loss: 2.209476\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 570, Loss: 1.849066\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 571, Loss: 2.122407\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 572, Loss: 2.008126\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 573, Loss: 2.560416\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 574, Loss: 1.993387\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 575, Loss: 2.491119\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 576, Loss: 1.950121\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 577, Loss: 1.791117\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 578, Loss: 2.337987\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 579, Loss: 1.844641\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 580, Loss: 1.878035\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 581, Loss: 1.887671\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 582, Loss: 4.700066\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 583, Loss: 3.040544\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 584, Loss: 3.741131\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 585, Loss: 4.194432\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 586, Loss: 3.392073\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 587, Loss: 3.209850\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 588, Loss: 2.220794\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 589, Loss: 1.942677\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 590, Loss: 1.977326\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 591, Loss: 1.776532\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 592, Loss: 1.743787\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 593, Loss: 1.800237\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 594, Loss: 1.778465\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 595, Loss: 1.994567\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 596, Loss: 1.759943\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 597, Loss: 1.874478\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 598, Loss: 2.819455\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 599, Loss: 1.974184\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 600, Loss: 1.801810\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 601, Loss: 1.608226\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 602, Loss: 1.650985\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 603, Loss: 1.631753\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 604, Loss: 2.043378\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 605, Loss: 1.843759\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 606, Loss: 2.161679\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 607, Loss: 3.479316\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 608, Loss: 2.971324\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 609, Loss: 3.446527\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 610, Loss: 3.907153\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 611, Loss: 2.301108\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 612, Loss: 1.982082\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 613, Loss: 2.093780\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 614, Loss: 1.721105\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 615, Loss: 1.680348\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 616, Loss: 2.045010\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 617, Loss: 1.872716\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 618, Loss: 1.824980\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 619, Loss: 1.758639\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 620, Loss: 1.722628\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 621, Loss: 1.649294\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 622, Loss: 1.692553\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 623, Loss: 2.119676\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 624, Loss: 1.769765\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 625, Loss: 1.627882\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 626, Loss: 1.536394\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 627, Loss: 1.660708\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 628, Loss: 5.596422\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 629, Loss: 4.075810\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 630, Loss: 2.941067\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 631, Loss: 8.968572\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 632, Loss: 7.608386\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 633, Loss: 3.499737\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 634, Loss: 2.557866\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 635, Loss: 1.978195\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 636, Loss: 2.173901\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 637, Loss: 1.751399\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 638, Loss: 1.850656\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 639, Loss: 1.786150\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 640, Loss: 1.867349\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 641, Loss: 1.935518\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 642, Loss: 1.605091\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 643, Loss: 1.587477\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 644, Loss: 1.604409\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 645, Loss: 1.625237\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 646, Loss: 1.553586\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 647, Loss: 3.233084\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 648, Loss: 2.382085\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 649, Loss: 1.679722\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 650, Loss: 1.550197\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 651, Loss: 1.549165\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 652, Loss: 1.915512\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 653, Loss: 2.730378\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 654, Loss: 1.779420\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 655, Loss: 1.708264\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 656, Loss: 2.074169\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 657, Loss: 1.742707\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 658, Loss: 1.768042\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 659, Loss: 2.278516\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 660, Loss: 3.065582\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 661, Loss: 2.259238\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 662, Loss: 1.527141\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 663, Loss: 2.377795\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 664, Loss: 4.629647\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 665, Loss: 3.038372\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 666, Loss: 2.455767\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 667, Loss: 1.699770\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 668, Loss: 2.219983\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 669, Loss: 1.718094\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 670, Loss: 1.621233\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 671, Loss: 1.727020\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 672, Loss: 2.562857\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 673, Loss: 5.264119\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 674, Loss: 2.093792\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 675, Loss: 1.937438\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 676, Loss: 1.827989\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 677, Loss: 1.978557\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 678, Loss: 1.977502\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 679, Loss: 1.740963\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 680, Loss: 1.824801\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 681, Loss: 3.168659\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 682, Loss: 2.355785\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 683, Loss: 1.601876\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 684, Loss: 1.534708\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 685, Loss: 2.019304\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 686, Loss: 2.394199\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 687, Loss: 1.749537\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 688, Loss: 1.555108\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 689, Loss: 1.447659\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 690, Loss: 1.642975\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 691, Loss: 1.635957\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 692, Loss: 1.582377\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 693, Loss: 1.547448\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 694, Loss: 2.375120\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 695, Loss: 1.658798\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 696, Loss: 1.560901\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 697, Loss: 2.786686\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 698, Loss: 7.161780\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 699, Loss: 4.177625\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 700, Loss: 4.389231\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 701, Loss: 2.359728\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 702, Loss: 1.627078\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 703, Loss: 1.550438\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 704, Loss: 1.391539\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 705, Loss: 1.385188\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 706, Loss: 1.384981\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 707, Loss: 1.546214\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 708, Loss: 1.615513\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 709, Loss: 1.670869\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 710, Loss: 1.545860\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 711, Loss: 2.459182\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 712, Loss: 3.377451\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 713, Loss: 2.939256\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 714, Loss: 3.014373\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 715, Loss: 1.926861\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 716, Loss: 1.429310\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 717, Loss: 1.663772\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 718, Loss: 1.521852\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 719, Loss: 1.637904\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 720, Loss: 1.883535\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 721, Loss: 1.497531\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 722, Loss: 1.903128\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 723, Loss: 1.721778\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 724, Loss: 1.897504\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 725, Loss: 1.704329\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 726, Loss: 1.581597\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 727, Loss: 1.682322\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 728, Loss: 2.747127\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 729, Loss: 1.776625\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 730, Loss: 1.532053\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 731, Loss: 1.631730\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 732, Loss: 1.511934\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 733, Loss: 2.882618\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 734, Loss: 3.550457\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 735, Loss: 1.829744\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 736, Loss: 1.937781\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 737, Loss: 2.018064\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 738, Loss: 1.570477\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 739, Loss: 1.314385\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 740, Loss: 2.254537\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 741, Loss: 1.705663\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 742, Loss: 1.324377\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 743, Loss: 1.638484\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 744, Loss: 1.355559\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 745, Loss: 1.277231\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 746, Loss: 1.627606\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 747, Loss: 1.566871\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 748, Loss: 1.377481\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 749, Loss: 1.634409\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 750, Loss: 1.265466\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 751, Loss: 1.348896\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 752, Loss: 1.419355\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 753, Loss: 1.390412\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 754, Loss: 1.554517\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 755, Loss: 1.659332\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 756, Loss: 2.027128\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 757, Loss: 2.228834\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 758, Loss: 3.559305\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 759, Loss: 3.189229\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 760, Loss: 1.848908\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 761, Loss: 2.414962\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 762, Loss: 1.592350\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 763, Loss: 1.273502\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 764, Loss: 1.486040\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 765, Loss: 1.479881\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 766, Loss: 1.390108\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 767, Loss: 1.641952\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 768, Loss: 1.821317\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 769, Loss: 1.552045\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 770, Loss: 1.511827\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 771, Loss: 1.396712\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 772, Loss: 1.870528\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 773, Loss: 1.275962\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 774, Loss: 1.465908\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 775, Loss: 1.253790\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 776, Loss: 1.349375\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 777, Loss: 3.067260\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 778, Loss: 2.021012\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 779, Loss: 1.532521\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 780, Loss: 1.374742\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 781, Loss: 1.503824\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 782, Loss: 1.950893\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 783, Loss: 1.357900\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 784, Loss: 2.431492\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 785, Loss: 1.914450\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 786, Loss: 2.112278\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 787, Loss: 1.424860\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 788, Loss: 2.068728\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 789, Loss: 1.581612\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 790, Loss: 1.324624\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 791, Loss: 1.198632\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 792, Loss: 1.577546\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 793, Loss: 2.312314\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 794, Loss: 1.606936\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 795, Loss: 1.348431\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 796, Loss: 1.840582\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 797, Loss: 3.583140\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 798, Loss: 2.386722\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 799, Loss: 2.306029\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 800, Loss: 3.922792\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 801, Loss: 2.013530\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 802, Loss: 1.467964\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 803, Loss: 1.505005\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 804, Loss: 1.291137\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 805, Loss: 1.326172\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 806, Loss: 1.522144\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 807, Loss: 1.347967\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 808, Loss: 1.490163\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 809, Loss: 1.223036\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 810, Loss: 1.370369\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 811, Loss: 1.348551\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 812, Loss: 1.304147\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 813, Loss: 1.400673\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 814, Loss: 1.217478\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 815, Loss: 1.177967\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 816, Loss: 1.280739\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 817, Loss: 1.232594\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 818, Loss: 2.103793\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 819, Loss: 1.763007\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 820, Loss: 1.455795\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 821, Loss: 2.744653\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 822, Loss: 4.664230\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 823, Loss: 2.976865\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 824, Loss: 1.700308\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 825, Loss: 1.626041\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 826, Loss: 1.563969\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 827, Loss: 1.522308\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 828, Loss: 1.177693\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 829, Loss: 1.239299\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 830, Loss: 1.265473\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 831, Loss: 1.165354\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 832, Loss: 1.273000\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 833, Loss: 1.221145\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 834, Loss: 5.211336\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 835, Loss: 1.880791\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 836, Loss: 1.471756\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 837, Loss: 2.104731\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 838, Loss: 6.305800\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 839, Loss: 1.903271\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 840, Loss: 2.171958\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 841, Loss: 1.661037\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 842, Loss: 1.439018\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 843, Loss: 1.399103\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 844, Loss: 1.153284\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 845, Loss: 1.282423\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 846, Loss: 1.186334\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 847, Loss: 1.329308\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 848, Loss: 1.168004\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 849, Loss: 1.190946\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 850, Loss: 1.081566\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 851, Loss: 1.114046\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 852, Loss: 1.339259\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 853, Loss: 1.446373\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 854, Loss: 1.587807\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 855, Loss: 1.224515\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 856, Loss: 1.807619\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 857, Loss: 2.461049\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 858, Loss: 2.023095\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 859, Loss: 2.368441\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 860, Loss: 1.838176\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 861, Loss: 2.401917\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 862, Loss: 1.670155\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 863, Loss: 1.271514\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 864, Loss: 2.898397\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 865, Loss: 1.371665\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 866, Loss: 1.181274\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 867, Loss: 1.205894\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 868, Loss: 1.029425\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 869, Loss: 1.264787\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 870, Loss: 1.246757\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 871, Loss: 1.136684\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 872, Loss: 1.147203\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 873, Loss: 1.111874\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 874, Loss: 1.064670\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 875, Loss: 1.126510\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 876, Loss: 1.115070\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 877, Loss: 1.465313\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 878, Loss: 1.151081\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 879, Loss: 1.469866\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 880, Loss: 2.423518\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 881, Loss: 2.067507\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 882, Loss: 1.639670\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 883, Loss: 2.420728\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 884, Loss: 3.587691\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 885, Loss: 2.895550\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 886, Loss: 1.824414\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 887, Loss: 1.875465\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 888, Loss: 1.967764\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 889, Loss: 1.427732\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 890, Loss: 2.299757\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 891, Loss: 1.230443\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 892, Loss: 1.159480\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 893, Loss: 1.123564\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 894, Loss: 1.128847\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 895, Loss: 1.189163\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 896, Loss: 1.134455\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 897, Loss: 1.112564\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 898, Loss: 1.433291\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 899, Loss: 1.155979\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 900, Loss: 2.490269\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 901, Loss: 1.657545\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 902, Loss: 1.414699\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 903, Loss: 1.261169\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 904, Loss: 1.182359\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 905, Loss: 1.278465\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 906, Loss: 1.458905\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 907, Loss: 1.258643\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 908, Loss: 1.665500\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 909, Loss: 2.005682\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 910, Loss: 1.530346\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 911, Loss: 3.560440\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 912, Loss: 1.932887\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 913, Loss: 2.217808\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 914, Loss: 2.322011\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 915, Loss: 1.628203\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 916, Loss: 1.194327\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 917, Loss: 1.080421\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 918, Loss: 1.087248\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 919, Loss: 0.951083\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 920, Loss: 1.245439\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 921, Loss: 1.196360\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 922, Loss: 1.227268\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 923, Loss: 1.591932\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 924, Loss: 1.255564\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 925, Loss: 1.540670\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 926, Loss: 3.967337\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 927, Loss: 2.681642\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 928, Loss: 1.484830\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 929, Loss: 1.227961\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 930, Loss: 1.698554\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 931, Loss: 1.321185\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 932, Loss: 1.379492\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 933, Loss: 1.051889\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 934, Loss: 1.046431\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 935, Loss: 1.075272\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 936, Loss: 1.249654\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 937, Loss: 2.025016\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 938, Loss: 1.320909\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 939, Loss: 1.973945\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 940, Loss: 2.685136\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 941, Loss: 1.837803\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 942, Loss: 2.036818\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 943, Loss: 1.407833\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 944, Loss: 1.101518\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 945, Loss: 1.200811\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 946, Loss: 1.326059\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 947, Loss: 1.236948\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 948, Loss: 1.311404\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 949, Loss: 1.492282\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 950, Loss: 1.619701\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 951, Loss: 1.442386\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 952, Loss: 1.263766\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 953, Loss: 1.194567\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 954, Loss: 1.131605\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 955, Loss: 1.932821\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 956, Loss: 1.675166\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 957, Loss: 2.685994\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 958, Loss: 1.333549\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 959, Loss: 1.156057\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 960, Loss: 1.300404\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 961, Loss: 1.446171\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 962, Loss: 1.268464\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 963, Loss: 1.410087\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 964, Loss: 1.885702\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 965, Loss: 2.494157\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 966, Loss: 3.179281\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 967, Loss: 1.959305\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 968, Loss: 2.417262\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 969, Loss: 1.519633\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 970, Loss: 1.394286\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 971, Loss: 1.850485\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 972, Loss: 1.222877\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 973, Loss: 1.604059\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 974, Loss: 2.277395\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 975, Loss: 1.884032\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 976, Loss: 4.663541\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 977, Loss: 4.271000\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 978, Loss: 2.274070\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 979, Loss: 1.545983\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 980, Loss: 1.340539\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 981, Loss: 1.100628\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 982, Loss: 1.084201\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 983, Loss: 1.652154\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 984, Loss: 1.231695\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 985, Loss: 1.797320\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 986, Loss: 1.791834\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 987, Loss: 1.186881\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 988, Loss: 1.343970\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 989, Loss: 1.049673\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 990, Loss: 2.785878\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 991, Loss: 1.401174\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 992, Loss: 1.307979\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 993, Loss: 1.122117\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 994, Loss: 1.050002\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 995, Loss: 0.926123\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 996, Loss: 1.243872\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 997, Loss: 1.086814\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 998, Loss: 0.960076\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 999, Loss: 1.015245\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 1000, Loss: 1.200184\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 1001, Loss: 1.671526\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 1002, Loss: 2.208711\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 1003, Loss: 1.541741\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 1004, Loss: 1.075061\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 1005, Loss: 0.950469\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 1006, Loss: 1.123363\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 1007, Loss: 0.963451\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 1008, Loss: 1.182136\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 1009, Loss: 1.571148\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 1010, Loss: 1.317357\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 1011, Loss: 1.361624\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 1012, Loss: 1.971806\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 1013, Loss: 1.238960\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 1014, Loss: 7.199414\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 1015, Loss: 4.782890\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 1016, Loss: 7.154936\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 1017, Loss: 2.592861\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 1018, Loss: 1.733163\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 1019, Loss: 1.376159\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 1020, Loss: 1.079873\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 1021, Loss: 1.279433\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 1022, Loss: 1.131747\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 1023, Loss: 1.058519\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 1024, Loss: 1.271797\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 1025, Loss: 1.006329\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 1026, Loss: 0.940016\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 1027, Loss: 1.901418\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 1028, Loss: 1.156343\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 1029, Loss: 1.201423\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 1030, Loss: 1.301612\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 1031, Loss: 0.963397\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 1032, Loss: 0.862907\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 1033, Loss: 0.884502\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 1034, Loss: 1.052735\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 1035, Loss: 1.354859\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 1036, Loss: 1.243823\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 1037, Loss: 1.105858\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 1038, Loss: 0.981494\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 1039, Loss: 1.212188\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 1040, Loss: 1.110004\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 1041, Loss: 0.935038\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 1042, Loss: 1.197669\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 1043, Loss: 0.949378\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 1044, Loss: 2.834965\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 1045, Loss: 1.378931\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 1046, Loss: 1.235317\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 1047, Loss: 1.242861\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 1048, Loss: 1.027603\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 1049, Loss: 1.307767\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 1050, Loss: 1.102241\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 1051, Loss: 1.844830\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 1052, Loss: 7.388657\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 1053, Loss: 3.159761\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 1054, Loss: 2.125098\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 1055, Loss: 2.285862\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 1056, Loss: 1.778880\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 1057, Loss: 1.326396\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 1058, Loss: 1.061869\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 1059, Loss: 1.427086\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 1060, Loss: 1.289782\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 1061, Loss: 1.577397\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 1062, Loss: 1.235311\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 1063, Loss: 0.997021\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 1064, Loss: 1.060001\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 1065, Loss: 1.096563\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 1066, Loss: 1.390239\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 1067, Loss: 1.147069\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 1068, Loss: 1.226794\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 1069, Loss: 1.435495\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 1070, Loss: 4.732321\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 1071, Loss: 2.667881\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 1072, Loss: 1.458660\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 1073, Loss: 1.403254\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 1074, Loss: 1.347716\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 1075, Loss: 1.637560\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 1076, Loss: 2.056235\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 1077, Loss: 1.627017\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 1078, Loss: 1.483188\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 1079, Loss: 0.966826\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 1080, Loss: 0.999928\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 1081, Loss: 0.885949\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 1082, Loss: 0.884388\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 1083, Loss: 1.046103\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 1084, Loss: 0.926233\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 1085, Loss: 0.879829\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 1086, Loss: 0.984433\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 1087, Loss: 1.427403\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 1088, Loss: 1.068650\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 1089, Loss: 0.893729\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 1090, Loss: 0.923363\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 1091, Loss: 0.999234\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 1092, Loss: 0.905732\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 1093, Loss: 1.148844\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 1094, Loss: 1.826560\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 1095, Loss: 1.321867\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 1096, Loss: 1.910359\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 1097, Loss: 3.560030\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 1098, Loss: 2.431232\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 1099, Loss: 1.360265\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 1100, Loss: 1.104402\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 1101, Loss: 0.931169\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 1102, Loss: 0.926262\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 1103, Loss: 0.998186\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 1104, Loss: 0.960893\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 1105, Loss: 0.930631\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 1106, Loss: 0.924394\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 1107, Loss: 1.065764\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 1108, Loss: 1.097077\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 1109, Loss: 1.026068\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 1110, Loss: 1.415623\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 1111, Loss: 2.015084\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 1112, Loss: 4.118387\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 1113, Loss: 4.043917\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 1114, Loss: 1.821711\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 1115, Loss: 1.549246\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 1116, Loss: 1.087791\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 1117, Loss: 1.012758\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 1118, Loss: 1.052322\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 1119, Loss: 1.315626\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 1120, Loss: 1.160310\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 1121, Loss: 1.241180\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 1122, Loss: 1.545279\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 1123, Loss: 1.225392\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 1124, Loss: 1.113998\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 1125, Loss: 1.094929\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 1126, Loss: 0.977508\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 1127, Loss: 0.940916\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 1128, Loss: 0.913238\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 1129, Loss: 1.752024\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 1130, Loss: 1.040797\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 1131, Loss: 0.976585\n", - "SNR:inf, Imbalance Percentage:0.6, Encoding dimension:50, Epoch 1132, Loss: 1.074545\n", - "Stopped early after 1133 epochs, with loss of 0.862907\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1, Loss: 599.494568\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 2, Loss: 575.846313\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 3, Loss: 544.885559\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 4, Loss: 511.965912\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 5, Loss: 482.400513\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 6, Loss: 449.570496\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 7, Loss: 421.844147\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 8, Loss: 393.338623\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 9, Loss: 369.295868\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 10, Loss: 343.958588\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 11, Loss: 317.148560\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 12, Loss: 294.403076\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 13, Loss: 270.121124\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 14, Loss: 249.315445\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 15, Loss: 225.030533\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 16, Loss: 203.853012\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 17, Loss: 183.028030\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 18, Loss: 163.653351\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 19, Loss: 147.198837\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 20, Loss: 128.026672\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 21, Loss: 112.079102\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 22, Loss: 98.221481\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 23, Loss: 86.674377\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 24, Loss: 77.659042\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 25, Loss: 69.120682\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 26, Loss: 62.391136\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 27, Loss: 57.664551\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 28, Loss: 51.692879\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 29, Loss: 48.851933\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 30, Loss: 44.458530\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 31, Loss: 44.400932\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 32, Loss: 43.617924\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 33, Loss: 42.606441\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 34, Loss: 41.491165\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 35, Loss: 40.092098\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 36, Loss: 38.343708\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 37, Loss: 38.176952\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 38, Loss: 38.273270\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 39, Loss: 37.138092\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 40, Loss: 36.845982\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 41, Loss: 35.845531\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 42, Loss: 35.837017\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 43, Loss: 34.845863\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 44, Loss: 35.366444\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 45, Loss: 34.078770\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 46, Loss: 34.386513\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 47, Loss: 32.487617\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 48, Loss: 33.589252\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 49, Loss: 33.005497\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 50, Loss: 33.334763\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 51, Loss: 33.021015\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 52, Loss: 31.811239\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 53, Loss: 31.502153\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 54, Loss: 31.839073\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 55, Loss: 31.061249\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 56, Loss: 30.880552\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 57, Loss: 31.169098\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 58, Loss: 31.052544\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 59, Loss: 29.675480\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 60, Loss: 29.057692\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 61, Loss: 30.492012\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 62, Loss: 29.228825\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 63, Loss: 28.919935\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 64, Loss: 28.739937\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 65, Loss: 27.802122\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 66, Loss: 27.657236\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 67, Loss: 27.566906\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 68, Loss: 27.267317\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 69, Loss: 27.308861\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 70, Loss: 25.816732\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 71, Loss: 26.797865\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 72, Loss: 25.352358\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 73, Loss: 25.922508\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 74, Loss: 26.082054\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 75, Loss: 26.043694\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 76, Loss: 24.725760\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 77, Loss: 25.044155\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 78, Loss: 25.321693\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 79, Loss: 24.529207\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 80, Loss: 24.113031\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 81, Loss: 24.406519\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 82, Loss: 23.920481\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 83, Loss: 24.462990\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 84, Loss: 23.505264\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 85, Loss: 23.755333\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 86, Loss: 23.184719\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 87, Loss: 22.460588\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 88, Loss: 22.929901\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 89, Loss: 22.517630\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 90, Loss: 22.804573\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 91, Loss: 22.180655\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 92, Loss: 21.772385\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 93, Loss: 21.635458\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 94, Loss: 21.856657\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 95, Loss: 22.286287\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 96, Loss: 21.910299\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 97, Loss: 21.237438\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 98, Loss: 21.356167\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 99, Loss: 21.476149\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 100, Loss: 21.705212\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 101, Loss: 21.246895\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 102, Loss: 20.522919\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 103, Loss: 20.987329\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 104, Loss: 20.843473\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 105, Loss: 21.221273\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 106, Loss: 20.965353\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 107, Loss: 20.093420\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 108, Loss: 20.593918\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 109, Loss: 20.257154\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 110, Loss: 20.990858\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 111, Loss: 19.982943\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 112, Loss: 20.418932\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 113, Loss: 19.548693\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 114, Loss: 19.767403\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 115, Loss: 20.145426\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 116, Loss: 19.559309\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 117, Loss: 19.449242\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 118, Loss: 19.394178\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 119, Loss: 19.187778\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 120, Loss: 19.159609\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 121, Loss: 18.734022\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 122, Loss: 18.931179\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 123, Loss: 18.737488\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 124, Loss: 18.304651\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 125, Loss: 18.931602\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 126, Loss: 18.852877\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 127, Loss: 18.476927\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 128, Loss: 18.948641\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 129, Loss: 18.447020\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 130, Loss: 18.364183\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 131, Loss: 18.162586\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 132, Loss: 18.601334\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 133, Loss: 18.414566\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 134, Loss: 18.359114\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 135, Loss: 18.538568\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 136, Loss: 17.946190\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 137, Loss: 17.875343\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 138, Loss: 18.052092\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 139, Loss: 18.461269\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 140, Loss: 17.534828\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 141, Loss: 17.156887\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 142, Loss: 17.663847\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 143, Loss: 16.775206\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 144, Loss: 17.360559\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 145, Loss: 17.015633\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 146, Loss: 17.370684\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 147, Loss: 17.071955\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 148, Loss: 17.472794\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 149, Loss: 17.643950\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 150, Loss: 17.466476\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 151, Loss: 17.244186\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 152, Loss: 17.414352\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 153, Loss: 16.454025\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 154, Loss: 17.594501\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 155, Loss: 16.419413\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 156, Loss: 16.455704\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 157, Loss: 16.628193\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 158, Loss: 16.193249\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 159, Loss: 16.532347\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 160, Loss: 16.826984\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 161, Loss: 16.303305\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 162, Loss: 16.618031\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 163, Loss: 16.695553\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 164, Loss: 16.917171\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 165, Loss: 15.455487\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 166, Loss: 16.129133\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 167, Loss: 15.447358\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 168, Loss: 15.727156\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 169, Loss: 15.369734\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 170, Loss: 15.855793\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 171, Loss: 16.249483\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 172, Loss: 15.656953\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 173, Loss: 15.315767\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 174, Loss: 15.858555\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 175, Loss: 15.059971\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 176, Loss: 15.287776\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 177, Loss: 15.222276\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 178, Loss: 15.083013\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 179, Loss: 15.024339\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 180, Loss: 14.713969\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 181, Loss: 14.886591\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 182, Loss: 14.603915\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 183, Loss: 14.792361\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 184, Loss: 15.112132\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 185, Loss: 14.524593\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 186, Loss: 15.167124\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 187, Loss: 14.390835\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 188, Loss: 14.942210\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 189, Loss: 14.340753\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 190, Loss: 14.661595\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 191, Loss: 14.422857\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 192, Loss: 13.998694\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 193, Loss: 14.546620\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 194, Loss: 14.824374\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 195, Loss: 14.469160\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 196, Loss: 13.800355\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 197, Loss: 14.278940\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 198, Loss: 13.474786\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 199, Loss: 13.373859\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 200, Loss: 13.590344\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 201, Loss: 13.782645\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 202, Loss: 13.327320\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 203, Loss: 13.574032\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 204, Loss: 13.743391\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 205, Loss: 13.534443\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 206, Loss: 13.046681\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 207, Loss: 13.379437\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 208, Loss: 12.724039\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 209, Loss: 13.985489\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 210, Loss: 12.930301\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 211, Loss: 12.776505\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 212, Loss: 13.176234\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 213, Loss: 12.827189\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 214, Loss: 13.248658\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 215, Loss: 12.951443\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 216, Loss: 12.871191\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 217, Loss: 12.687230\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 218, Loss: 12.699276\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 219, Loss: 12.566337\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 220, Loss: 12.712807\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 221, Loss: 12.745941\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 222, Loss: 12.267973\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 223, Loss: 12.713045\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 224, Loss: 12.490966\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 225, Loss: 12.044780\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 226, Loss: 11.991957\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 227, Loss: 12.092064\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 228, Loss: 12.336788\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 229, Loss: 12.559389\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 230, Loss: 12.604409\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 231, Loss: 11.754124\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 232, Loss: 11.701167\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 233, Loss: 11.531415\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 234, Loss: 11.705892\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 235, Loss: 11.404332\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 236, Loss: 11.416354\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 237, Loss: 11.575536\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 238, Loss: 11.857426\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 239, Loss: 11.255604\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 240, Loss: 11.463632\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 241, Loss: 11.397064\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 242, Loss: 11.354390\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 243, Loss: 10.870146\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 244, Loss: 11.006253\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 245, Loss: 11.212623\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 246, Loss: 11.315472\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 247, Loss: 10.629070\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 248, Loss: 10.223890\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 249, Loss: 10.649144\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 250, Loss: 10.679561\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 251, Loss: 11.285095\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 252, Loss: 10.893704\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 253, Loss: 10.370569\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 254, Loss: 11.056266\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 255, Loss: 10.619597\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 256, Loss: 10.286648\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 257, Loss: 10.660003\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 258, Loss: 10.731029\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 259, Loss: 9.857916\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 260, Loss: 10.257236\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 261, Loss: 10.043188\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 262, Loss: 10.282750\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 263, Loss: 10.422009\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 264, Loss: 9.825251\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 265, Loss: 9.832013\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 266, Loss: 10.238678\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 267, Loss: 9.968467\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 268, Loss: 9.910966\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 269, Loss: 9.335349\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 270, Loss: 9.718708\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 271, Loss: 9.280686\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 272, Loss: 9.517185\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 273, Loss: 9.459958\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 274, Loss: 9.075644\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 275, Loss: 9.464046\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 276, Loss: 9.391794\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 277, Loss: 9.334324\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 278, Loss: 9.319201\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 279, Loss: 8.517381\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 280, Loss: 8.984714\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 281, Loss: 9.114284\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 282, Loss: 8.488760\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 283, Loss: 8.826121\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 284, Loss: 8.821408\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 285, Loss: 9.063439\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 286, Loss: 8.840255\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 287, Loss: 8.626400\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 288, Loss: 8.650700\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 289, Loss: 8.263919\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 290, Loss: 8.396024\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 291, Loss: 8.217307\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 292, Loss: 8.195894\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 293, Loss: 8.302460\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 294, Loss: 8.091720\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 295, Loss: 8.380309\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 296, Loss: 8.097896\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 297, Loss: 8.466879\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 298, Loss: 8.343246\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 299, Loss: 7.891548\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 300, Loss: 7.627867\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 301, Loss: 7.653226\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 302, Loss: 7.568370\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 303, Loss: 7.718847\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 304, Loss: 7.684657\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 305, Loss: 7.369560\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 306, Loss: 7.487353\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 307, Loss: 7.073771\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 308, Loss: 7.501829\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 309, Loss: 7.427029\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 310, Loss: 7.930191\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 311, Loss: 7.203625\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 312, Loss: 7.439490\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 313, Loss: 6.971571\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 314, Loss: 7.017790\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 315, Loss: 7.481312\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 316, Loss: 7.114323\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 317, Loss: 7.501227\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 318, Loss: 7.291806\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 319, Loss: 7.342131\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 320, Loss: 7.182703\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 321, Loss: 6.438424\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 322, Loss: 6.626821\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 323, Loss: 6.626373\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 324, Loss: 6.523346\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 325, Loss: 6.735881\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 326, Loss: 7.143554\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 327, Loss: 6.820890\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 328, Loss: 6.368088\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 329, Loss: 6.951217\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 330, Loss: 6.557374\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 331, Loss: 6.617967\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 332, Loss: 6.189663\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 333, Loss: 6.770920\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 334, Loss: 6.005450\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 335, Loss: 6.066959\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 336, Loss: 6.091626\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 337, Loss: 5.862860\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 338, Loss: 7.125380\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 339, Loss: 6.243387\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 340, Loss: 6.347029\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 341, Loss: 6.368921\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 342, Loss: 6.144097\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 343, Loss: 5.873623\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 344, Loss: 5.704529\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 345, Loss: 5.611255\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 346, Loss: 6.119195\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 347, Loss: 5.603872\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 348, Loss: 5.757280\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 349, Loss: 5.645779\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 350, Loss: 5.622720\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 351, Loss: 5.337406\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 352, Loss: 5.248318\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 353, Loss: 5.460528\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 354, Loss: 5.789059\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 355, Loss: 7.858608\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 356, Loss: 7.040648\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 357, Loss: 5.923840\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 358, Loss: 7.002137\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 359, Loss: 8.065719\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 360, Loss: 6.014297\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 361, Loss: 6.340824\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 362, Loss: 5.107745\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 363, Loss: 4.850006\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 364, Loss: 4.869370\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 365, Loss: 4.644257\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 366, Loss: 4.662100\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 367, Loss: 4.595893\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 368, Loss: 4.477490\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 369, Loss: 4.649993\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 370, Loss: 4.404786\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 371, Loss: 4.683619\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 372, Loss: 4.603308\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 373, Loss: 4.844261\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 374, Loss: 4.437890\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 375, Loss: 4.468569\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 376, Loss: 4.456152\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 377, Loss: 4.458662\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 378, Loss: 4.749860\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 379, Loss: 4.701278\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 380, Loss: 4.800917\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 381, Loss: 5.584470\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 382, Loss: 5.013116\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 383, Loss: 4.864933\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 384, Loss: 4.493296\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 385, Loss: 4.443116\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 386, Loss: 4.064468\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 387, Loss: 4.302391\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 388, Loss: 4.963384\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 389, Loss: 4.455616\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 390, Loss: 4.538463\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 391, Loss: 5.530728\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 392, Loss: 4.493715\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 393, Loss: 4.256558\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 394, Loss: 4.185245\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 395, Loss: 4.008688\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 396, Loss: 3.944663\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 397, Loss: 5.350632\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 398, Loss: 4.180514\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 399, Loss: 4.517376\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 400, Loss: 4.395354\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 401, Loss: 5.115092\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 402, Loss: 6.092688\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 403, Loss: 4.663808\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 404, Loss: 4.527864\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 405, Loss: 4.670631\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 406, Loss: 4.163069\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 407, Loss: 3.918185\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 408, Loss: 3.987985\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 409, Loss: 3.834048\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 410, Loss: 3.921152\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 411, Loss: 4.195853\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 412, Loss: 3.829527\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 413, Loss: 3.580636\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 414, Loss: 3.342095\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 415, Loss: 3.665157\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 416, Loss: 3.414786\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 417, Loss: 3.479943\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 418, Loss: 3.497718\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 419, Loss: 5.082283\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 420, Loss: 4.629743\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 421, Loss: 5.759645\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 422, Loss: 6.865998\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 423, Loss: 4.213950\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 424, Loss: 3.741575\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 425, Loss: 3.508755\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 426, Loss: 3.641036\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 427, Loss: 3.145893\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 428, Loss: 3.442660\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 429, Loss: 3.591532\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 430, Loss: 3.470778\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 431, Loss: 3.179226\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 432, Loss: 3.142290\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 433, Loss: 3.237019\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 434, Loss: 4.168201\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 435, Loss: 3.715971\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 436, Loss: 4.173656\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 437, Loss: 3.353594\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 438, Loss: 3.092621\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 439, Loss: 3.562503\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 440, Loss: 3.654419\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 441, Loss: 3.817856\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 442, Loss: 3.443201\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 443, Loss: 3.500400\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 444, Loss: 3.883170\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 445, Loss: 3.444244\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 446, Loss: 3.230201\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 447, Loss: 3.054666\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 448, Loss: 3.554405\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 449, Loss: 3.285967\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 450, Loss: 3.000286\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 451, Loss: 3.477647\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 452, Loss: 3.136088\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 453, Loss: 3.485649\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 454, Loss: 2.879398\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 455, Loss: 3.046136\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 456, Loss: 4.265741\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 457, Loss: 3.166499\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 458, Loss: 3.376946\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 459, Loss: 4.324418\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 460, Loss: 3.389933\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 461, Loss: 3.057734\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 462, Loss: 2.917752\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 463, Loss: 3.730356\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 464, Loss: 4.011649\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 465, Loss: 4.949691\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 466, Loss: 4.067001\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 467, Loss: 3.261206\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 468, Loss: 2.918900\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 469, Loss: 2.838002\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 470, Loss: 2.751596\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 471, Loss: 2.881089\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 472, Loss: 3.573109\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 473, Loss: 3.380598\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 474, Loss: 2.807903\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 475, Loss: 2.713714\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 476, Loss: 2.739424\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 477, Loss: 2.806974\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 478, Loss: 2.679013\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 479, Loss: 2.716650\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 480, Loss: 2.737399\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 481, Loss: 2.873066\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 482, Loss: 3.565318\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 483, Loss: 3.322878\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 484, Loss: 2.736727\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 485, Loss: 2.769853\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 486, Loss: 3.062199\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 487, Loss: 3.557678\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 488, Loss: 2.981183\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 489, Loss: 2.811531\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 490, Loss: 3.630897\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 491, Loss: 4.347476\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 492, Loss: 5.255942\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 493, Loss: 3.542609\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 494, Loss: 3.641550\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 495, Loss: 3.370847\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 496, Loss: 3.121031\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 497, Loss: 3.415967\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 498, Loss: 2.500678\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 499, Loss: 2.548146\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 500, Loss: 2.676402\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 501, Loss: 2.750016\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 502, Loss: 2.585922\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 503, Loss: 3.662548\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 504, Loss: 2.795764\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 505, Loss: 3.162532\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 506, Loss: 2.697227\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 507, Loss: 2.891240\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 508, Loss: 3.694520\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 509, Loss: 5.165853\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 510, Loss: 5.547497\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 511, Loss: 3.990414\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 512, Loss: 3.586794\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 513, Loss: 2.874601\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 514, Loss: 2.535763\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 515, Loss: 5.482270\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 516, Loss: 3.109761\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 517, Loss: 2.912868\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 518, Loss: 2.538194\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 519, Loss: 2.648612\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 520, Loss: 2.617822\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 521, Loss: 2.359102\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 522, Loss: 2.199036\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 523, Loss: 2.504332\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 524, Loss: 5.529591\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 525, Loss: 3.556336\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 526, Loss: 2.764229\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 527, Loss: 2.353027\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 528, Loss: 2.414504\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 529, Loss: 2.208008\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 530, Loss: 2.298297\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 531, Loss: 2.165247\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 532, Loss: 2.364078\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 533, Loss: 2.207731\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 534, Loss: 2.268698\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 535, Loss: 2.285468\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 536, Loss: 2.173291\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 537, Loss: 2.154478\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 538, Loss: 2.375198\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 539, Loss: 1.994013\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 540, Loss: 2.910651\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 541, Loss: 2.914569\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 542, Loss: 4.253198\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 543, Loss: 2.808583\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 544, Loss: 2.529033\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 545, Loss: 2.200957\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 546, Loss: 2.157174\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 547, Loss: 2.247113\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 548, Loss: 2.783831\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 549, Loss: 2.232497\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 550, Loss: 3.373082\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 551, Loss: 6.786650\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 552, Loss: 4.600517\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 553, Loss: 2.734428\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 554, Loss: 2.584697\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 555, Loss: 2.281657\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 556, Loss: 2.130443\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 557, Loss: 2.279576\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 558, Loss: 2.226184\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 559, Loss: 2.296943\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 560, Loss: 5.786677\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 561, Loss: 2.773057\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 562, Loss: 2.728292\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 563, Loss: 2.287920\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 564, Loss: 2.424545\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 565, Loss: 3.931746\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 566, Loss: 2.547957\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 567, Loss: 2.247191\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 568, Loss: 2.961020\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 569, Loss: 2.433454\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 570, Loss: 2.117195\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 571, Loss: 1.958021\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 572, Loss: 1.976290\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 573, Loss: 2.143737\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 574, Loss: 2.894994\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 575, Loss: 3.128934\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 576, Loss: 2.297998\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 577, Loss: 2.094146\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 578, Loss: 2.175238\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 579, Loss: 2.317709\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 580, Loss: 2.490031\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 581, Loss: 2.235524\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 582, Loss: 3.160893\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 583, Loss: 2.287863\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 584, Loss: 2.334944\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 585, Loss: 2.010994\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 586, Loss: 2.263202\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 587, Loss: 2.743103\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 588, Loss: 2.089486\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 589, Loss: 1.862667\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 590, Loss: 2.027061\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 591, Loss: 1.873877\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 592, Loss: 2.473758\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 593, Loss: 3.922337\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 594, Loss: 3.839079\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 595, Loss: 2.934334\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 596, Loss: 2.815866\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 597, Loss: 2.297756\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 598, Loss: 2.565239\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 599, Loss: 2.222474\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 600, Loss: 1.916348\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 601, Loss: 2.107735\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 602, Loss: 1.932829\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 603, Loss: 1.970560\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 604, Loss: 1.961678\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 605, Loss: 1.813429\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 606, Loss: 1.882728\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 607, Loss: 1.950654\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 608, Loss: 2.065905\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 609, Loss: 2.272504\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 610, Loss: 2.293722\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 611, Loss: 2.281218\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 612, Loss: 2.228614\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 613, Loss: 1.988248\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 614, Loss: 1.752069\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 615, Loss: 1.713282\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 616, Loss: 2.244086\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 617, Loss: 2.254109\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 618, Loss: 2.919518\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 619, Loss: 3.624081\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 620, Loss: 2.849023\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 621, Loss: 2.785832\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 622, Loss: 2.744702\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 623, Loss: 2.814336\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 624, Loss: 2.457047\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 625, Loss: 2.007329\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 626, Loss: 1.737709\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 627, Loss: 1.775816\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 628, Loss: 3.449727\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 629, Loss: 2.206432\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 630, Loss: 2.064634\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 631, Loss: 3.327614\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 632, Loss: 2.423617\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 633, Loss: 1.957087\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 634, Loss: 1.719493\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 635, Loss: 1.822757\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 636, Loss: 1.755528\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 637, Loss: 1.646985\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 638, Loss: 1.813247\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 639, Loss: 2.073524\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 640, Loss: 1.782444\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 641, Loss: 2.794920\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 642, Loss: 2.063296\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 643, Loss: 1.799661\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 644, Loss: 1.982534\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 645, Loss: 1.876923\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 646, Loss: 1.788835\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 647, Loss: 1.908688\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 648, Loss: 2.014882\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 649, Loss: 2.072155\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 650, Loss: 1.833027\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 651, Loss: 4.932195\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 652, Loss: 10.306899\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 653, Loss: 3.476362\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 654, Loss: 3.284809\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 655, Loss: 2.280051\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 656, Loss: 1.830445\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 657, Loss: 2.019296\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 658, Loss: 1.684730\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 659, Loss: 2.131415\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 660, Loss: 1.654015\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 661, Loss: 1.614311\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 662, Loss: 1.628393\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 663, Loss: 1.668558\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 664, Loss: 2.518882\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 665, Loss: 4.833257\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 666, Loss: 2.240089\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 667, Loss: 1.722509\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 668, Loss: 1.580862\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 669, Loss: 2.068037\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 670, Loss: 2.145455\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 671, Loss: 1.824567\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 672, Loss: 1.725241\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 673, Loss: 3.448859\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 674, Loss: 2.669512\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 675, Loss: 2.075435\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 676, Loss: 1.679712\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 677, Loss: 1.876718\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 678, Loss: 1.575541\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 679, Loss: 1.712535\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 680, Loss: 1.712379\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 681, Loss: 1.711146\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 682, Loss: 1.405455\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 683, Loss: 1.603488\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 684, Loss: 1.474752\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 685, Loss: 2.237790\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 686, Loss: 1.639473\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 687, Loss: 2.875131\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 688, Loss: 5.333377\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 689, Loss: 4.110382\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 690, Loss: 4.204688\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 691, Loss: 3.005333\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 692, Loss: 1.884193\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 693, Loss: 1.745168\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 694, Loss: 1.712321\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 695, Loss: 1.666685\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 696, Loss: 1.539944\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 697, Loss: 2.244632\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 698, Loss: 2.196285\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 699, Loss: 1.682609\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 700, Loss: 1.471790\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 701, Loss: 1.537919\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 702, Loss: 1.399143\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 703, Loss: 1.584486\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 704, Loss: 1.544320\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 705, Loss: 1.799540\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 706, Loss: 4.480135\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 707, Loss: 2.166430\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 708, Loss: 2.475427\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 709, Loss: 1.536093\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 710, Loss: 1.632992\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 711, Loss: 1.662345\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 712, Loss: 1.402712\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 713, Loss: 1.353428\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 714, Loss: 1.800335\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 715, Loss: 2.352604\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 716, Loss: 2.592019\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 717, Loss: 1.798711\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 718, Loss: 2.267335\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 719, Loss: 1.674550\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 720, Loss: 2.005653\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 721, Loss: 2.230913\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 722, Loss: 3.152048\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 723, Loss: 1.749259\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 724, Loss: 1.924423\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 725, Loss: 1.582584\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 726, Loss: 1.480729\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 727, Loss: 2.114394\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 728, Loss: 1.513381\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 729, Loss: 3.362493\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 730, Loss: 1.861899\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 731, Loss: 1.675797\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 732, Loss: 1.850416\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 733, Loss: 2.748468\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 734, Loss: 3.009560\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 735, Loss: 2.666374\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 736, Loss: 1.788224\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 737, Loss: 1.747416\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 738, Loss: 1.575115\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 739, Loss: 2.553936\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 740, Loss: 2.166973\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 741, Loss: 1.582578\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 742, Loss: 1.573560\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 743, Loss: 1.338934\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 744, Loss: 1.246436\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 745, Loss: 1.561659\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 746, Loss: 1.610669\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 747, Loss: 1.546413\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 748, Loss: 1.499976\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 749, Loss: 1.363754\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 750, Loss: 1.774483\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 751, Loss: 1.555221\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 752, Loss: 1.417172\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 753, Loss: 1.358809\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 754, Loss: 2.685429\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 755, Loss: 2.140626\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 756, Loss: 3.071942\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 757, Loss: 9.030896\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 758, Loss: 5.215151\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 759, Loss: 3.155729\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 760, Loss: 2.059058\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 761, Loss: 1.883410\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 762, Loss: 2.368439\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 763, Loss: 2.169758\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 764, Loss: 1.291910\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 765, Loss: 1.378453\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 766, Loss: 1.399744\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 767, Loss: 1.442570\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 768, Loss: 1.335916\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 769, Loss: 1.270814\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 770, Loss: 1.190732\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 771, Loss: 1.226022\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 772, Loss: 1.298289\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 773, Loss: 1.215486\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 774, Loss: 1.424172\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 775, Loss: 1.440536\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 776, Loss: 1.223701\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 777, Loss: 1.248091\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 778, Loss: 1.427672\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 779, Loss: 1.333007\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 780, Loss: 1.224226\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 781, Loss: 1.591740\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 782, Loss: 3.516167\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 783, Loss: 3.796949\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 784, Loss: 4.280842\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 785, Loss: 3.092103\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 786, Loss: 2.826956\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 787, Loss: 1.632848\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 788, Loss: 2.097605\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 789, Loss: 2.102633\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 790, Loss: 3.141624\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 791, Loss: 1.823353\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 792, Loss: 2.230881\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 793, Loss: 1.721346\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 794, Loss: 1.434495\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 795, Loss: 1.655268\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 796, Loss: 1.599176\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 797, Loss: 1.623541\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 798, Loss: 1.263848\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 799, Loss: 1.403287\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 800, Loss: 1.566438\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 801, Loss: 1.417059\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 802, Loss: 2.173383\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 803, Loss: 2.034936\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 804, Loss: 1.442232\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 805, Loss: 1.871095\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 806, Loss: 1.532614\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 807, Loss: 1.240102\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 808, Loss: 1.201514\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 809, Loss: 1.704216\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 810, Loss: 1.400074\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 811, Loss: 1.185360\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 812, Loss: 1.240059\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 813, Loss: 1.841667\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 814, Loss: 1.565415\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 815, Loss: 1.425280\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 816, Loss: 1.276286\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 817, Loss: 1.334963\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 818, Loss: 1.195009\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 819, Loss: 1.580782\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 820, Loss: 1.377751\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 821, Loss: 1.550212\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 822, Loss: 3.575916\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 823, Loss: 2.731454\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 824, Loss: 2.001245\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 825, Loss: 1.435714\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 826, Loss: 1.934352\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 827, Loss: 1.313337\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 828, Loss: 1.389834\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 829, Loss: 1.165589\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 830, Loss: 1.391694\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 831, Loss: 1.540267\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 832, Loss: 2.317893\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 833, Loss: 2.499742\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 834, Loss: 2.280040\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 835, Loss: 2.116915\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 836, Loss: 1.369146\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 837, Loss: 1.517967\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 838, Loss: 1.452469\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 839, Loss: 2.123745\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 840, Loss: 2.307535\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 841, Loss: 2.808818\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 842, Loss: 1.489458\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 843, Loss: 1.329607\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 844, Loss: 1.811890\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 845, Loss: 3.593287\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 846, Loss: 3.498526\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 847, Loss: 2.010214\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 848, Loss: 1.481066\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 849, Loss: 1.382505\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 850, Loss: 1.164115\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 851, Loss: 1.519776\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 852, Loss: 2.055992\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 853, Loss: 1.515579\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 854, Loss: 1.538987\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 855, Loss: 2.618948\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 856, Loss: 1.918595\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 857, Loss: 1.603099\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 858, Loss: 1.316869\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 859, Loss: 1.517527\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 860, Loss: 1.437602\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 861, Loss: 1.171451\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 862, Loss: 1.247324\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 863, Loss: 1.446644\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 864, Loss: 1.305773\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 865, Loss: 1.144208\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 866, Loss: 1.302021\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 867, Loss: 1.220233\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 868, Loss: 1.106265\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 869, Loss: 1.172239\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 870, Loss: 1.076773\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 871, Loss: 1.244838\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 872, Loss: 1.253524\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 873, Loss: 1.185192\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 874, Loss: 1.084257\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 875, Loss: 1.129270\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 876, Loss: 1.371192\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 877, Loss: 4.817109\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 878, Loss: 3.218708\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 879, Loss: 2.384802\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 880, Loss: 1.719085\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 881, Loss: 1.570113\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 882, Loss: 1.599176\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 883, Loss: 3.052725\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 884, Loss: 1.729607\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 885, Loss: 1.502367\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 886, Loss: 1.666966\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 887, Loss: 1.367026\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 888, Loss: 2.496406\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 889, Loss: 1.498039\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 890, Loss: 1.320819\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 891, Loss: 1.483694\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 892, Loss: 1.103255\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 893, Loss: 1.638056\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 894, Loss: 1.564667\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 895, Loss: 1.186650\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 896, Loss: 1.514479\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 897, Loss: 1.291028\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 898, Loss: 1.532453\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 899, Loss: 1.620242\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 900, Loss: 1.306298\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 901, Loss: 1.315906\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 902, Loss: 1.848925\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 903, Loss: 2.145272\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 904, Loss: 2.652897\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 905, Loss: 3.809681\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 906, Loss: 4.156526\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 907, Loss: 2.083862\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 908, Loss: 1.840627\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 909, Loss: 1.442943\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 910, Loss: 1.144478\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 911, Loss: 1.286131\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 912, Loss: 1.696575\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 913, Loss: 1.440138\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 914, Loss: 1.275918\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 915, Loss: 1.149288\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 916, Loss: 1.066627\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 917, Loss: 1.162753\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 918, Loss: 1.045564\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 919, Loss: 1.290831\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 920, Loss: 1.266392\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 921, Loss: 0.977280\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 922, Loss: 1.212640\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 923, Loss: 1.103063\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 924, Loss: 4.372989\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 925, Loss: 2.445728\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 926, Loss: 1.420291\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 927, Loss: 1.486420\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 928, Loss: 1.718138\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 929, Loss: 1.401383\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 930, Loss: 1.499599\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 931, Loss: 1.634988\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 932, Loss: 1.304651\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 933, Loss: 1.471509\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 934, Loss: 1.243883\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 935, Loss: 1.864125\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 936, Loss: 1.752675\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 937, Loss: 1.256268\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 938, Loss: 1.351246\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 939, Loss: 1.115080\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 940, Loss: 1.040879\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 941, Loss: 1.445137\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 942, Loss: 1.549978\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 943, Loss: 1.196686\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 944, Loss: 1.384947\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 945, Loss: 1.280511\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 946, Loss: 1.535399\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 947, Loss: 1.502730\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 948, Loss: 1.632353\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 949, Loss: 1.849159\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 950, Loss: 2.131579\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 951, Loss: 1.794562\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 952, Loss: 1.434818\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 953, Loss: 1.375748\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 954, Loss: 1.132371\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 955, Loss: 1.188023\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 956, Loss: 1.198874\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 957, Loss: 1.597031\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 958, Loss: 2.178308\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 959, Loss: 4.732550\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 960, Loss: 3.649699\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 961, Loss: 2.170714\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 962, Loss: 1.573469\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 963, Loss: 1.692438\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 964, Loss: 1.216680\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 965, Loss: 0.991980\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 966, Loss: 5.986954\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 967, Loss: 2.137326\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 968, Loss: 1.622871\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 969, Loss: 1.201577\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 970, Loss: 1.127210\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 971, Loss: 1.109689\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 972, Loss: 1.343018\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 973, Loss: 1.195708\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 974, Loss: 1.216423\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 975, Loss: 1.092895\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 976, Loss: 1.043952\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 977, Loss: 1.153714\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 978, Loss: 1.459958\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 979, Loss: 1.630160\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 980, Loss: 1.398071\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 981, Loss: 1.090678\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 982, Loss: 1.070284\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 983, Loss: 1.784189\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 984, Loss: 1.129547\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 985, Loss: 1.278526\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 986, Loss: 1.068348\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 987, Loss: 1.631981\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 988, Loss: 1.887974\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 989, Loss: 1.373150\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 990, Loss: 1.057056\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 991, Loss: 1.249103\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 992, Loss: 1.029062\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 993, Loss: 1.043312\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 994, Loss: 1.014840\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 995, Loss: 1.273019\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 996, Loss: 2.029957\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 997, Loss: 1.439359\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 998, Loss: 1.310791\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 999, Loss: 0.985643\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1000, Loss: 0.931198\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1001, Loss: 1.022880\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1002, Loss: 2.839837\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1003, Loss: 3.644699\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1004, Loss: 6.291509\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1005, Loss: 4.961104\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1006, Loss: 3.028964\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1007, Loss: 1.989527\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1008, Loss: 1.377244\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1009, Loss: 1.268947\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1010, Loss: 1.421201\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1011, Loss: 1.526924\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1012, Loss: 1.549641\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1013, Loss: 1.731556\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1014, Loss: 1.615240\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1015, Loss: 1.150337\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1016, Loss: 1.514851\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1017, Loss: 1.292528\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1018, Loss: 1.328349\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1019, Loss: 1.087263\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1020, Loss: 0.970381\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1021, Loss: 0.946055\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1022, Loss: 1.048609\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1023, Loss: 1.216346\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1024, Loss: 1.386612\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1025, Loss: 1.633308\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1026, Loss: 2.727675\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1027, Loss: 2.844076\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1028, Loss: 2.049814\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1029, Loss: 2.351147\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1030, Loss: 1.674899\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1031, Loss: 1.266158\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1032, Loss: 1.349880\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1033, Loss: 2.105560\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1034, Loss: 1.272870\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1035, Loss: 2.170303\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1036, Loss: 1.922475\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1037, Loss: 1.593765\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1038, Loss: 1.591872\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1039, Loss: 1.228304\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1040, Loss: 1.321967\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1041, Loss: 2.588861\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1042, Loss: 3.362872\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1043, Loss: 1.898561\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1044, Loss: 1.154119\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1045, Loss: 0.960168\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1046, Loss: 0.923860\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1047, Loss: 0.922789\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1048, Loss: 0.962655\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1049, Loss: 1.003660\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1050, Loss: 0.905820\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1051, Loss: 0.981827\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1052, Loss: 1.127952\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1053, Loss: 0.943683\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1054, Loss: 1.050984\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1055, Loss: 1.347445\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1056, Loss: 1.646191\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1057, Loss: 1.727805\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1058, Loss: 1.154233\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1059, Loss: 1.092222\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1060, Loss: 0.975984\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1061, Loss: 1.199513\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1062, Loss: 0.959817\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1063, Loss: 0.982581\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1064, Loss: 1.115471\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1065, Loss: 0.979501\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1066, Loss: 0.876661\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1067, Loss: 0.961812\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1068, Loss: 1.895158\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1069, Loss: 3.732255\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1070, Loss: 2.891779\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1071, Loss: 4.236934\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1072, Loss: 2.383868\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1073, Loss: 1.616586\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1074, Loss: 1.736146\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1075, Loss: 1.309969\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1076, Loss: 1.005735\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1077, Loss: 0.975566\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1078, Loss: 1.320259\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1079, Loss: 1.158840\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1080, Loss: 1.101473\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1081, Loss: 1.056632\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1082, Loss: 0.903487\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1083, Loss: 0.854284\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1084, Loss: 0.892032\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1085, Loss: 0.973080\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1086, Loss: 0.913848\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1087, Loss: 1.140584\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1088, Loss: 0.963752\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1089, Loss: 1.284980\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1090, Loss: 2.113724\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1091, Loss: 4.047713\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1092, Loss: 2.206788\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1093, Loss: 1.619475\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1094, Loss: 1.620986\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1095, Loss: 1.239930\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1096, Loss: 1.264471\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1097, Loss: 1.045330\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1098, Loss: 1.059672\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1099, Loss: 1.081914\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1100, Loss: 0.883804\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1101, Loss: 1.002600\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1102, Loss: 1.020662\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1103, Loss: 2.427491\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1104, Loss: 3.675693\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1105, Loss: 6.265501\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1106, Loss: 3.583174\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1107, Loss: 1.603118\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1108, Loss: 1.316530\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1109, Loss: 1.061329\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1110, Loss: 0.908267\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1111, Loss: 0.824840\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1112, Loss: 0.892826\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1113, Loss: 0.827941\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1114, Loss: 0.931947\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1115, Loss: 1.162139\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1116, Loss: 1.174528\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1117, Loss: 1.530411\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1118, Loss: 1.470327\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1119, Loss: 1.883818\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1120, Loss: 1.749117\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1121, Loss: 2.123249\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1122, Loss: 1.318809\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1123, Loss: 1.650921\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1124, Loss: 1.140537\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1125, Loss: 1.584671\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1126, Loss: 1.419642\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1127, Loss: 1.129012\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1128, Loss: 1.151448\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1129, Loss: 1.324611\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1130, Loss: 1.126656\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1131, Loss: 0.965258\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1132, Loss: 0.890990\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1133, Loss: 0.882158\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1134, Loss: 0.808990\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1135, Loss: 0.810279\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1136, Loss: 1.197527\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1137, Loss: 4.242293\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1138, Loss: 3.742501\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1139, Loss: 2.958079\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1140, Loss: 1.887050\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1141, Loss: 1.188865\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1142, Loss: 1.103004\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1143, Loss: 1.429335\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1144, Loss: 1.034459\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1145, Loss: 0.885219\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1146, Loss: 1.064937\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1147, Loss: 0.835660\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1148, Loss: 2.208507\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1149, Loss: 2.004572\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1150, Loss: 1.637119\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1151, Loss: 1.033860\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1152, Loss: 0.999734\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1153, Loss: 1.379928\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1154, Loss: 1.286523\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1155, Loss: 1.402166\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1156, Loss: 1.695147\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1157, Loss: 1.297817\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1158, Loss: 1.144031\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1159, Loss: 0.994356\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1160, Loss: 0.999698\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1161, Loss: 0.894887\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1162, Loss: 0.878987\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1163, Loss: 0.814589\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1164, Loss: 1.034257\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1165, Loss: 0.979468\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1166, Loss: 0.996755\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1167, Loss: 0.890194\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1168, Loss: 0.939016\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1169, Loss: 1.133041\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1170, Loss: 2.986825\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1171, Loss: 2.667623\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1172, Loss: 3.858218\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1173, Loss: 2.602227\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1174, Loss: 1.793599\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1175, Loss: 1.748101\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1176, Loss: 1.513681\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1177, Loss: 1.423454\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1178, Loss: 1.415490\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1179, Loss: 1.063279\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1180, Loss: 0.935918\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1181, Loss: 1.153525\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1182, Loss: 0.876687\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1183, Loss: 0.873495\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1184, Loss: 0.912179\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1185, Loss: 1.225894\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1186, Loss: 1.165710\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1187, Loss: 1.325407\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1188, Loss: 0.945501\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1189, Loss: 1.670877\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1190, Loss: 1.069820\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1191, Loss: 0.940570\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1192, Loss: 0.890789\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1193, Loss: 1.254173\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1194, Loss: 1.018926\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1195, Loss: 1.457480\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1196, Loss: 0.970772\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1197, Loss: 0.909023\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1198, Loss: 0.833229\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1199, Loss: 0.830901\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1200, Loss: 0.876680\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1201, Loss: 3.081059\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1202, Loss: 1.684836\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1203, Loss: 1.480433\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1204, Loss: 1.809913\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1205, Loss: 4.590786\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1206, Loss: 3.559464\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1207, Loss: 3.207586\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1208, Loss: 3.244802\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1209, Loss: 1.902408\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1210, Loss: 3.206482\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1211, Loss: 1.626226\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1212, Loss: 0.999858\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1213, Loss: 0.966595\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1214, Loss: 0.882842\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1215, Loss: 0.826957\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1216, Loss: 0.850034\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1217, Loss: 0.916411\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1218, Loss: 0.789270\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1219, Loss: 0.872268\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1220, Loss: 0.976529\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1221, Loss: 2.371635\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1222, Loss: 2.163707\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1223, Loss: 1.674327\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1224, Loss: 0.967475\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1225, Loss: 0.952144\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1226, Loss: 0.935230\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1227, Loss: 1.019659\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1228, Loss: 0.933292\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1229, Loss: 0.775485\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1230, Loss: 0.787501\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1231, Loss: 0.833422\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1232, Loss: 0.837684\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1233, Loss: 0.910677\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1234, Loss: 1.381671\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1235, Loss: 1.205488\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1236, Loss: 0.975547\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1237, Loss: 1.027561\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1238, Loss: 1.037619\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1239, Loss: 0.952384\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1240, Loss: 0.843562\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1241, Loss: 0.979939\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1242, Loss: 0.924943\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1243, Loss: 3.198724\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1244, Loss: 3.136589\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1245, Loss: 2.992105\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1246, Loss: 1.885722\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1247, Loss: 1.248803\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1248, Loss: 0.962882\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1249, Loss: 1.422474\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1250, Loss: 0.927756\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1251, Loss: 0.783776\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1252, Loss: 0.824473\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1253, Loss: 1.039917\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1254, Loss: 1.066592\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1255, Loss: 0.810960\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1256, Loss: 0.787957\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1257, Loss: 0.764673\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1258, Loss: 1.454762\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1259, Loss: 2.275814\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1260, Loss: 1.917039\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1261, Loss: 1.040993\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1262, Loss: 1.934395\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1263, Loss: 2.204665\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1264, Loss: 2.385556\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1265, Loss: 1.371235\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1266, Loss: 1.396482\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1267, Loss: 1.262169\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1268, Loss: 0.920967\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1269, Loss: 0.959629\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1270, Loss: 1.819866\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1271, Loss: 1.061370\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1272, Loss: 0.992084\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1273, Loss: 0.961871\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1274, Loss: 0.860775\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1275, Loss: 0.838155\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1276, Loss: 0.886451\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1277, Loss: 1.070623\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1278, Loss: 0.910704\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1279, Loss: 0.739922\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1280, Loss: 1.608084\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1281, Loss: 1.477133\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1282, Loss: 1.167738\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1283, Loss: 0.934773\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1284, Loss: 1.534149\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1285, Loss: 1.909332\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1286, Loss: 1.475618\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1287, Loss: 1.448278\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1288, Loss: 1.144674\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1289, Loss: 2.434619\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1290, Loss: 1.632439\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1291, Loss: 1.235401\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1292, Loss: 1.070593\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1293, Loss: 1.153214\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1294, Loss: 0.968193\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1295, Loss: 0.902197\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1296, Loss: 1.196462\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1297, Loss: 1.324817\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1298, Loss: 0.964344\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1299, Loss: 0.916564\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1300, Loss: 0.912400\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1301, Loss: 0.870390\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1302, Loss: 0.767131\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1303, Loss: 0.743348\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1304, Loss: 0.863488\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1305, Loss: 1.891611\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1306, Loss: 4.508034\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1307, Loss: 4.549293\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1308, Loss: 1.774455\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1309, Loss: 1.578746\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1310, Loss: 1.912319\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1311, Loss: 1.939884\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1312, Loss: 1.116218\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1313, Loss: 1.309308\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1314, Loss: 0.869751\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1315, Loss: 0.875104\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1316, Loss: 0.880623\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1317, Loss: 0.810503\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1318, Loss: 0.946188\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1319, Loss: 0.898720\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1320, Loss: 0.866162\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1321, Loss: 0.923050\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1322, Loss: 1.089622\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1323, Loss: 0.743702\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1324, Loss: 0.767785\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1325, Loss: 0.721091\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1326, Loss: 0.835418\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1327, Loss: 0.778708\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1328, Loss: 0.794596\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1329, Loss: 0.932144\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1330, Loss: 1.125059\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1331, Loss: 1.569002\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1332, Loss: 1.239772\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1333, Loss: 1.228190\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1334, Loss: 0.976488\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1335, Loss: 1.719449\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1336, Loss: 1.514517\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1337, Loss: 1.827650\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1338, Loss: 1.179772\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1339, Loss: 1.478136\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1340, Loss: 1.983441\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1341, Loss: 1.712888\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1342, Loss: 1.094482\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1343, Loss: 1.312631\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1344, Loss: 1.988672\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1345, Loss: 0.904258\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1346, Loss: 0.799592\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1347, Loss: 0.912940\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1348, Loss: 1.315557\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1349, Loss: 1.333040\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1350, Loss: 1.462292\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1351, Loss: 1.205967\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1352, Loss: 0.942086\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1353, Loss: 0.951628\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1354, Loss: 0.781136\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1355, Loss: 0.742242\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1356, Loss: 0.783887\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1357, Loss: 0.743575\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1358, Loss: 0.797038\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1359, Loss: 0.679084\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1360, Loss: 0.736407\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1361, Loss: 1.092242\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1362, Loss: 0.990326\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1363, Loss: 0.800513\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1364, Loss: 1.391594\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1365, Loss: 3.362185\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1366, Loss: 2.066952\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1367, Loss: 1.315651\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1368, Loss: 0.911028\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1369, Loss: 1.533598\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1370, Loss: 1.764694\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1371, Loss: 1.680873\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1372, Loss: 1.346401\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1373, Loss: 1.218039\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1374, Loss: 1.279276\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1375, Loss: 1.013320\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1376, Loss: 0.737046\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1377, Loss: 0.737203\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1378, Loss: 0.666326\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1379, Loss: 1.116040\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1380, Loss: 1.136244\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1381, Loss: 1.829017\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1382, Loss: 1.332470\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1383, Loss: 1.940516\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1384, Loss: 1.599711\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1385, Loss: 1.172037\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1386, Loss: 0.831907\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1387, Loss: 0.747434\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1388, Loss: 0.804939\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1389, Loss: 0.696600\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1390, Loss: 0.835766\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1391, Loss: 0.998621\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1392, Loss: 0.814522\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1393, Loss: 1.002707\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1394, Loss: 0.754197\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1395, Loss: 0.692925\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1396, Loss: 0.818248\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1397, Loss: 1.595348\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1398, Loss: 1.033554\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1399, Loss: 1.268861\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1400, Loss: 0.899741\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1401, Loss: 0.837963\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1402, Loss: 0.889985\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1403, Loss: 0.980468\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1404, Loss: 1.881399\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1405, Loss: 2.019943\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1406, Loss: 1.407060\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1407, Loss: 1.955888\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1408, Loss: 1.347730\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1409, Loss: 0.995512\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1410, Loss: 0.926353\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1411, Loss: 1.306073\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1412, Loss: 0.978448\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1413, Loss: 1.222395\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1414, Loss: 1.444284\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1415, Loss: 1.282303\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1416, Loss: 1.066271\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1417, Loss: 0.813052\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1418, Loss: 0.839562\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1419, Loss: 0.928158\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1420, Loss: 0.927919\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1421, Loss: 0.986472\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1422, Loss: 0.791544\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1423, Loss: 1.594537\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1424, Loss: 1.474926\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1425, Loss: 0.937933\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1426, Loss: 0.870760\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1427, Loss: 0.693620\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1428, Loss: 0.669782\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1429, Loss: 1.696221\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1430, Loss: 1.699076\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1431, Loss: 2.735305\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1432, Loss: 3.266181\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1433, Loss: 1.803281\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1434, Loss: 1.111835\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1435, Loss: 0.846220\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1436, Loss: 1.139677\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1437, Loss: 1.123812\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1438, Loss: 1.474360\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1439, Loss: 1.118977\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1440, Loss: 0.778556\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1441, Loss: 0.756753\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1442, Loss: 0.775063\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1443, Loss: 0.722171\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1444, Loss: 0.724938\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1445, Loss: 1.263352\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1446, Loss: 1.794230\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1447, Loss: 1.499016\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1448, Loss: 1.220116\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1449, Loss: 0.886010\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1450, Loss: 0.829220\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1451, Loss: 0.977877\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1452, Loss: 1.645640\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1453, Loss: 0.845979\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1454, Loss: 0.822711\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1455, Loss: 0.676258\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1456, Loss: 0.821761\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1457, Loss: 0.998301\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1458, Loss: 0.848934\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1459, Loss: 0.831390\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1460, Loss: 0.803957\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1461, Loss: 0.868301\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1462, Loss: 2.155624\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1463, Loss: 2.138317\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1464, Loss: 1.447696\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1465, Loss: 1.408668\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1466, Loss: 0.841180\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1467, Loss: 1.402156\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1468, Loss: 0.859541\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1469, Loss: 0.904406\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1470, Loss: 1.030548\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1471, Loss: 1.219548\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1472, Loss: 1.724362\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1473, Loss: 1.658424\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1474, Loss: 1.770693\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1475, Loss: 0.978959\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1476, Loss: 1.436674\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1477, Loss: 1.469609\n", - "SNR:inf, Imbalance Percentage:1, Encoding dimension:50, Epoch 1478, Loss: 1.520838\n", - "Stopped early after 1479 epochs, with loss of 0.666326\n" + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 1, Loss: 402.849609\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 2, Loss: 392.065308\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 3, Loss: 370.107758\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 4, Loss: 347.942261\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 5, Loss: 325.670166\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 6, Loss: 307.111572\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 7, Loss: 287.143768\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 8, Loss: 268.730225\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 9, Loss: 253.841339\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 10, Loss: 237.873260\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 11, Loss: 222.015381\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 12, Loss: 213.047485\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 13, Loss: 195.996643\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 14, Loss: 182.266296\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 15, Loss: 170.041870\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 16, Loss: 154.006348\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 17, Loss: 145.900208\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 18, Loss: 133.607300\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 19, Loss: 122.505096\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 20, Loss: 111.689354\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 21, Loss: 102.948853\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 22, Loss: 96.406799\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 23, Loss: 87.028503\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 24, Loss: 82.969604\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 25, Loss: 76.963036\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 26, Loss: 72.704697\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 27, Loss: 69.855545\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 28, Loss: 66.373947\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 29, Loss: 63.483971\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 30, Loss: 60.841339\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 31, Loss: 59.439388\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 32, Loss: 56.740517\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 33, Loss: 58.165997\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 34, Loss: 57.579548\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 35, Loss: 55.962234\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 36, Loss: 55.173950\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 37, Loss: 53.523445\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 38, Loss: 52.748310\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 39, Loss: 50.823936\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 40, Loss: 52.058338\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 41, Loss: 52.349689\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 42, Loss: 50.162464\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 43, Loss: 48.919899\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 44, Loss: 49.359997\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 45, Loss: 49.963894\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 46, Loss: 49.353134\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 47, Loss: 47.685673\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 48, Loss: 47.403503\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 49, Loss: 46.085663\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 50, Loss: 45.846424\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 51, Loss: 45.606560\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 52, Loss: 45.867844\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 53, Loss: 44.837311\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 54, Loss: 43.583729\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 55, Loss: 44.298679\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 56, Loss: 44.067665\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 57, Loss: 41.691277\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 58, Loss: 44.197903\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 59, Loss: 43.265724\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 60, Loss: 41.421894\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 61, Loss: 39.631367\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 62, Loss: 40.493523\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 63, Loss: 40.638496\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 64, Loss: 38.871616\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 65, Loss: 39.429779\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 66, Loss: 37.965862\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 67, Loss: 38.264481\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 68, Loss: 37.130157\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 69, Loss: 36.590935\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 70, Loss: 36.620567\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 71, Loss: 36.716404\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 72, Loss: 36.472366\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 73, Loss: 35.930408\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 74, Loss: 35.553150\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 75, Loss: 34.778843\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 76, Loss: 34.152840\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 77, Loss: 34.648533\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 78, Loss: 34.254349\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 79, Loss: 33.692326\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 80, Loss: 33.667118\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 81, Loss: 32.646259\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 82, Loss: 32.239182\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 83, Loss: 31.476442\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 84, Loss: 32.010693\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 85, Loss: 31.556570\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 86, Loss: 32.172733\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 87, Loss: 31.592949\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 88, Loss: 31.014662\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 89, Loss: 30.704006\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 90, Loss: 32.196941\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 91, Loss: 29.297728\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 92, Loss: 30.390676\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 93, Loss: 29.844034\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 94, Loss: 30.433996\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 95, Loss: 29.790472\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 96, Loss: 29.423735\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 97, Loss: 29.304077\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 98, Loss: 29.812046\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 99, Loss: 30.311422\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 100, Loss: 29.656410\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 101, Loss: 28.830570\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 102, Loss: 29.177086\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 103, Loss: 28.739054\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 104, Loss: 29.445154\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 105, Loss: 28.642052\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 106, Loss: 29.232866\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 107, Loss: 29.116091\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 108, Loss: 29.010397\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 109, Loss: 28.686745\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 110, Loss: 28.753494\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 111, Loss: 29.857069\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 112, Loss: 28.303757\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 113, Loss: 27.023212\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 114, Loss: 27.840218\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 115, Loss: 28.276049\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 116, Loss: 28.154158\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 117, Loss: 27.287518\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 118, Loss: 27.228821\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 119, Loss: 27.710613\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 120, Loss: 27.954506\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 121, Loss: 28.335007\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 122, Loss: 27.745672\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 123, Loss: 27.438927\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 124, Loss: 26.942314\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 125, Loss: 28.218998\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 126, Loss: 27.003050\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 127, Loss: 27.924725\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 128, Loss: 27.346867\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 129, Loss: 27.889585\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 130, Loss: 26.291822\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 131, Loss: 26.162861\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 132, Loss: 26.662512\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 133, Loss: 26.528214\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 134, Loss: 26.695454\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 135, Loss: 27.200071\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 136, Loss: 26.041313\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 137, Loss: 25.846054\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 138, Loss: 26.624874\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 139, Loss: 25.883053\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 140, Loss: 25.905897\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 141, Loss: 25.585417\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 142, Loss: 25.420042\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 143, Loss: 26.099066\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 144, Loss: 26.208611\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 145, Loss: 25.618805\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 146, Loss: 26.908054\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 147, Loss: 25.907909\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 148, Loss: 25.995605\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 149, Loss: 25.101673\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 150, Loss: 25.705667\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 151, Loss: 25.716167\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 152, Loss: 25.707029\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 153, Loss: 26.213326\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 154, Loss: 25.235027\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 155, Loss: 26.351353\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 156, Loss: 25.524900\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 157, Loss: 26.236343\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 158, Loss: 25.971403\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 159, Loss: 25.529678\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 160, Loss: 24.653782\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 161, Loss: 25.350424\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 162, Loss: 25.561155\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 163, Loss: 24.830862\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 164, Loss: 25.624308\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 165, Loss: 24.428238\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 166, Loss: 25.072239\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 167, Loss: 24.107683\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 168, Loss: 25.931831\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 169, Loss: 25.119833\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 170, Loss: 25.152803\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 171, Loss: 25.668840\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 172, Loss: 24.582966\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 173, Loss: 25.502859\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 174, Loss: 24.942604\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 175, Loss: 25.661074\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 176, Loss: 25.321016\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 177, Loss: 24.282614\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 178, Loss: 25.282993\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 179, Loss: 24.797594\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 180, Loss: 24.810005\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 181, Loss: 24.367310\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 182, Loss: 23.844530\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 183, Loss: 25.608206\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 184, Loss: 24.143265\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 185, Loss: 25.166452\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 186, Loss: 24.886522\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 187, Loss: 25.152458\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 188, Loss: 24.264168\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 189, Loss: 25.533272\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 190, Loss: 23.111309\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 191, Loss: 24.686935\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 192, Loss: 24.320450\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 193, Loss: 25.627350\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 194, Loss: 23.394920\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 195, Loss: 24.331371\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 196, Loss: 24.175638\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 197, Loss: 24.099367\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 198, Loss: 23.499306\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 199, Loss: 25.259556\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 200, Loss: 24.220083\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 201, Loss: 25.766714\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 202, Loss: 24.504175\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 203, Loss: 23.867277\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 204, Loss: 24.561388\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 205, Loss: 25.297188\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 206, Loss: 25.130503\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 207, Loss: 24.728689\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 208, Loss: 24.270515\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 209, Loss: 24.207184\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 210, Loss: 24.142441\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 211, Loss: 24.717649\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 212, Loss: 24.692625\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 213, Loss: 25.434496\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 214, Loss: 24.414326\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 215, Loss: 23.976368\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 216, Loss: 24.551104\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 217, Loss: 24.550371\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 218, Loss: 23.508942\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 219, Loss: 23.905542\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 220, Loss: 24.047930\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 221, Loss: 24.064049\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 222, Loss: 24.349434\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 223, Loss: 24.195141\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 224, Loss: 23.530920\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 225, Loss: 23.486622\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 226, Loss: 23.757292\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 227, Loss: 24.745245\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 228, Loss: 24.057087\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 229, Loss: 23.863121\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 230, Loss: 24.869883\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 231, Loss: 24.189508\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 232, Loss: 23.406981\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 233, Loss: 22.822172\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 234, Loss: 25.154190\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 235, Loss: 22.802580\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 236, Loss: 24.367653\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 237, Loss: 24.134569\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 238, Loss: 23.591696\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 239, Loss: 24.314125\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 240, Loss: 24.205471\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 241, Loss: 24.124609\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 242, Loss: 23.933754\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 243, Loss: 24.158087\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 244, Loss: 23.718784\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 245, Loss: 23.775171\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 246, Loss: 23.919199\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 247, Loss: 23.733103\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 248, Loss: 22.757954\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 249, Loss: 24.595993\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 250, Loss: 23.990051\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 251, Loss: 22.905411\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 252, Loss: 22.796659\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 253, Loss: 23.069923\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 254, Loss: 24.259790\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 255, Loss: 24.238798\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 256, Loss: 22.904213\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 257, Loss: 23.440924\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 258, Loss: 24.309170\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 259, Loss: 21.807535\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 260, Loss: 23.165451\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 261, Loss: 24.339638\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 262, Loss: 23.862329\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 263, Loss: 23.622402\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 264, Loss: 22.672213\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 265, Loss: 23.712376\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 266, Loss: 23.481495\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 267, Loss: 23.340662\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 268, Loss: 23.768797\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 269, Loss: 23.787977\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 270, Loss: 23.323502\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 271, Loss: 22.724709\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 272, Loss: 23.516249\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 273, Loss: 24.011805\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 274, Loss: 23.174929\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 275, Loss: 22.456364\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 276, Loss: 23.532829\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 277, Loss: 23.160675\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 278, Loss: 22.273979\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 279, Loss: 22.819347\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 280, Loss: 23.177532\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 281, Loss: 23.145817\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 282, Loss: 22.723642\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 283, Loss: 22.665195\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 284, Loss: 22.401428\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 285, Loss: 23.413996\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 286, Loss: 23.536491\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 287, Loss: 21.998707\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 288, Loss: 23.401981\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 289, Loss: 22.676310\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 290, Loss: 23.622753\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 291, Loss: 22.154491\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 292, Loss: 22.291601\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 293, Loss: 23.262709\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 294, Loss: 22.853148\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 295, Loss: 23.251436\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 296, Loss: 23.040073\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 297, Loss: 22.850195\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 298, Loss: 22.837421\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 299, Loss: 23.152796\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 300, Loss: 21.996988\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 301, Loss: 23.523037\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 302, Loss: 22.949306\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 303, Loss: 22.928221\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 304, Loss: 23.317562\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 305, Loss: 22.846058\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 306, Loss: 22.619490\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 307, Loss: 23.488035\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 308, Loss: 23.127525\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 309, Loss: 22.434797\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 310, Loss: 21.557035\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 311, Loss: 23.521156\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 312, Loss: 23.034042\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 313, Loss: 22.911062\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 314, Loss: 22.953938\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 315, Loss: 22.603483\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 316, Loss: 22.881237\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 317, Loss: 23.023272\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 318, Loss: 23.025314\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 319, Loss: 23.261633\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 320, Loss: 22.083899\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 321, Loss: 23.200562\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 322, Loss: 23.432154\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 323, Loss: 22.344309\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 324, Loss: 22.454494\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 325, Loss: 22.037827\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 326, Loss: 23.008249\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 327, Loss: 23.285749\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 328, Loss: 23.538368\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 329, Loss: 22.489307\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 330, Loss: 22.929264\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 331, Loss: 22.440874\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 332, Loss: 22.838381\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 333, Loss: 22.383078\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 334, Loss: 23.009859\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 335, Loss: 22.027441\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 336, Loss: 22.849411\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 337, Loss: 22.330391\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 338, Loss: 22.703014\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 339, Loss: 22.915953\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 340, Loss: 22.600739\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 341, Loss: 22.596594\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 342, Loss: 22.463490\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 343, Loss: 22.321220\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 344, Loss: 23.349302\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 345, Loss: 22.602631\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 346, Loss: 22.163340\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 347, Loss: 24.040533\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 348, Loss: 23.162180\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 349, Loss: 22.409115\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 350, Loss: 23.087526\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 351, Loss: 22.472673\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 352, Loss: 22.283157\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 353, Loss: 22.133150\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 354, Loss: 23.075571\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 355, Loss: 22.105625\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 356, Loss: 22.564802\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 357, Loss: 22.035624\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 358, Loss: 22.634439\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 359, Loss: 21.639721\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 360, Loss: 22.387308\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 361, Loss: 21.865831\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 362, Loss: 23.148241\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 363, Loss: 22.116791\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 364, Loss: 22.672760\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 365, Loss: 22.625315\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 366, Loss: 22.176636\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 367, Loss: 22.652534\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 368, Loss: 20.721935\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 369, Loss: 22.546110\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 370, Loss: 22.359770\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 371, Loss: 22.858183\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 372, Loss: 22.403837\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 373, Loss: 22.260263\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 374, Loss: 22.465031\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 375, Loss: 21.806444\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 376, Loss: 22.197559\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 377, Loss: 21.782545\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 378, Loss: 22.068790\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 379, Loss: 22.135199\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 380, Loss: 22.039217\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 381, Loss: 21.619551\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 382, Loss: 21.322620\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 383, Loss: 22.265776\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 384, Loss: 22.822300\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 385, Loss: 22.515476\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 386, Loss: 21.718113\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 387, Loss: 21.763666\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 388, Loss: 22.906696\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 389, Loss: 21.954948\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 390, Loss: 21.863060\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 391, Loss: 21.750765\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 392, Loss: 21.831833\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 393, Loss: 21.941166\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 394, Loss: 21.136806\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 395, Loss: 22.692165\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 396, Loss: 21.697960\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 397, Loss: 21.714966\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 398, Loss: 22.077084\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 399, Loss: 22.485035\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 400, Loss: 22.887648\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 401, Loss: 22.165781\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 402, Loss: 22.114792\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 403, Loss: 23.102453\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 404, Loss: 22.323587\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 405, Loss: 22.640190\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 406, Loss: 22.852848\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 407, Loss: 21.439184\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 408, Loss: 22.850731\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 409, Loss: 22.284601\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 410, Loss: 21.447029\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 411, Loss: 22.187080\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 412, Loss: 22.133171\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 413, Loss: 21.636671\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 414, Loss: 21.474430\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 415, Loss: 21.774139\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 416, Loss: 22.155128\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 417, Loss: 21.600290\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 418, Loss: 22.026518\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 419, Loss: 21.410145\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 420, Loss: 21.485857\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 421, Loss: 21.109390\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 422, Loss: 21.864094\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 423, Loss: 21.814068\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 424, Loss: 21.251104\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 425, Loss: 20.939220\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 426, Loss: 21.335613\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 427, Loss: 22.018696\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 428, Loss: 21.182297\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 429, Loss: 21.621067\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 430, Loss: 21.762312\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 431, Loss: 21.518879\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 432, Loss: 21.559549\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 433, Loss: 21.442213\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 434, Loss: 22.076473\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 435, Loss: 22.860775\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 436, Loss: 22.091091\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 437, Loss: 21.153337\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 438, Loss: 22.474396\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 439, Loss: 22.022533\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 440, Loss: 22.234131\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 441, Loss: 21.735781\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 442, Loss: 21.287985\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 443, Loss: 22.374453\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 444, Loss: 20.596615\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 445, Loss: 21.899467\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 446, Loss: 21.886278\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 447, Loss: 21.962568\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 448, Loss: 21.457701\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 449, Loss: 21.435246\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 450, Loss: 22.036898\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 451, Loss: 20.759100\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 452, Loss: 21.703833\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 453, Loss: 21.173658\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 454, Loss: 21.322273\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 455, Loss: 20.663269\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 456, Loss: 21.205675\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 457, Loss: 21.725010\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 458, Loss: 21.017492\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 459, Loss: 21.967501\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 460, Loss: 21.536182\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 461, Loss: 21.901428\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 462, Loss: 22.064428\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 463, Loss: 22.078444\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 464, Loss: 21.188034\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 465, Loss: 21.052025\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 466, Loss: 21.532566\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 467, Loss: 21.066805\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 468, Loss: 21.116108\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 469, Loss: 22.080082\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 470, Loss: 21.832283\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 471, Loss: 21.597900\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 472, Loss: 20.957355\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 473, Loss: 21.376673\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 474, Loss: 21.682892\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 475, Loss: 22.183304\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 476, Loss: 22.989872\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 477, Loss: 21.887619\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 478, Loss: 21.554087\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 479, Loss: 21.305115\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 480, Loss: 20.685596\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 481, Loss: 20.988794\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 482, Loss: 20.857828\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 483, Loss: 21.390558\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 484, Loss: 20.756666\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 485, Loss: 22.298487\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 486, Loss: 21.695368\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 487, Loss: 21.634909\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 488, Loss: 21.699623\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 489, Loss: 20.837669\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 490, Loss: 21.016388\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 491, Loss: 22.164310\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 492, Loss: 21.483952\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 493, Loss: 21.369320\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 494, Loss: 21.832109\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 495, Loss: 21.128788\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 496, Loss: 21.080305\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 497, Loss: 21.764427\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 498, Loss: 21.254681\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 499, Loss: 20.957888\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 500, Loss: 20.938303\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 501, Loss: 21.135578\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 502, Loss: 21.716072\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 503, Loss: 21.941753\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 504, Loss: 21.061550\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 505, Loss: 21.433010\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 506, Loss: 21.138477\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 507, Loss: 20.825884\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 508, Loss: 20.830479\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 509, Loss: 21.708612\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 510, Loss: 22.070667\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 511, Loss: 21.504410\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 512, Loss: 21.388317\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 513, Loss: 21.404100\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 514, Loss: 21.412733\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 515, Loss: 21.342566\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 516, Loss: 21.261536\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 517, Loss: 20.729902\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 518, Loss: 22.183044\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 519, Loss: 22.491009\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 520, Loss: 20.464088\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 521, Loss: 21.966101\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 522, Loss: 21.126829\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 523, Loss: 21.479023\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 524, Loss: 21.423998\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 525, Loss: 21.414223\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 526, Loss: 21.273525\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 527, Loss: 20.836416\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 528, Loss: 21.508232\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 529, Loss: 21.575342\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 530, Loss: 21.065641\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 531, Loss: 20.217554\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 532, Loss: 21.743500\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 533, Loss: 21.337965\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 534, Loss: 21.262701\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 535, Loss: 21.417881\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 536, Loss: 20.166033\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 537, Loss: 20.744722\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 538, Loss: 20.312511\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 539, Loss: 20.735704\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 540, Loss: 20.977201\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 541, Loss: 20.530964\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 542, Loss: 21.366371\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 543, Loss: 21.566668\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 544, Loss: 20.279026\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 545, Loss: 20.659849\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 546, Loss: 20.252882\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 547, Loss: 21.415762\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 548, Loss: 20.621767\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 549, Loss: 20.680538\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 550, Loss: 20.373440\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 551, Loss: 20.855776\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 552, Loss: 20.776386\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 553, Loss: 21.014103\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 554, Loss: 20.283571\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 555, Loss: 21.314680\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 556, Loss: 20.761217\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 557, Loss: 21.335073\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 558, Loss: 21.662796\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 559, Loss: 20.503948\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 560, Loss: 20.995108\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 561, Loss: 20.735931\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 562, Loss: 20.652691\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 563, Loss: 21.771524\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 564, Loss: 20.492317\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 565, Loss: 20.890102\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 566, Loss: 21.626867\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 567, Loss: 20.939730\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 568, Loss: 20.610455\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 569, Loss: 21.117891\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 570, Loss: 20.457737\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 571, Loss: 21.667204\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 572, Loss: 21.431385\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 573, Loss: 20.286762\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 574, Loss: 20.826452\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 575, Loss: 21.028219\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 576, Loss: 20.591949\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 577, Loss: 21.698883\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 578, Loss: 20.838142\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 579, Loss: 20.862751\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 580, Loss: 19.721510\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 581, Loss: 20.739666\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 582, Loss: 21.029148\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 583, Loss: 21.211651\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 584, Loss: 20.595341\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 585, Loss: 20.954994\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 586, Loss: 20.618589\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 587, Loss: 20.820980\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 588, Loss: 20.177643\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 589, Loss: 20.566784\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 590, Loss: 20.720419\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 591, Loss: 20.502630\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 592, Loss: 20.717054\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 593, Loss: 20.235489\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 594, Loss: 21.075727\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 595, Loss: 21.553942\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 596, Loss: 21.437565\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 597, Loss: 21.206810\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 598, Loss: 21.069927\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 599, Loss: 22.328382\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 600, Loss: 20.991402\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 601, Loss: 21.050835\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 602, Loss: 20.948545\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 603, Loss: 20.336216\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 604, Loss: 20.794802\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 605, Loss: 20.482912\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 606, Loss: 20.361721\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 607, Loss: 20.880888\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 608, Loss: 21.274910\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 609, Loss: 21.052008\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 610, Loss: 20.462772\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 611, Loss: 19.658941\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 612, Loss: 21.400867\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 613, Loss: 21.424488\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 614, Loss: 20.912180\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 615, Loss: 20.441702\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 616, Loss: 20.111559\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 617, Loss: 20.656452\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 618, Loss: 20.109795\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 619, Loss: 21.080368\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 620, Loss: 20.634531\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 621, Loss: 21.127405\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 622, Loss: 20.300119\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 623, Loss: 20.682487\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 624, Loss: 20.635582\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 625, Loss: 20.243793\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 626, Loss: 20.530739\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 627, Loss: 20.414064\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 628, Loss: 20.089874\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 629, Loss: 20.913860\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 630, Loss: 20.519543\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 631, Loss: 20.970181\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 632, Loss: 20.210279\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 633, Loss: 21.237722\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 634, Loss: 20.411085\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 635, Loss: 19.901665\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 636, Loss: 20.231899\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 637, Loss: 20.847410\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 638, Loss: 20.969267\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 639, Loss: 20.815826\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 640, Loss: 20.290810\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 641, Loss: 20.300854\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 642, Loss: 21.393862\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 643, Loss: 20.717421\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 644, Loss: 19.717390\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 645, Loss: 20.950457\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 646, Loss: 19.391556\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 647, Loss: 20.184488\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 648, Loss: 20.745068\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 649, Loss: 20.649830\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 650, Loss: 19.625219\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 651, Loss: 20.034317\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 652, Loss: 20.083462\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 653, Loss: 19.675415\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 654, Loss: 20.841341\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 655, Loss: 20.610222\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 656, Loss: 20.502872\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 657, Loss: 20.021996\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 658, Loss: 21.828516\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 659, Loss: 21.548424\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 660, Loss: 20.364191\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 661, Loss: 20.597363\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 662, Loss: 20.846613\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 663, Loss: 20.930079\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 664, Loss: 19.520203\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 665, Loss: 21.070854\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 666, Loss: 20.159184\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 667, Loss: 20.171335\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 668, Loss: 20.809250\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 669, Loss: 20.539715\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 670, Loss: 20.033878\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 671, Loss: 20.712938\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 672, Loss: 20.528713\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 673, Loss: 20.263996\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 674, Loss: 21.088514\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 675, Loss: 20.349520\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 676, Loss: 20.186766\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 677, Loss: 20.926369\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 678, Loss: 20.942413\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 679, Loss: 20.028261\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 680, Loss: 20.603210\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 681, Loss: 20.498304\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 682, Loss: 21.168228\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 683, Loss: 20.447527\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 684, Loss: 19.881775\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 685, Loss: 20.703047\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 686, Loss: 20.202543\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 687, Loss: 19.320070\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 688, Loss: 20.961470\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 689, Loss: 20.696066\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 690, Loss: 20.626032\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 691, Loss: 20.575321\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 692, Loss: 20.363569\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 693, Loss: 19.882734\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 694, Loss: 20.509226\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 695, Loss: 19.212072\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 696, Loss: 20.498846\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 697, Loss: 21.145790\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 698, Loss: 20.383871\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 699, Loss: 19.887316\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 700, Loss: 20.781172\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 701, Loss: 21.403812\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 702, Loss: 20.476452\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 703, Loss: 19.522337\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 704, Loss: 21.034971\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 705, Loss: 21.268511\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 706, Loss: 20.869339\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 707, Loss: 20.123671\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 708, Loss: 20.209007\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 709, Loss: 20.768240\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 710, Loss: 19.801086\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 711, Loss: 19.570593\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 712, Loss: 20.978405\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 713, Loss: 20.027424\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 714, Loss: 20.941751\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 715, Loss: 20.517929\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 716, Loss: 20.246641\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 717, Loss: 19.603014\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 718, Loss: 20.025099\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 719, Loss: 20.644409\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 720, Loss: 19.875477\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 721, Loss: 20.831102\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 722, Loss: 19.597298\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 723, Loss: 19.797251\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 724, Loss: 20.219784\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 725, Loss: 18.742540\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 726, Loss: 19.827236\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 727, Loss: 20.071405\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 728, Loss: 19.548616\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 729, Loss: 19.428482\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 730, Loss: 20.311096\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 731, Loss: 20.093971\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 732, Loss: 20.044720\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 733, Loss: 19.845865\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 734, Loss: 20.235558\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 735, Loss: 20.803537\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 736, Loss: 20.654694\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 737, Loss: 20.084057\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 738, Loss: 20.667353\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 739, Loss: 21.172371\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 740, Loss: 20.501270\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 741, Loss: 21.254059\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 742, Loss: 20.762852\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 743, Loss: 20.201670\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 744, Loss: 20.470549\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 745, Loss: 19.532753\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 746, Loss: 20.794682\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 747, Loss: 20.113607\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 748, Loss: 18.906033\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 749, Loss: 20.113720\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 750, Loss: 19.847927\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 751, Loss: 19.557568\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 752, Loss: 19.814735\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 753, Loss: 19.627851\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 754, Loss: 20.489820\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 755, Loss: 20.209511\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 756, Loss: 20.018637\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 757, Loss: 20.483780\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 758, Loss: 20.585222\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 759, Loss: 20.051325\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 760, Loss: 19.991879\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 761, Loss: 20.182430\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 762, Loss: 20.659800\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 763, Loss: 20.610434\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 764, Loss: 19.179615\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 765, Loss: 20.385933\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 766, Loss: 20.590012\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 767, Loss: 19.924299\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 768, Loss: 20.190668\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 769, Loss: 21.192070\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 770, Loss: 19.653206\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 771, Loss: 19.481359\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 772, Loss: 20.115328\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 773, Loss: 20.652805\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 774, Loss: 19.137287\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 775, Loss: 19.758007\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 776, Loss: 19.989464\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 777, Loss: 20.267181\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 778, Loss: 21.158298\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 779, Loss: 20.359003\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 780, Loss: 19.862854\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 781, Loss: 20.251972\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 782, Loss: 20.745720\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 783, Loss: 20.105291\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 784, Loss: 20.588921\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 785, Loss: 20.379232\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 786, Loss: 20.577961\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 787, Loss: 20.235041\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 788, Loss: 19.285654\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 789, Loss: 20.172472\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 790, Loss: 19.562504\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 791, Loss: 20.163435\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 792, Loss: 19.487986\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 793, Loss: 19.934496\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 794, Loss: 20.224312\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 795, Loss: 20.126087\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 796, Loss: 20.042839\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 797, Loss: 20.058853\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 798, Loss: 19.723719\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 799, Loss: 19.746237\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 800, Loss: 20.187033\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 801, Loss: 19.868736\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 802, Loss: 20.164425\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 803, Loss: 19.964300\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 804, Loss: 20.569187\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 805, Loss: 19.802107\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 806, Loss: 20.066475\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 807, Loss: 20.242849\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 808, Loss: 19.043781\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 809, Loss: 20.769466\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 810, Loss: 19.822714\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 811, Loss: 20.357250\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 812, Loss: 19.036524\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 813, Loss: 19.949062\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 814, Loss: 19.947353\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 815, Loss: 20.753395\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 816, Loss: 20.410967\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 817, Loss: 20.233959\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 818, Loss: 20.255182\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 819, Loss: 20.016209\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 820, Loss: 20.575485\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 821, Loss: 20.682117\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 822, Loss: 19.914207\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 823, Loss: 20.300329\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 824, Loss: 19.877338\n", + "SNR:inf, Imbalance Percentage:0, Encoding dimension:30, Epoch 825, Loss: 19.491899\n", + "Stopped early after 826 epochs, with loss of 18.742540\n" ] } ], - "source": [ - "discrete_models = trainModelsForDiscreteSet(dataloader,SNR_list,imb_percentage_list,encoding_dims_list,scale_factor=0.01)" - ] + "execution_count": 40 }, { "cell_type": "markdown", @@ -22675,13 +4411,18 @@ }, { "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], + "metadata": { + "ExecuteTime": { + "end_time": "2025-10-08T10:16:44.020925Z", + "start_time": "2025-10-08T10:16:44.018307Z" + } + }, "source": [ "# for iter,model in enumerate(discrete_models):\n", "# torch.save(model.state_dict(),f'Models/discrete_models/discrete_model_SNR{SNR_list[iter]}_IRR{imb_percentage_list[iter]}_enc{encoding_dims_list[iter]}.pt')" - ] + ], + "outputs": [], + "execution_count": 41 }, { "cell_type": "markdown", @@ -22693,9 +4434,12 @@ }, { "cell_type": "code", - "execution_count": 20, - "metadata": {}, - "outputs": [], + "metadata": { + "ExecuteTime": { + "end_time": "2025-10-08T10:16:44.136106Z", + "start_time": "2025-10-08T10:16:44.071239Z" + } + }, "source": [ "encoding_dims_list = [50, 40, 30, 20, 10, 5, 50, 50, 50, 50,50,50,50,50,50,50,50,50,50]\n", "SNR_list = [np.inf, np.inf, np.inf, np.inf, np.inf, np.inf, 20, 17, 14, 11, 8, 5, 2, np.inf, np.inf,np.inf, np.inf,np.inf, np.inf]\n", @@ -22712,7 +4456,9 @@ " discrete_models.append(LearnedAutoencoderWithIQImbalance(vector_size,encoding_dims_list[iter],hidden_dims,b,d,variance))\n", " discrete_models[iter].load_state_dict(torch.load(\n", " f'Models/discrete_models/discrete_model_SNR{SNR_list[iter]}_IRR{imb_percentage_list[iter]}_enc{encoding_dims_list[iter]}.pt', weights_only=True))" - ] + ], + "outputs": [], + "execution_count": 42 }, { "cell_type": "markdown", @@ -22724,50 +4470,56 @@ }, { "cell_type": "code", - "execution_count": 21, "metadata": { "ExecuteTime": { - "end_time": "2025-04-10T14:16:18.368949538Z", - "start_time": "2025-04-03T18:42:04.085443Z" + "end_time": "2025-10-08T10:16:50.494872Z", + "start_time": "2025-10-08T10:16:44.147001Z" } }, - "outputs": [], "source": [ "loss_fn = nn.MSELoss()\n", "normalized_losses, unnormalized_losses = validateModels(dataloader_val,discrete_models,loss_fn)\n" - ] + ], + "outputs": [], + "execution_count": 43 }, { "cell_type": "code", - "execution_count": 22, - "metadata": {}, + "metadata": { + "ExecuteTime": { + "end_time": "2025-10-08T10:16:50.903998Z", + "start_time": "2025-10-08T10:16:50.559104Z" + } + }, + "source": [ + "# Corresponding to M = 40, SNR = inf, imb = 0\n", + "\n", + "visualizeReconstruction(discrete_models[2])" + ], "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ - "c:\\Users\\tomli\\anaconda3\\envs\\pytorch_311\\Lib\\site-packages\\matplotlib\\cbook.py:1709: ComplexWarning: Casting complex values to real discards the imaginary part\n", - " return math.isfinite(val)\n", - "c:\\Users\\tomli\\anaconda3\\envs\\pytorch_311\\Lib\\site-packages\\numpy\\ma\\core.py:3413: ComplexWarning: Casting complex values to real discards the imaginary part\n", - " _data[indx] = dval\n" + "/tmp/ipykernel_14740/316903877.py:10: DeprecationWarning: __array__ implementation doesn't accept a copy keyword, so passing copy=False failed. __array__ must implement 'dtype' and 'copy' keyword arguments. To learn more, see the migration guide https://numpy.org/devdocs/numpy_2_0_migration_guide.html#adapting-to-changes-in-the-copy-keyword\n", + " h_hat = np.array(H_hat.detach())\n" ] }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAisAAAGdCAYAAADT1TPdAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAKZFJREFUeJzt3X90VPWd//HXhJlAQsgPSELAJCURwo9VwP6iK/QLknLwIHtoWA+HdSHlBI+1CO3+cF0U8QCiaVy1raAez4YuFLbtApIFf6xSqO1XZFd2dWuqeKA0/JAfgUQYSEggk8z9/sGXqZOZwGQy985nkufjHI/M5977ue/7zs3klTs3My7LsiwBAAAYKineBQAAANwIYQUAABiNsAIAAIxGWAEAAEYjrAAAAKMRVgAAgNEIKwAAwGiEFQAAYDTCCgAAMBphBQAAGM0d7wJi5cKFC2pvb4/5vDk5OWpoaIj5vAhFr51Dr51Dr51Dr50Ti1673W5lZWVFtm6P9mSQ9vZ2+Xy+mM7pcrkCc/MRSvai186h186h186h186JR695GQgAABiNsAIAAIxGWAEAAEYjrAAAAKP1mhtsAQCI1tWrV3X16tV4l5EwWltb1dbWdtP1+vfvr/79+/d4f4QVAECfdvnyZblcLg0aNCjwly64MY/Hc9O/wLUsS62trbp8+bIGDhzYo/3xMhAAoE9rb29XamoqQSXGXC6XUlNTY/IeaIQVAECfRkixVyz6S1gBAABGI6wAAACjEVYAAIDRCCsAAMBo/OkyAABhWE0XHduXa1CGY/tKRIQVIAaspovy/93CoLGk5zfzBAQksM7f03bq98+7urX+559/rtLSUlVUVOj73/++JOnDDz/U3LlztWnTJk2dOtWOMuPGsbBSU1OjX/ziF5o1a5YWLVok6dobxmzbtk179+5Vc3OzRo0apcWLF6ugoMCpsgAASDhDhgzRc889p8WLF2vq1KkaOXKkli1bpvLy8l4XVCSH7lk5cuSI9uzZoy996UtB4zt37tQbb7yhiooKVVZWKjMzU2vXrlVra6sTZQEAkLBKS0t13333aenSpVq+fLkGDBigxx57LN5l2cL2sHLlyhWtW7dO3/3ud4PebteyLL355psqKyvTpEmTVFhYqIceekhXr17Vvn377C4LAICEt3LlSnV0dOi1117TunXrNGDAgHiXZAvbXwaqrq7WHXfcofHjx2vHjh2B8XPnzsnr9WrChAmBMY/Ho3HjxunQoUOaMWNG2Pl8Pl/Q5xG4XC6lpKQE/h1L1+fj3Q3tl/C9DlO3y+Uy8ngSvtcJhF47x45eJz2/OWZz2eXEiRM6e/as/H6/Tp48qXHjxsW7pLB6+nWxNay89957Onr0qCorK0OWeb1eSVJGRvANiBkZGWpsbOxyzpqaGm3fvj3wuKioSFVVVcrJyYlN0WHk5eXZNjeCJWqvO1IH6HSnsaFDh6pfRlZc6olEovY6EdFr50TT69bWVnk8ntAFg7NjUJF92tratGzZMs2ZM0ejRo3SP/zDP+hrX/uacnNzHdl/2J6FkZycrGHDhvVoX7aFlcbGRm3cuFErVqxQcnJyl+t1TluWZd1w3rKyMs2ePTtk+4aGhph8WFLn2vLy8lRfX3/TutAzid7rcH/iePbsWblarsShmhtL9F4nEnrtnJ70uq2t7aafIGyitWvX6tKlS1q9erUGDhyoPXv26Ac/+IF+9rOf2b7vSD51+bq2tjadOXMmZNztdkd8ocG2sFJXV6eLFy9q+fLlgTG/369PP/1Ub731ln784x9LunaFJSvrT799Xrp0KeRqyxd5PJ4u05xdTwaWZfFE45BE7XW4mi3Lkgw+lkTtdSKi187pK73ev3+/qqurtW3bNg0aNEiS9MILL+hb3/qWNm3apO985ztxrjBYT78mtoWV22+/Xc8++2zQ2Msvv6zhw4drzpw5Gjp0qDIzM1VbW6uioiJJ1z6m++DBg/rrv/5ru8oCACDh3XnnnTp+/HjQ2C233KJPP/00ThXZy7awkpKSosLCwqCx/v37a9CgQYHxWbNmqaamRsOGDVNeXp5qamrUv39/TZkyxa6yAABAgonrO9jOmTNHbW1tqq6u1uXLlzVy5EitWLEi8Nc9AAAAjoaVVatWBT12uVyaN2+e5s2b52QZAAAggfCpywAAwGiEFQAAYDTCCgAAMBphBQAAGI2wAgAAjEZYAQAARiOsAADQhzz33HOaMWNGvMvoFsIKAADolhMnTuiWW27Rxx9/7Mj+CCsAAMBohBUAAMJwdbQ49l93ff7555o4caJeeOGFwNiHH36oESNG6Le//W1Ec2zfvl2TJk3SmDFj9L3vfU/Nzc2BZe+8846+/e1va+zYsfqzP/szlZeX69ixY4HlX/3qVyVJM2fO1C233KJ7772328fQHXH9bCAAAEw17N1Rju3r9LRT3Vp/yJAheu6557R48WJNnTpVI0eO1LJly1ReXq6pU6fedPvjx4/r7bff1qZNm3Tx4kU9+OCDWr9+vZYvXy5Jamlp0QMPPKAxY8aopaVFzz77rO6//37t3r1bSUlJevvttzVz5kz98pe/1OjRo+XxeKI67kgRVgAASEClpaW67777tHTpUk2cOFEDBgzQY489FtG2fr9fP/rRj5SWliZJ+su//Evt27cvsPyee+4JWv+5557T+PHjdfjwYY0ZM0ZDhgyRJGVlZSk3NzdGR9Q1wgoAAGGc+eYf4l3CTa1cuVKlpaV67bXX9Oabb2rAgAERbVdQUBAIKpKUm5urzz//PPD42LFj+qd/+id9+OGHOn/+vPx+vyTp1KlTGjNmTGwPIgKEFQAAwrD6pca7hJs6ceKEzp49K7/fr5MnT2rcuHERbed2B//4d7lcgUAiSYsWLdLw4cP1zDPPKC8vT36/X9OnT5fP54tp/ZEirAAAkIDa2tq0dOlS/cVf/IVGjhyphx9+WHv37lVOTk6P5j1//rz+8Ic/qKqqSpMmTZIkHThwIGid5ORkSQoKOHYirAAAkICqqqrU1NSkJ598UgMHDtQ777yjv//7v9fPfvazHs2bmZmprKwsbdmyRbm5uTp16pQqKyuD1snOztaAAQP0zjvvaNiwYerfv7/S09N7tN8b4U+XAQBIMPv371d1dbVeeOEFDRo0SElJSXrhhRf03//939q0aVOP5k5KStJLL72k3//+9yotLdWqVav0+OOPB63jdrv15JNPasuWLfryl7+sioqKHu3zZlyWZVm27sEhDQ0NMX8tzeVyadiwYTpz5ox6SZuMlei9tpouyv93C4PGkp7fLNegjDhV1LVE73UiodfO6UmvL126ZOtVgd7I4/FE/DO3q/56PJ6IX7LiygoAADAa96wAANCL3HXXXTp58mTYZVVVVZo7d67DFfUcYQUAgF5k8+bNXb5E09O/FIoXwgoAAL1Ifn5+vEuIOe5ZAQAARiOsAAD6PKfe3KyviVVfCSsAgD4tNTVVTU1NBJYY8/v9ampqUmpqzz+2gHtWAAB9mtvt1sCBA9Xc3BzvUhJGcnKy2trabrrewIEDQz6HKBqEFQBAn+d2u3ljuAjF480OCStAjLj6dSh//u8kSSd/OTGutQBAb8I9KwAAwGiEFQAAYDTCCgAAMBphBQAAGI2wAgAAjEZYAQAARiOsAAAAoxFWAACA0QgrAADAaIQVAABgNMIKAAAwGmEFAAAYjbACAACMRlgBAABGI6wAAACjEVYAAIDRCCsAAMBohBUAAGA0wgoAADAaYQUAABiNsAIAAIxGWAEAAEZz2zl5TU2NDhw4oFOnTik5OVklJSVasGCBhg8fHljHsixt27ZNe/fuVXNzs0aNGqXFixeroKDAztIAAECCsPXKysGDBzVz5kw99dRTevzxx+X3+7V27VpduXIlsM7OnTv1xhtvqKKiQpWVlcrMzNTatWvV2tpqZ2kAACBB2BpWVqxYoWnTpqmgoEAjRozQkiVL1NjYqLq6OknXrqq8+eabKisr06RJk1RYWKiHHnpIV69e1b59++wsDQAAJAhbXwbqrKWlRZKUlpYmSTp37py8Xq8mTJgQWMfj8WjcuHE6dOiQZsyYETKHz+eTz+cLPHa5XEpJSQn8O5auzxfreREq4XvtcskKGXIZeTwJ3+sEQq+dQ6+dE49eOxZWLMvSpk2bNGbMGBUWFkqSvF6vJCkjIyNo3YyMDDU2Noadp6amRtu3bw88LioqUlVVlXJycuwpXFJeXp5tcyNYova6I3WAznQaGzp0qPplZMWlnkgkaq8TEb12Dr12jpO9diysbNiwQSdOnNCaNWtClnVOZ5bV+XfUPykrK9Ps2bNDtm1oaFB7e3uMqv3T3Hl5eaqvr79hTei5RO+11XQxZOzs2bNytVwJs3Z8JXqvEwm9dg69dk6seu12uyO+0OBIWPnpT3+qDz74QKtXr9aQIUMC45mZmZKuXWHJyvrTb6CXLl0KudpyncfjkcfjCbvMrhPUsixOfockaq/D1WxZlmTwsSRqrxMRvXYOvXaOk7229QZby7K0YcMGvf/++3riiSeUm5sbtDw3N1eZmZmqra0NjLW3t+vgwYMaPXq0naUBAIAEYeuVlQ0bNmjfvn165JFHlJKSErhHJTU1VcnJyXK5XJo1a5Zqamo0bNgw5eXlqaamRv3799eUKVPsLA0AACQIW8PK7t27JUmrVq0KGl+yZImmTZsmSZozZ47a2tpUXV2ty5cva+TIkVqxYkXgL3wAAEDfZmtY2bp1603XcblcmjdvnubNm2dnKQAAIEHx2UAAAMBohBUAAGA0wgoAADAaYQUAABiNsAIAAIxGWAEAAEYjrAAAAKMRVgAAgNEIKwAAwGiEFQAAYDTCCgAAMBphBQAAGI2wAgAAjEZYAQAARiOsAAAAoxFWAACA0Qgr6NVcHS0a/ptbNPw3t8jV0RLvcgAAUSCsAAAAoxFWAACA0QgrAADAaIQVAABgNMIKAAAwGmEFAAAYjbACAACMRlgBAABGI6wAAACjEVYAAIDRCCsAAMBohBUAAGA0wgoAADAaYQUAABiNsAIAAIxGWAEAAEYjrAC9hKujRcN/c4uG/+YWuTpa4l0OAMQMYQUAABiNsAIAAIxGWEFC4iUPAOg7CCt9DD/kAQCJhrACAACMRlgBAABGI6wAAACjEVYi1Jfu9ehLxwr0BnzPorcjrACd8MQPAGYhrAAAAKMRVoA+xNXRomHvDJd+7uKqERCB3nKlNdGPg7ACAOiRRP9BCPMRVmzGN3Ew+gEg1mJ1xZDnJ3MRVgD0Sn39B09fP370LoSVLvDaft8RyZM6T/wAejuTn+cIKwAA9IDJP+R7C8IKoharb1CuYsWPnU+yfekJvC8dK24ulucD59Y17ngXIElvv/22du3aJa/Xq/z8fC1atEhjx46Nd1lAXLg6WjTs3VGSpDPf/IOsfqlxrigyneuOZJ1EObbeIFzv+XogUcT9ysr+/fu1ceNGzZ07V1VVVRo7dqyefvppNTY2xrs0oEvx/s2J37YA9CVxDyuvv/66pk+frtLS0sBVlezsbO3evTvepQHo5UwMfSbW1Fki1JiI6GvX4voyUHt7u+rq6vTtb387aHz8+PE6dOhQ2G18Pp98Pl/gscvlUkpKSuDfsfLFuTrP63K5pAj3FTJPLGvsaFHe/x0pSar/P0ciuoQbST2R1hzNsYXbpvNYkr/1pscVyxoj+VrfbB2XyyUrzLyRnJPRnGuR9DHaY41WVH2M0fdDuO+FWJ7rN91/uK/HF2pKmvpH+ZNSYlZ3RPu38eth53kUjc71RPuzIN7fV9HuP9q5o1nni+vF8mfuzbgsy+r8HOuY8+fP68EHH9STTz6p0aNHB8Z37Nih3/72t/rJT34Sss3WrVu1ffv2wOOioiJVVVU5Um+I9svS1rRr/57XfO3/X3zsHnjzbdwDIxuLdu5ojiPauSM9tmjYWaNdYtmPaLaL1b4kZ7+uTu4/iho7LrfpzMLpyp//O0nSyV9O1LDNv1a/jKxuzRPt1yPq/Uexr5ies1J0xxHNc2Gk28Xz+8rO7yMpds+FTn6v3YARN9iGS2ddJbaysjLNnj07ZL2Ghga1t7fHvK68vDzV19crXKZzdbQo7///u76+XpKCHoe9ItBpm+s3ud1sLNq5I3bX6Wv/b7gk6VL0c3eaJ9LtutvraI+/Rz3qpki/1tHOFe02sTivY9XHaM/9eH4d/S2+kHXOnj0rV8uV0G2/0Gu1X47J96fVdDHi/XeXneespKj6GOlzYefz2tbz6CbPl+HEsreRzB2r5/Swdd/kOSRSbrdbOTk5ka0b9V5iID09XUlJSfJ6vUHjFy9eVEZGRthtPB6PPB5P2GV2XSSyLCv83F8Y67y8q22spBSdnnYqeI5O81hhxqKpJ6b9iHLusMd7w9304NgiWKe79fRIBF/XiL9G0Wx3k216dF7H6lyL9ty381yPpMaQVawbnkuxrDma/Uc8d6TPTxFN1mm7fqlBc1tWW5hNwhxHN58LE+o8itU5Ec3zWqT7vsF6tvfsC+IaVtxut4qLi1VbW6uvf/3rgfHa2lp97Wtfi2Nl0en8zWj3dgAA2MmUn09xfxlo9uzZWrdunYqLi1VSUqI9e/aosbFRM2bMiHdpALoQqyewcPN0Hgv3VxGmPIECPcF5HLm4h5U777xTTU1NevXVV3XhwgUVFBTo0Ucfjfh1rN4qkifsvqSvf1M7efyce/boa+dwXzte2CvuYUWSZs6cqZkzZ8a7DNwATzxA38T3PkxgRFgBYC5+WAGIN8IK4CB+8AN9E9/7PUNYAXqp3vLkGO/jCN1/6PucwD7hvv694bxG98T9s4EAAABuhLACAACMRlgBAABG456VHoj3a+kAAPQFhBXAJoRZAIgNwgp6DcIBgK7w/JDYuGcFAAAYjSsrAIA+iastiYMrKwAAwGhcWQEAoI9JtKtKXFkBAABGI6wAAACjEVYAAIDRuGclQSTa64sAAMQKV1YAAIDRCCsAAMBovAwEAOh1eOm8d+HKCgAAMBpXVnoRfpMAAPRGXFkBAABGI6wAAACjEVYAAIDRCCsAAMBohBUAAGA0wgoAADAaYQUAABiNsAIAAIxGWAEAAEYjrAAAAKMRVgAAgNEIKwAAwGiEFQAAYDTCCgAAMBphBQAAGI2wAgAAjEZYAQAARiOsAAAAoxFWAACA0QgrAADAaIQVAABgNMIKAAAwGmEFAAAYjbACAACMRlgBAABGI6wAAACjEVYAAIDRCCsAAMBohBUAAGA0t10Tnzt3Tq+++qo+/vhjeb1eDR48WN/85jc1d+5cud1/2m1jY6Oqq6v1ySefKDk5WZMnT1Z5eXnQOgAAoO+yLRGcPn1almXpgQceUF5enj777DO98sorunLlisrLyyVJfr9flZWVSk9P15o1a9TU1KQXX3xRklRRUWFXaQAAIIHYFlYmTpyoiRMnBh4PHTpUp0+f1u7duwNh5aOPPtLJkyf18ssva/DgwZKk8vJyvfTSS5o/f75SU1PtKg8AACQIR19raWlpUVpaWuDx4cOHVVhYGAgqkjRhwgT5fD7V1dXptttuC5nD5/PJ5/MFHrtcLqWkpAT+HUvX54v1vAhFr51Dr3vI5ZIVMuQK209bet2N/RstxsfBee2cePTasbBSX1+v//iP/whcVZEkr9erjIyMoPXS0tLkdrvl9XrDzlNTU6Pt27cHHhcVFamqqko5OTm21C1JeXl5ts2NYPTaOfQ6Oh2pA3Sm09jQoUPVLyOry21i2eto9m8iu46D89o5Tva622Fl69atQWEhnMrKSt16662Bx+fPn9fTTz+tP//zP1dpaWnQuuGSmWVZXSa2srIyzZ49O2T7hoYGtbe3R3wckXC5XMrLy1N9fb0sq/PvAIgleu0cet0zVtPFkLGzZ8/K1XIlZNyOXndn/yaL9XFwXjsnVr12u90RX2jodli5++67NXny5Buu88Wdnz9/XqtXr1ZJSYkeeOCBoPUyMzN15MiRoLHm5mZ1dHSEXHG5zuPxyOPxhF1m1wlqWRYnv0PotXPodXTC9cyyLOkGvYxlr6PZv4nsOg7Oa+c42etuh5X09HSlp6dHtO71oFJUVKQlS5YoKSn4bV1KSkq0Y8cOXbhwQVlZ1y791dbWyuPxqLi4uLulAQASiNXRT5/961cCj7nbBF2x7U3hzp8/r1WrVmnIkCEqLy/XpUuX5PV6g+5FmTBhgvLz87V+/XodPXpUv//977V582aVlpbyl0AAAECSjTfY1tbWqr6+XvX19XrwwQeDlm3dulWSlJSUpEcffVTV1dVauXKlkpOTNWXKFC1cuNCusgAAQIKxLaxMmzZN06ZNu+l62dnZWr58uV1lAACABMdnAwEAAKMRVgAAgNEIKwAAwGiEFQAAYDTCCgAAMBphBQAAGI2wAgAAjEZYAQAARiOsAAAAo9n2DrYAAHTFNShD/f55V7zLQILgygoAADAaYQUAABiNsAIAAIxGWAEAAEYjrAAAAKMRVgAAgNEIKwAAwGiEFQAAYDTCCgAAMBphBQAAGI2wAgAAjEZYAQAARiOsAAAAoxFWAACA0QgrAADAaIQVAABgNMIKAAAwGmEFAAAYjbACAACMRlgBAABGI6wAAACjEVYAAIDRCCsAAMBohBUAAGA0wgoAADAaYQUAABiNsAIAAIxGWAEAAEYjrAAAAKMRVgAAgNEIKwAAwGiEFQAAYDTCCgAAMBphBQAAGI2wAgAAjEZYAQAARiOsAAAAoxFWAACA0QgrAADAaIQVAABgNLcTO/H5fHrsscd0/PhxPfPMMxoxYkRgWWNjo6qrq/XJJ58oOTlZkydPVnl5udxuR0oDAACGcyQRbNmyRYMHD9bx48eDxv1+vyorK5Wenq41a9aoqalJL774oiSpoqLCidIAAIDhbH8Z6H//939VW1urhQsXhiz76KOPdPLkSS1btkxFRUUaP368ysvLtXfvXrW0tNhdGgAASAC2hhWv16tXXnlFS5cuVXJycsjyw4cPq7CwUIMHDw6MTZgwQT6fT3V1dXaWBgAAEoRtLwNZlqWXXnpJM2bM0K233qpz586FrOP1epWRkRE0lpaWJrfbLa/XG3Zen88nn88XeOxyuZSSkhL4dyxdny/W8yIUvXYOve4hl0tWyJArbD9t6XU39t+XcF47Jx697nZY2bp1q7Zv337DdSorK3Xo0CG1traqrKzshuuGO1jLsrpsQk1NTdD+i4qKVFVVpZycnAiqj05eXp5tcyMYvXYOvY5OR+oAnek0NnToUPXLyOpym1j2Opr99yWc185xstfdDit33323Jk+efMN1cnJy9Oqrr+rw4cO67777gpYtX75cU6ZM0dKlS5WZmakjR44ELW9ublZHR0fIFZfrysrKNHv27MDj66GmoaFB7e3t3T2cG3K5XMrLy1N9fb0sq/PvMogleu0cet0zVtPFkLGzZ8/K1XIlZNyOXndn/30J57VzYtVrt9sd8YWGboeV9PR0paen33S9iooKzZ8/P/D4woULeuqpp/Q3f/M3GjVqlCSppKREO3bs0IULF5SVde23gtraWnk8HhUXF4ed1+PxyOPxhF1m1wlqWRYnv0PotXPodXTC9cyyLOkGvYxlr6PZf1/Cee0cJ3tt2z0r2dnZQY8HDBgg6dployFDhki6djNtfn6+1q9frwULFqi5uVmbN29WaWmpUlNT7SoNAAAkkLi+81pSUpIeffRRVVdXa+XKlUpOTtaUKVPC/pkzAADomxwLK7m5udq6dWvIeHZ2tpYvX+5UGQAAIMHw2UAAAMBohBUAAGA0wgoAADAaYQUAABiNsAIAAIxGWAEAAEYjrAAAAKMRVgAAgNEIKwAAwGiEFQAAYDTCCgAAMBphBQAAGC2un7oMAOg+q6OfPvvXrwQeu+JYC+AErqwAAACjEVYAAIDRCCsAAMBohBUAAGA0wgoAADAaYQUAABiNsAIAAIxGWAEAAEYjrAAAAKMRVgAAgNEIKwAAwGiEFQAAYDTCCgAAMBphBQAAGI2wAgAAjEZYAQAARiOsAAAAoxFWAACA0QgrAADAaIQVAABgNMIKAAAwGmEFAAAYjbACAACMRlgBAABGI6wAAACjEVYAAIDRCCsAAMBohBUAAGA0wgoAADAaYQUAABiNsAIAAIxGWAEAAEYjrAAAAKMRVgAAgNEIKwAAwGiEFQAAYDTCCgAAMBphBQAAGM1t9w4+/PBDbd++XcePH9eAAQM0duxYPfzww4HljY2Nqq6u1ieffKLk5GRNnjxZ5eXlcrttLw0AACQAWxPBf/3Xf+mVV17RX/3VX+m2226TJJ04cSKw3O/3q7KyUunp6VqzZo2ampr04osvSpIqKirsLA0AACQI28JKR0eHNm7cqIULF2r69OmB8eHDhwf+/dFHH+nkyZN6+eWXNXjwYElSeXm5XnrpJc2fP1+pqal2lQcAABKEbWHl6NGjOn/+vFwulx555BF5vV6NGDFCCxcuVEFBgSTp8OHDKiwsDAQVSZowYYJ8Pp/q6uoCV2O+yOfzyefzBR67XC6lpKQE/h1L1+eL9bwIRa+dQ697yOWSFTLkCttPO3rtSs9UUvVrMZuvt+C8dk48em1bWDl79qwkadu2bSovL1dubq5ee+01rVq1Sj/5yU+UlpYmr9erjIyMoO3S0tLkdrvl9XrDzltTU6Pt27cHHhcVFamqqko5OTl2HYry8vJsmxvB6LVz6HV0OlIH6EynsaFDh6pfRlaX29Br59Br5zjZ626Hla1btwaFhXAqKytlWdd+95g7d66+8Y1vSJKWLFmiBx98UP/5n/+pGTNmSAqfzCzL6jKxlZWVafbs2YHH19draGhQe3t7dw/nhlwul/Ly8lRfXx84HtiDXjuHXveM1XQxZOzs2bNytVwJGafXzqHXzolVr91ud8QXGrodVu6++25Nnjz5huvk5OSotbVVkpSfnx8Y93g8Gjp0qBobGyVJmZmZOnLkSNC2zc3N6ujoCLni8sU5PB5P2GV2naCWZXHyO4ReO4deRydczyzLkm7QS3rtHHrtHCd73e2wkp6ervT09JuuV1xcLI/Ho9OnT2vMmDGSpPb2djU0NASSVElJiXbs2KELFy4oK+vaJdTa2lp5PB4VFxd3tzQAANAL2XbPSmpqqmbMmKGtW7dqyJAhysnJ0a5duyQp8LLQhAkTlJ+fr/Xr12vBggVqbm7W5s2bVVpayl8CATCSa1CGkl7cJr07SpLU78VtsvrxfAXYydb3WVmwYIGSkpK0fv16tbW1aeTIkXriiSeUlpYmSUpKStKjjz6q6upqrVy5UsnJyZoyZYoWLlxoZ1kAACCB2BpW3G63ysvLVV5e3uU62dnZWr58uZ1lAACABMZnAwEAAKMRVgAAgNEIKwAAwGiEFQAAYDTCCgAAMBphBQAAGI2wAgAAjEZYAQAARiOsAAAAoxFWAACA0QgrAADAaIQVAABgNMIKAAAwGmEFAAAYjbACAACMRlgBAABGc8e7AABINFa/VJ2edireZQB9BldWAACA0QgrAADAaIQVAABgNMIKAAAwGmEFAAAYjbACAACMRlgBAABGI6wAAACjEVYAAIDRCCsAAMBohBUAAGA0wgoAADAaYQUAABiNsAIAAIxGWAEAAEZzx7uAWHG77TsUO+dGMHrtHHrtHHrtHHrtnJ72ujvbuyzLsnq0NwAAABvxMtANtLa26h//8R/V2toa71J6PXrtHHrtHHrtHHrtnHj0mrByA5Zl6ejRo+Lik/3otXPotXPotXPotXPi0WvCCgAAMBphBQAAGI2wcgMej0f33nuvPB5PvEvp9ei1c+i1c+i1c+i1c+LRa/4aCAAAGI0rKwAAwGiEFQAAYDTCCgAAMBphBQAAGI0PUejC22+/rV27dsnr9So/P1+LFi3S2LFj411WQqupqdGBAwd06tQpJScnq6SkRAsWLNDw4cMD61iWpW3btmnv3r1qbm7WqFGjtHjxYhUUFMSx8sRXU1OjX/ziF5o1a5YWLVokiV7H0vnz57Vlyxb97ne/U1tbm4YNG6bvfe97Ki4ulkSvY6Wjo0Pbtm3Tu+++K6/Xq6ysLE2bNk1z585VUtK1373pdXQOHjyoXbt26ejRo7pw4YIefvhhff3rXw8sj6SvPp9Pmzdv1nvvvae2tjbddtttuv/++zVkyJAe18eVlTD279+vjRs3au7cuaqqqtLYsWP19NNPq7GxMd6lJbSDBw9q5syZeuqpp/T444/L7/dr7dq1unLlSmCdnTt36o033lBFRYUqKyuVmZmptWvX8hbaPXDkyBHt2bNHX/rSl4LG6XVsNDc3a+XKlXK73Xrsscf0/PPPq7y8XKmpqYF16HVs7Ny5U7/61a+0ePFi/ehHP9KCBQu0a9cuvfXWW0Hr0Ovuu3r1qkaMGKGKioqwyyPp68aNG3XgwAH94Ac/0Jo1a3TlyhX98Ic/lN/v73F9hJUwXn/9dU2fPl2lpaWBqyrZ2dnavXt3vEtLaCtWrNC0adNUUFCgESNGaMmSJWpsbFRdXZ2ka8n9zTffVFlZmSZNmqTCwkI99NBDunr1qvbt2xfn6hPTlStXtG7dOn33u9/VwIEDA+P0OnZ27typIUOGaMmSJRo5cqRyc3N1++23Ky8vTxK9jqXDhw/rq1/9qr785S8rNzdX3/jGNzR+/Hj98Y9/lESve+KOO+7Q/PnzNWnSpJBlkfS1paVFv/71r1VeXq7x48erqKhIy5Yt04kTJ1RbW9vj+ggrnbS3t6uurk4TJkwIGh8/frwOHToUp6p6p5aWFklSWlqaJOncuXPyer1Bvfd4PBo3bhy9j1J1dbXuuOMOjR8/PmicXsfO//zP/6i4uFjPP/+87r//fj3yyCPas2dPYDm9jp0xY8bo448/1unTpyVJx44d06FDh3THHXdIotd2iaSvdXV16ujoCHquGTx4sAoLC3X48OEe18A9K51cunRJfr9fGRkZQeMZGRnyer3xKaoXsixLmzZt0pgxY1RYWChJgf6G6z0vwXXfe++9p6NHj6qysjJkGb2OnXPnzulXv/qV7rnnHpWVlenIkSP6l3/5F3k8Hk2dOpVex9CcOXPU0tKiv/3bv1VSUpL8fr/mz5+vKVOmSOK8tkskffV6vXK73YFfPr+4Tix+dhJWuuByuSIaQ3Q2bNigEydOaM2aNSHLOveZN1nuvsbGRm3cuFErVqxQcnJyl+vR657z+/269dZbdd9990mSioqK9Nlnn2n37t2aOnVqYD163XP79+/Xu+++q+9///sqKCjQsWPHtHHjxsCNttfRa3tE09dY9Z6w0kl6erqSkpJCkuDFixdDUiWi89Of/lQffPCBVq9eHXSXeGZmpiQF7vK/7tKlS/S+m+rq6nTx4kUtX748MOb3+/Xpp5/qrbfe0o9//GNJ9DoWsrKylJ+fHzSWn5+v999/XxLndSxt2bJFc+bM0eTJkyVJhYWFamho0L//+79r2rRp9NomkfQ1MzNT7e3tam5uDrq6cunSJY0ePbrHNXDPSidut1vFxcUhNwTV1tbGpOF9mWVZ2rBhg95//3098cQTys3NDVqem5urzMzMoN63t7fr4MGD9L6bbr/9dj377LN65plnAv/deuutmjJlip555hkNHTqUXsfI6NGjA/dQXHf69Gnl5ORI4ryOpatXrwb+RPm6pKSkwG/v9NoekfS1uLhY/fr1C1rnwoULOnHihEpKSnpcA1dWwpg9e7bWrVun4uJilZSUaM+ePWpsbNSMGTPiXVpC27Bhg/bt26dHHnlEKSkpgatXqampSk5Olsvl0qxZs1RTU6Nhw4YpLy9PNTU16t+/f+A1aUQmJSUlcC/Qdf3799egQYMC4/Q6Nu655x6tXLlSO3bs0J133qkjR45o7969euCBBySJ8zqGvvKVr2jHjh3Kzs5Wfn6+jh07ptdff1133XWXJHrdE1euXFF9fX3g8blz53Ts2DGlpaUpOzv7pn1NTU3V9OnTtXnzZg0aNEhpaWnavHmzCgsLQ27wjwafutyF628Kd+HCBRUUFOg73/mOxo0bF++yEtq8efPCji9ZsiTwevP1Nx7as2ePLl++rJEjR2rx4sUhP3jRfatWrdKIESNC3hSOXvfcBx98oJ///Oeqr69Xbm6u7rnnHn3rW98KLKfXsdHa2qp/+7d/04EDB3Tx4kUNHjxYkydP1r333iu3+9rv3vQ6Op988olWr14dMj516lQ99NBDEfW1ra1NW7Zs0b59+4LeFC47O7vH9RFWAACA0bhnBQAAGI2wAgAAjEZYAQAARiOsAAAAoxFWAACA0QgrAADAaIQVAABgNMIKAAAwGmEFAAAYjbACAACMRlgBAABGI6wAAACj/T/pcFhkBqI0jgAAAABJRU5ErkJggg==", "text/plain": [ "
" - ] + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjMAAAGdCAYAAADnrPLBAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjYsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvq6yFwwAAAAlwSFlzAAAPYQAAD2EBqD+naQAAMUlJREFUeJzt3Xt8VPWd//H3SWYSEkKYQBISCJdADNAuctGK9VKiUHUFHop4+9GKisC64GX1p1YttIIgmyqyZbVbVkIFobIsglArXqq4Pyg+wDsEXCliIAgDQUggCZeZ5Pz+cDnLkABhMnNmvuH1fDx8mPM953znM585k7w5c2bGsm3bFgAAgKESYl0AAABAcxBmAACA0QgzAADAaIQZAABgNMIMAAAwGmEGAAAYjTADAACMRpgBAABGI8wAAACjEWYAAIDRPLEuwE0HDx5UMBiM6JxZWVmqqKiI6JxoHL12D712F/12D712TyR67fF4lJGRcfbtmnUrhgkGgwoEAhGbz7IsZ16+4iq66LV76LW76Ld76LV73O41LzMBAACjEWYAAIDRovoy05YtW7Ry5Up98803OnjwoB555BFdcsklznrbtrVkyRK99957qqmpUa9evTR27Fjl5uY621RXV2vevHn65JNPZFmWBg4cqLvvvlutWrWKZukAAMAQUT0zc+zYMXXr1k333HNPo+tXrFihVatWady4cXrmmWeUnJys6dOn6/jx4842s2fPVnl5uSZNmqTHH39cX375pebMmRPNsgEAgEGiemamf//+6t+/f6PrbNvWm2++qZtuukk/+tGPJEn33Xefxo0bp48++kiXX365du3apc8//1wzZsxQjx49JEljxozRjBkzdMcdd6hdu3bRLB8AAEnf/82qrq7mwuFzcOTIkZCTE6eTnJys5OTkZt1WzN7NtG/fPlVWVurCCy90xlJTU1VQUKCtW7fq8ssv19atW9W6dWsnyEhSnz59ZFmWtm3bFvKSFQAA0VJdXa3k5GQlJSXFuhRjeL3es76D2LZtHTlyRDU1NWrdunXYtxWzMFNZWSlJatu2bch427ZtnXWVlZVKT08PWZ+YmKi0tDRnm8YEAoGQBlqWpZSUFOfnSDkxVyTnROPotXvotbvot3ua02vbtgkyUWBZllJTU1VVVdWs50CL/JyZ5cuXa+nSpc5yfn6+iouLlZWVFZXby8nJicq8aIheu4deu4t+uyecXh85ckRerzcK1bRsTe1ZcnJyyJt/zlXMwozP55MkVVVVhXy6X1VVlbp16+Zsc+jQoZD96urqVF1d7ezfmBEjRmjYsGHO8om0V1FREdFPALYsSzk5OfL7/byOGmX02j302l302z3N6fXx48cj+qGr54OmvMx0wvHjx7Vnz54G4x6Pp0knImIWZrKzs+Xz+bRp0yYnvNTW1mrbtm265pprJEmFhYWqqanR9u3b1b17d0lSaWmpbNtWQUHBaef2er2nTYPR+GVh2za/hFxCr91Dr91Fv91Dr+NTcx6TqIaZo0ePyu/3O8v79u1TWVmZ0tLSlJmZqeuvv17Lli1Tbm6usrOztXjxYmVkZDjvbsrLy1O/fv00Z84cjRs3TsFgUPPmzdNll13GO5kAAICkKIeZr7/+WlOmTHGWFyxYIEkaNGiQJk6cqBtuuEHHjh3TnDlzVFtbq169eunJJ58MucjqgQceUElJiaZOnep8aN6YMWOiWTYAADCIZZ9H59oqKioi/kWTubm52rNnD6cso4xeu4deu4t+u6c5vT506FCDd9fah6siWd5ZWW3ann2jOHIu18w01t8Tc8T1NTMAAJis/uE7XL29xJdWntP23333nQYPHqwxY8bogQcekCR99NFHuuWWW/TKK6/oyiuvdLa164JS+TehE3TOl5VoRkzgiyYBAGiB2rdvr5kzZ+r555/XF198oerqaj344IO66667QoJMS2BG5AIAAOds8ODBGjVqlO677z717dtXqampeuKJJ2JdVsRxZgYAgBZs8uTJqqur0xtvvKF//dd/bfb3IMUjzswAABCGhOdfiXUJTbJjxw7t3btX9fX1Ki8vV+/evWNdUsQRZgAACIMJ7y46fvy47r//fg0fPlw9evTQo48+qgEDBigzMzPWpUUULzMBANBCFRcX6/Dhw3r66ac1ceJEde/eXQ8//HCsy4o4wgwAAC3QunXrNHfuXM2ePVtt2rRRQkKCZs+erQ0bNmj+/PmxLi+ieJkJAIAW6LLLLtOOHTtCxjp37qz//u//jlFF0cOZGQAAYDTCDAAAMBphBgAAGI0wAwAAjEaYAQAARiPMAAAAoxFmAACA0QgzAADAaIQZAABgNMIMAAAIMbPkD7rmur+PdRlNRpgBAAARt3PnTnXq1EmlpaVRvy3CDAAAMBphBgCAMFh1ta7+d66+++479evXT7Nnz3bGPvroI3Xr1k1r1qxp0hxLly7VwIED1atXL/3jP/6jqqurnXWrV6/WjTfeqN69e+uHP/yhRo8erbKyMmf9xRdfLEm69tpr1alTJ918883nfB+aim/NBgAgDLlrLnD19nYXfXtO27dv314zZ87UPffco0GDBqlHjx568MEHddddd+nKK6886/47duzQ22+/rfnz56uqqkr33nuvXnjhBT3++OOSpNraWo0fP169e/dWTU2NnnvuOY0dO1bvvPOOEhIS9Pbbb+vaa6/V4sWL1bNnT3m93rDud1MQZgAAaKEGDx6sUaNG6b777lPfvn2VmpqqJ554okn71tfXa9asWUpLS5MkjRw5UmvXrnXWDx06NGT7559/Xn369NHWrVvVq1cvtW/fXpKUkZGh7OzsCN2jxhFmAAAIw54r/xbrEppk8uTJGjx4sN544w2tWrVKycnJTdqvc16eE2QkKTs7W999952zvH37dj333HP67LPPdODAAdXX10uSvv32W/Xq1Suyd+IsCDMAAITBTkyNdQlNsmPHDu3du1f19fUqLy9X7969m7Sf55SXhSzLcgKLJN11113Ky8vTb37zG+Xk5Ki+vl5XX321AoFAROtvCsIMAAAt1PHjx3X//fdr+PDh6tGjhx599FENGDBAmZmZzZr3wIED+vrrr/Xss89q4MCBkqQNGzaEbJOUlCRJIQEoWggzAAC0UMXFxTp8+LCefvpptW7dWu+//74efvhhLViwoFnz+nw+ZWRkaOHChcrOzta3336rGTNmhGyTmZmpVq1aafXq1crNzVVycrLS09Obdbunw1uzAQBogdatW6e5c+dq9uzZatOmjRISEjR79mxt2LBB8+fPb9bcCQkJ+t3vfqdNmzZp8ODBeuqppzRp0qSQbTwej55++mktXLhQAwYM0JgxY5p1m2di2bZtR232OFNRURHR1/Isy1Jubq727Nmj86iNMUGv3UOv3UW/3dOcXh86dChqZxXigV0XlMq/CR3snC8rMfwXcLxeb5P/5p6uv16vV1lZWWfdnzMzAADAaFwzAwDAeeaqq67Srl27Qgft7y/U/edH/69uuvanMagqfIQZAADOM6+88krIS0B2fZ20p1ySlJXRLlZlhS3mYWbixImqqKhoMH7NNddo7Nixeuqpp7Rly5aQdUOGDNH48ePdKhEAgBYlLy8vZNmuC0oeW0ntvv8OqOMHYlFV+GIeZmbMmBHyHvSdO3dq2rRp+vGPf+yMDR48WLfddpuzfOK96wAAADEPM6devfz666+rQ4cO+sEPfuCMJScny+fzuVwZAAD/y7ZtWZYV6zJanEh8qF7Mw8zJgsGg1qxZo6FDh4YcMGvWrNGaNWvk8/l00UUXaeTIkWf8bolAIBDyWqBlWUpJSXF+jpQTc3FwRx+9dg+9dhf9dk9zep2cnKwjR44oNdWMrzA4V5YsnfpmdUvRPybr6+t1+PBhtW7dulnPgbgKMxs2bFBNTY2KioqcsSuuuEKZmZlq166dduzYoUWLFmn37t165JFHTjvP8uXLtXTpUmc5Pz9fxcXFTXqvejhycnKiMi8aotfuodfuot/uCbfXfr9ftbW1Ea4mPtjBoI77dyvZPixJOra3jZLa58ryhB8Tjh49esb1lmXJsix169bNOeEQrrj60Lzp06crMTFRjz/++Gm3KS0t1dSpUzV79uzTHpCnOzNTUVGhYDAYsXoty1JOTo78fj8fdhVl9No99Npd9Ns99Pr07MNVqn/k/yjv9s8lSbsW91PCc6/KatM2rPki1WuPx9OkExFxc2amoqJCGzduPOMZF0kqKCiQ9H1CPl2Y8Xq98p7ybZ8nROMAtm2bJ4ZL6LV76LW76Ld76HVDjfXDtm2pmX1yq9dx8wnAq1evVtu2bTVgwIAzbldWViZJysjIcKEqAAAQ7+LizEx9fb0++OADDRo0SImJic643+/X2rVrNWDAAKWlpWnnzp2aP3++evfura5du8awYgAAEC/iIsxs2rRJ+/fv11VXXRUy7vF4tGnTJr355ps6duyY2rdvr4EDB+qmm26KUaUAACDexEWY6du3r5YsWdJgPDMzU1OmTIlBRQAAwBRxc80MAABAOAgzAADAaIQZAABgNMIMAAAwGmEGAAAYjTADAACMRpgBAABGI8wAAACjEWYAAIDRCDMAAMBohBkAAGA0wgwAADAaYQYAABiNMAMAAIxGmAEAAEYjzAAAAKMRZgAAgNEIMwAAwGiEGQAAYDTCDAAAMBphBgAAGI0wAwAAjEaYAQAARiPMAAAAoxFmAACA0QgzAADAaIQZAABgNMIMAAAwGmEGAAAYjTADAACMRpgBAABGI8wAAACjeWJdwJIlS7R06dKQsY4dO+pf/uVfJEnHjx/XggULtG7dOgUCAfXt21djx46Vz+dzv1gAABB3Yh5mJKlz586aPHmys5yQ8L8njObPn69PP/1UDz/8sFJTU1VSUqKZM2fq6aefjkWpAAAgzsTFy0wJCQny+XzOf+np6ZKk2tpavf/++7rzzjv1d3/3d+revbsmTJigr776Slu3bo1x1QAAIB7ExZkZv9+vf/iHf5DX61VhYaFGjRqlzMxMbd++XXV1derTp4+zbadOnZSZmamtW7eqsLCw0fkCgYACgYCzbFmWUlJSnJ8j5cRckZwTjaPX7qHX7qLf7qHXZ2BZshsMWWH3yu1exzzMXHDBBZowYYI6duyogwcPaunSpfrVr36lmTNnqrKyUh6PR61btw7Zp23btqqsrDztnMuXLw+5Dic/P1/FxcXKysqKyn3IycmJyrxoiF67h167i367h143VJfaSntOGevQoYMS22Y0a163eh3zMNO/f3/n565duzrh5sMPP1RSUlJYc44YMULDhg1zlk8kw4qKCgWDweYVfBLLspSTkyO/3y/bPjXTIpLotXvotbvot3vo9enZh6sajO3du1dW7dGw5otUrz0eT5NORMQ8zJyqdevW6tixo/x+vy688EIFg0HV1NSEnJ2pqqo647uZvF6vvF5vo+uicQDbts0TwyX02j302l302z30uqHG+mHbttTMPrnV67i4APhkR48eld/vl8/nU/fu3ZWYmKhNmzY563fv3q39+/ef9noZAABwfon5mZkFCxbo4osvVmZmpg4ePKglS5YoISFBV1xxhVJTU3X11VdrwYIFSktLU2pqqubNm6fCwkLCDAAAkBQHYebAgQP67W9/q8OHDys9PV29evXS9OnTnbdn33nnnbIsSzNnzlQwGHQ+NA8AAECKgzDzT//0T2dcn5SUpLFjxxJgAABAo+LumhkAAIBzQZgBAABGI8wAAACjEWYAAIDRCDMAAMBohBkAAGA0wgwAADAaYQYAABiNMAMAAIxGmAEAAEYjzAAAAKMRZgAAgNEIMwAAwGiEGQAAYDTCDAAAMBphBgAAGI0wAwAAjEaYAQAARiPMAAAAoxFmAACA0QgzAADAaIQZAABgNMIMAAAwGmEGAAAYjTADAACMRpgBAABGI8wAAACjEWYAAIDRCDMAAMBohBkAAGA0wgwAADAaYQYAABjNE+sCli9frg0bNujbb79VUlKSCgsL9fOf/1wdO3Z0tnnqqae0ZcuWkP2GDBmi8ePHu10uAACIMzEPM1u2bNG1116rHj16qK6uTq+++qqmTZum559/Xq1atXK2Gzx4sG677TZnOSkpKRblAgCAOBPzMPPLX/4yZHnixIkaO3astm/frh/84AfOeHJysnw+n8vVAQCAeBfzMHOq2tpaSVJaWlrI+Jo1a7RmzRr5fD5ddNFFGjlypJKTkxudIxAIKBAIOMuWZSklJcX5OVJOzBXJOdE4eu0eeu0u+u0een0GliW7wZAVdq/c7nVchZn6+nq9/PLL6tmzp7p06eKMX3HFFcrMzFS7du20Y8cOLVq0SLt379YjjzzS6DzLly/X0qVLneX8/HwVFxcrKysrKnXn5OREZV40RK/dQ6/dRb/dQ68bqkttpT2njHXo0EGJbTOaNa9bvY6rMFNSUqLy8nJNnTo1ZHzIkCHOz126dFFGRoamTp0qv9/faKNGjBihYcOGOcsnkmFFRYWCwWDE6rUsSzk5OfL7/bLtUzMtIoleu4deu4t+u4den559uKrB2N69e2XVHg1rvkj12uPxNOlERNyEmZKSEn366aeaMmWK2rdvf8ZtCwoKJOm0Ycbr9crr9Ta6bzQOYNu2eWK4hF67h167i367h1431Fg/bNuWmtknt3od88+ZsW1bJSUl2rBhg371q18pOzv7rPuUlZVJkjIymnf6CwAAmC/mZ2ZKSkq0du1aPfbYY0pJSVFlZaUkKTU1VUlJSfL7/Vq7dq0GDBigtLQ07dy5U/Pnz1fv3r3VtWvX2BYPIObsw1Wqf/iOkLGE51+R1aZtjCoC4LaYh5l33nlH0vcfjHeyCRMmqKioSB6PR5s2bdKbb76pY8eOqX379ho4cKBuuummGFQLAADiTczDzJIlS864PjMzU1OmTHGpGgAAYJqYXzMDAADQHIQZAABgNMIMAAAwGmEGAAAYjTADAACMRpgBAABGI8wAAICwWHW16vhBJ3X8oJOsutqY1UGYAQAARiPMAAAAoxFmAACA0QgzAADAaIQZAABgNMIMACAuxMs7Y2AewgwAADCaJ9YFAEBzWYl1yrv9c0nSrsX9YloLAPdxZgYAABiNMBNFvP4LAIi18+FvEWEGAAAYjTADAACMRpgBgPPA+fBSA85fhBkAAGA0wgxcxb8OAQCRRpgBooTghvOVCce+CTWi6QgzMcYTKrboP86GYwSIf4QZIM615D+mLfm+4fzAMRwfCDMAAMBohJkIIqHHFx4PADg/EGYAAIDRCDMAAMBohBmgBeAltfDQN5wrjpn4RJg5z8X6iRnr24d7eKwBRAthBgAQdYRZRJMn1gU01VtvvaU//elPqqysVNeuXTVmzBgVFBTEuqwWyaqrVe6aCyRJe678m+zE1BhX1NCpNUqK+5pxfmvseXXymPWTbbITUmJZohHP/Wg63++/yYw4M7Nu3TotWLBAN998s4qLi9W1a1dNnz5dVVVVsS4NiFv8Szg66CsQf4wIM2+88YYGDx6sq666Snl5eRo3bpySkpK0evXqWJfmGn6BIlY49uIfjxHOd3H/MlMwGNT27dt14403OmMJCQnq06ePtm7d2ug+gUBAgUDAWbYsSykpKc7PkXJirlP/39jtWJYlNXLbDfY5TX1N3e5cNTZvtG6r0ds7dd1Z7v+59Lop9yNS99Wqq1XO//v+ZU//T7Z9/xJCpOYO836cOmbVH2lQ45lu77S9buz2G7n/4dQY1tyWJbuR22rKcz2s3p66romPa5MeowgdI4091uFs4/pjHeZzpik1nTz/qXM3q8ZT11lWk+uJllNvv7H72nCn8J5Hp+tZY78/osmybfvU+uPKgQMHdO+992ratGkqLCx0xhcuXKgtW7bomWeeabDPkiVLtHTpUmc5Pz9fxcXFrtQbEcEaaUna9z/fWi15Wjdtm1PHpLNv09jc4dxWU28/1sLprRTbPjb18Q/HSfPUXVuuPXcPV97tn0uSdi3up9xX3ldi24zwbj9SPQpXOMdjuLcfybrPNrd0xtuqqzqo3aN+GjLW8Y/vNv44RqvGSD3WkXx+xPnxWFdzXHvuuDr0+feHPynx7c5nvh+nzBPRYzZSfXRB3J+ZCceIESM0bNgwZ/lEMqyoqFAwGIzY7ViWpZycHPn9fkU8E161+/v/VxySdKhJ21h1tcr5n1V+v1+SQpZPXHB46tjZNLZPU8Yau/1wRarXTbn/bvZR0lkfx6bUGG5vT55n3759Ddbv3btXVu3Rxnc+yzEa0R6FIezjsSnPvbPc1rnUfbZj+1zvh3244bWEZ3wcIyBaj3VTnzNN2e/ksb1796q+CRdbu3k81tcGGuyz97tqWWH8ng+nnqY+H5q6X6R+Z3s8HmVlZZ19u7BvwSXp6elKSEhQZWVlyHhlZaV8Pl+j+3i9Xnm93kbXReNElG3bUZk3jEJO+tE+ZdX/1HjKNk2qu7F9GhmzE1K0u+hbZ/zk1+4j1aNmz9OU++9mHyNUY9g9OcN9dcYiNHdEe9SUm3fheDxpwmbP3azj8WRp6Up8aWWj80dNtB7rcPvaxN9ZEamxqc71cdRpnn9hzNOUeqK1n1t/H+M+zHg8HnXv3l2lpaW65JJLJEn19fUqLS3VddddF+Pq4pudmBryyxxNc2rf3L6gkscNJ4v18QiYIO7DjCQNGzZML774orp3766CggK9+eabOnbsmIqKimJdmnH4QwkACFe8/g0xIsxcdtllOnTokJYsWaLKykp169ZNTz755GlfZgIQe/H6Sw+IBw2fH+5+blpLe34aEWYk6brrruNlpbNoaQcnAABNYUyYASKBwAfTxeMxHI81nS/o/fcIM4ialvIkayn343wXzceRYwSILcIM4BL+4AFoLn6PNI4wAwBAIwgO5iDMAABcR1BAJBFmgPPYyX9QGvsYfAAwQUKsCwAAAGgOzswgLJwiBmASOzFVe67ardzcXNl79oT/nWOIS5yZAQAARuPMDAAAUcbZ7OgizABh4BcTAMQPXmYCAABGI8wAAACj8TITYKCW+jJXS71fAKKLMzMAAMBonJkBACAO2HWJKl90kbNsxbAW03BmBgAAGI0zMwCAuMQ1VGgqwgzOil8oAIB4xstMAADAaIQZAABgNMIMAAAwGtfMAABaFK7zO/9wZgYAABiNMAMAAIxGmAEAAEYjzAAAAKMRZgAAgNEIMwAAwGiEGQAAYDTCDAAAMBphBgAAGC1mnwC8b98+vfbaayotLVVlZaXatWunK6+8UjfddJM8Ho+zzX333ddg32nTpqmwsNDtkgEAQByKWZjZvXu3bNvW+PHjlZOTo/Lycs2ZM0dHjx7V6NGjQ7adPHmyOnfu7CynpaW5XS4AAIhTMQsz/fr1U79+/ZzlDh06aPfu3XrnnXcahJk2bdrI5/O5WyAAADBCXH3RZG1tbaNnXYqLixUIBJSbm6sbbrhBF1988RnnCQQCCgQCzrJlWUpJSXF+jpQTc0VyTjSOXrvAsmQ3GLLoeZRxbLsnrnvdSE0mP//c7nXchBm/369Vq1bpjjvucMZatWql0aNHq2fPnrIsS+vXr9ezzz6rRx999IyBZvny5Vq6dKmznJ+fr+LiYmVlZUWl9pycnKjMi4bodfTUpbbSnlPGOnTooMS2GTGp53zDse2eeOx1XWor7T5lrCU8/9zqdcTDzKJFi7RixYozbjNr1ix16tTJWT5w4ICmT5+uH//4xxoyZIgznp6ermHDhjnLBQUFOnjwoFauXHnGMDNixIiQ/U4kw4qKCgWDwXO+T6djWZZycnLk9/tl26f+mxaRRK+jzz5c1WBs7969smqPxqCa8wfHtnviudct7fkXqV57PJ4mnYiIeJgZPny4ioqKzrhNhw4dnJ8PHDigKVOmqGfPnho/fvxZ5y8oKNDGjRvPuI3X65XX6210XTQOYNu24+6J0VLR6+hprK+2bUv02xUc2+6Jx1631OefW72OeJhJT09Xenp6k7Y9EWTy8/M1YcIEJSSc/WNvysrKlJFh9mk3AABOZrVpq8SXVsa6DGPF7JqZAwcO6KmnnlJWVpZGjx6tQ4cOOetOvHPpgw8+kMfjUX5+viRp/fr1Wr16te69995YlAwAAOJQzMLMxo0b5ff75ff7G4STJUuWOD+/9tpr2r9/vxISEtSpUyc99NBDuvTSS90uFwAAxKmYhZmioqKzXlvTlG0AAMD5je9mAgAARiPMAAAAoxFmAACA0QgzAADAaIQZAABgNMIMAAAwGmEGAAAYjTADAACMRpgBAABGI8wAAACjEWYAAIDRCDMAAMBohBkAAGA0wgwAADAaYQYAABiNMAMAAIxGmAEAAEYjzAAAAKMRZgAAgNEIMwAAwGiEGQAAYDTCDAAAMBphBgAAGI0wAwAAjEaYAQAARiPMAAAAoxFmAACA0QgzAADAaIQZAABgNMIMAAAwGmEGAAAYjTADAACM5onljU+cOFEVFRUhY6NGjdKNN97oLO/YsUMlJSX6+uuvlZ6eruuuu0433HCDy5UCAIB4FdMwI0m33nqrhgwZ4iy3atXK+bm2tlbTpk1Tnz59NG7cOO3cuVP/9m//ptatW4fsAwAAzl8xDzMpKSny+XyNrlu7dq2CwaAmTJggj8ejzp07q6ysTG+88QZhBgAASIqDa2Zef/11jRkzRo899phWrlypuro6Z93WrVvVu3dveTz/m7n69u2r3bt3q7q6OhblAgCAOBPTMzN///d/r/z8fKWlpemrr77Sq6++qoMHD+rOO++UJFVWVio7OztknxNncSorK5WWltbovIFAQIFAwFm2LEspKSnOz5FyYq5IzonG0WsXWJbsBkMWPY8yjm330Gv3uN3riIeZRYsWacWKFWfcZtasWerUqZOGDRvmjHXt2lUej0cvvfSSRo0aJa/XG3YNy5cv19KlS53l/Px8FRcXKysrK+w5zyQnJycq86Iheh09damttOeUsQ4dOiixbUZM6jnfcGy7h167x61eRzzMDB8+XEVFRWfcpkOHDo2OX3DBBaqrq1NFRYU6duwon8+nysrKkG1OLJ/uOhtJGjFiREhQOpEMKyoqFAwGz3ofmsqyLOXk5Mjv98u2T/03LSKJXkeffbiqwdjevXtl1R6NQTXnD45t99Br90Sq1x6Pp0knIiIeZtLT05Wenh7WvmVlZbIsy9m/sLBQr776qoLBoHPdzMaNG9WxY8fTvsQkSV6v97RndqJxANu2zRPDJfQ6ehrrq23bEv12Bce2e+i1e9zqdcwuAN66dav+/Oc/q6ysTHv37tWaNWs0f/58XXnllU5QueKKK+TxePT73/9e5eXlWrdunVatWhVy1gUAAJzfYnYBsMfj0bp16/Sf//mfCgQCys7O1tChQ0OCSmpqqiZNmqSSkhI9/vjjatOmjUaOHMnbsgEAgCNmYaZ79+6aPn36Wbfr2rWrpk6d6kJFAADARDH/nBkAAIDmIMwAAACjEWYAAIDRCDMAAMBohBkAAGA0wgwAADAaYQYAABiNMAMAAIxGmAEAAEYjzAAAAKMRZgAAgNEIMwAAwGiEGQAAYDTCDAAAMBphBgAAGI0wAwAAjEaYAQAARiPMAAAAoxFmAACA0QgzAADAaIQZAABgNMIMAAAwGmEGAAAYjTADAACMRpgBAABGI8wAAACjEWYAAIDRCDMAAMBohBkAAGA0wgwAADAaYQYAABiNMAMAAIxGmAEAAEbzxOqGN2/erClTpjS67plnnlFBQYH27dun++67r8H6adOmqbCwMNolAgAAA8QszPTs2VP//u//HjK2ePFilZaWqkePHiHjkydPVufOnZ3ltLQ0V2oEAADxL2ZhxuPxyOfzOcvBYFAff/yxrrvuOlmWFbJtmzZtQrYFAAA4IWZh5lQff/yxDh8+rKuuuqrBuuLiYgUCAeXm5uqGG27QxRdffMa5AoGAAoGAs2xZllJSUpyfI+XEXJGcE42j1y6wLNkNhix6HmUc2+6h1+5xu9dxE2ZWr16tfv36qX379s5Yq1atNHr0aPXs2VOWZWn9+vV69tln9eijj54x0CxfvlxLly51lvPz81VcXKysrKyo1J6TkxOVedEQvY6eutRW2nPKWIcOHZTYNiMm9ZxvOLbdQ6/d41avIx5mFi1apBUrVpxxm1mzZqlTp07O8nfffafPP/9cDz30UMh26enpGjZsmLNcUFCggwcPauXKlWcMMyNGjAjZ70QyrKioUDAYPKf7cyaWZSknJ0d+v1+2feq/aRFJ9Dr67MNVDcb27t0rq/ZoDKo5f3Bsu4deuydSvfZ4PE06ERHxMDN8+HAVFRWdcZsOHTqELK9evVpt2rQ568tH0veBZuPGjWfcxuv1yuv1NrouGgewbds8MVxCr6Onsb7ati3Rb1dwbLuHXrvHrV5HPMykp6crPT29ydvbtq0PPvhAP/nJT+TxnL2csrIyZWRw2hsAAHwv5tfMlJaWat++fRo8eHCDdR988IE8Ho/y8/MlSevXr9fq1at17733ul0mAACIUzEPM++//7569uwZcg3NyV577TXt379fCQkJ6tSpkx566CFdeumlLlcJAADiVczDzIMPPnjadUVFRWe9/gYAAJzf+G4mAABgtJifmQEQP+y6RJUvushZ5qPFAJiAMzMAAMBohBkAAGA0wgwAADAaYQYAABiNMAMAAIxGmAEAAEYjzAAAAKMRZgAAgNEIMwAAwGiEGQAAYDTCDAAAMBphBgAAGI0wAwAAjEaYAQAARiPMAAAAoxFmAACA0QgzAADAaIQZAABgNMIMAAAwGmEGAAAYjTADAACMRpgBAABGI8wAAACjEWYAAIDRCDMAAMBohBkAAGA0wgwAADAaYQYAABiNMAMAAIxGmAEAAEbzRGviZcuW6dNPP1VZWZk8Ho9efvnlBtvs379fL730kjZv3qxWrVpp0KBBGjVqlBITE51tNm/erAULFqi8vFzt27fXyJEjVVRUFK2yAQCAYaIWZoLBoC699FIVFhbq/fffb7C+vr5eM2bMkM/n07Rp03Tw4EG98MILSkxM1KhRoyRJ+/bt0z//8z/rpz/9qe6//36Vlpbq97//vXw+n/r16xet0oHzktWmrRJfWinLspSbm6s9e/bItu1YlwUAZxW1l5luvfVWDRs2TF26dGl0/RdffKFdu3bp/vvvV7du3dS/f3/ddtttevvttxUMBiVJ77zzjrKzszV69Gjl5eXpuuuu06WXXqo///nP0SobAAAYJmpnZs5m69at6tKli3w+nzPWr18/zZ07V+Xl5crPz9ff/vY39enTJ2S/vn37NvqS1ckCgYACgYCzbFmWUlJSnJ8j5cRckZwTjaPX7qHX7qLf7qHX7nG71zELM5WVlSFBRpLatm3rrDvx/xNjJ29z5MgRHT9+XElJSY3OvXz5ci1dutRZzs/PV3FxsbKysiJ3B06Sk5MTlXnREL12D712F/12D712j1u9Pqcws2jRIq1YseKM28yaNUudOnVqVlHNNWLECA0bNsxZPpEMKyoqnJewIsGyLOXk5Mjv93NtQZTRa/fQa3fRb/fQa/dEqtcej6dJJyLOKcwMHz78rO8k6tChQ5Pm8vl82rZtW8hYVVWVs+7E/0+MnbxNSkrKac/KSJLX65XX6210XTQOYNu2eWK4hF67h167i367h167x61en1OYSU9PV3p6ekRuuLCwUMuWLVNVVZXzUtLGjRuVkpKivLw8SdIFF1ygzz77LGS/jRs3qrCwMCI1AAAA80Xt3Uz79+9XWVmZ9u/fr/r6epWVlamsrExHjx6V9P2FvHl5eXrhhRdUVlamzz//XIsXL9a1117rnFW55pprtG/fPi1cuFDffvut3n77bX344YcaOnRotMoGAACGsewonf958cUX9V//9V8Nxn/961/rhz/8oaTvr2GZO3euNm/erOTkZA0aNEg/+9nPGnxo3vz587Vr165mf2heRUVFyLucmovP43APvXYPvXYX/XYPvXZPpHrt9XqbdM1M1MJMPCLMmIteu4deu4t+u4deu8ftMMN3MwEAAKMRZgAAgNEIMwAAwGiEGQAAYDTCDAAAMBphBgAAGC1mXzQZCx5PdO5utOZFQ/TaPfTaXfTbPfTaPc3tdVP3P68+ZwYAALQ8vMzUDEeOHNEvfvELHTlyJNaltHj02j302l302z302j1u95ow0wy2beubb77hkyRdQK/dQ6/dRb/dQ6/d43avCTMAAMBohBkAAGA0wkwzeL1e3XzzzfJ6vbEupcWj1+6h1+6i3+6h1+5xu9e8mwkAABiNMzMAAMBohBkAAGA0wgwAADAaYQYAABiNL6hohrfeekt/+tOfVFlZqa5du2rMmDEqKCiIdVlGW758uTZs2KBvv/1WSUlJKiws1M9//nN17NjR2eb48eNasGCB1q1bp0AgoL59+2rs2LHy+XyxK9xwr7/+uv74xz/q+uuv11133SWJPkfagQMHtHDhQn3++ec6duyYcnJyNGHCBPXo0UPS9x8ytmTJEr333nuqqalRr169NHbsWOXm5sa4crPU19dryZIlWrNmjSorK9WuXTsNGjRII0eOlGVZkuh1uLZs2aKVK1fqm2++0cGDB/XII4/okksucdY3pa/V1dWaN2+ePvnkE1mWpYEDB+ruu+9Wq1atmlUbZ2bCtG7dOi1YsEA333yziouL1bVrV02fPl1VVVWxLs1oW7Zs0bXXXqvp06dr0qRJqqur07Rp03T06FFnm/nz5+uTTz7Rww8/rClTpujgwYOaOXNmDKs227Zt2/Tuu++qa9euIeP0OXKqq6s1efJkeTwePfnkk5o1a5ZGjx6t1q1bO9usWLFCq1at0rhx4/TMM88oOTlZ06dP1/Hjx2NYuXlef/11vfvuu7rnnns0a9Ys/exnP9PKlSu1atUqZxt6HZ5jx46pW7duuueeexpd35S+zp49W+Xl5Zo0aZIef/xxffnll5ozZ07zi7MRlieeeMKeO3eus1xXV2ePHz/eXr58eeyKaoGqqqrsW265xd68ebNt27ZdU1Nj33777faHH37obLNr1y77lltusb/66qtYlWmsI0eO2A888ID9xRdf2L/+9a/tP/zhD7Zt0+dIW7hwoT158uTTrq+vr7fHjRtnr1ixwhmrqamxR40aZa9du9aNEluMGTNm2L/73e9Cxp599ln7t7/9rW3b9DpSbrnlFnv9+vXOclP6Wl5ebt9yyy32tm3bnG0+++wz+9Zbb7W/++67ZtXDmZkwBINBbd++XX369HHGEhIS1KdPH23dujWGlbU8tbW1kqS0tDRJ0vbt21VXVxfS+06dOikzM5Peh2Hu3Lnq37+/LrzwwpBx+hxZH3/8sbp3767nn39eY8eO1WOPPaa//OUvzvp9+/apsrIy5HFITU1VQUEB/T5HhYWFKi0t1e7duyVJZWVl+uqrr9S/f39J9DpamtLXrVu3qnXr1s5Lq5LUp08fWZalbdu2Nev2uWYmDIcOHVJ9fX2Dawd8Pp/zBELz1dfX6+WXX1bPnj3VpUsXSVJlZaU8Hk/I6XlJatu2rSorK2NQpbn++te/6ptvvtGMGTMarKPPkbVv3z69++67Gjp0qEaMGKGvv/5af/jDH+TxeFRUVOT0tG3btiH70e9zd+ONN+rIkSN66KGHlJCQoPr6et1+++268sorJYleR0lT+lpZWan09PSQ9YmJiUpLS2t27wkziFslJSUqLy/X1KlTY11Ki7N//369/PLLmjRpkpKSkmJdTotXX1+vHj16aNSoUZKk/Px87dy5U++++66KiopiW1wL8+GHH2rt2rV64IEH1LlzZ5WVlenll19WRkYGvW7BCDNhSE9PV0JCQoMkWVlZyTs9IqSkpESffvqppkyZovbt2zvjPp9PwWBQNTU1IWcNqqqq6P052L59u6qqqvSLX/zCGauvr9eXX36pt956S7/85S/pcwRlZGQoLy8vZCwvL0/r16+XJKenVVVVysjIcLapqqpSt27d3CqzRVi4cKFuuOEGXX755ZKkLl26qKKiQq+//rqKiorodZQ0pa8+n0+HDh0K2a+urk7V1dXN/r3CNTNh8Hg86t69u0pLS52x+vp6lZaWqrCwMIaVmc+2bZWUlGjDhg361a9+pezs7JD13bt3V2JiojZt2uSM7d69W/v376f356BPnz567rnn9Jvf/Mb5r0ePHrriiiucn+lz5PTs2bPBS9C7d+9WVlaWJCk7O1s+ny+k37W1tdq2bRv9PkfHjh1TQkLon7aEhATZ//M1hPQ6OprS18LCQtXU1Gj79u3ONqWlpbJtu9kfa8KZmTANGzZML774orp3766CggK9+eabOnbsGKcxm6mkpERr167VY489ppSUFOfsV2pqqpKSkpSamqqrr75aCxYsUFpamlJTUzVv3jwVFhbyi+gcpKSkONchnZCcnKw2bdo44/Q5coYOHarJkydr2bJluuyyy7Rt2za99957Gj9+vCTJsixdf/31WrZsmXJzc5Wdna3FixcrIyNDP/rRj2JcvVkuuugiLVu2TJmZmcrLy1NZWZneeOMNXXXVVZLodXMcPXpUfr/fWd63b5/KysqUlpamzMzMs/Y1Ly9P/fr105w5czRu3DgFg0HNmzdPl112mdq1a9es2vjW7GZ46623tHLlSlVWVqpbt266++67dcEFF8S6LKPdeuutjY5PmDDBCYonPsztr3/9q4LBIB/mFiFPPfWUunXr1uBD8+hzZHzyySf64x//KL/fr+zsbA0dOlRDhgxx1tv/84Fjf/nLX1RbW6tevXrpnnvuCfnASJzdkSNH9B//8R/asGGDqqqq1K5dO11++eW6+eab5fF8/+93eh2ezZs3a8qUKQ3GBw0apIkTJzapr9XV1SopKQn50LwxY8Y0+0PzCDMAAMBoXDMDAACMRpgBAABGI8wAAACjEWYAAIDRCDMAAMBohBkAAGA0wgwAADAaYQYAABiNMAMAAIxGmAEAAEYjzAAAAKMRZgAAgNH+PwK1H2vM2d4XAAAAAElFTkSuQmCC" }, "metadata": {}, - "output_type": "display_data" + "output_type": "display_data", + "jetTransient": { + "display_id": null + } } ], - "source": [ - "# Corresponding to M = 40, SNR = inf, imb = 0\n", - "\n", - "visualizeReconstruction(discrete_models[2])" - ] + "execution_count": 44 }, { "cell_type": "markdown", @@ -22778,28 +4530,12 @@ }, { "cell_type": "code", - "execution_count": 53, - "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "C:\\Users\\tomli\\AppData\\Local\\Temp\\ipykernel_1208\\2689969186.py:8: RuntimeWarning: divide by zero encountered in scalar divide\n", - " IRR_abs = np.abs(r)**2/np.abs(1-r)**2\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABbsAAAIoCAYAAABAqjbsAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzs3XlYVGX7B/DvmYV9FxHEDQRcMAHN3Bdcy10TM1vEMsslLU1Te9NssbBSezNf29SWn2bua4lbZZmlyZI7KpS4IyCrMMM8vz+mmRwZEHDgzAzfz3V5FWeeM+c+D8N5zrnnOfeRhBACREREREREREREREQ2TCF3AERERERERERERERE94rJbiIiIiIiIiIiIiKyeUx2ExEREREREREREZHNY7KbiIiIiIiIiIiIiGwek91EREREREREREREZPOY7CYiIiIiIiIiIiIim8dkNxERERERERERERHZPCa7iYiIiIiIiIiIiMjmMdlNRERERERERERERDaPyW6yek2aNEGTJk3kDsMqSZKEHj163NN7pKWlQZIkxMbGWiSmmqDRaPD6668jLCwMjo6OkCQJmzdvljssIiKbs2rVKkiShFWrVlXbNn744QdIkoTXXnut2rZhjSwxRsvJUp+N1157DZIk4YcffrBIXDXh7NmzePjhhxEQEACFQgEvLy+5QyIiIjJiHoB5ACofk91UJZIkQZIkNG7cGLdu3TLbpkmTJpAkCVqttoajqx6xsbHG/X7jjTfKbBcXF2ds9/jjj9dghDXDMCje/k+lUqFevXoYOHAgdu3aVe0xLF68GPPmzUNAQABeeuklzJs3D82bN6/27RJR7WY45pXlyJEjGDt2LIKDg+Hs7AwPDw9ERETg5ZdfxpUrVyq9PcM4mpaWdg9Rk60wfL6USiX++uuvMtu1bNnS2HbPnj01GGHNMCTHb//n7OyMZs2aYfLkybh06VK1bl+n02HYsGHYvn07BgwYgLlz52LWrFnVuk0iql48vhJQ9QQx8wB6zAOQLVHJHQDZtr///htLliyp1ouAvXv3Vtt7V4VKpcKKFSvwn//8x2zSY8WKFVCpVHaT5C+Lp6cnXnjhBQDArVu3kJSUhB07dmDHjh1YunQpJk2aVG3b3rp1K9zc3LB79244ODhU23aIiCpCCIFZs2Zh4cKFUKlU6NOnD2JiYlBcXIyDBw9i4cKFWLZsGdasWYOBAwfKHS5ZMcP5w8qVK83OhP/ll19w8uTJWnGe0b17d2NSIiMjA/Hx8fjoo4/w7bff4rfffkNQUFC1bPf8+fM4duwYnnnmGXzyySfVsg0iqnk8vtK9Yh5Aj3kAsgWc2U1V5u3tDR8fH7z99tvIyMiotu00bdoUTZs2rbb3r6z+/fsjLS3NbBL+xx9/xJkzZzBgwAAZIqtZXl5eeO211/Daa6/hnXfewXfffYcVK1YAAGbNmoXCwsJq2/alS5dQp04dDnBEZBVef/11LFy4EE2aNEFiYiJ27tyJuLg4LF68GL/99hvWr18PrVaL4cOH49ChQ3KHS1asXr16aNOmDVauXAmdTlfq9c8++wxqtRp9+vSRIbqa1aNHD+N5xtKlS3H8+HH06tUL169fx5tvvllt2zXMHK9fv361bYOIah6Pr3SvmAfQYx6AbAGT3VRlLi4uePXVV5GTk4P58+dXat21a9eia9eu8PT0hLOzM1q1aoUFCxaYLYlirmZ3UVERFi9ejKioKHh7e8PFxQUNGzbEoEGDsHv3bgBAVlYWXFxc0LRpUwghzMYxcOBASJKEP/74o8KxP/7443BycsLnn39e6rXPPvsMjo6OeOKJJ8pcPzs7G7NmzUJYWBicnJzg7e2Nvn37GuO+U3FxMd544w00bdoUjo6OCAoKwn/+8x8UFRWVuQ2tVotly5ahQ4cO8PDwgIuLC6KiorB06VKzJ3eWEhsbC1dXV+Tl5eH48ePG5adOnUJsbCwaNmwIR0dH1KtXD6NHj8bp06fNvockSTh//jyWLFmC++67D87OzujRo4fxtdTUVPz111/G26fu/HxU5fN18+ZNTJ06FY0bN4ZarTbO+DC8npeXhxdffBENGzaEs7MzIiMjjfXBDLXDQkND4eTkhKZNm+Kjjz4qta3i4mIsXboU/fv3R+PGjeHo6Ahvb2/06tULO3bsMNunhu0XFBRgxowZaNSoERwdHRESEoJ33nmnzM/277//jkceeQSBgYFwdHREQEAA+vbti2+//bZU299++w0jRoyAv78/HBwc0LBhQzz77LPVfqs4kT1ITU3Fm2++CbVaja1btyI8PLxUm4cffhiLFy+GRqPBc889d8/bNNyGe/XqVTz11FOoV68eXF1d0alTJxw4cAAAkJeXh2nTphmPGeHh4Vi/fn2577t9+3Z06tQJrq6u8Pb2xogRI5CSklKq3ZkzZzBr1izcf//9qFu3LhwdHdG4cWM888wz+Pvvvyu8H3/88QemTp2KiIgI+Pj4wMnJCaGhoZg2bRoyMzNLtb+9hvT+/fvRo0cPuLu7w8PDA/379zcZd25XUFCAuLg43H///XB3d4ebmxtatGiBKVOm4OrVq6Xavv3224iMjISrqyvc3NzQsWNHrFmzxux7V2WMvptx48bh77//LnVekJOTg3Xr1mHw4MHw8/Mrc/0jR45g+PDh8PPzM/5uJkyYUOYx/ezZs4iJiYG3t7fxc7R9+/ZyY0xPT8fkyZMRHBwMR0dH1KlTB4MHD8bhw4crv8MVpFarMX78eAD6cet2a9asQXR0NLy9veHk5IQWLVrgzTffNPt7MPz9XLp0CWPHjkVAQACUSqXx89W9e3cAwPz5843nGbfPAq3Medzt9eoPHTqEhx56CN7e3sbyRLe/fuTIETz44IPw8vKCl5cXHn74YVy4cAEAkJKSgpEjR6Ju3bpwdnZGdHQ0kpOTS22vsn+bt28/MTERAwYMgJeXF1xcXNCtWzf88ssvZn8XJSUlWL58OTp37mw81woJCcG4ceNKHTPkOiclMudej6+VOfZdunQJr7/+Ojp37mw8x65fvz4effTRMserTZs2ITo6Gv7+/nB0dIS/vz+6dOlS6rqivGdalfWchPKOfQaVuSbo0aMHJEkyXgc1bdoUTk5OaNasGT799FNju48++gitWrWCs7MzGjRogNdee63Mv/2qbF+r1WLBggUIDQ2Fo6MjGjZsiBkzZpgc/w3Hd0CflL69DEdlnifCPEDZmAdgHsDqCKIqACACAwNFcXGxaNq0qVCr1eL06dMmbRo3biwACI1GY7J85syZAoCoW7eumDBhgnjppZdEy5YtBQDRtWtXUVRUVOp9GjdubLJs5MiRAoBo1aqVmDJlinj55ZfFE088IYKCgsT06dON7caOHSsAiPj4+FL78PfffwuFQiHatm1boX0eM2aMACB2794tRo8eLRwdHcWNGzeMr2dlZQlnZ2fxyCOPiP379wsA4rHHHjN5j8zMTNG8eXMBQDzwwAPi5ZdfFk8//bRwd3cXkiSJjz76yKS9TqcTQ4YMEQBE06ZNxbRp08TkyZNFQECAGDRokAAgunfvbrJOcXGx6NevnwAgmjdvLp599lkxdepU0bp1a7MxpaamCgBizJgxFeoHQ/s7fyeGeF1dXQUAcfjwYSGEEN99951wdnYWarVaDBs2TMyYMUM8+uijwtHRUXh4eIg//vjDbD8PGDBAeHp6itGjR4uZM2eK2bNni02bNol58+YJT09P4enpKebNmyfmzZsnFi9ebFy/Kp8vf39/0aZNGxEUFCSeeeYZ8eKLL4qVK1caX69fv77o0KGDCAsLE5MmTRLPPPOMcHNzEwqFQuzZs0cMGjRIBAYGinHjxolJkyaJevXqCQDim2++MdnW5cuXhUKhEF26dBFPP/20mDVrlhgzZozw8vISAMTHH39cqk8N2+/cubMICgoS48ePFxMnThT169cXAMTcuXNLrfPJJ58IpVIpHBwcxIgRI8Ts2bPF008/LVq3bl3q87JixQqhVCqFq6urePTRR8WMGTPE0KFDhUKhEAEBAeKvv/4q66NAVOsAEHeeOr366qsCgIiJiSl3XY1GIwICAgQAcfDgwQptzzCOpqamloojIiJCNG3aVERGRoqpU6eKJ554QqjVauHs7CwSEhLE/fffL0JDQ8XEiRPFM888Yxxnfv31V5P3WrlypQAgBg0aJFQqlYiJiRGzZ88WDz30kAAgfHx8xKlTp0zWefvtt4Wnp6cYOnSoeP7558X06dNFv379hCRJws/PT1y4cMGkvWFMnDdvnsnyZ599Vvj5+YmYmBgxbdo0MXXqVNG5c2cBQDRr1kzk5OSYjfXhhx8WKpVKDBo0SLz00kuif//+AoDw9fUV165dM1knMzNTREREGMfEKVOmiJdeekkMHTpUuLq6iv379xvbZmVliaioKAFAtG3bVkyePFlMnDhRNG3aVAAQr7zyisl7V2WMLo/h3Co7O1u4uLiIESNGmLz+v//9TwAQ3333nck5ye02b94s1Gq1cHBwEKNHjxazZs0SvXv3FgBEQECAOHfunEn7M2fOiDp16ggA4qGHHhKzZ88WMTExQqlUGvfBMB4a/PHHH6JOnTpCkiTx4IMPiunTp4sxY8YIT09P4eDgIHbs2GHSft68eQKASV+Xx9D+zs+LEEJ88803AoAIDw83LnvqqacEANGwYUPx9NNPi2nTpolOnToJAKJHjx6iuLi4VD+3atVKNGrUSISHh4vJkyeLSZMmiR07doh58+YZ+7Z79+7G8wxD7JU9jzN89vv06SPUarXo2bOnmD59unjiiSfExYsXja/3799fODk5iX79+onp06eLvn37CgAiLCxMHD9+XHh7e4vOnTuLadOmiREjRghJkkTdunVFbm6uyfaq+rc5YMAA4ezsbIwvJiZGKBQK4ejoKE6cOGGyTlFRkfEz1bBhQzFhwgQxc+ZMMXLkSOHj42PyeansOSlRdbHE8bWyx741a9YIZ2dn0b9/fzFx4kTjObZKpRIuLi4iISHBpP2yZcsEAOHv7y+eeeYZ4/l7u3btxP3332/S1tz1sUFZx9zyjn1CVP6aoHv37gKAGD58uAgMDBTPPPOMmDhxovDz8xMAxKpVq8TkyZOFj4+PePLJJ8XUqVNFcHCwACDeeeedUnFXdfsxMTHC399fjB07VkydOlWEhoYKAOLJJ580tk1ISDD2S+PGjY3H9tuP7+VhHsC0PfMAzAPYAia7qUoMJwxCCLFu3ToBQAwbNsykjblk988//2w8QF69etW4XKPRGC9W33zzzVLvc/sBNTs7W0iSJNq2bSu0Wm2p2DIyMoz/f+TIEeOF8Z0MCYpPPvmkQvt8+yC3b98+AUB88MEHxtc//PBD4+tlDXLPPPOMACAmTJhgsvzUqVPC3d1dqNVqcf78eePy//u//xMARIcOHURhYaFx+Y0bN4wnC3cetAwD+dSpU036R6vVGi8IN23aZFxuyUFu1apVAoBwdXUVBQUFIjMzU3h5eQlfX19x8uRJk7bHjh0Trq6uIjIy0mS5oZ/r169v0he3K+sEr6qfLwCiV69eIi8vz+y2AIiBAweKW7duGZf/9NNPAoDw9PQU999/v8jKyjLpI7VaXWrfbt26VepCUwj9yU+LFi2Et7e3KCgoMLv9hx56yOS1q1evCk9PT+Hh4WFyIX/8+HGhUqmEt7e3OHbsWKlt/f3338b/P336tFCr1SI0NFRcunTJpN3evXuFQqEQQ4YMKfUeRLWVuWR3dHR0hceSRx99VAAQcXFxFdpeecluAOLZZ58VJSUlxuVffvml8bg0cOBAk3Hjl19+EQDE0KFDTd7LkEAGILZt22by2pIlSwQA0bNnT5Pl6enpJsdDg507dwqFQiGeffZZk+VlJbvT0tLMjuPLly8XAMTbb79tNlalUin27Nlj8tqsWbPMXkAb+vy5554z6SshhMjJyTE5dhvGn/fee8+kXWFhoTFhePToUePyqozR5bn93OrJJ58UDg4O4vr168bX27ZtKxo1aiRKSkrMJmNyc3OFj4+PUCqV4pdffjF57wULFggAonfv3ibL+/TpIwCIJUuWmCzfvHmz8XNxe/JSo9GIpk2bCicnJ3HgwAGTdS5evCjq168v6tWrZ9Iflkp2azQaY5J17NixQoh/PxMjRoww2ebt73P7hbAQ//79PPHEE6UmZAhR9udViMqfxxneC4BYvnx5mdsCIL7++muT1wznbJ6enqXOXd566y2zv7eq/m0aElO3M/wdPvfccybLZ8+eLQD9F2R3buvWrVsmXzhV9pyUqLrc6/G1Kse+q1evlvrSVgh90tzFxUX069fPZHlUVJRwcHAwuYYxuD1WIaqe7C7r2FeVawJDsvnO66Bz584JtVotPD09RZMmTUR6errxtezsbOHr6yt8fX1NYriX7bdp08Yk8ZyXlyeaNm0qFApFqfeq7LhswDyAaXvmAZgHsAVMdlOV3H7CIIQQHTt2FABMBn9zye6nn35aABCffvppqfc8deqUUCgUIigoyGT5nQe0nJwcAUB06tRJ6HS6u8barl07oVarxZUrV4zLtFqtqF+/vnB3dzd7YDPn9kFOp9OJkJAQ0bp1a+PrkZGRIigoSOh0OrODXFFRkXB2dhZubm4iMzOz1PvPmTNHABDz5883LjNc1O3bt69Ue8MF3u2DXElJiahTp44ICAgwm0DIysoSkiSZzGao6iB3+zeqs2bNEv379xeSJJkM/oZEyZ3fVBu88MILAoDJwdjQz3denN6urEGuqp8vAKVmV9z5+p2z4YQQIigoSAAQe/fuLfVadHS0UCqVZn8P5rz33nsCgPjxxx/Nbv/s2bOl1nnyyScFAPHnn38al02ePFkAEIsWLbrrNg39f+dMFAPDN7s3b96s0D4Q2Ttzye4WLVoIQD8b7G4MM06ef/75Cm2vvGS3i4tLqYtorVYrVCpVucesJk2amCwzjCV3JrQN72eY1ZyWllahmFu1alXqOFte8tAcnU4nPDw8RHR0tNlYH3/88VLrnD9/XgCmX25fvXrVODslPz+/3G1mZGQIpVIp2rVrZ/b1xMREAUC89NJLxmWVHaPv5vZzK8OF1Pvvvy+E0M9Ku70PzSVjvvrqK7MX2ELoZ3sZPk+G3+WFCxcEABEUFGR2rDIkEm5PdhuS4DNmzDC7D4Zxf/v27cZlVU123z6zevLkySIsLEwA+hn8hs93ZGSkUKvVJheaBlqtVtSpU6fUjEgAZSaUhCj781qV8zjDe0VERJS7ra5du5Z67ccffxQARJMmTUr9fv766y8BQMTGxpp9X3PK+9vs0qVLqfbFxcVCpVKZ3AGp1WqFp6encHZ2FhcvXix3e1U5JyWqLvd6fK3Ksa88AwcOFI6OjiaJqjZt2ggXFxezx5c7VTXZXdaxryrXBIYxoqzrIADi888/L/Wa4c7r288r7mX7d375LYQQc+fOFUDpL/EtkexmHoB5ACGYB7AFKhBZwPvvv49OnTph+vTpOHTokNmnEwNAQkICACA6OrrUa82aNUODBg2QmpqK7OxseHl5mX0Pd3d3DBo0CNu2bUNUVBQefvhhdOnSBe3bt4eLi0up9hMnTsTYsWOxYsUKzJ49GwCwbds2XLp0CRMmTICrq2ul91eSJDz11FOYM2eOsUZbYmIi3njjjTL3/fTp0ygsLESXLl3g7e1d6vXevXtjwYIFOHr0qHHZ0aNHoVAo0KVLl1Lte/ToUWrZmTNncOPGDYSGhuKNN94wG4ezszNOnTpVkd0s182bN4212pVKJXx8fPDggw9i8uTJ6N+/PwDg119/BaDvG3P10M6cOQNAX8vrzjq37du3r3RMVf18OTo6IiIiosz39fLyQnBwcKnl9evXR2pqKtq2bWv2tZKSEly5cgWBgYHG5cePH8e7776Ln376CZcvXy5VP+zixYtmt2/uIa0NGzYEoK9Pb2B4+N1DDz1U5v4YGH4/P/zwA37//fdSr1+7dg06nQ4pKSlm95GIYKyXV9ax/3aGNubqBlZWWFgY3N3dTZYplUrUq1cP+fn5ZR6z7qx1bGCoU3zn+3Xp0gXnzp1DQkICGjduDEC/z//3f/+HVatWISkpCVlZWSgpKTGuV9GHBmk0Gnz88cf45ptvcOLECdy8edOknqS54yEA3H///aWWmTseHj58GDqdDt26dTN7fnC7w4cPG/fB3Hil0WgAwGT8rOwYXRldu3ZFs2bN8Pnnn2PatGn49NNPoVAo8NRTT5W5TnljoFqtRvfu3fHll18af5eG9l26dIFSqTS7Dz/++KPJMsO4kZaWZrafDPWaT506dc8P6frxxx+N2zfUkXzuuecwZ84cNGzYEAUFBUhKSoKvry+WLFli9j0cHR3NnvM0adKk3Lq85lTlPM7gbuc0ZZ1HAEBkZGSp34/htfT0dJPlVf3bNPc3pVarUa9ePZO/qVOnTuHmzZto3779XR/gWZPnpESVUZXja1WPfTt27MDy5ctx5MgRZGRkQKvVmqyXkZGBgIAAAMBjjz2G6dOnIzw8HKNGjUK3bt3QuXNn1K1b91532aisY9+9XBOUd/wq77X09HTjecW9bL+i5wSWwjwA8wAA8wC2gMlusoiOHTtixIgRWL9+Pb799ls88sgjZtvdvHkTAODv72/29YCAAPz999+4efNmmcluQP/ggbi4OKxevRpz584FADg5OWHkyJF47733TE4KHnnkEUyfPh2fffYZZs2aBUmS8PHHHwPAPT0oLDY2FnPnzsVnn30GQH+gHzt2bJntK7Lvt7cz/L+Pjw/UanWp9ube58aNGwD0J1zlPTQ0Ly+vzNcqqnHjxkhLSyu3jSGe2x9SUtF4yuqn8lT181WvXr1yE1Wenp5ml6tUqjJfN7xmSJAA+gGoZ8+e0Gq16NWrFwYPHgwPDw8oFAokJiZiy5YtZh84crft334hm52dDQAmA2tZDL+fd999t9x2lvi8ENmrgIAAnDp1yvggufIYElOWuHAt77hQ3mt3Xmgb1KtXz+xyw/H09rFp2rRpWLJkCQICAtCvXz8EBgbC2dkZgP4hUH/99VeF9uGRRx7Bpk2bEBwcjCFDhhgfyAUAS5YsKfMBTOUdc+/1eHj48OFyH7J4+/GwsmN0ZT399NOYOXMm9u3bh9WrV6NPnz5o1KhRme0re55h+O/dfve3M/TTunXryo3dEuPGvHnzyn1wWFZWFoQQuH79eqUflF5d5xi3t6vM9sr7TFf0HAOo+t9meceMe/2bqolzUqLKquzxtSrHvv/+97+YOnUqvL29je/v4uICSZKwefNmJCUlmYxz06ZNg6+vL5YtW4YPPvgAixcvhiRJiI6Oxrvvvos2bdrc416XfSy6l2sCSxy/qmv7tx+/LIl5AOYBmAewfkx2k8W888472LJlC2bPno1hw4aZbWP4Y71y5YrZb6guX75s0q4szs7OeO211/Daa6/hwoUL+Omnn7Bq1Sp8+eWXSEtLM5mJ5OzsjNjYWCxatAi7d+9GWFgY4uPj0aFDB7Ru3bqqu4uAgAA89NBD+OabbwDAeFFRltv33Rxz++7p6YnMzExoNJpSA5259zGsO2zYMGzcuLESe1M9DPEkJSVVuq8rMkuyrO1V9vNVlW1VxZtvvonCwkLs37+/1Dfyb7/9NrZs2XLP2zAM3hcvXkTz5s3LbWvoh5s3b8LDw+Oet01UG3Xp0gX79+/Hnj17MG7cuDLblZSUYP/+/QDMz3SS29WrV80uN4w1huPFtWvX8N///hetWrXCwYMHS80uX7NmTYW2d+TIEWzatAm9evXCd999ZzLG6XQ6LFy4sCq7YeL24+HdGPbvxRdfxKJFiyr0/pUdoytrzJgxeOWVVzBmzBhkZ2fj6aefvms85W37zjHQ8N+7/e7NbWPLli0YPHhwBfai+hhiiYqKMjubujz3eo5hTnnnsDVxnmGpv83yVOVvylrOSYluV9Xja0WPfVqtFvPmzYO/vz+OHj1qTGYaGGZV3unJJ5/Ek08+iezsbBw8eBCbNm3CihUr0LdvX5w8edL4ZblCoUBxcbHZ9zAkvMwp61gk9zWB3NuvLOYB7o55AFPMA9Q8hdwBkP1o2rQpJk6ciNTUVHz44Ydm20RFRQHQ3y5xp7NnzyI9PR1BQUHlzuq+U8OGDfHYY49h165dCA0NxU8//YTMzEyTNhMmTDDO6P7000+h0+nw7LPPVngbZRk3bhxycnKQk5NTbpID0N8+4+LigsTERLO3VBmSILd/a9+mTRvodDr8/PPPpdqb68PmzZvDy8sLhw4dKjXbRw4dOnQAABw4cKBGtlcdny9LOnv2LHx8fMzeenbnreJVZejzXbt2VbhtTf1+iOzR2LFjoVQqsXHjRpw4caLMditWrMClS5eMt3paG3PHoJKSEuP4Yzi+nj9/HjqdDn379i2VTEtPT8f58+crtL2zZ88CAIYMGVLqIu73339HYWFhpffhTg888AAUCgUOHDiAgoKCCretqMqO0ZXl5+eHgQMHIj09Hb6+vhgyZEi57csbA7VarTFOw3mGof3PP/9sdvabufexpnHDzc0N4eHhOH78eKnzvupQlfO4mmSpv83yGM4zk5OTjYmDu7W1lnNSottV9vha2WNfRkYGsrOz0alTp1KJ7ry8vLt+Qefl5YX+/fvj008/RWxsLG7cuGGybW9vb1y9etXs39aRI0cqFOPt5D6219T2FQqFxWZ7Mw9QPuYBSsfAPEDNYrKbLGru3Lnw8vLCW2+9ZfaWB0MttDfffBPXr183Li8pKcFLL70EnU5312/Wr1+/brbmaH5+PnJzc6FUKo23dRiEhISgT58+2Lp1Kz755BN4eXmVWWqlMgYMGIDNmzdj06ZNGDRoULltHRwc8NhjjyEvL89YesXg3Llz+O9//wu1Wo0nnnjCuNxwO9Qrr7xiUtMpMzMTb775ZqltqFQqPP/887h8+TKmTJliNllw+fLlchMyljR27Fh4eXlh/vz5ZmtB6XQ6iyQEDCzx+apOTZo0QWZmJpKTk02Wf/755xUalCpiwoQJUKlUeP31183WZLu9vufkyZOhVqvx4osvGuum3a64uNiuB0AiSwgKCsKcOXOg0WgwaNAgs8fXzZs3Y+rUqQCAuLi4u9aPlsO+ffuwfft2k2VLly7FuXPnEB0dbayr2aRJEwClE6R5eXl45plnyiyTcifD+9w5Bly7dg2TJk2q2k7coW7duhg1ahQuXbqEl19+2Vhf3SAvL89426ufnx8ee+wxHDlyBG+88YbZ/Th37hxSU1ONP1d2jK6K999/H5s2bcKOHTvuWgt96NCh8PHxwZo1a4x1Gw2WLFmC8+fPo3fv3sZb9Rs0aIA+ffogNTUVS5cuNWm/ZcsWsxdfQ4YMQdOmTfHRRx9h586dZuP49ddf7/rlgqVMmzYNxcXFeOqpp8zOZszKyqr0rO+yVOU8riZZ6m+zPEqlEhMnTkRhYSEmTpxYamZpcXGx8fzL2s5Jie5UmeNrZY99fn5+cHFxwZEjR0yuiTUaDaZOnYqMjIxS63///fdm/06vXbsGQF+y06B9+/bQarVYuXKlSdtVq1bhl19+KXdfzJH7mqCmtl+nTp0KlZ2rCOYBysc8gCnmAWoey5iQRfn4+GDOnDmYOXOm2dc7deqEmTNnYuHChWjVqhVGjBgBV1dXfPfddzh27Bi6dOmCGTNmlLuNixcvokOHDmjRogXatGmDhg0bIicnB9u3b8eVK1cwefJks7diTJgwAfHx8cjIyMCUKVOMNQzvhVKpvOtMgNu98847OHDgAJYuXYrDhw8jOjoaGRkZ+Pbbb5Gbm4ulS5ciKCjI2P7RRx/F2rVrsXXrVrRq1QpDhgyBRqPB+vXr0a5dO5w7d67UNl599VUkJSVh+fLl2LZtG3r27InAwEBcu3YNKSkp+OWXX/DWW2+hZcuW97z/d1OnTh2sX78ew4YNQ4cOHdCrVy+Eh4dDoVDg77//xq+//oobN25Y5GFtgGU+X9XphRdewK5du9ClSxeMHDkSnp6eOHLkCH7++Wdjzft71bJlSyxbtgzPPfccIiMjMXjwYISGhiIjIwOHDx+Gp6encfZA8+bNsWLFCjz11FMIDw/Hgw8+iLCwMGg0Gvz99984cOAA6taty4dHEd3Fa6+9hvz8fCxatAgRERHo168fwsPDodFocPDgQeMXtDNnzrzr7B+5DB48GMOGDcOwYcMQEhKCpKQk7Ny5Ez4+Pli2bJmxnb+/P0aNGoVvvvkGkZGR6Nu3L27evIndu3fDyckJkZGRSExMvOv22rVrh86dO2Pjxo3o1KkTunTpgqtXr+K7775Ds2bN7vrwu4paunQpjh07hqVLl2Lv3r3o27cvHBwckJqail27dmHr1q3GWTZLly5FSkoK5s6di6+++gpdunRBvXr1cOnSJZw8eRKHDx/GmjVrjON0VcboygoKCjI5LyiPm5sbVqxYgZiYGHTv3h0xMTFo1KgR/vjjD8THx8Pf39/4zBKDjz76CB07dsQLL7yA+Ph4RERE4OzZs8aL923btpm0V6vV2LhxI/r164cBAwagU6dOiIyMhIuLCy5cuIDDhw/j/PnzuHz5co18qfPUU0/hjz/+wLJly9C0aVP069cPjRo1QmZmJlJTU/HTTz9h7NixWL58uUW2V9nzuJpkqb/Nu5k3bx5+++03bN68GWFhYRgwYADc3d1x4cIFxMfH491330VsbCwA6zonJbpTZY6vlT32KRQKTJkyBe+88w7uu+8+DBkyBMXFxdi/fz8yMzMRHR1tPB83GDVqFJycnNClSxc0adIEQggcOHAAhw8fRps2bdC7d29j2ylTpmDlypWYMGEC9u7di4YNGyIpKQkHDx7EwIEDS315fTdyXxPU1PZ79eqFb775BkOGDEFUVBRUKhW6deuGbt26Vfq9mAcoH/MAppgHkIEgqgIAIjAw0Oxrt27dEk2aNBEABACh0WhKtVmzZo3o3LmzcHNzE46OjqJly5bizTffFIWFhaXaNm7cWDRu3Nj4c1ZWlpg/f76Ijo4W9evXFw4ODsLf3190795drF69Wuh0OrNxabVa4evrKwCI48ePV3qfx4wZIwCI3bt337Xt/v37BQDx2GOPlXotKytLzJw5U4SEhAgHBwfh6ekpevfuLXbt2mX2vYqKisT8+fNFUFCQcHBwEI0bNxZz5swRt27dEgBE9+7dS62j0+nEl19+KXr27Cm8vb2FWq0W9evXF507dxZvvfWW+Pvvv41tU1NTBQAxZsyYCvWDof3tv5OKrDNp0iQREhIiHB0dhbu7u2jWrJl4/PHHxaZNm0zaGvo5NTW1zPe78zNxp3v5fFXm9e7du4uyDqNl7ce2bdtE+/bthZubm/D09BR9+vQRP/74o1i5cqUAIFauXFnh7c+bN08AEPv37y/12sGDB8Xw4cNF3bp1hVqtFgEBAaJfv35i3bp1pdomJyeLMWPGiEaNGgkHBwfh7e0twsPDxfjx48XevXvNbpuoNjKMa2U5dOiQePLJJ0Xjxo2Fo6OjsX1AQECFxo47NW7c2OxxpKxjv2Gdyhyzbj/2bN++XXTo0EG4uLgIT09PMXz4cHH69OlS75Ofny/mzJkjmjZtKhwdHUWDBg3ExIkTRUZGhtltGMbEefPmmSy/ceOGmDBhgrG/goODxezZs0V+fr7Z/SjrOHm3fsnLyxNvvvmmuO+++4Szs7Nwc3MTLVq0EFOnThVXr141aVtUVCQ+/PBD0bFjR+Hh4SEcHBxEw4YNRc+ePcXixYtFRkZGqfaVHaPLUt651Z3KOyf5/fffxdChQ4Wvr69Qq9WiYcOG4rnnnhMXL140+14pKSni4YcfFp6ensLFxUV06NBBbN++vdz+vnr1qnj55ZdFeHi4cHZ2Fq6uriIkJEQ8/PDD4quvvjI59ytvrDLH0P7Oz0t5tm3bJgYMGGAc8+rVqyfatWsnXnnlFXHy5EmTtnf7vZT1eTWozHnc3d6rvNfvdn5mbj8s9bdpUNbxRKPRiA8//FC0a9dOuLq6ChcXFxESEiKeeeYZkZKSYtK2MuekRNXFUsfXyhz7NBqNeP/990WLFi2Ek5OTqFevnnj88cdFWlqa2euE//3vf2Lo0KEiKChIODs7C29vbxEZGSni4uJETk5OqVh++eUX0a1bN+Hs7Czc3d1F//79RVJSUpnH3IqMSZW5JqjKdZAQ5Y8Jltp+WePX1atXxaOPPir8/PyEQqGo8FjDPIBpe+YBmAewBZIQd9zTSWSnzp07h9DQUHTp0gU//fST3OEQEZGdy83NRZcuXXDixAmsW7cOQ4cOlTskIiIiIiIiu8aa3VRrvPvuuxBCYPLkyXKHQkREtYC7uzu2b9+OunXr4pFHHsH3338vd0hERERERER2jTO7ya799ddf+Oqrr5CSkoKvvvoKkZGROHLkCBQKfs9DREQ1IykpCZs2bYKLiwteeOGFuz4Ii4iIiIiIiKqGyW6yaz/88AOio6Ph6uqKrl274n//+5/xafVERERERERERERkP5jsJiIiIiIiIiIiIiKbx1oORERERERERERERGTzmOwmIiIiIiIiIiIiIpvHZDcRERERERERERER2Twmu4mIiIiIiIiIiIjI5qnkDkBOWVlZ0Gq1Nba9unXr4vr16zW2verG/bFu3B/rZU/7AnB/yqJSqeDt7W2BiAio+THbUuzt76Oq2A967Ac99oMe+0FP7n6wx/H6xIkT2Lp1K1JTU5GVlYWXXnoJDzzwwF3X+eKLL5Ceng5vb28MHjwYffv2rfS2bXW8rgq5P7v2hH1pOexLy2FfWo4l+rIy43WtTnZrtVpoNJoa2ZYkScZtCiFqZJvViftj3bg/1sue9gXg/lDNqckx21L4edJjP+ixH/TYD3rsBz32Q/UoKipCkyZNEB0djffff/+u7a9du4a3334bvXr1wvPPP4/Tp0/js88+g4eHBzp06FCpbdvieF0V/OxaDvvSctiXlsO+tBw5+rJWJ7uJiIiIiIiI7ElUVBSioqIq3D4+Ph6+vr6IjY0FADRo0ADnzp3Dtm3bKp3sJiIikhuT3URERERERES1VEpKClq3bm2yLDIyEvv374dWq4VKVTptoNFoTGZwS5IEZ2dn4//bO8M+1oZ9rW7sS8thX1oO+9Jy5OhLJruJiIiIiIiIaqns7Gx4enqaLPP09ERJSQlyc3PN1kjdtGkT1q9fb/w5KCgIcXFxqFu3brXHa038/f3lDsFusC8th31pOexLy6nJvmSym4iIiIiIiKgWu3PGnaGualkz8YYNG4aBAweWWv/69eu14gGVkiTB398fV65cYT3fe8S+tBz2peWwLy3HUn2pUqkq/IUqk91EZNeKiopQVFQkdxgmCgsLUVxcLHcYFlOb98fR0RGOjo7VHJFl7Nq1C1u3bkV2djYaNGiA2NhYtGjRosz2J06cwBdffIH09HR4e3tj8ODB6Nu3r/H1CxcuYO3atUhNTcX169cxZswYDBgwwOQ9SkpKsG7dOhw4cADZ2dnw9vZGjx49MHz4cCgUimrbVyKyPUII5OXl1aoLSnsbP6uqJvrBlsZrOXh5eSE7O9tkWU5ODpRKJdzc3Myuo1aroVarzb5Wm/6OhRC1an+rE/vScqq7L63xGrs6FBQUcJy2kIr2pSRJcHNzu+eSJ0x2E5Hdys/PhyRJcHd3t6paW2q12q6eUl9b90cIgcLCQuTn58PV1bUGIqu6gwcPYtWqVRg3bhyaNWuGPXv2YMGCBVi8eDF8fX1Ltb927Rrefvtt9OrVC88//zxOnz6Nzz77DB4eHsYHVRUVFaFevXro2LEjvvjiC7Pb3bJlC3bv3o1JkyahQYMGOH/+PJYtWwYXFxf079+/WveZiGxLXl4eHB0d4eDgIHcoNcbexs+qqu5+sKXxWi6hoaH4448/TJYlJSUhODjYbL1uIqq9rPUauzpwnLacivZlcXEx8vLy4O7ufk/b47QqIrJbWq0WLi4udj8IkzwkSYKLi4tN3Kq7fft29OzZE7169TLO6vb19UV8fLzZ9vHx8fD19UVsbCwaNGiAXr16ITo6Gtu2bTO2CQkJwRNPPIHOnTuXObPrzJkzuP/++9GmTRv4+fmhQ4cOaN26Nc6dO1ct+0lEtksIUasS3VRzbGm8tpRbt24hLS0NaWlpAPRfYqelpSEjIwMAsHr1aixdutTYvm/fvsjIyDDe0bVv3z7s27cPgwYNkiN8IrJivMam6uTg4GCRuxL4NS0R2S0OwFQTrP1zptVqcf78eQwdOtRkeevWrXH69Gmz66SkpKB169YmyyIjI7F//35otdoKz/Jq3rw5du/ejUuXLqF+/fpIS0vD6dOnMWbMmDLX0Wg0Jt/6S5IEZ2dn4//bEj7FXY/9oMd+0GM/kFwkSao1n7tz585h/vz5xp+//PJLAED37t0xadIkZGVlGRPfAODn54fZs2fjiy++wK5du+Dt7Y2xY8ca7+YiIjKoLcdRsm1MdhMREdmxnJwc6HQ6eHp6miz39PQsVZ/TIDs722z7kpIS5Obmwtvbu0LbHjJkCAoKCvDiiy9CoVBAp9Nh1KhR6NKlS5nrbNq0CevXrzf+HBQUhLi4uAo/jMQa8SnueuwHPfaD3p39UFhYWOZdIvasNu6zOTXRDw4ODggICKj27ViD8PBwfPvtt2W+PmnSpFLLWrZsibi4uOoMi4iIqEYw2U1ERFQLmJuFUd7MjDtfM9xOVpnZHAcPHsSBAwcwZcoUNGzYEGlpaVi1apXxQZXmDBs2DAMHDiwVx/Xr123uFnQ+xV2P/aDHftArqx+Ki4trXV1M1gLVq6l+KC4uxuXLl0stV6lUNv2FKhEREZlizW4iorso0ZXg4KWD2Hx2Mw5eOogSXYncIRkFBgbi+++/lzsMm/H++++jT58+FW5/4cIFBAYG4tixY9UYVfXy8PCAQqEoNYv75s2bpWZvG3h5eZVqn5OTA6VSCTc3twpv++uvv8aQIUPQuXNnNGrUCN26dcOAAQOwefPmMtdRq9VwcXEx/jOUMAH+fbK8Lf2z1bjZD+yHmu6He3HxohJ//qku89/Fi8p7en9L4HhdOdU1Xpf1eSQiIgI4XleWtV5fM9lNRFSOnak70f6b9ojZEYNJ+ychZkcM2n/THjtTd1bbNl944QUEBgYiMDAQjRs3RkREBEaNGoVvvvkGOp3OpG1CQgKio6OrLZa7Wbt2LUJCQizyXu3bt0dgYCC2bNlS6rXo6GgEBgZi7dq1FtlWbaJSqRAcHIzk5GST5cnJyWjWrJnZdUJDQ0u1T0pKQnBwcIXrdQNAUVERFArTUw2FQsHkAhFZzMWLSnTt6ocHH6xb5r+uXf2qJeFta+N1ixYtLPJeHK+JiOheOfz0E+r26AGHn36q9m1xvK594zWT3UREZdiZuhPj94zH5XzTW16v5F/B+D3jqzXhHR0djYSEBBw6dAhff/01OnXqhLlz52LMmDEmpRz8/Pzg6Oho8e2XlJSUGvhrQv369UsNuH/88QeuXbsGFxeXGo/HXgwcOBB79+7Fvn37kJ6ejlWrViEjI8P4Lfzq1auxdOlSY/u+ffsiIyMDX3zxBdLT07Fv3z7s27cPgwYNMrbRarVIS0tDWloatFotMjMzkZaWhitXrhjbtG3bFhs3bsTRo0dx7do1/P7779i+fTvatWtXcztPRHYtM1OBoqLyyysVFUnIzKyeyx6O1//ieE1ERBUiBDzeeQfqlBR4vPMOUAMTYThe/6s2jNdMdt8Day5tQESlCSFQoCmo0L/coly8evBVCJQeeA3L5h6ci9yi3Aq9X2Vnsjo4OMDPzw8BAQG47777MGXKFKxYsQL79u0zeeDQ7bdZFRcX45VXXkFUVBSCg4PRvn17fPjhh8a2N2/exMyZMxEREYHg4GD07NkTu3fvBvDvN8i7d+9Gjx49EBQUhPT0dBQXF+PNN99E27ZtERISgoEDB+LgwYMA9PWYp02bhpycHOM35e+//74xlrLWK8/w4cNx6NAhXLx40bhs7dq1GD58eKkZxRcvXsTYsWMRGhqKZs2a4dlnn8X169dN2ixduhQREREICwvD9OnTUVRUVGqba9euRffu3REcHIxu3bphxYoVd43T1nTq1AmxsbHYsGEDZs6ciZMnT2L27NnGGqVZWVnIyMgwtvfz88Ps2bNx4sQJzJw5Exs2bMDYsWPRoUMHY5vMzEzMnDkTM2fORFZWFrZt24aZM2di+fLlxjZPPfUUOnTogM8++wwvvvgivvrqK/Tp0wejRo2qkf22hdIGRFSaEEBBgVShf7duVew9b92q2HtW9nr7XsbrVq1acbz+R1XG61WrVt01TiIiqmZCQCooqNQ/x/h4OCQlAQAckpLgGB9f6feo7IDN6+vaNV7zAZVVtDN1J+b+OtdkxmeAawBe7/g6+gf1lzEyIipLobYQoatCLfJeAgKXCy6j+ZfNK9Q+JTYFLup7++a0S5cuaNmyJb777juMHj261OsrVqxAfHw8li9fjsDAQFy6dAmXLl0CAOh0Ojz++OPIz8/Hhx9+iMaNG+PMmTNQKv9N9hUWFmLp0qV499134e3tDV9fX0ybNg0XLlzAsmXLUK9ePXz//fd4/PHHsWfPHtx///2YP38+3nvvPfz0z+1nrq6uAFDuesHBwWXuo6+vL7p3745169bhhRdeQGFhIbZu3Yr169dj/fr1xnZCCDz11FNwcXHBhg0boNVqMWfOHEyYMMHYbuvWrXj//ffx1ltv4YEHHsCGDRuwYsUKNGrUyPg+//d//4f3338fb775Jlq1aoVjx45h5syZcHR0xMiRI+/ht2V9+vXrh379+pl9bdKkSaWWtWzZEnFxcWW+n5+fn8mJoTnOzs6IjY1FbGxspWK1BENpg/JmfDo6Chw4cA2BgfyymsiaFBZKCA0NsOh7Dh1asQcQpqRchovLvc0wq+h4/dlnn6FevXq1frzesmVLlcbrGTNmwMXFxe7Ga9KXN/CcOxc3X38dxd26yR0OEZVDKixEQOi9XWPXeeqpSq9zOSUF4h5nJt9tvP700095fW2B6+sZM2bA3d0dDz/88D38tiqHye4qMJQ2uHPGp6G0wSe9P2HCm4iqRUhICE6ePGn2tYsXLyIoKAgPPPAAJElCgwYNjK8dOHAAiYmJ+OGHH9C0aVMAQOPGjU3W12g0WLBgAcLDwwEAaWlp2Lx5M44cOQJ/f38AwHPPPYf9+/dj7dq1mD17Ntzd3SFJEvz8/IzvU5H1yjNq1Ci8/vrrmDp1KrZv347GjRujVatWJm0OHDiAkydP4tdff0VgYCAA4L///S+io6ORmJiIyMhIfPbZZ3jkkUeMJy4vv/wyDhw4YPLt85IlSzB37lz0768/Zjdq1Ajnzp3D119/zYtnG1eZ0gZMdhORpVVkvG7fvj20Wm2tH68//vjjKo3XZ86c4Xhtj+4ob5DRtSsglT+eExFVFa+v/92f6rq+PnPmDL788ksmu61Zia4Ec3+dW2ZpAwkS5v06D/0a94NSwdujiayJs8oZKbEpFWr72+Xf8Piux+/a7ut+X6N9QPsKbdsShBCQyjjhHzlyJEaNGoWuXbsiOjoavXv3Rvfu3QEAx48fR0BAgHEgNsfBwQEtW7Y0/vznn39CCIGuXbuatCsuLoa3t3eZ71PV9Qx69eqFl19+GYcOHcLatWvNlrxISUlB/fr1jQMxAISFhcHT0xMpKSmIjIzE2bNn8cQTT5is17ZtW+PtXjdu3MClS5cwffp0zJgxw9impKQE7u7ud42TiIiqh7OzQErK5bs3BHD8uKpCs7Y3b76O8HDtXds5O1umbmhFxuuOHTuiR48etX68TklJweOPm55zcbyuvRx/+MG0vMGPP6KoRw95gyKiMglnZ1xOqdg1NoRAnYcfhvr4cUi31a8WCgU04eG4sWFDhb/cEs7Vf309atQojBgxgtfXNnh9zWR3Jf125bdSD6u7nYDApfxL+O3Kb+hUv1MNRkZEdyNJUoVLiXRr0A0BrgG4kn/F7JdbEiQEuAagW4NuNfrF1tmzZ9GwYUOzr9133304dOgQ9u3bh59//hnPPfccunTpgk8//RROTk53fW8nJyeTgV6n00GpVOK7774zuR0L+Pd2KnOqup6BSqXCww8/jPfffx8JCQn47LPPSrUp66SkvJMVc3ECwLvvvouoqCiT7Ve2xjoREVmOJKHCpUQqMLwZ291reZLKqMh4/dNPP+GHH37geH0XZY3XAErFTTZOCHjOnPnvj0ol3BcuRFH37pzdTWStJKnC5UQcf/gBDn/+WfotdDo4/PknHA4frvEvt8obr1u3bs3rawuN19Xx0M/yMNldSdcKrlm0HRFZJ6VCidc7vo7xe8ZDgmSS8JagP9jP7zi/RhPdP//8M06ePIlnnnmmzDbu7u4YMmQIhgwZggEDBuCxxx5DVlYWWrRogcuXL+PcuXPlfvt8u1atWqGkpAQ3btxA+/bmZ687ODigpKSk0uvdzahRo7B8+XIMHjwYXl5epV4PCwvDxYsXcfHiReO3z2fOnEFOTg5C/6kZFxISgqNHjyImJsa43tGjR43/X7duXfj7++Ovv/7C8OHDjcvVajU0Gk2V4iYiIqroeD106FAMGDCg1o/XoaGhVRqvyf44/vgjVP/UwwUAqaSEs7uJ7IUQcF+4EEKSIJmZWCQkqca/3OL19b+q8/oaqPlrbCa7K8nPxe/ujSrRjoisV/+g/vik9ydmH0Y7v+P8aq3NX1xcjGvXrqGkpAQZGRnYv38/li5dit69e2PEiBFm1/nkk09Qr149hIeHQ5IkbN++HX5+fvD09ETHjh3Rvn17jB8/HvPmzUOTJk1w9uxZSJKE6Ohos+/XtGlTDB8+HFOnTsXcuXPRqlUrZGZm4pdffkHz5s3Rq1cvNGjQAPn5+Thw4ADCw8Ph7OxcofXuJjQ0FH/++Secy7g9rWvXrmjRogWef/55zJ8/3/gAjY4dOyIiIgIA8PTTT+PFF19EREQE2rVrh02bNuHMmTMmD9CYPn06Xn31Vbi7uyM6OhrFxcU4fvw4bty4gWefffaucRIRkbx8fHRwdBR3fRitj4+uzNfvxb2M1xERESgpKan14/X48ePx/PPPV3q8Tk5ORnZ2Nsdre2FIhCmVkG5L9HB2N5GdKC6G8uJFs4luAJCEgPLSJaC4GKiGWcBVGa+XL18OX19fXl/f4/V1cnIycnNzMW7cuLvGaSlMdldSe//2FSpt0N6/at+2EJF16R/UH/0a98NvV37DtYJr8HPxQ3v/9tU+o3v//v2IioqCSqWCp6cnWrZsiTfeeAMxMTFQKBRm13F1dcVHH32E1NRUKJVKRERE4KuvvjK2//TTT/HGG29g4sSJKCwsRJMmTe76MItFixbhgw8+wOuvv44rV67A29sbbdu2Rc+ePQEA7dq1w5gxYzBhwgRkZWVh2rRpmD59+l3XqwgfH58yX5MkCStWrMB//vMfDB8+HAqFAj169MCbb75pbDNkyBD89ddfeOutt1BUVIT+/fvjySefxA8//GBsM3r0aDg7O+N///sf3nrrLbi4uKBFixZ4+umnKxwnERHJJzCwBAcOXENmpvmxEdAnxKvrQbS2NF4/8cQTVjleDx06FOfOnav0eN28efMavXCm6uX444/GWt234+xuIjvh6IjrO3dCmZlZZpOSOnWqJdENcLwG5Lu+bt68eY1/MS2JWlyY9Pr161WaRr8zdSfG7xkPAKUS3hIkfNL7k1IzPiVJQkBAAC5fvmwXtWC5P9aN+6OXk5MDDw+PaoysauytTEZt35+yPmdqtRp16979oWlUMZUds//8U40HH7x7/3///XXcd1/1fH7t7VhcVewHPfaDXln9YK1jdnWyt/GzqmqqHzhe14wqXWMLAd8BA6BOTi6zvIGmdWtk7NhhNbO7eUy3HPal5dREX9am8ZrjtOVUpi8tMV6XPQWCymQobeDv6m+yXIKEZT2XVWtpAyIiIro7Q2mD8lRnaQMiIiKqoMqUNyAiIroLljGpottLG1zJv4K5v85FVlEWHJQOcodGRERU65krbbBpkxM+/tgd7dsXYf78nGotbUBEREQVVEZ5A6etW+G+bBlK6tTB9Y0bq628ARER2Rcmu++BUqFEp/qdAAAnMk/gf8n/w7oz6/BgkwdljoyIiIgCA0tMktlFRcDHH7vj/HkVWrXSWMud0ERERLWeLjAQusBAk2WasDA4b9kC1cWLcN69G/l8GCkREVUAy5hYSExoDABgz997cKPwhszREBER0Z1atdJApRK4fl2JS5eq9yGzREREdI8cHZE7bRoAwG3pUkh5eTIHREREtoDJbgtp5tMMEb4R0AotNp/bLHc4REREdAcnJ6BlS/2DUY4eVcscDREREd1N4YgR0AYFQZmZCdfPPpM7HCIisgFMdltQTJh+dve6lHUyR0JEBjodHz5H1YefL9sTGalPdicm8hkbRNZGlPFwOqJ7xfHahqlUyH3pJQCA28cfQ8rOljceIuIxlaqNpc4Fmey2oCFNh0CtUOPPjD9xMvOk3OEQ1XouLi7Izc3lYEzVQqfTITc3Fy4uLnKHQpUQFVUMAEhM5MxuImvi6OiIwsJCucMgO8Tx2vYVDh4MTfPmUOTkwG35crnDIarVeI1N1amgoACOFngYMR9QaUE+Tj7o06gPdqbtxLoz6zC3w1y5QyKq1VQqFVxdXZFnZfX9HBwcUFxcLHcYFlOb98fV1RUqFYdSWxIVpZ/ZnZSkhlYL8NdHZB0cHR2Rn5+PmzdvQqolT4+1t/GzqmqiHzhe2ziFArkzZsDn6afh+vnnyB83DjpfX7mjIqqVrPUauzpwnLacivSlEAIqlYrJbmsUExaDnWk7sfHsRsx5YA5UCnYxkZxUKhU8PDzkDsNIkiQEBATg8uXLdnG7NveHbE3Tplq4u+uQm6vAmTMqtGyplTskIvqHq6ur3CHUGI43euwHqqhb/fqhODISDomJcPvwQ+TMny93SES1lrVdY1cHjk+WI0dfsoyJhUU3jEYdpzq4XngdP6b/KHc4REREdBuFAoiIYN1uIiIimyJJyJ05EwDg+tVXUFy6JHNARERkrZjstjC1Qo2hIUMBAN+e+VbeYIiIiKiUyEj9LXQJCazbTUREZCuKunVDUYcOkIqK4P7BB3KHQ0REVorJ7mowMmwkACD+r3hkF2XLGwwRERGZMNTtTkjgzG4iIiKbcdvsbpdvvoHyr79kDoiIiKwRk93VoFWdVmjh0wLFumJsPbdV7nCIiIjoNlFR+pndp0+rUFBQOx6ER0REZA+K27fHrR49IGm1cH//fbnDISIiK8RkdzWJCY0BAKxLWSdzJERERHS7evV0CAgogU4nITmZpUyIiIhsiWF2t/PGjVCdOSNzNEREZG2Y7K4mw0OGQykpcfTaUZzNPit3OERERHQbw+zuxEQmu4mIiGyJJiIChQ89BEkIuL/3ntzhEBGRlWGyu5rUdamL6IbRADi7m4iIyNqwbjcREZHtyn3pJQhJgvOOHVAdOyZ3OEREZEWY7K5GhlImG1I2oERXInM0REREZBAZqZ/ZnZDAmd1ERES2Rtu8OQqHDgUAeCxcKG8wRERkVZjsrkZ9GveBl6MXLudfxs+XfpY7HCIiIvpH69YaSJLAxYsqXLvG0yEiIiJbkzttGoRSCae9e6E+ckTucIiIyEpYxdXdrl27MGnSJDz22GN4+eWXcfLkyXLbazQarFmzBhMnTsTo0aPx/PPPY9++fTUUbcU5Kh0xpOkQAMC6MyxlQkREZC3c3ASaNdMCYN1uIiIiW1QSHIyCkSMBAB5xcTJHQ0RE1kL2ZPfBgwexatUqDB8+HHFxcWjRogUWLFiAjIyMMtdZvHgxjh07hueeew5LlizB1KlTERgYWINRV5yhlMnO1J3IKcqRORoiIiIy+LeUCet2ExER2aK8F1+EcHCA48GDcDhwQO5wiIjICsie7N6+fTt69uyJXr16oUGDBoiNjYWvry/i4+PNtk9MTMSJEycwe/ZstG7dGn5+fggJCUGzZs1qOPKKiawbiRCvENwquYX1J9bLHQ4RERH9IzJS/5BKzuwmIiKyTSWBgch//HEA/9TuFkLmiIiISG4qOTeu1Wpx/vx5DP3nwRIGrVu3xunTp82uc+TIETRt2hRbtmzBTz/9BCcnJ7Rt2xajRo2Cg4P5mVkajQYajcb4syRJcHZ2Nv5/dZIkCSPDRmLB7wuwKnEV+j/Uv1q3V1MM/Vbd/VdTuD/WzZ72x572BeD+kG2LitLP7E5KcoBOByhknwJARERElZX3/PNwWb0aDkePwnHPHhT16SN3SEREJCNZk905OTnQ6XTw9PQ0We7p6Yns7Gyz61y9ehWnTp2CWq3GjBkzkJOTg88//xx5eXmYOHGi2XU2bdqE9ev/nVUdFBSEuLg41K1b12L7Up6JrhPxzuF3cODvAyhwLECwd3CNbLcm+Pv7yx2CRXF/rJs97Y897QvA/SHb1KyZFk5OOty8qcD580qEhJTIHRIRERFVks7PD/lPPQX3ZcvgsXAhrvfqxW+wiYhqMVmT3QbmZtCVNatO/HNb0pQpU+Di4gJAP3N70aJFGDdunNnZ3cOGDcPAgQNLvff169eh1WrvOf67UUCBroFd8WP6j1j2yzJMbzu92rdZ3SRJgr+/P65cuWL8ndgy7o91s6f9sad9Abg/5VGpVDX2pSpVjVoN3HefBocPOyIx0QEhIYVyh0RERERVkDdhAly/+grqEyfgtH07bg0eLHdIREQkE1mT3R4eHlAoFKVmcd+8ebPUbG8DLy8v+Pj4GBPdABAYGAghBG7cuIGAgIBS66jVaqjV5utx1lRyJiYsBj+m/4hvz3yLF6JegEKyj2+ahRB2keAy4P5YN3vaH3vaF4D7Q7YrKsqQ7FZjxAgmu4mIiGyR8PFB3vjx8Hj/fbi/9x5u9e8PqKxibh8REdUwWTOuKpUKwcHBSE5ONlmenJxc5gMnmzdvjqysLNy6dcu47PLly5AkCXXq1KnWeO/Fg00ehIejBy7kXsBvV36TOxwiIiICEBmpr9udkGD+uR9ERERkG/KfeQY6Ly+oz52D88aNcodDREQykX168cCBA7F3717s27cP6enpWLVqFTIyMtDnn4dKrF69GkuXLjW279KlC9zd3bFs2TKkp6fjxIkT+PrrrxEdHV3mAyqtgYvKBSNbjgQArDuzTuZoiIiICNDP7AaA48fVKCqSORgiIiKqMuHujrxJkwAA7osWAcXFMkdERERykD3Z3alTJ8TGxmLDhg2YOXMmTp48idmzZxvrnGZlZSEjI8PY3snJCf/5z3+Qn5+PWbNm4cMPP0Tbtm3x1FNPybULFTYmcgwAYHvqdhRoCmSOhoiIiBo2LEGdOiXQaCScOGG+5BkRERHZhvyxY1Hi5wfVhQtwWbNG7nCIiEgGVlHEql+/fujXr5/Z1yb9883s7QIDA/Hqq69Wd1gW17lhZzTxaIK0nDTsTNuJEaEj5A6JiIioVpMkIDJSg717lUhIcDDO9CYiIiLbI5ydkTtlCrz+8x+4//e/KBg5EnB2ljssIiKqQbLP7K5NJElCTFgMAJYyISIishZRUYa63ZzZTUREZOsKRo+GNjAQyitX4Prll3KHQ0RENYzJ7hpmmM39y6VfcDHvoszREBERkWE2d2Ki9T77g4iIiCrI0RF5L74IAHBbuhRSXp7MARERUU1isruGNXRviI4BHSEgsD5lvdzhEBER1XoREfqZ3efPq5CdLckcDREREd2rgpgYaIOCoMzMhOtnn8kdDhER1SAmu2UwMmwkAH0pEyGEzNEQERHVbt7eAk2aaAEASUmc3U1ERGTzVCrkvvQSAMDt448hZWfLGw8REdUYJrtlMCBoAFxULkjNScUf1/6QOxwiIqJar00b1u0mIiKyJ4WDB0PTvDkUOTlwW75c7nCIiKiGMNktA1e1K/oH9QfAB1USERFZg8hIfd3uhATO7CYiIrILCgVyZ8wAALh+/jkUGRkyB0RERDWByW6ZxITGAAC2nt+KQm2hzNEQERHVbpGR+pndiYlqsMIYERGRfbjVrx+KIyOhKCiA29KlcodDREQ1gMlumXSq3wmBboHIKc5B/F/xcodDRERUq4WHa6BWC2RkKHHxolLucIiIiMgSJAm5M2cCAFy//BKKS5dkDoiIiKobk90yUUgKjAgdAQBYn7Je5miIiIhqNycnoGVLfSmTo0dZt5uIiMheFHXrhqL27SEVFcH9gw/kDoeIiKoZk90yMiS7f0j/AVcLrsocDRERUe1mqNudmMi63URERHZDkpD78ssAAJdvvoHyr79kDoiIiKoTk90yCvYMxv317odO6LAxZaPc4RAREdVqUVH/1u0mIiIi+1Hcvj1u9egBSauF+6JFcodDRETViMlumY0MGwkAWJeyDoJPxCIiIpJNVJR+ZndyshparczBEBERkUUZanc7b9wIVUqKzNEQEVF1YbJbZoOCB8FJ6YTTWafxZ8afcodDRERUawUHa+HhoUNhoQKnT6vkDoeIiIgsSBMRgcIHH4Sk08H93XflDoeIiKoJk90y83DwQL8m/QAA3575VuZoiIiIai+FAoiIYN1uIiIie5U7YwaEJMF5xw6ojh2TOxwiIqoGTHZbgZGh+lImm89tRnFJsczREBER1V6RkfpxOCGBdbuJiIjsjbZ5cxQOHQoA8Fi4UN5giIioWjDZbQW6BnaFv4s/soqysPfvvXKHQ0REVGsZ6nZzZjcREZF9yp02DUKphNPevVAfOSJ3OEREZGFMdlsBpUKJ4SHDAegfVElERETyMMzsPn1ahfx8SeZoiIiIyNJKgoNRMFJ/d7VHXJzM0RARkaUx2W0lYsJiAAB7/96LG4U3ZI6GiIiodqpXT4f69bXQ6SQkJ7OUCRERkT3Ke/FFCAcHOB48CIcDB+QOh4iILIjJbisR5h2GyLqR0AotNp3bJHc4REREtVZkpKGUCZPdRERE9qgkMBD5jz8O4J/a3ULIHBEREVkKk91WJCZUP7t73RmWMiEiIpKLoW53QgLrdhMREdmrvOefh87JCQ5Hj8Jxzx65wyEiIgthstuKDG46GGqFGsduHMOJGyfkDoeIiKhWiorS1+1OSODMbiIiInul8/ND/lNPAfhndrdOJ3NERERkCUx2WxEfJx/0adQHAB9USUREJJfWrTVQKAQuXVLh6lWeKhEREdmrvAkToHN3h/rECTht3y53OEREZAG8grMyhgdVbjq7CVqdVuZoiIiIah9XV4GwMP0YnJTE2d1ERET2Svj4IG/8eACA+3vvAVpegxMR2Tomu61MdMNo1HGqg+uF1/FD+g9yh0NERFQrGUqZHD3Kut1ERET2LP+ZZ6Dz8oL63Dk4b9wodzhERHSPmOy2MmqFGsNChgEAvj3zrczREBER1U6RkfqHVCYmMtlNRERkz4S7O/ImTQIAuC9aBBQXyxwRERHdCya7rdDIsJEAgN1/7UbWrSyZoyEiIqp9IiP1F7pJSWo+r4qIiMjO5Y8dixI/P6guXIDLN9/IHQ4REd0DJrutUHidcLT0aYliXTG2nt8qdzhERES1TvPmWjg56ZCTo8D58yq5wyEiIqJqJJydkTtlCgDA/YMPgMJCmSMiIqKqYrLbShkeVLnuzDqZIyEiIqp9VCqgdWt9KZOEBD6kkoiIyN4VjB4NbWAglFeuwPXLL+UOh4iIqojJbis1rOkwKCUlEq4n4Gz2WbnDISIiqnVYt5uIiKgWcXRE3osvAgDcli6FlJcnc0BERFQVTHZbqbouddGzYU8AnN1NREQkh6gofd1uzuwmIiKqHQpiYqBt0gTKzEy4fv653OEQEVEVMNltxQylTNafXY8SXYnM0RAREdUuUVH6md0nTqhx65bMwRAREVH1U6mQ+9JLAAC35cshZWfLGw8REVUak91WrHej3vBy9MKV/Cv4+dLPcodDRERUqzRoUII6dUqg0Ug4cYKzu4mIiGqDwiFDoGneHIqcHLgtXy53OEREVElMdlsxR6UjhjYdCoClTIiIiGqaJP07uzshgXW7iYiIagWFArkzZgAAXD//HIqMDJkDIiKiymCy28oZSpl8l/YdcopzZI6GiIiodomM1NftTkzkzG4iIqLa4la/fiiOiICioABuS5fKHQ4REVUCk91WLsI3AqFeobhVcgvbz2+XOxwiIqJahTO7iYiIaiFJQu7MmQAA1y+/hOLSJZkDIiKiimKy28pJkoSYUP3sbpYyISIiqlkREfqZ3ampKmRlSTJHQ0RERDWlqHt3FLVvD6moCO4ffCB3OEREVEFMdtuA4aHDoZAU+P3q70jLSZM7HCIiolrD21sgKEgLAEhK4uxuIiKyDbt27cKkSZPw2GOP4eWXX8bJkyfLbX/gwAHMmDEDjz/+OMaPH49ly5YhNze3hqK1UpKE3JdfBgC4fPMNlH/9JXNARERUEUx224AA1wB0C+wGAFifsl7maIiIiGqXqCj97O6EBNbtJiIi63fw4EGsWrUKw4cPR1xcHFq0aIEFCxYgo4wHLZ46dQpLly5FdHQ0Fi1ahGnTpuHcuXNYvnx5DUdufYrbt8etHj0gabVwX7RI7nCIiKgCmOy2EbeXMtEJnczREBER1R6s201ERLZk+/bt6NmzJ3r16oUGDRogNjYWvr6+iI+PN9v+zJkz8PPzQ//+/eHn54fmzZujd+/eOH/+fA1Hbp1yZ8wAADhv3AhVSorM0RAR0d2o5A6AKqZfk35wV7sjPS8dhy4fQqf6neQOiYiIqFaIjNTP7E5MVEMIQGLpbiIislJarRbnz5/H0KFDTZa3bt0ap0+fNrtOs2bN8M033+Do0aOIiorCzZs3cejQIURFRZW5HY1GA41GY/xZkiQ4Ozsb/9+eaKOicOvBB+H0/fdwf+89ZH/yiXEf7W1f5cC+tBz2peWwLy1Hjr5ksttGOKucMbjpYPzfqf/DupR1THYTERHVkJYtNVCrBW7cUCI9XYmGDUvkDomIiMisnJwc6HQ6eHp6miz39PREdna22XWaNWuGKVOmYMmSJdBoNCgpKcH999+Pp556qsztbNq0CevX/1tiMygoCHFxcahbt65F9sPqLFwI7NoF5+3b4XzlCvDPFwH+/v4yB2Y/2JeWw760HPal5dRkXzLZbUNiQmPwf6f+D9vPb8ebnd6Eq9pV7pCIiIjsnpMTEB6uQWKiA44eVTPZTUREVs/cDLqyZtWlp6dj5cqVGDFiBCIiIpCVlYWvv/4an376KSZMmGB2nWHDhmHgwIGl3vv69evQarUW2AMr4+sLryFD4Lx5M27NnInsr76Cv78/rly5AiGE3NHZNEmS2JcWwr60HPal5ViqL1UqVYW/UGWy24bcX+9+NPFogrScNOxM3YmYsBi5QyIiIqoVIiP1ye7ERAcMGXJL7nCIiIjM8vDwgEKhKDWL++bNm6Vmexts2rQJzZo1w+DBgwEAjRs3hpOTE+bOnYtRo0bB29u71DpqtRpqtfkHN9trYihn+nQ4bdsGpz17oDp8GBg0CEIIu93fmsa+tBz2peWwLy2nJvuSD6i0IZIk/fugypR1MkdDRERUe9xet5uIiMhaqVQqBAcHIzk52WR5cnIymjVrZnadoqKiUrO+FQp9qoBJnn+VBAejYORIAIDH7NlAy5Zw+OknmaMiIqI7MdltY0aEjgAAHLx0EOm56TJHQ0REVDtERemT3cnJatz2PC4iIiKrM3DgQOzduxf79u1Deno6Vq1ahYyMDPTp0wcAsHr1aixdutTY/v7778fvv/+O+Ph4XL16FadOncLKlSsREhICHx8fuXbDKuW9+CKEWg2H48eBkyfh/vbbAL8QICKyKixjYmMauDdAp4BOOHj5INanrMcLbV6QOyQiIiK7FxxcAg8PHXJyFDh9WoVWreywHikREdmFTp06ITc3Fxs2bEBWVhYaNmyI2bNnG2udZmVlISMjw9i+R48eKCwsxPfff48vv/wSrq6uCA8Px+OPPy7XLlitksBA3IqOhnN8PADAISkJjj/+iKIePeQNjIiIjJjstkExYTHGZPfUqKllPmiEiIiILEOhACIiNDhwwBGJiQ5MdhMRkVXr168f+vXrZ/a1SZMmlVr20EMP4aGHHqrusGyfEFBevAgBQAIgJAnuCxeiqHt3gNflRERWgWVMbNCAoAFwUbkgNScVR64dkTscIiKiWsFQyiQhgXW7iYiIaiPHH3+Ew/HjMKS1JSGMs7uJiMg6MNltg1zVrhgQNAAAsO4MH1RJRERUEwzJ7sREB5kjISIiohonBNwXLoRQKk0X/zO7m7W7iYisA5PdNiomLAYAsPXcVhRqC2WOhoiIyP5FRuqfTHn6tAp5ebxVmYiIqDZx/PFHOCQlQSopMVnO2d1ERNaFyW4b1TGgIxq4NUCuJhfxf8XLHQ4REZHd8/PTITBQCyEkJCezlAkREVGtYZjVXUZdbgFwdjcRkZVgsttGKSQFRoSOAMBSJkRERDXFMLubpUyIiIhqkeJiKC9ehFRGMlsCoLx4ESgurtm4iIioFCa7bZgh2f3jxR9xJf+KzNEQERHZPz6kkoiIqBZydMT1nTtx/fvvjf/wxx+4vmMHNI0aAQAKBw4EHB1lDpSIiJjstmFBnkFoV68ddEKHjWc3yh0OERGR3YuK0s/sTkjgzG4iIqLaRBcYCM1990Fz333Qtm4NtGkDbVQUcl97DQDg8s03UFzhJDQiIrmp5A6A7s3IsJE4fPUw1p1ZhwmtJ0Aqo4YYERHVbrt27cLWrVuRnZ2NBg0aIDY2Fi1atCiz/YkTJ/DFF18gPT0d3t7eGDx4MPr27Wt8/cKFC1i7di1SU1Nx/fp1jBkzBgMGDCj1PpmZmfj666+RmJiI4uJiBAQEYMKECQgODq6W/axu992ngUIhcPmyEleuKODvr5M7JCIiIpLRrb59UXz//XA4cgTuixbh5sKFcodERFSrcWa3jRsYPBBOSiecyT6DpIwkucMhIiIrdPDgQaxatQrDhw9HXFwcWrRogQULFiAjI8Ns+2vXruHtt99GixYtEBcXh2HDhmHlypU4dOiQsU1RURHq1auH0aNHw8vLy+z75OXl4dVXX4VKpcKcOXOwaNEiPPnkk3BxcamO3awRrq4CzZppAQBJSZzdTUREVOtJEnLmzAGgn92tPHtW5oCIiGo3JrttnIeDBx5s8iAAPqiSiIjM2759O3r27IlevXoZZ3X7+voiPj7ebPv4+Hj4+voiNjYWDRo0QK9evRAdHY1t27YZ24SEhOCJJ55A586doVabr1+9ZcsW1KlTBxMnTkRISAj8/Pxw3333wd/fv1r2s6YY6nYfPcq63URERAQUt2+PW717QyopgQdndhMRyYplTOxATGgMNp/bjM3nNmNuh7lwVPKhGEREpKfVanH+/HkMHTrUZHnr1q1x+vRps+ukpKSgdevWJssiIyOxf/9+aLVaqFQVO304cuQIIiIisGjRIpw4cQI+Pj7o27cvevfuXeY6Go0GGo3G+LMkSXB2djb+vzWIitJg9WogMdGh3JgMr1lL3HJhP+ixH/TYD3rsBz32A9mTnNmz4bh3L5x37EBeQgI0UVFyh0REVCtZRbK7MnVEjx8/jvnz55davnjxYgQGBlZ3qFapa2BX+Lv440rBFez9ey/6B/WXOyQiIrISOTk50Ol08PT0NFnu6emJ7Oxss+tkZ2ebbV9SUoLc3Fx4e3tXaNvXrl3D7t27MWDAAAwbNgxnz57FypUroVar0b17d7PrbNq0CevXrzf+HBQUhLi4ONStW7dC26wJffro/5uc7Ih69QKguMt9crY+k91S2A967Ac99oMe+0GP/UD2QNu8OQpHjIDLunXweOst3Fi3DuAXOURENU72ZLehjui4cePQrFkz7NmzBwsWLMDixYvh6+tb5npLliwxqfnp4eFRE+FaJaVCiYdDH8ZHSR/h2zPfMtlNRESlmJs1V5FZyQZCiLuucyedToemTZti9OjRAPSJ6wsXLiA+Pr7MZPewYcMwcODAUnFcv34dWq22wtuuTj4+gLNzPeTkKPDzz9cRGmo+LkmS4O/vjytXrhj7rzZiP+ixH/TYD3rsBz1r6AeVSmVVX6iSbct96SU4b9kCx19/heMPP6AoOlrukIiIah3Zk9231xEFgNjYWCQlJSE+Pt54cWyOp6cnXF1daypMqxcTGoOPkj7C/gv7kVGYAV/nsr8oICKi2sPDwwMKhaLULO6bN2+Wmr1t4OXlVap9Tk4OlEol3NzcKrxtb29vNGjQwGRZgwYN8Ntvv5W5jlqtLrMGuLUkhJRKoHVrDX77zRFHj6oQEqIpt70QwmpilxP7QY/9oMd+0GM/6LEfyF6UNGiA/NhYuH3yCTwWLMD17t1x11vAiIjIomRNdleljqjBzJkzodFo0KBBAwwfPhytWrUqs6011P+s7np0YT5hiKobhYTrCdh8bjOeue+ZatmOgb3V1+P+WDd72h972heA+2MLVCoVgoODkZycjAceeMC4PDk5Ge3atTO7TmhoKP744w+TZUlJSQgODq5wvW4AaNasGS5dumSy7NKlS3Yxgy4yUp/sTkx0wMiRhXKHQ0RERFYi9/nn4bJmDdQnTsB5yxYUDhsmd0hERLWKrMnuqtQR9fb2xvjx4xEcHAytVouffvoJb7zxBubNm4eWLVuaXcea6n9WZz26ce3GYdLOSdh4fiPm9p1bbdu5nb3V1+P+WDd72h972heA+2PtBg4ciA8//BDBwcEICwvDnj17kJGRgT7/FJ9evXo1MjMzMXnyZABA3759sWvXLnzxxRfo1asXzpw5g3379mHq1KnG99RqtUhPTzf+f2ZmJtLS0uDk5GTsvwEDBuDVV1/Fxo0b0alTJ5w9exZ79+7F+PHja7gHLC8qqhgAkJBgfhY6ERER1U7Cxwd5EyfCIy4O7gsXonDAAMDBQe6wiIhqDdnLmACVqyNav3591K9f3/hzWFgYMjIysG3btjKT3dZQ/7Mm6tH18O0BB4UDkq4mYc+xPQivE14t2wGso76eJXF/rJs97Y897QvA/SmPNdUA7dSpE3Jzc7FhwwZkZWWhYcOGmD17tjG+rKwsZGRkGNv7+flh9uzZ+OKLL7Br1y54e3tj7Nix6NChg7FNZmYmZs6cafx527ZtxrH4tddeAwCEhITgpZdewurVq7Fhwwb4+flhzJgx6Nq1a83seDWKitLfMXbihBq3bgFOTjIHRERERFYjf9w4uK5cCdXff8P166+R/9RTcodERFRryJrsrkodUXPCwsJw4MCBMl+3pvqf1VmPzsvRC70b98bO1J349vS3eK3ja9WyndvZW3097o91s6f9sad9Abg/tqBfv37o16+f2dcmTZpUalnLli0RFxdX5vv5+fnh22+/vet227Zti7Zt21Y8UBsRGFgCX98SZGQocfy4Gm3bll+3m4iIiGoP4eKC3BdfhNfs2XBbsgQFI0dCVOK5J0REVHWyPinh9jqit0tOTkazZs0q/D6pqanw8vKycHS2aWToSADApnOboNHxwpuIiKg6SNK/s7sTEnhrMhEREZkqePRRaIOCoLxxA24ffyx3OEREtYbsjwUeOHAg9u7di3379iE9PR2rVq0qVUd06dKlxvY7duzA77//jsuXL+PChQtYvXo1fvvtNzz44INy7YJV6dGwB3ydfZFRmIH9F/bLHQ4REZHdiozU1+1OTGTdbiIiIrqDWo2cl18GALh+/DEU16/LHBARUe0ge83uytYR1Wq1+Oqrr5CZmQkHBwc0bNgQs2bNQps2beTaBauiVqgxrOkwfHrsU6xLWYe+jfvKHRIREZFd4sxuIiIiKs+tgQNRHBkJh8REuH3wAXLefFPukIiI7J7syW6gcnVEhwwZgiFDhtREWDYrJiwGnx77FHv+2oOsW1nwdvKWOyQiIiK7ExGhn9mdlqZCVpYEb2/7qvNORERE90iSkDN7NnwfeUT/oMpx41DSpIncURER2TXZy5iQ5YXXCUd4nXAU64qx5fwWucMhIiKyS15eAsHBWgBAYiJndxMREVFpxV264FaPHpA0Gri/+67c4RAR2T0mu+1UTGgMAGDdmXUyR0JERGS/WLebiIiI7iZn9mwAgMvmzVAdOyZzNERE9o3Jbjs1LGQYVJIKidcTkZKVInc4REREdqlNG32ym3W7iYiIqCzaVq1QMHQoAMBjwQJ5gyEisnNMdtspX2df9GzUEwCwLoWzu4mIiKpDZKThIZVqCJbsJiIiojLkzpwJoVbD6ccf4fDzz3KHQ0Rkt5jstmOGUiYbUjagRFciczRERET2p2VLDRwcBDIzlbhwQSl3OERERGSlSho3Rv7jjwP4Z3Y3vyUnIqoWTHbbsV6NesHL0QtXCq7gwMUDcodDRERkdxwdgfDwf2d3ExEREZUl74UXoHN1hUNSEpy2b5c7HCIiu8Rktx1zVDpiaNOhAFjKhIiIqLoYHlLJut1ERERUHp2vL/KffRYA4BEXB2g0MkdERGR/mOy2cyPDRgIAvk/7HjnFOTJHQ0REZH8MdbsTEzmzm4iIiMqX9+yzKKlTB6rUVLisWSN3OEREdofJbjvX2rc1wrzCcKvkFrad3yZ3OERERHYnKko/s/vPP9WcoEVERETlEm5uyHvhBQCA++LFkAoK5A2IiMjOMNlt5yRJQkyY/kGV686wlAkREZGlBQWVwNNTh1u3FDh9WiV3OERERGTl8h9/HNpGjaC8dg2un30mdzhERHaFye5aYHjIcCgkBQ5fPYzUm6lyh0NERGRXFAogIoJ1u4mIiKiCHByQO3MmAMBt2TJImZkyB0REZD+Y7K4F/F390T2wOwA+qJKIiKg6REWxbjcRERFVXOGQIdCEh0ORmwv3Dz+UOxwiIrvBZHctYShlsj5lPXRCJ3M0RERE9iUykjO7iYiIqBIUCuTMng0AcF21Csr0dJkDIiKyD0x21xJ9G/eFh4MHLuZdxK+Xf5U7HCIiIrtimNl95owKeXmSzNEQERGRLSjq0QNFnTpBKi6G+3vvyR0OEZFdYLK7lnBWOWNQ8CAAfFAlERGRpdWtq0ODBloIISE5maVMiIiIqAIkCTlz5gAAnNevh+rkSZkDIiKyfUx21yKGUiY7UncgX5MvczRERET2JTJSP7ubpUyIiIioojRRUSgcMACSEPB45x25wyEisnlMdtci9/vdjyCPIBRoC7AjdYfc4RAREdmVqCh93W4+pJKIiIgqI+fllyGUSjjt2QOH336TOxwiIpvGZHctIkkSRoSOAMBSJkRERJZmqNvNmd1ERERUGSVNm6Jg1CgAgMdbbwFCyBwREZHtYrK7lokJi4EECQcvH8SF3Atyh0NERGQ37rtPA4VC4PJlJa5c4SkWERERVVzutGnQOTnB4Y8/4BQfL3c4REQ2i1ditUygWyA61e8EAFifsl7maIiIiOyHi4tAs2ZaAEBiImd3ExERUcXp/P2RP24cAMD9nXcArVbmiIiIbBOT3bVQTKj+QZXrU9ZD8PYoIiIii2nTRl+3OyGBdbuJiIiocvImToTOywvqM2fgvJ6T04iIqoLJ7lqof1B/uKhckJaThiNXj8gdDhERkd2IjGTdbiIiIqoa4emJ3OefBwB4vPceUFgoc0RERLaHye5ayFXtioHBAwEA3575VuZoiIiI7EdkpH5md1KSGjqdzMEQERGRzcmPjYW2fn0oL1+G66pVcodDRGRzmOyupQylTLad34ZCLb8tJiIisoRmzbRwcdEhL0+Bc+dUcodDREREtsbJCbkvvQQAcF+6FNLNmzIHRERkW5jsrqU6BHRAA7cGyNXkYlfaLrnDISIisgtKJdC6tb6UydGjrNtNRERElVc4YgQ0zZpBkZ0Nt2XL5A6HiMimMNldSykkBWLC9LO7WcqEiIjIcgx1uxMTmewmIiKiKlAqkTNrFgDA7bPPoLh8WeaAiIhsB5PdtdiI0BEAgAOXDuByPgdPIiIiS4iK0tftTkhgspuIiIiqpqhPHxS1awfp1i24L14sdzhERDaDye5arIlHEzxQ7wHohA4bUzbKHQ4REZFdiIrSz+w+cUKNQj4Wg4iIiKpCkpD7yisAAJc1a6A6e1bmgIiIbAOT3bWcoZTJupR1EELIHA0REZHtq1+/BHXrlkCrlZCYKHc0REREZKuK27VDYd++kHQ6uMfFyR0OEZFNYLK7lhsYPBBOSiekZKcg8Xqi3OEQERHZPEn6t5TJ77/LHAwRERHZtNxZsyAUCjjv3An1H3/IHQ4RkdVjsruW83DwwENNHgKgn91NRERE987wkMrffpM5ECIiIrJp2mbNUBijvyPb4+23Ad6RTURULia7yVjKZMu5LSgqKZI5GiIiIttnqNvNmd1ERER0r3KmT4dwdITjr7/Ccf9+ucMhIrJqTHYTutTvAn9Xf2QXZWP3X7vlDoeIiMjmRUToy5icOwdkZkoyR0NERES2TBcYiPzYWACAx4IFgE4nb0BERFaMyW6CUqHEiJARAFjKhIiIyBI8PQWaNtUCABITHWSOhoiIiGxd7uTJ0Hl4QH3yJJw3bZI7HCIiq8VkNwH4t5TJ/gv7cb3guszREBER2T7DQyoTEtQyR0JERES2Tvj4IG/iRACA+7vvAkUsQUpEZA6T3QQACPEKQVTdKJSIEmw6x2+JiYiI7pWhbndiIpPdREREdO/yx41DSb16UF24ANevvpI7HCIiq8RkNxkZZnd/e+ZbmSMhIiKyfYZk99GjDhBC5mCIiIjI5glnZ+ROmwYAcPvgA0i5uTJHRERkfZjsJqPBwYPhoHDAycyTOHbjmNzhEBER2bQWLTRwcACyshT4+2+l3OEQERGRHSgYNQra4GAoMzPhtny53OEQEVkdJrvJyNvJG30a9wEArDvDB1USERHdC0dHICpK//8sZUJEREQWoVIhZ9YsAIDrJ59AcZ3P3CIiuh2T3WQiJlRfymTT2U3Q6DQyR0NERGTbHnhA/9+jRx3kDYSIiIjsxq3+/VEcFQVFQQHclyyROxwiIqvCZDeZ6NGwB+o618WNWzew/8J+ucMhIiKyaYZkd2Iik91ERERkIZKEnDlzAAAuX38NZWqqzAEREVkPJrvJhFqhxrCQYQBYyoSIiOhetW+v/++xY2poeMMUERERWUhxp064FR0NSauF+7vvyh0OEZHVYLKbSjGUMtn9925k3sqUORoiIiLbFRICeHrqcOuWhFOnWLebiIiILCdn9mwISYLLli1QJyfLHQ4RkVVgsptKaVmnJVrVaQWNToMt57bIHQ4REZHNkiQgMlI/pTshgcluIiIishxteDgKh+nvzHZ/+22ZoyEisg5MdpNZMWH62d0sZUJERHRvoqKKAbBuNxEREVle7owZEGo1nH76CQ4//SR3OEREsmOym8wa1nQYVJIKSRlJOJ15Wu5wiIiIbFZUFGd2ExERUfUoadQI+U8+CQDwePttQKeTOSIiInkx2U1m1XGug56NegIA1qVwdjcREVFVGZLdKSkq5OZKMkdDRERE9iZvyhToXF3hkJwMp+3b5Q6HiEhWTHZTmUaGjgQAbDy7EVqdVuZoiIiIbJOvrw4NG2ohhITkZM7uJiIiIsvS+foib8IEAIBHXByg0cgcERGRfJjspjL1atQL3o7euFpwFQcuHpA7HCIiIpv170MqWbebiIiILC9//HiU+PpClZYGl9Wr5Q6HiEg2THZTmRyUDhjadCgAljIhIiK6F5GRhodUcmY3ERERWZ5wdUXuCy8AANwXL4aUny9vQEREMmGym8oVExYDAPg+7XvcLLopczRERES2qU0bzuwmIiKi6lXw2GPQNm4M5fXrcP30U7nDISKSBZPdVK7Wvq3RzLsZikqKsO38NrnDISIiskmtWmmgVApcuaLE5cs8/SIiIqJq4OCA3JkzAQBu//sfFJmZMgdERFTzeLVF5ZIkCTGh+tndLGVCRERUNS4uAs2a6R/2nJjI2d1ERERUPQoHD0Zxq1ZQ5OXB7YMP5A6HiKjGMdlNdzU8dDgUkgJHrh7BuexzcodDRERkk6KiWLebiIiIqplCgdw5cwAArl9+CWV6uswBERHVLCa76a7qudRDjwY9AADrU9bLGwwREZGNiorS1+0+epQzu4mIiKj6FHXrhqLOnSEVF8P93XflDoeIqEYx2U0VMiJ0BABgw9kN0AmdzNEQERHZnshI/czu5GQ1SkpkDoaIiIjslyQh55/Z3c4bNkB14oTMARER1RyV3AGQbejXuB88HDxwMe8iDl46iK4NusodEhERkU0JC9PCxUWHvDwFzp1TISxMK3dIRERkp3bt2oWtW7ciOzsbDRo0QGxsLFq0aFFme41Gg/Xr1+PAgQPIzs5GnTp1MGzYMPTs2bMGoyZL0kRGonDgQDhv3w6Pd95B5pdfyh0SEVGN4MxuqhAnlRMGBQ8CAHx75luZoyEiIrI9SiUQEaEvZZKQwLrdRERUPQ4ePIhVq1Zh+PDhiIuLQ4sWLbBgwQJkZGSUuc7ixYtx7NgxPPfcc1iyZAmmTp2KwMDAGoyaqkPOyy9DKJVw2rsXDocOyR0OEVGNYLKbKmxk2EgAwM60ncgrzpM5GiIiItsTGWlIdrNuNxERVY/t27ejZ8+e6NWrl3FWt6+vL+Lj4822T0xMxIkTJzB79my0bt0afn5+CAkJQbNmzWo4crK0kuBgFIweDQDweOstQAiZIyIiqn5WUcaksrdYGZw6dQqvvfYaGjZsiHf50IVq19avLYI8gpCak4odqTvwQuMX5A6JiIjIpkRF6et2JyZyZjcREVmeVqvF+fPnMXToUJPlrVu3xunTp82uc+TIETRt2hRbtmzBTz/9BCcnJ7Rt2xajRo2Cg4P5L2c1Gg00Go3xZ0mS4OzsbPx/e2fYR1vY17xp0+C8fj0cjh6F065dKHroIblDMmFLfWnt2JeWw760HDn6UvZkt+EWq3HjxqFZs2bYs2cPFixYgMWLF8PX17fM9QoKCvDRRx/hvvvuQ3Z2ds0FXItJkoSYsBgsPLIQn/75KerVqQeHYgc8UO8BKBVKucMjIiKyeoaHVJ48qUZhIfBPXoCIiMgicnJyoNPp4OnpabLc09OzzOvmq1ev4tSpU1Cr1ZgxYwZycnLw+eefIy8vDxMnTjS7zqZNm7B+/Xrjz0FBQYiLi0PdunUtti+2wN/fX+4Q7i4gAJg2DXjrLfi8+y7w5JOASvZUUCk20Zc2gn1pOexLy6nJvpT9CHf7LVYAEBsbi6SkJMTHx2P0P7fbmPPJJ5+gc+fOUCgUOHz4cE2FW+vVcaoDADiReQKjN+p/PwGuAXi94+voH9RfztCIiIisXv36Ovj5leDaNSWOHVOjXTvN3VciIiKqJHMz6MqaVSf+KW0xZcoUuLi4ANDP3F60aBHGjRtndnb3sGHDMHDgwFLvff36dWi19v8AZkmS4O/vjytXrhj7z5pJTzwBv2XLoDh1CtkffIDCcnItNc3W+tKasS8th31pOZbqS5VKVeEvVGVNdlflFisA2L9/P65evYrnn38eGzZsuOt2rOEWK3u4BWJn6k7M+nlWqeVX8q9g/J7x+LTPpzab8LaH38/tuD/Wy572BeD+EFWWJOlLmeza5YzERAcmu4mIyKI8PDygUChKzeK+efNmqdneBl5eXvDx8TEmugEgMDAQQgjcuHEDAQEBpdZRq9VQq82X5KpNiSEhhE3sr3B3R+6UKfCcPx/u772HgqFDre72MlvpS1vAvrQc9qXl1GRfyprsrsotVpcvX8bq1asxf/58KJUVK51hTbdY2eotECW6Erz2zWsQKP3BFBCQIGH+b/MR2yHWpkua2OrvpyzcH+tlT/sCcH+IKiMyUoNdu5yRkMC63UREZFkqlQrBwcFITk7GAw88YFyenJyMdu3amV2nefPmOHToEG7dugUnJycA+utuSZJQp06dGombql/+k0/C9bPPoLp4EW4rVyKvjBI1RES2TvYyJkDFb7HS6XT473//i5iYGNSvX7/C728Nt1jZ+i0QBy8dRHpOepmvCwhcyLmAzQmb0al+pxqMzDJs/fdzJ+6P9bKnfQG4P+WpzG1WVLsY6nYnJpp/6BcREdG9GDhwID788EMEBwcjLCwMe/bsQUZGBvr06QMAWL16NTIzMzF58mQAQJcuXbBhwwYsW7YMI0eORE5ODr7++mtER0eX+YBKskFOTsh96SV4v/gi3JYuRf7o0RBeXnJHRURkcbImuyt7i1VhYSHOnTuH1NRUrFixAsC/0+BHjRqF//znP2jVqlWp9azpFitbvQXiav7VCrezxf0zsNXfT1m4P9bLnvYF4P4QVUZkpL50yV9/qZCZqYCPj07miIiIyJ506tQJubm52LBhA7KystCwYUPMnj3b+CV8VlYWMjIyjO2dnJzwn//8BytWrMCsWbPg7u6Ojh07YtSoUXLtAlWTwocfhtvHH0N96hTcPvoIua+8IndIREQWJ2uyu7K3WDk7O+O9994zWRYfH49jx45h2rRp8PPzq/aYays/l4r1bUXbERER1VYeHgIhIRqcPatGQoIavXoVyR0SERHZmX79+qFfv35mX5s0aVKpZYGBgXj11VerOyySm1KJnFmzUCc2Fm4rViB/7FjoKnHXPBGRLVDIHcDAgQOxd+9e7Nu3D+np6Vi1alWpW6yWLl0KAFAoFGjUqJHJPw8PD6jVajRq1MhYX4wsr71/ewS4BkBC2Q9t83HyQXv/9jUYFRERkW0yzO5mKRMiIiKqSUW9e6OofXtIt27BfdEiucMhIrI42ZPdnTp1QmxsLDZs2ICZM2fi5MmT5d5iRfJQKpR4vePrAFBmwjunOAe/Xv61JsMiIiKySVFRhrrdfEglERER1SBJQs6cOQAAl7VroUpJkTkgIiLLsooHVFb2FqvbjRw5EiNHjqyOsOgO/YP645Pen2Dur3NxOf+ycXmAawDqudRD4vVEjI0fizX91+D+evfLGCkREZF1i4rSz+xOSFBDCMDMc7mJiIiIqoXm/vtR2K8fnHftgvs77yDr88/lDomIyGKsItlNtqN/UH/0a9wPv1/9HcUOxXAodsAD9R6AVmgxdtdY/HjxRzzx/RNYN2AdWvmWflgoERERAS1aaODoKJCVpcRffynRpEmJ3CERERFRLZI7axacdu+G8/ffI+/IEWju54Q1IrIPspcxIdujVCjRqX4nPHrfo+hUvxOUCiUclY74vO/neKDeA8gpzsGj3z2KM1ln5A6ViIjIKjk4AOHhrNtNRERE8tCGhaHgn7vkPRYsAISQOSIiIstgspssxlnljC8e/AIRvhHIvJWJUTtHIS0nTe6wiIiIrJKhbvfRo6zbTURERDUvd9o0CCcnOP72Gxz37pU7HCIii2CymyzKw8EDXz/0NZp7N8fVgqt4ZMcjuJR3Se6wiIiIrE5kJGd2ExERkXx0gYHIHzsWAODxzjtACcuqEZHtY7KbLM7HyQdr+q9BE48mSM9LxyM7H8H1gutyh0VERGRVDDO7jx1TQ6ORORgiIiKqlXInTYLO0xPqkyfhvHGj3OEQEd0zJrupWvi5+OHbAd8i0C0Q52+ex6PfPYqsW1lyh0VERGQ1mjQpgZeXDkVFEk6eZCkTIiIiqnnC2xt5kyYBANzfew8oKpI5IiKie8NkN1WbQLdAfNP/G/g5++Fk5kk88f0TyCvOkzssIiIiqyBJQGSkfnZ3QgKT3URERCSP/KeeQom/P1Tp6XD98ku5wyEiuidMdlO1CvYMxpr+a+Dl6IWE6wmIjY9FobZQ7rCIiIisQlQU63YTERGRvISzM3KnTwcAuH3wAaScHJkjIiKqOia7qdo192mONQ+tgbvaHb9e/hXP7H4GRSW8NYqIiIgzu4mIiMgaFIwcCU1ICJRZWXBbvlzucIiIqozJbqoRreu2xpcPfgknpRP2p+/H5H2TodVp5Q6LiIhIVpGR+pndZ8+qkJMjyRwNERER1VoqFXJnzQIAuH7yCRRXr8ocEBFR1TDZTTXmAf8HsLLvSjgoHLAzbSem/TgNOqGTOywiIiLZ+Prq0LChFkJISE7m7G4iIiKSz60HH0RxmzZQFBbCfckSucMhIqoSJrupRnVr0A3Ley2HUlJiw9kNmPPLHAgh5A6LiIhINoa63QkJrNtNREREMpIk5MyZAwBwWb0ayvPnZQ6IiKjymOymGtevST/8t8d/IUHCVye/wpu/v8mENxER1VqGut2JiZzZTURERPIq7tgRt3r2hKTVwmPhQrnDISKqNCa7SRZDQ4ZiYVf9wLk8eTmWJCyRNyAiIiKZGGZ2JyZyZjcRERHJL2f2bAhJgvO2bVAnJckdDhFRpTDZTbIZ3Xw0XuvwGgDgvT/ew8fJH8sbEBERkQzuu08DpVLgyhUlLl3iqRkRERHJS9uyJQqHDwcAeCxYIHM0RESVo5I7AKrdnrnvGeRr8vHuH+/i9d9eh6vaFY+3eFzusIiI7M6uXbuwdetWZGdno0GDBoiNjUWLFi3KbH/ixAl88cUXSE9Ph7e3NwYPHoy+ffsaX79w4QLWrl2L1NRUXL9+HWPGjMGAAQPKfL9NmzZhzZo16N+/P2JjYy25azbP2VmgeXMtjh9XIzHRAfXr35I7JCIiIqrlcmfMgPO2bXD8+Wc4/vQTirp1kzskIqIK4fQhkt3UqKmYFDEJADDr51nYeHajzBEREdmXgwcPYtWqVRg+fDji4uLQokULLFiwABkZGWbbX7t2DW+//TZatGiBuLg4DBs2DCtXrsShQ4eMbYqKilCvXj2MHj0aXl5e5W7/7Nmz2LNnDxo3bmzJ3bIrrNtNRERE1qSkYUPkP/EEAMB9wQJAp5M5IiKiimGym2QnSRJmt5uN2JaxEBB44YcX8F3qd3KHRURkN7Zv346ePXuiV69exlndvr6+iI+PN9s+Pj4evr6+iI2NRYMGDdCrVy9ER0dj27ZtxjYhISF44okn0LlzZ6jVZSdob926hQ8//BDPPvssXF1dLb5v9qJNG32y++hR1u0mIiIi65A3dSp0bm5w+PNPON12HkhEZM0qleyeP38+Ll68aLJs48aNyM7ONlmWlpaGCRMm3HNwVHtIkoQ3Or2BmNAYlIgSTNg3AT9c+EHusIiIbJ5Wq8X58+cRERFhsrx169Y4ffq02XVSUlLQunVrk2WRkZE4f/48tFptpbb/2WefISoqqtT7lUWj0aCgoMD4r7Cw0PiaJEk296+icUdF6fs1OVkNnU7+uOXqB3v/x35gP7AfrK8fiKhsujp1kPfccwAAj4ULgeJimSMiIrq7StXsPnHihMlFp06nw9q1axEZGWlyC7NGo0FmZqbFgqTaQSEp8F6391CoLcT21O14evfT+L+H/g8dAjrIHRoRkc3KycmBTqeDp6enyXJPT89SX1YbZGdnm21fUlKC3NxceHt7V2jbv/zyC1JTU/H2229XON5NmzZh/fr1xp+DgoIQFxeHunXrVvg9rI2/v/9d2/j5AW5uQF6eAjdvBiA8vAYCq2EV6YfagP2gx37QYz/osR+IrFf++PFw/eILqNLS4LJ6NQr47BUisnJ8QCVZFZVChQ+jP0ShthB7L+zFmF1jsHbAWkTWjZQ7NCIim2Zu9lp5M9rufE0Icdd1bpeRkYFVq1bhlVdegYNDxUtzDBs2DAMHDiwVx/Xr1ys9q1xukiTB398fV65cMfZfeVq39sHBg47YtSsbPj6Fd21vKyrbD/aK/aDHftBjP+hZQz+oVCqb/kKVqLoJV1fkvvACvF55Be6LF6MwJgaCpemIyIox2U1Wx0HpgI97f4wnv38SBy8fxGPfPYZ1A9ahZZ2WcodGRGRzPDw8oFAoSs3ivnnzZqnZ2wZeXl6l2ufk5ECpVMLNza1C2z1//jxu3ryJWbNmGZfpdDqcPHkS33//PVavXg2FonQ1NbVaXWYNcFtNCAkhKhR7ZGQxDh50REKCGqNGFdRAZDWrov1g79gPeuwHPfaDHvuByLoVPPYY3D79FKq0NLh+8gnyXnxR7pCIiMrEB1SSVXJWOWNVv1Vo49cG2UXZePS7R3Eu+5zcYRER2RyVSoXg4GAkJyebLE9OTkazZs3MrhMaGlqqfVJSEoKDg6FSVex78vvuuw/vvfceFi5caPzXtGlTdOnSBQsXLjSb6K7tIiM1AIDExLIf+ElERERU49Rq5MycCQBw+9//oLhxQ+aAiIjKZpErTT7Yg6qDq9oVXz34FcLrhCOjMAOP7HwEF3IvyB0WEZHNGThwIPbu3Yt9+/YhPT0dq1atQkZGBvr06QMAWL16NZYuXWps37dvX2RkZOCLL75Aeno69u3bh3379mHQoEHGNlqtFmlpaUhLS4NWq0VmZibS0tJw5coVAICzszMaNWpk8s/R0RHu7u5o1KhRzXaAjYiK0j/06eRJNQoLeW5FRERE1uPWoEEovu8+KPLz4fbBB3KHQ0RUpkqXMfnqq6/g4uIC4N/biVetWmVcBgAFBfZ36y3Jw8vRC2seWoPh24fjbPZZjNo5ChsHbUQ9l3pyh0ZEZDM6deqE3NxcbNiwAVlZWWjYsCFmz55trFGalZWFjIwMY3s/Pz/Mnj0bX3zxBXbt2gVvb2+MHTsWHTr8+8DgzMxMzPxnhg8AbNu2Ddu2bUPLli3x2muv1di+2ZOAAB3q1SvB1atKHDumRrt2xXKHRERERKSnUCBnzhz4PvooXL/8EvnjxqGEExiIyApVKtnt6+trcjFc1jLDciJLqONcB9/0/wbDtw1HWk4aRu0YhQ2DNsDHyUfu0IiIbEa/fv3Qr18/s69NmjSp1LKWLVsiLi6uzPfz8/PDt99+W6kYmAQvnyTp63bv2uWMhAQmu4mIiMi6FHfrhqKuXeF44ADc330X2R9+KHdIRESlVCrZ/dFHH1VXHETlCnANwNr+azFs+zCcyT6D0d+NxrcDvoWHg4fcoREREVlMVJTmn2S3A4B8ucMhIiIiMpEzZw7qPvQQnDdtQt5zz0EbHi53SEREJvh0KLIZjTwaYW3/tajjVAd/ZvyJJ75/AgUalswhIiL7ERmpn83Nh1QSERGRNdK0bo3CwYMhCQGPd96ROxwiolIskuzWarWIj4/H559/jo0bNyI7O9sSb0tUSohXCNb0XwNPB08cuXoEY+PH4pb2ltxhERERWUREhAaSJPD33yrcuME5CURERGR9cmbOhFCp4LRvHxwOHpQ7HCIiE5W6itq8eTNmz55tsqykpASvvvoqPv/8c8THx2Pt2rV4+eWXkZmZadFAiQzC64Tjqwe/gqvaFT9f+hnP7X0OGp1G7rCIiIjumYeHQEiIFgCQkMDZ3URERGR9SoKCUPDYYwAAjwULACFkjoiI6F+VSnYnJSWhadOmJsv27NmD8+fPo2PHjli4cCGmTJmCoqIibNq0yaKBEt2ubb22WNV3FZyUTtj9925M2T8FJboSucMiIiK6Z5GR+i9wExMdZI6EiIiIyLzcF16AztkZDgkJcPruO7nDISIyqlSy+9KlS2jWrJnJst9//x0uLi6YOHEiGjdujM6dO2PgwIFITk62aKBEd+pUvxM+6f0J1Ao1tp7fipkHZkIndHKHRUREdE9Yt5uIiIisnc7PD/njxwMA3N95B9BqZY6IiEivUsnuvLw81KlTx/izTqfDmTNn0KJFCzg4/Dv7KDQ0FBkZGZaLkqgMvRr1wkc9P4JCUuCbM9/gtV9fg+AtVEREZMPatNHP7E5IcOBdwURERGS18iZMQIm3N9TnzsFl7Vq5wyEiAlDJZLebmxvy8vKMP1+4cAHFxcWlSpuo1WoolUrLREh0FwOCBmBRt0UAgM+Pf46FRxbKHBEREVHVNW+ugaOjQHa2AmlpPJ8iIiIi6yTc3ZE3dSoAwH3RIkiFhTJHRERUyWR3o0aN8Msvvxh//v333wEA4eHhJu2uXr0KLy+ve4+OqIJiwmLwVue3AAD/TfwvPkz8UOaIiIiIqsbBAQgPZ91uIiIisn75Tz4JbYMGUF65AtfPP5c7HCKiyiW7BwwYgEOHDmH+/Pn44IMPsHHjRjRq1AjNmzc3aZeQkIAmTZpYMk6iu4ptGYv/PPAfAMA7h9/BimMrZI6IiIioaqKi9HW7ExJYt5uIiIismKMjcmfMAAC4ffQRpKwsmQMiotquUsnuyMhIPP3007h27Rr++OMPhIeH46WXXjJpk52djWPHjiEiIsKigRJVxISICXixzYsAgFd/fRVrT7NuGBER2Z6oqH/rdhMRERFZs8Jhw6Bp0QKKnBy4f/SR3OEQUS2nquwKffv2Rd++fct83cvLCytWcEYtyWd6m+nIK87Dp8c+xUsHXoKzyhmDmw6WOywiIqIKi4zUz+w+flyN4mJ9aRMiIiIiq6RUImf2bNR58km4rliBvLFjoQsMlDsqIqqlKjWzm8gWSJKEeR3m4bHmj/0/e/cdHVW1t3H8e6ak9wRI6CBFEALoK80OShS5CChKU0EUFewFpUkXwa5gR8CLdEQFUbgUUaRZaAoiUkR6em9T3j8i0UjoSc5M8nzWmgVz5pyZ395zMjN5smdvXG4XD69+mP/98T+zyxIRETlrtWs7CQtzkZtrsHOnpjIRERERz5bbrh25rVtj5OYS/MorZpcjIhXYOY3s3rFjxzndeePGjc9pf5GSYhgGE66YQFZ+Fov2LOL+lfczI24GV1W7yuzSREREzsgwCubtXr3aj82b7TRrlm92SSIiIiKnZhikDR1Kpc6dCZg3j8z778fRoIHZVYlIBXROYffo0aPP6c7nztV8yWIeq8XKq9e+SrYjm6/++Ip7lt/DrI6zuLzK5WaXJiIickbNm+ezerUfW7b4AFlmlyMiIiJyWvmXXUb2TTfh/+WXBL/wAsma4lZETHDOc3YHBATQpk0bmjZtimEYpVGTSImxW+y81f4t+i3rx5pDa7jrq7uYd/M8mkY1Nbs0ERGR02rRomDe7s2bNY2JiIiIeIf0Z57Bb9ky/JctI+P778m/XIPNRKRsndOc3QMHDqR27dqsXLmSmTNncvDgQerVq0fr1q2LvYh4Al+rL1M7TKVVdCvS8tLo9WUvfkv+zeyyRERETqt584KpS37/3U5amgYYiIiIiOdz1K9PVo8eAIQ8/zy43SZXJCIVzTmF3ddccw0jR47kjTfe4Morr2TlypU89NBDjB07lnXr1uFwOEqrTpEL4m/zZ0bcDJpFNSMpJ4keS3uwP22/2WWJiIicUmSki5o1Cz5bbd2q0d0iIiLiHdKfeAK3nx++mzbhu2KF2eWISAVzTmH3CVWqVKFnz55MmTKFwYMH4+/vz+TJkxkwYABLly4t6RpFSkSwTzAzb5rJxeEXcyzrGHd8cQeHMg6ZXZaIiMgp/T2ViY/JlYiIiIicHVdMDBn9+wMQMmECOJ0mVyQiFcl5hd2FB1ssXHrppTzwwAN07tyZrKwsduzYUVK1iZS4CL8IZnecTZ2QOhzMOEiPpT2Iz4o3uywREZFinZjKZMsWjewWERER75ExcCCu0FDsu3bhv3Ch2eWISAVyQWH3li1bePXVV7n//vtZtmwZ7dq147bbbiup2kRKReWAysy9eS7VgqqxN3UvPb/sSXJOstlliYiInKRFi4Kwe/NmH015KSIiIl7DHRZG+sMPAxD84ouQk2NyRSJSUdjO9YDjx4+zatUq1qxZQ1JSEo0bN+b++++ndevW+PjoK7biHaoFVWNux7l0W9yNnUk76fNlH9b0X2N2WSIiIkU0aZKH1erm+HErhw9bqFbNZXZJIiIiImcls29fgqZOxXb4MIEzZpB5//1mlyQiFcA5jewePXo0jzzyCN988w3XXHMNb7zxBiNHjuTqq69W0C1ep05oHWZ3nE24bzib4zfTaXYnshxZZpclIiJSyN8fGjU6MZWJPmuJiIiIF/H3J/3JJwEIfuMNjLQ0kwsSkYrgnEZ279ixA39/f2rWrMkff/zB9OnTT7mvYRgMHjz4QusTKVUXR1zMrJtmcfsXt/PNH99w3//uY+oNU/G1+ppdmoiICFAwb/fPP/uwZYudm2/WV4BFRETEe2R1707gu+9i372boLfeIv3ZZ80uSUTKuXMa2R0VFUVgYCB//vknBw4cOONFxBvEVorlo5s+IsAewOo/VzNo1SAcLofZZYmIiABw6aV5QMG83SIiIiJexWYrDLgD338fy7FjJhckIuXdOY3snjJlSmnVIWKqVtGt+KzHZ9z88c18uf9LHl/zOK9f+zoW44LWcBUREblgzZsXTGOydasdpxOsVpMLEhERETkHOXFx5F12GT4//kjwK6+QOnGi2SWJSDmmJE/kL9fXvZ53r38Xq2Hlk98/Yeh3Q3G73WaXJSIiFVy9eg4CA11kZVnYvfuc1xYXERERMZdhkDZsGAABs2dj3bPH5IJEpDw7p9+YnnrqqbPe1zAMXnzxxXMuSMRMcbXjeOPaN3ho9UP8d+d/CbAFMKLVCAzDMLs0ERGpoKxWaNYsn3XrfNm82YeLL9ZUWyIiIuJd8lq1Iqd9e/xWriRk0iSS333X7JJEpJw6p5HdQUFBBAcHn/Zit9sL5/QW8UZd6nXhxasK/lDz7vZ3efWnV02uSEREKroWLU7M2203uRIRERGR85M2ZAhuw8B/yRLsW7aYXY6IlFPnNLJ71KhRp7zN6XSyYsUKFixYAMCVV155QYWJmKnnxT3JdGQycv1IXv7pZQLsAdzX5D42Ht3I8azjVA6oTKvoVlgtmjhVRERK34l5u7ds0SKVIiIi4p0cjRqRfeutBCxYQMj48STOmwf6FrWIlLASmfhx/fr1zJkzh6NHjxIbG0vv3r2pXbt2Sdy1iGnubXIvmfmZTPphEmM3juWNzW+QmpdaeHtMYAxj2oyhY52OJlYpIiIVwYmR3b/+aiM728DfX2tKiIiIiPdJf/pp/D//HN916/Bds4a8664zuyQRKWcuaIHKX375haFDh/Laa6/h7+/P8OHDGTZsmIJuKTceaf4IN9W6CaBI0A1wNPMoA1YMYOm+pWaUJiIiFUhMjIvoaCdOp8H27ZrKRERERLyTs3p1Mu++G4CQ558Hl8vkikSkvDmvkd0HDhzg448/ZsuWLVSuXJlHHnmEK6644ryLWLZsGZ9//jkpKSlUr16dvn370qhRo2L3/fXXX/n44485dOgQubm5VKpUieuvv55OnTqd9+OLnIrL7WJLwpZib3PjxsBg5PqRxNWK05QmIiJSqpo3z+Orr/zZvNlOy5Z5ZpcjIiIicl4yHnmEgDlzsP/yC0ETJ8KKFfiMHEnuVVeZXZqIlAPnFHYnJCQwZ84cvvvuO4KCgujbty833HADNtv5z4aybt06pk+fzr333kvDhg1ZsWIFzz//PK+++ipRUVEn7e/r60tcXBy1atXC19eXX3/9lffffx8/Pz+uv/76865DpDgbj27kSOaRU97uxs3hzMNsPLqRtlXblmFlIiJS0bRokf9X2O0DZJpdjoiIiMh5cUVEkPHgg4RMmkTQu+9CXh7BEyaQe+WVmsNbRC7YOaXUjz76KA6Hg+bNm3PLLbfg5+fHgQMHTrl/3bp1z3ifS5YsoV27drRv3x6Avn37snXrVpYvX06vXr1O2r9OnTrUqVOn8HrlypXZtGkTO3fuVNgtJe541vES3U9EROR8NW9eMJp7yxZNYyIiIiLeLfO++wh8912sqQXThfps3YrvmjXkXnutuYWJiNc7p7Db4XAAsGXLFrZs2XLG/efOnXvG+9u7dy9dunQpsj02NpZdu3adVU379u1j165d9OjR45T75Ofnk5+fX3jdMAz8/f0L/18WTjxOWT1eaaso7akSWOWsjq8SWMWj+qKiPD/eqDy1BdQekbLUrFk+huHmzz9tJCRYiIrSHJciIiLindz+/riDguCvsNttsRA8aRK511yj0d0ickHOKex+8MEHS/TB09LScLlchIaGFtkeGhpKSkrKaY994IEHSEtLw+l00r1798KR4cVZtGgRCxYsKLxep04dJk6cSKVKlS6o/vMRHR1d5o9Zmsp7e7pU6UL1b6pzKO0Qbtwn7W9gUD2kOl1adPHIObvL+/PjzcpTW0DtESkLwcFu6td38NtvdjZvtnPDDblmlyQiIiJyXnzXrMF26FDhdcPl0uhuESkR5xR2X1tKLzjFjaA706i6MWPGkJOTw2+//casWbOIjo7myiuvLHbfrl27FlnA8sR9x8fHF45WL22GYRAdHc3Ro0dxu08OTb1NRWrPqFajuO9/92FgnBR4u3EzstVIjh/zrGlMKtLz423KU1tA7Tkdm81myh9VpXxr3jyf336zs2WLj8JuERER8U5uN8GTJuG2WjGczr83A8EvvKDR3SJyQc5/ZckSEBISgsViOWkUd2pq6kmjvf+tcuXKANSsWZPU1FTmz59/yrDbbrdjtxc/v2VZhzNut7tcBEInVIT23FT7Jt67/j2eW/9csYtVBtmDPLYPKsLz463KU1tA7REpK82b5zFvXoDm7RYRERGv5btmDT5bt5603QB8tm/Hd8UKcm+4oewLE5FywWLmg9tsNurWrcu2bduKbN+2bRsNGzY86/txu91lNkJbKqaOdTqyscdG5t88nynXTWH+zfO5u9HdAAxfN5w8Z57JFYqISEVw6aUFa5Bs2eKD/h4jIiIiXufEqO7TjNwOf+wxUMYjIufJ1LAboFOnTqxcuZJVq1Zx8OBBpk+fTkJCAjf89Ve8WbNmMXny5ML9v/rqK3744QeOHDnCkSNHWL16NYsXL+aqq64yqwlSQVgtVtpWbUuXel1oW7Utz1z+DFH+Ufye8jvvb3/f7PJERKQCuPjifHx93aSkWNi3z/PWihARERE5rbw8rIcOYZzmr/aWlBRChwxBf9kXkfNh6jQmAG3btiU9PZ2FCxeSnJxMjRo1GDJkSOE8p8nJySQkJBTu73a7mT17NsePH8disRAdHU3v3r25/vrrzWqCVFChvqEMbzmcx9Y8xqubX6VLvS5UC6pmdlkiIlKO2e3QpEk+P/7ow5YtPtStm212SSIiIiJnz9eX+KVLsSYlFW6qVKkS8fHxAPisWUPIhAkEzpqFq1Il0gcPNqtSEfFSpofdAHFxccTFxRV726BBg4pcv+mmm7jpppvKoiyRM7qt/m3M+nUWm45tYtSGUbx/vUZ4i4hI6WrRIo8ff/Rh82Y73bop7BYRERHv4qpWDVe1goFihmFATAyOI0dwu93kN22KOzSUsGefJfj113GFh5N5330mVywi3sT0aUxEvJlhGIy/YjxWw8rSfUv5+s+vzS5JRETKuRYtCubt3rzZx+RKREREREpe1p13kvbMMwCEjhqF//z5JlckIt5EYbfIBWoc2Zh+l/QDYNi6YeQ6c02uSEREyrPmzQsWRf7lFzt5Wh9ZREREyqGMhx8m468R3WFPPonv8uUmVyQi3kJht0gJeOqyp6jsX5n9aft5e+vbZpcjIiLlWK1aTsLDneTlGezYYTe7HBEREZGSZxikPfccWd27YzidRDz4ID4bNphdlYh4AYXdIiUg2CeY51o/B8CbW97kz/Q/Ta5IRETKK8P4eyqTLVsUdouIiEg5ZbGQ8tJLZHfogJGTQ0Tfvth+/tnsqkTEwynsFikhXS7qQtuYtuQ4c3hu/XNmlyMiIuVY8+aat1tEREQqAJuN5LfeIrd1ayzp6UT27o11716zqxIRD6awW6SEnFis0mbYWP7Hcv73x//MLklERMqpFi0KJuvevFkju0VERKSc8/cnado08po0wZqQQGTPnliOHDG7KhHxUAq7RUpQg/AG3Ne0YBGN59Y/R7Yj2+SKRESkPDoxsnvPHjupqYbJ1YiIiKdZtmwZgwYNonfv3jzzzDPs3LnzrI779ddf6dGjB08//XQpVyhybtwhISR9/DGOOnWwHTxIZK9eGMnJZpclIh5IYbdICXv80seJDozmQPoB3tr6ltnliIhIORQR4aJWLQcAW7dqdLeIiPxt3bp1TJ8+nW7dujFx4kQaNWrE888/T0JCwmmPy8rKYsqUKTRt2rSMKhU5N66oKBLnzMEZHY39t9+IvPNOjMxMs8sSEQ+jsFukhAXaAxnVehQAU7ZOYX/aflPrERGR8unvqUw0b7eIiPxtyZIltGvXjvbt21O9enX69u1LVFQUy5cvP+1x7733HldccQX169cvo0pFzp2zenUSZ8/GFRaGz+bNhN93H+Tmml2WiHgQhd0ipaBTnU5cXe1qcp25jFg3ArfbbXZJIiJSzpyYymTLFo3sFhGRAg6Hg71799KsWbMi22NjY9m1a9cpj1u9ejXHjh2je/fuZ/U4+fn5ZGVlFV6ys/+evtEwjApxqUht9bS+dDZsSNLMmbgCAvBbs4bwRx/FcLlMb4cnXHReqi898VISfXkubOe0t4icFcMwGNt2LNcvvJ5Vf65i2R/LuLH2jWaXJSIi5Ujz5n+P7Ha74Rw/A4qISDmUlpaGy+UiNDS0yPbQ0FBSUlKKPebIkSPMmjWL0aNHY7Vaz+pxFi1axIIFCwqv16lTh4kTJ1KpUqXzrt0bRUdHm11CuXHOfXnzzfDpp3DzzfgvXox/1arw9tv6QITOy5Kkviw5ZdmXCrtFSkm9sHo8EPsAb255k+fWP8c11a/B3+ZvdlkiIlJONGmSj83mJj7eyuHDVqpVc5pdkoiIeIjiRsEVt83lcvHGG2/QvXt3qlatetb337VrVzp16nTSfcfHx+NwOM6jYu9iGAbR0dEcPXpU3+K9QBfUl02a4Dd5MmEPPIDx7ruk+/mR8cwzpVOoF9B5WXLUlyWnpPrSZrOd9R9UFXaLlKJHmj/CJ79/wqGMQ7y++XWevfxZs0sSEZFywt8fGjXKZ/t2HzZvtivsFhERQkJCsFgsJ43iTk1NPWm0N0B2djZ79uxh3759fPjhhwC43W7cbjc9evRg+PDhNGnS5KTj7HY7dnvx02hVpGDoRF/JhTvfvszu1AnjhRcIe+YZgl9/HVdYGJkDBpRChd5D52XJUV+WnLLsS4XdIqUowB7AmDZj6P+//ryz7R1uq38b9cLqmV2WiIiUE82bF4TdW7b40KlTjtnliIiIyWw2G3Xr1mXbtm20bNmycPu2bdu4/PLLT9rf39+fl156qci25cuX8/PPP/PEE09QuXLlUq9Z5EJl9emDJTmZkBdeIHT0aFxhYWTffrvZZYmISbRApUgpi6sVR7sa7ch35WuxShERKVEtWpyYt1uLVIqISIFOnTqxcuVKVq1axcGDB5k+fToJCQnccMMNAMyaNYvJkycDYLFYqFmzZpFLSEgIdrudmjVr4ufnZ2ZTRM5axkMPkfHXiO6wp57Cd/lykysSEbMo7BYpZScWq/S1+vLNoW9Ysm+J2SWJiEg50aJFPgBbt9qpAFOkiojIWWjbti19+/Zl4cKFDB48mJ07dzJkyJDCuU6Tk5NJSEgwuUqREmYYpD33HFm3347hdBLxwAP4rF9vdlUiYgJNYyJSBmqH1GZQs0G88tMrjNowinY12hFoDzS7LBER8XIXXeQgKMhFRoaF3bttNGqkxFtERCAuLo64uLhibxs0aNBpj7399tu5XVNAiDcyDFJefBEjNRX/ZcuI6NuXhIULcRQz77yIlF8a2S1SRgY2G0jN4JoczTzKqz+9anY5IiJSDlit0KxZwejuzZt9TK5GRERExGQ2G8lvvUVumzZYMjKI7NUL6549ZlclImVIYbdIGfG3+TO27VgA3t/+Pr8l/2ZyRSIiUh6cmLd7yxbN2y0iIiKCnx9J06aR17Qp1sREInv2xHL4sNlViUgZUdgtUoaur3k9HWp1wOF2MPS7oVqsUkRELljz5hrZLSIiIvJP7uBgkmbOxFG3LrZDh4js3RsjKcnsskSkDCjsFiljY9qMwc/qx/oj6/lsz2dmlyMiIl7uxMjuX3+1kZVlmFyNiIiIiGdwRUWROHs2zuho7L/9RuRdd2FkZppdloiUMoXdImWsRnANHm7+MABjNo4hPS/d5IpERMSbRUe7iI524nIZbN+uqUxERERETnBWr07i7Nm4wsLw2byZ8Hvvhdxcs8sSkVKksFvEBA82e5DaIbU5lnWMl3982exyRETEy50Y3b15s8JuERERkX9yNGhA4syZuAIC8PvmG8IfeQScTrPLEpFSorBbxAS+Vl/Gtx0PwIe/fMjOpJ0mVyQiIt6sRQvN2y0iIiJyKvktWpA0dSpuHx/8lywhdMgQ0BpaIuWSwm4Rk1xb41o61umI0+1k6FotVikiIuevefOCkd1btmhkt4iIiEhx8q6+muTJk3FbLAR+/DHBL7xgdkkiUgoUdouYaFTrUfjb/Nl0bBMLdi8wuxwREfFSsbH5GIabgwdtxMfr452IiIhIcXJuvpnUv0Lu4MmTCXznHZMrEpGSpt+GRExULagaj7d4HIBxm8aRmptqckUiIuKNgoPdNGjgADRvt4iIiMjpZPXuTdqQIQCEjh2L/9y5JlckIiVJYbeIye5reh/1wuqRkJ3Aiz+8aHY5IiLipZo3L5i3e8sWzdstIiIicjoZgwaR8cADAIQ9/TR+y5aZXJGIlBSF3SIm87H6FC5WOWPnDLYnbDe5IhER8Uaat1tERETkLBkGacOHk3XHHRhOJ+EPPojPunVmVyUiJUBht4gHuLLaldxy0S243C6GfjcUl9tldkkiIuJlLr30RNjtg0tvIyIiIiKnZxikTJpE9o03YuTmEtGvH/Zt28yuSkQukMJuEQ8xotUIAu2B/HT8J+bu0pxhIiJybho2dODn5yY11cK+fVazyxERERHxfDYbyVOmkNumDZaMDCJ698b6++9mVyUiF0Bht4iHiAmM4clLnwRg/KbxJOckm1yRiIh4E7sdmjTRvN0iIiIi58TPj6Rp08iLjcWalERkr15YDh82uyoROU8Ku0U8yD1N7qFheEOSc5N54fsXzC5HRES8TIsWBVOZbN6sebtFREREzpY7OJikmTNx1K2L7dChgsA7KcnsskTkPCjsFvEgdoud5694HoCPf/2YLfFbzC1IRES8yomwWyO7RURERM6NKzKSxDlzcMbEYN+9m4g778TIyDC7LBE5Rwq7RTxM65jWdKvXDTduhq4ditPlNLskERHxEs2bF0xj8ssvdnJzTS5GRERExMs4q1UjcfZsnOHh+GzZQkT//uhDlYh3Udgt4oFGtBpBsD2YrQlbmbVrltnliIiIl6hZ00lEhJO8PIMdOzSViYiIiMi5ctSvT9LMmbgCAvBdu5bwhx4CpwahiXgLhd0iHqhyQGWe/r+nAXjh+xdIzE40uSIREfEGhvH36O4tWxR2i4iIiJyP/ObNSfrwQ9w+PvgvXUros8+C2212WSJyFhR2i3iouxvfTeOIxqTkpvD8pufNLkdERLzE34tUat5uERERkfOVd9VVJE+ZgttiIXDWLIJfeMHskkTkLCjsFvFQNouN568sCLnn/DaHH479YHJFIiLiDVq0KBjZrbBbRERE5MLkdOxI6sSJAARPnkzgO++YXJGInInCbhEPdnmVy7mjwR0ADP1uKA6Xw+SKRETEkx06ZMVudwGwd6+NdevsbN/+9+XQIavJFYqIiIh4l6xevUgbNgyA0LFj8Z871+SKROR0bGYXICKnN6zlML7a/xW/JP7Cf3f+l36X9DO7JBER8UCHDlm56qrK5OYahdu6d69UZB9fXzfffnucatW0yJKIiIjI2coYOBBLUhJBb79N2FNP4Q4NJefGG80uS0SKoZHdIh4u0j+SZy5/BoBJP0wiPive5IpERMQTJSVZigTdxcnNNUhK0sc/ERERkXOVNmwYmT17YrhchD/4ID7ffWd2SSJSDP22I+IF+lzch9ioWNLy0hi3aZzZ5YiIiIiIiIhULIZB6gsvkH3TTRh5eUT064d961azqxKRf1HYLeIFrBYrz1/xPAYGC3YvYOORjWaXJCIiIiIiIlKx2GwkT55M7hVXYMnMJKJPH2y//252VSLyDwq7RbxEi8ot6HVxL6Bgscp8V77JFYmIiIiIiIhUMH5+JH34IXnNmmFNSiKiZ08shw6ZXZWI/EVht4gXefbyZwn3DefX5F+Z9ss0s8sRERERERERqXDcQUEk/fe/5F90EbbDh4ns1QtLUpLZZYkICrtFvEqEXwRDWw4F4OUfX+Zo5lGTKxIRERHxfocOWdm+3X7Ky6FDVrNLFBERD+OKjCRx9mwcVati//13Ivr0wcjIMLsskQrPZnYBInJuejTswaxds9h8fDNjN45lSrspZpckIl5g2bJlfP7556SkpFC9enX69u1Lo0aNTrn/jh07mDFjBgcPHiQ8PJzOnTvToUOHwtv//PNP5s6dy759+4iPj+fuu+/m5ptvLnIfixYtYtOmTRw6dAgfHx8aNGhAnz59qFq1aqm1U0TkXB06ZOWqqyqTm2ucch9fXzfffnucatWcZViZiIh4Ole1aiTNnk1kly74bN1KxD33kPjf/4Kvr9mliVRYGtkt4mUshoUJV0zAwODTPZ/y3eHvzC5JRDzcunXrmD59Ot26dWPixIk0atSI559/noSEhGL3P378OBMmTKBRo0ZMnDiRrl27Mm3aNDZs2FC4T25uLlWqVKFXr16EhYUVez87duwgLi6O8ePHM3z4cFwuF+PGjSMnJ6c0mlnhRUS48PV1n3YfHx83ERGuMqpIxDskJVlOG3QD5OYaJCXpVycRETmZo149kj7+GFdgIL7ffUf4Qw+Bw2F2WSIVlj6xiXihplFNuavxXQAM+24Yec48kysSEU+2ZMkS2rVrR/v27QtHdUdFRbF8+fJi91++fDlRUVH07duX6tWr0759e6677joWL15cuE+9evW48847ueKKK7Db7cXez7Bhw7j22mupUaMGtWvXZuDAgSQkJLB3795SaWdFV62ak2+/Pc5XX8UXuSxZEk/t2gWLGnfqlK2RqSIiIiIlLL9ZM5I+/BC3jw/+S5cS+uyz4D79IAQRKR2axkTESw3+v8Es2buE3Sm7+eDnDxjYbKDZJYmIB3I4HOzdu5cuXboU2R4bG8uuXbuKPWb37t3ExsYW2da8eXNWr16Nw+HAZju/jw9ZWVkABAUFnXKf/Px88vPzC68bhoG/v3/h/73JiXrLsu7q1V1Ur37yyO2XX07j1lsjWbTInwEDMomNLbvRRmb0gydSPxTw9n4oqbq9vR9KivpBRMqTvCuvJPmttwgfMIDA2bNxRUSQPnSo2WWJVDgKu0W8VJhvGMNaDeOJNU/w6k+vcstFt1AtqJrZZYmIh0lLS8PlchEaGlpke2hoKCkpKcUek5KSUuz+TqeT9PR0wsPDz7kOt9vNjBkzuPjii6lZs+Yp91u0aBELFiwovF6nTh0mTpxIpUqVzvkxPUV0dLTZJdCtG/TsCbNnG4weXYm1a8FSxt/v84R+8ATqhwKe1A9HjpzdfpUqVSImpmQf25P6wUzqBxEpL3JuuomUF18k/MknCZ4yBVd4OJkPPmh2WSIVisJuES/WvX53Zv86m++Pfc/oDaN57/r3zC5JRDxUcaPmTjeS7t+3uf/6Gub5jr6bOnUqBw4cYMyYMafdr2vXrnTq1OmkOuLj43F42dyHhmEQHR3N0aNHC/vPTE8/beHzzyuxfr2FN95I4Y47ssvkcT2tH8yifijgif0QH28DzvwHtcGDsxkxIoMGDS78tcgT+8EMntAPNpvNq/+gKiKeJ7tHDyzJyYSOG0fouHG4w8LI6tnT7LJEKgyF3SJezGJYeP6K57lx0Y18se8L1hxcwzXVrzG7LBHxICEhIVgslpNGcaempp40evuEsLCwk/ZPS0vDarWedgqSU/nwww/58ccfGT16NJGRkafd1263n3IOcG8NhNxut0fUXqWKkyeeSGfs2FDGjQsmLi6b0NCyq8tT+sFs6ocCntQPGRlnt9/Klf6sXOnPTTdl8/DDGTRrln/mg87Ak/rBTOoHESlvMh98EEtSEsFvvUXo4MG4QkPJ6djR7LJEKgQtUCni5RpHNqbvJX2BgsUqc5255hYkIh7FZrNRt25dtm3bVmT7tm3baNiwYbHH1K9f/6T9t27dSt26dc9pvm63283UqVPZuHEjzz33HJUrVz73BkiJ6t8/k/r180lMtPLSS8FmlyNiutRUg6FDw85q37ZtcwD48kt/OnasRM+eEaxb56P1x0REpFjpQ4eS2bMnhstF+KBB+Kxda3ZJIhWCwm6RcuCpy56isn9l9qXt491t75pdjoh4mE6dOrFy5UpWrVrFwYMHmT59OgkJCdxwww0AzJo1i8mTJxfu36FDBxISEpgxYwYHDx5k1apVrFq1iv/85z+F+zgcDvbv38/+/ftxOBwkJSWxf/9+jh49WrjP1KlT+fbbb3n00Ufx9/cnJSWFlJQU8vLyyq7xUoTdDmPHpgIwfXogv/yiL/lJxZWWZtC7dyS//WYHTp9Y+/q6ee21VFavPs6tt2Zhtbr55hs/uneP4pZbovjf/3wVeouISFGGQeoLL5DdsSNGXh4R99yDfcsWs6sSKff0G45IORDiE8KI1iN4ePXDvL75dbrV70ZMSa+gJCJeq23btqSnp7Nw4UKSk5OpUaMGQ4YMKZyjNDk5mYSEhML9K1euzJAhQ5gxYwbLli0jPDycfv360bp168J9kpKSGDx4cOH1xYsXs3jxYho3bsyoUaMAWL58OUDh9RMGDhzItddeWzqNlTO66qo8OnXKZskSf4YPD+WTTxI5z6nYRbxWenpB0L15sw/h4U7efDOZqKhTp9URES6qVXMC8MYbKTz1VDrvvBPEnDkB/PijD337RtKoUT4PP5xOp045WK1l1RIREfFoNhvJkydjuesufNeuJaJPHxI//RRHvXpmVyZSbhnuCjw5Wnx8PPn5Fz7X3tkwDIOYmBiOHDlSLuajU3s8j9vtpvsX3Vl/ZD031r6RL+/+0qvb80/l4fk5oTy1BdSe07Hb7VrwqgSV5Xt2SfHkn49Dhyxcc01lsrMtvPFGMrfeWnqLVXpyP5Ql9UMBT+iHjAyDXr0i+fFHH8LCXMydm0CTJue36OTx4xbefz+QGTMCycws+NJs7doOBg3K4NZbs/D1Lf44T+gHT+AJ/aD365Llje/X58MTzt3yoqL0pZGRQeQdd+CzZQvOmBgSPvsMZ7VqJfsYFaQvy4L6suSUVF+ey/u1R0xjsmzZMgYNGkTv3r155pln2Llz5yn33bhxI2PHjqV///7cfffdDBs2jC36GogIhmEwvu14bIaNr/Z/xdLdS80uSUREPFS1ai4ee6xgVb5x40JIT9fQbqkYMjIM+vSJKAy658xJPO+gG6ByZRfDhqWzadMxnnoqjbAwF/v323j66TDatq3C++8HkpWlny8RkYrOHRRE0n//S369eliPHCGiZ08siYlmlyVSLpkedq9bt47p06fTrVs3Jk6cSKNGjXj++eeLfJ36n3bu3ElsbCxDhgzhhRde4JJLLmHixIns27evjCsX8TwNIxpyb9N7AXj4y4fJceSYXJGIiHiq++7LoG5dB8ePW3n5ZS1WKeVfZqbBnXdG8P33voSGupg9O5GmTUtmBGpYmJvHH89g06ZjjByZSnS0k6NHrYwaFUrLlpV57bUgUlIUeouIVGSuiAgSZ83CUbUq9j17iOjTByMjw+yyRMod08PuJUuW0K5dO9q3b0/16tXp27cvUVFRhfN8/lvfvn255ZZbqFevHjExMfTq1YuYmBh+/PHHMq5cxDM93uJxogOi2Zu8lylbp5hdjoiIeChf378Xq/zww0B+/VVLuUj5lZVlcNddEWza5EtISEHQHRtb8lMtBAa6GTAgk3XrjjFpUgq1ajlITrby4oshtGpVheefDyY+3vRfwURExCSuatVInD0bZ0QEPtu2EdGvH+RokJpISTL1k5bD4WDv3r00a9asyPbY2Fh27dp1VvfhcrnIzs4mKCjolPvk5+eTlZVVeMnO/nteSsMwyuxS1o+n9lTM9gT7BjO67WgAJm+ZzB/pf5hek56f8tsWtef09yPi6a69NpebbsrG6TQYPjwUTUko5dGJoHvDBl+CgwuC7mbNSndOYV9f6N07i2++Oc6UKclcfHE+GRkWpkwJpnXrKgwZEsL+/aVagoiIeChnvXokffwxrsBAfNetI3zQIHCc/5RaIlKUqUN40tLScLlchIaGFtkeGhpKSkrKWd3HkiVLyM3NpU2bNqfcZ9GiRSxYsKDwep06dZg4caIpC5FER0eX+WOWJrXHM90XfR/z985nxd4VjPtxHEt6LikX4Vt5eX6gfLUF1B4RbzZqVBqrV/uyfr0vn3/uxy23aHSRlB/Z2QZ33x3B+vW+BAW5mDUrkebNy27xPJsNunTJpnPnbFas8OWNN4LZvNmHGTMCmTkTunULZdCgDOrXV8ghIlKR5MfGkjRtGpF33on/V1/heuYZUl96CcrB7+0iZvOI76sWF8KdTTC3du1a5s+fz9NPP31SYP5PXbt2pVOnTifdd3x8PI4y+uuZYRhER0dz9OjRcrGSq9rj2QzD4M2b3iT27ViW7l7K9A3TubH2jWaXdd7K0/NTntoCas/p2Gw2U/6oKnKuqld38vDDGbz4YghjxoTSvn0uQUHe//Mskp0NfftGsG5dQdD98ceJXHpp2QXd/2SxQIcOudxwQy7r1vnw5pvBfPutL/PnB7BggT833ZTDww9nlMrUKiIi4pnyrriC5LfeIvy++wicMwd3eDhpw4ebXZaI1zN1GpOQkBAsFstJo7hTU1NPG15DwcKW77zzDo8//jixsbGn3ddutxMQEFB48ff3L7zN7XaX2aWsH0/tqdjtuTjqYu6PvR+A59Y9R1Z+luk16fkpf21Re05/PyLe4oEHMqhd28HRo1Zee02LVYr3y86Ge+6JYO1aXwIDXcycmcj//Z/5QbJhwBVX5DF3bhIbN8KNN+bgdhssXerPTTdVolevCNav90FvIyIiFUPOjTeS8tJLAAS9/TZBb71lckUi3s/UsNtms1G3bl22bdtWZPu2bdto2LDhKY9bu3YtU6ZM4ZFHHuHSSy8t7TJFvNZjLR6jWlA1DmYc5I3Nb5hdjoiIeCg/Pxg9umCxyvffD+T33z3iy38i5yUnB/r3j+Cbb/wICHAxc2YSl19uftD9by1bwocfJrNq1XG6dcvCanWzZo0ft90WRZcuUaxY4avQW0SkAsi+4w5SR4wAIGT8eAJmzTK5IhHvZvpS4J06dWLlypWsWrWKgwcPMn36dBISErjhhhsAmDVrFpMnTy7c/0TQfdddd9GgQQNSUlJISUkhKyvLrCaIeKwAewCjWxcsVvnOtnfYk7LH5IpERMRTXX99LjfckIPDocUqxXvl5MC990awZs3fQXfLlnlml3VaDRs6ePPNFNauPc5dd2Xi6+vmhx98uPvuSDp0qMRnn/nhdJpdpYiIlKbMBx4g/aGHAAh95hn8vvjC5IpEvJfpYXfbtm3p27cvCxcuZPDgwezcuZMhQ4YUznOanJxMQkJC4f4rVqzA6XQydepUBgwYUHiZNm2aWU0Q8Wg31r6R66pfR54rjxHrRmh6BREROaXRo1Px9XXz7be+fPGFn9nliJyT3Fy4774IVq/2w9/fxUcfJdGqlWcH3f9Us6aTCRNSWb/+GA8+mEFgoIsdO+wMHBjB1VdXZvbsAPK8pzkiInKO0p99lszevTFcLsIfegifb74xuyQRr+QR31GNi4sjLi6u2NsGDRpU5PqoUaPKoCKR8sMwDMa2HUu7Be1Yc2gNS/cv5eY6N5tdloiIeKBatZwMGpTBK68EM3p0CO3a5RIQoD+Siuc7EXSvWuWHn19B0N2mjXcmw1WquBg+PI1Bg9KZPj2QDz4IYv9+G089FcbLLwfzwAMZ9OqVpZ9NEZHyxjBInTABS3Iy/kuXEtG/P4nz5pHfooXZlYl4FdNHdotI6asTWoeBzQYCMHL9SDLzM02uSEREPNXAgenUqOHg8GEbr78eZHY5ImeUlwf33x/BypV++Pm5mTEjibZtvTPo/qfwcDePP57Bpk3HeO65VKpUcXLkiJWRI0Np1aoyr78eRGqqYXaZIiJSkqxWkidPJvfKK7FkZRFx553Ydu82uyoRr6KwW6SCeKj5Q9QIqsGRzCO8vvl1s8sREREP5e8Po0enAfDuu0Hs2WM1uSKRU8vLgwceCOd//ysIuqdNS+TKK70/6P6nwEA399+fyfr1x5g4MYVatRwkJVmZNCmEli2rMGFCMPHx+rVORKTc8PUlaepU8po3x5qcTGTPnlgPHTK7KhGvoU9FIhWEv82fMW3HAPDutnfZnay/DouISPE6dMihXbsc8vMNRo7UYpXimfLzYeDAcJYt88fX1820aUlcfXX5Crr/ydcX+vTJ4ptvjjN5cjING+aTkWFh8uRgWreuwrBhoRw8qD9OiYiUB+6gIJL++1/y69fHeuQIkT16YElMNLssEa+gsFukAulQqwM31LwBh9vBsHXDtFiliIgUyzAKFqv08XGzerUfy5ZpsUrxLCeC7i+/LAi6P/wwiauvzjW7rDJhs0HXrtmsWBHPtGmJtGiRR06OwfTpgVxxRWUeeyyM33/3iKWZRETkArgiIkicNQtHtWrY9u4londvjPR0s8sS8XgKu0UqmDFtxuBn9eO7w9/x+d7PzS5HREQ8VN26Tu6/PwOAkSNDyM7W3MDiGfLzYdCgcJYu9cfHx80HHyRx7bUVI+j+J4sFOnTIZfHiBObOTeDKK3NxOAzmzw/g2msrcd994WzbZje7TBERuQCuqlVJnD0bZ2QkPtu3E9GvH+TkmF2WiEdT2C1SwdQMqclDzR8CYPSG0aTn6S/DIiJSvEceyaBqVQcHD9qYPFmLVYr5HA54+OFwvvji76C7XbuKF3T/k2HAlVfmMXduIosXxxMXl43bbbB0qT833VSJ3r0j2LDBR9MRiYh4KedFF5E0cyauoCB8168nfNCggjdEESmWwm6RCujB2AepHVKbY1nHeOWnV8wuR0REPFRAgJtRowoWq3z77SD279d8wGIehwMeeSSMxYv9sdvdvPdeEu3bV+yg+98uvTSfDz9MZuXK43TrloXF4ubrr/249dYounaNZOVKX4XeIiJeKD82lqRp03D7+uL/1VeEDR6MXtBFiqewW6QC8rP5Ma7tOACm/jyVnUk7Ta5IREQ8VceOOVx9dQ65uQWLVYqYwemExx4L47PPAgqD7htuUNB9Khdf7ODNN1NYu/Y4ffpk4uPj5vvvfbnrrkg6dKjE55/74XSaXaWIiJyLvLZtSX77bdwWCwFz5xIydqwCb5FiKOwWqaCuq3EdHWt3xOl2Muw7LVYpIiLFMwwYOzYVu93NihV+/O9/vmaXJBXMiaB70aIAbDY377yTTIcOCrrPRq1aTiZOTGX9+mM88EAGAQEuduyw8+CDEVxzTWXmzPEnL8/sKkVE5GzlxMWR8tJLAAS9+y5BU6aYXJGI51HYLVKBjWozCn+bPxuPbmTh7wvNLkdERDxUvXpO7rvvxGKVoVoXScqM0wlPPBHGJ5/8HXTfeKNOwHMVHe1ixIg0Nm48xpNPphEW5mLfPhtPPhlO27ZVmDo1UIvQioh4iew77iD1uecACJkwgYCPPza5IhHPorBbpAKrFlSNx1o8BsDYjWNJzU01tyAREfFYjz2WQXS0kz/+sPH221qsUkqfywVPPRXGggUBWK1u3normZtuUtB9ISIi3DzxRAYbNx5jxIhUKld2cuSIleeeC6Vly8q88UYQqakKvUVEPF3m/feT/tBDAIQ++yx+S5bg88030Lhxwb8iFZjCbpEKbkDTAVwUehEJ2Qm89ONLZpcjIiIeKjDQzXPPFfxRdPLkYP78U4tVSulxueDpp0OZN68g6J4yJZmbb1bQXVKCgtw88EAm69cf44UXUqhZ00FSkpWJE0No1aoKEyYEk5CgXxVFRDxZ+rPPktm7N4bLRfigQYQOHQo7dxI8YYLm8pYKTZ9gRCo4H6sP464oWKxy+o7p/Jz4s8kViYiIp+rcOYe2bXPJyTEYNSrE7HKknHK54JlnQpkzJxCLxc2bbybzn/8o6C4Nfn5w551ZfPvtcd58M5mGDfNJT7cweXIwrVpVYfjwEA4e1B+2REQ8kmGQOmEC2TffjOFwYNu7FwCfrVvxXbPG5OJEzKOwW0S4utrV/Kfuf3C5XQxdOxSX22V2SSIi4oEMA8aNS8Vmc/PVV/6sXq3FKqVkuVzw7LOhzJp1IuhO4ZZbFHSXNpsNunXLZsWKeD78MIkWLfLIyTGYNi2IK66ozOOPh/H77zazyxQRkX+zWkl+4w1cQX9PMee2WAieNEmju6XCUtgtIgCMbD2SAFsAPx7/kfm/zTe7HBER8VANGzq4555MAIYPDyU31+SCpNxwu2Ho0FA+/rgg6H799RS6dMk2u6wKxWKBuLgcFi9OYM6cBK64IheHw2DevACuvbYSAwaEs3273ewyRUTkH3w3bMCSkVF43XC5NLpbKjSF3SICQExgDE9e9iQA4zaNIzkn2eSKRETEUz3xRDqVKzvZv9/Ge+9psUq5cG43DBsWyn//G4hhuHn11RS6dVPQbRbDgKuuymPevEQ+/zyeDh2ycbsNvvjCnxtvrESfPhFs3OhjdpkiIuJ2EzxpEm5r0Smn3BQsXKnR3VIRKewWkUL9m/SnQVgDknKSmPjDRLPLERERDxUc7GbEiDQAXn89iEOHNKevnD+3G0aMCGHGjIKg+5VXUrjtNgXdnuKyy/KZNi2ZFSuO07VrFhaLm9Wr/ejWLYquXSNZtcpXWYqIiEl816zBZ+tWDKezyHYDsP35J6HPPGNOYSImUtgtIoXsFjvjrxgPwMydM9kav9XkikRExFN17ZpNq1a5ZGdbGD1ai1XK+XG7YeTIEKZNC8Iw3Lz8cgq3366g2xM1auRg8uQUvv32OL17Z+Lj42bTJl/uvDOSuLhKLF7sx7+yFhERKU0nRnUbxil3Cfz4Y4Kff14jvKVCUdgtIkW0rdqWbvW64cbN0O+G4nTptxYRETnZicUqrVY3X3zhzzffaEoDOTduN4waFcLUqQVT4bz0Ugp33KGg29PVru1k0qRU1q07xoABGfj7u/jlFzsPPBDBtddWZu5cf/LyzK5SRKQCyMvDeugQxhmC7OApUwh96ilwOMqoMBFzKewWkZMMbzWcYHswW+K3MHvXbLPLERERD9W4sYO+ff9erFIBl5wttxvGjAnhgw8Kgu5Jk1Lo0UNBtzeJiXExcmQamzYd4/HH0wkLc7F3r40nngjniisq8+GHgWRnn3q0oYiIXCBfX+KXLiX+q68KL/z4Y5HrqcOH47ZYCJwzh/ABAyBb77VS/insFpGTVAmowlP/9xQAE76fQHxWPOsOr+PT3z9l3eF1Gu0tIiKFnnwynagoJ3v22Jk6NdDscsQLuN0wblxw4eKmEyem0Lt3lslVyfmKiHDz1FPpbNx4jBEjUqlc2cnhwzZGjAilVavKvPlmEGlpCr1FREqDq1o18ps2Jb9pUxyxsXDppThiYwu3ZT74IMnvv4/b1xf/ZcuI7NMHIy3N7LJFSpXCbhEpVt/GfWkU0YiU3BTazm1L9y+6M2j1ILp/0Z1Wc1qxdN9Ss0sUEREPEBrqZtiwgl+aXnklmCNH9PFSTs3thiFD4O23C4Lu559PoU8fBd3lQVCQmwceyGT9+mNMmJBCjRoOEhOtvPBCCC1bVmHChGASEvT6ICJS1nJuvJHEjz/GFRyM74YNRN16K5bjx80uS6TU6NOGiBTLZrHRuW5nALIcRX8JPZp5lAErBijwFhERAG67LZvLLssjK8vC2LFarFKK53bDCy8EM3FiwfXx41O4+24F3eWNnx/cdVcWa9ce5403kmnQIJ/0dAuTJwfTqlVlRowI4dAhq9lliohUKHlt2pCwYAHOSpWw79hBVJcuWPfvN7sskVKhsFtEiuV0Oflo50fF3uamYAGMketHakoTERHBYikYoWuxuPnsswC++06LVUpRbjdMmhTMm28WjOgeOzaVvn0VdJdnNhvcems2K1fGM3VqEs2a5ZGTY+HDD4No27YyTzwRxu+/K/QWESkrjiZNSPj0Uxy1amH74w+iunTB9vPPZpclUuIUdotIsTYe3ciRzCOnvN2Nm8OZh9l4dGMZViUiIp6qSRMHd95ZEF4OHx5Kfr7JBYlHefnlYN54IxiA116D/v0VdFcUFgvceGMOX3yRwOzZCbRtm4vDYTB3bgDXXFOJ22+H7dttZpcpIlIhOGvXJmHRIvIbN8YaH0/Ubbfhs3692WWJlCiF3SJSrONZZzeH19nuJyIi5d/gwWlERDj57Tc706ZpsUop8MorQbz6akHQPWpUGo8+anJBYgrDgKuvzmP+/EQ++yyeG27Iwe02mD8f4uIqceedEWzapG+FiIiUNleVKiQsWEBu69ZY0tOJ7N0bv6++MrsskRKjsFtEilU5oHKJ7iciIuVfWJiboUPTgYKRvMeO6aNmRffqq0G8/HLBPO4jRqQyYECmyRWJJ/i//8tn+vQkVqyIp2dPsFjcrFrlR9euUXTrFsnq1b643WZX6d2WLVvGoEGD6N27N8888ww7d+485b4bN25k7Nix9O/fn7vvvpthw4axZcuWsitWRMqcOzSUxJkzyY6Lw8jNJfy++wiYPdvsskRKhH4DEZFitYpuRUxgDAbGKfepGliVVtGtyrAqERHxdHfckUWLFnlkZFgYN06LVVZkr78exEsvFZwDw4en8sADCrqlqMaNHcyaBd9+G0/v3pnY7W42bvSlT59IbrwxiiVL/HD+tTzMoUNWtm+3n/KiRS//tm7dOqZPn063bt2YOHEijRo14vnnnychIaHY/Xfu3ElsbCxDhgzhhRde4JJLLmHixIns27evjCsXkTLl70/ye++R2aMHhstF2FNPETR5Mvpro3g7TY4mIsWyWqyMaTOGASsGYGAULkr5T/XC6mEYpw7DRUSk4rFYYPz4VG6+OYpPPgngzjuz6NLF7KqkrE2eHMSkSQVB99ChaTz4oIJuObU6dZxMmpTK44+n8+67QcycGcDPP/tw//0RXHRRPr16ZTJpUii5uaf+3Onr6+bbb49TrZoWT1+yZAnt2rWjffv2APTt25etW7eyfPlyevXqddL+ffv2LXK9V69e/PDDD/z444/UqVOnLEoWEbPYbKS+9BKuqCiCJ08mZMIELAkJpD33XMGHOhEvpDNXRE6pY52OvHf9e0QHRhfZHuYbBsA3h77hiTVP4HTplwoREflbs2b59OpVsADh0KGhOBwmFyRl6q23gpgwoSDofuaZNAYNyjC5IvEWMTEuRo1KY9Om4zz+eDqhoS727LEzdmzYaYNugNxcg6Qk/XrrcDjYu3cvzZo1K7I9NjaWXbt2ndV9uFwusrOzCQoKOuU++fn5ZGVlFV6ys7MLbzMMo0JcKlJb1ZfeczmvvrRYyBg6lLSRIwEIev99wh57DMPhML09XteXupRaX54LjewWkdPqWKcjcbXi2Hh0I8ezjlM5oDKtoluxeO9iHvn6Eebvnk+uM5c3rnsDu8VudrkiIuIhnn02jS++8GfnTjtvvw233WZ2RVIW3nknkPHjC4Lup59O45FHFHTLuYuIcPHUU+ncf38GM2cGMHlyECkpmqbkbKSlpeFyuQgNDS2yPTQ0lJSUlLO6jyVLlpCbm0ubNm1Ouc+iRYtYsGBB4fU6deowceJEKlWqdF51e6vo6Ogz7yRnRX1Zcs67L0eNgosugn79CFi4kIDsbJg/HwICSrQ+b6LzsuSUZV8q7BaRM7JarLSt2rbIti71uuBj9WHgqoF8vvdz8px5vNX+LXytviZVKSIiniQiws2zz6bx7LNhjBgB11xjISpK3wQqz959N5CxYwsCtqeeSuOxxxR0y4UJDnbz4IOZ/N//5dGlS8UKUS9UcaPgzmZk3Nq1a5k/fz5PP/30SYH5P3Xt2pVOnTqddN/x8fE4KsDXeQzDIDo6mqNHj+LW/MYXRH1ZckqkL6+/Ht9p0wgfMABj6VLyrrmGpBkzcIeHl2yxHk7nZckpqb602Wxn/QdVfc9LRM5bxzod+eCGD/C1+vLVH19x7//uJduRfeYDRUSkQujVK4umTfNJTYXx44PNLkdK0fvvBzJmTEEw9vjj6Tz+uIJuKTl+fmZX4D1CQkKwWCwnjeJOTU09bXgNBQtbvvPOOzz++OPExsaedl+73U5AQEDhxd/fv/A2t9tdIS4Vqa3qS++5lERf5rRvT8KcObhCQ/H54Qciu3XDOHzY9LZ5Y1/qUnJ9eS4UdovIBbm+5vVMj5uOn9WPVX+u4u5ld5OVn2V2WSIi4gGsVnj++VQA5s0L4IcfNN1VefThh4GMGlUQoj36aDpPPpluckUiFZfNZqNu3bps27atyPZt27bRsGHDUx63du1apkyZwiOPPMKll15a2mWKiIfLv/xyEj75BGd0NPZdu4i65Rasv/9udlkiZ0Vht4hcsKurXc2sm2YRaA/ku8Pf0evLXqTn6RddERGByy7L5557Cv4/bFgoTs1kUq5Mnx7AiBEFQffDD6fz9NPpnOMaQiJSwjp16sTKlStZtWoVBw8eZPr06SQkJHDDDTcAMGvWLCZPnly4/4mg+6677qJBgwakpKSQkpJCVpYGsIhUZI6LLybhs89w1K2L7dAhorp2xb51q9lliZyRwm4RKRGtYlox+6bZhPiE8P2x7+mxtAfJOclmlyUiIh7ghRcgNNTFzz/7MHNmxV3kqLyZPj2AYcPCAHjooXSeeUZBt4gnaNu2LX379mXhwoUMHjyYnTt3MmTIkMK5TpOTk0lISCjcf8WKFTidTqZOncqAAQMKL9OmTTOrCSLiIZzVq5Pw6afkNWuGNSmJyO7d8fnmG7PLEjktLVApIiXmsiqXMe/mefRc2pMt8Vu4/YvbmdNxDpH+kWaXJiIiJqpUCZ5+Op3hw0OZNCmE//wnh4gIl9llyQX473//DroffDCDZ59V0C2lJyLCha+vm9zcU59kvr5uva78Q1xcHHFxccXeNmjQoCLXR40aVQYViYi3ckVGkjhvHhH9++O7di2Rd91F8htvkNO5s9mliRRLYbeIlKimUU1Z0GkBPZb2YEfSDm5bchtzbp5DlYAqZpcmIiImuuuuLGbNCmDHDjsTJgTz4oupZpck5+njjwN49tkwAO6/P4Nhw9IUdEupqlbNybffHicp6dRfTI6IcFGtmuZJEhEpDe6gIBI/+ojwRx7Bf8kSwgcOJDU5may77za7NJGTaBoTESlxF0dczIJOC4gOjOa3lN+4dfGtHMo4ZHZZIiJiIpvt78UqZ88OYPNmLVbpjWbPDmDw4DAA7rsvgxEjFHRL2ahWzUnTpvmnvCjoFhEpZb6+JL/1Fpl33YXhdhM2dChBr7wCbrfZlYkUobBbREpFvbB6fNLpE2oE1WBf2j5uXXwrB9IOmF2WiIiY6PLL87jttizcboNhw0JxacYBrzJ3rj9PP12wGGX//hmMHKmgW0REpEKxWkl9/nnSn3gCgJCXXyZ02DC0Arl4EoXdIlJqaoXUYuF/FlI7pDZ/ZvxJ1yVd2ZOyx+yyRETERMOGpREc7GLrVh9mz9Zild5i3jx/nnwyDLfb4J57Mhg9WkG3iIhIhWQYpD/5JCnjx+M2DAJnzCB80CDIzTW7MhFAYbeIlLJqQdX45D+fUD+sPkczj3Lrklv5NelXs8sSERGTVK7s4skn0wGYMCGY5GQlpp5uwQJ/nniiIOi+++5MxoxR0C0iIlLRZfXtS/KUKbjtdvwXLyby7rsxMjLMLktEYbeIlL4qAVVY0GkBjSMaE58dz21LbuPnhJ/NLktEREzSr18mF1+cT3KylYkTQ8wuR05j4UJ/HnusIOi+665Mxo9PVdAtIiIiAOTccgtJH32EKyAA32+/JfKOO7AkJppdllRwCrtFpExE+Ucx7+Z5NK/UnOTcZG7/4nZ+Ov6T2WWJiIgJbDYYP75gscqZMwPYtk2LVXqiRYv+Drp791bQLSIiIifLvfpqEufPxxkejs+WLUR27Yr14EGzy5IKTGG3iJSZcL9wZneczeVVLic1L5WeS3uy8chGs8sSERETtG6dR9euWqzSU332mR+PPBKGy2XQq1cmL7yQikW/OYiIiEgx8ps3J/HTT3FUq4Z9zx6ibrkF265dZpclFZQ+sopImQrxCeHjmz6mbUxbMvIz6P1Vb7499K3ZZYmIiAmGD08jMNDFTz/5MH++v9nlyF8+/9yPhx8Ox+Uy6NEjk4kTFXSLiIjI6Tnq1SPh00/Jb9AA69GjRHXrhv2HH8wuSyogfWwVkTIXaA/koxs/4rrq15HtyObuZXez8sBKs8sSEZEyFh3t4oknCharHD8+hJQUzZFhtiVL/HjooXCcToPbb8/ixRcVdIuIiMjZcVWtSsInn5B32WVYUlKIvOMOfFetMrssqWD00VVETOFv82dqh6nE1Yoj15lL///158t9X5pdloiIlLH+/TOpXz+fxEQrL70UbHY5FdrSpX4MHFgQdN92WxYvvZSioFtERETOiTs8nMQ5c8hp1w5LTg4R/frhv3Ch2WVJBaKPryJiGl+rL+9e/y6d63Ym35XP/Svv59PfPzW7LBERKUN2O4wbV7BY5YwZgfz8s83kiiqmr77y48EHC4Lubt2yeOWVFKxWs6sSERERb+QOCCDpww/J6tYNw+Eg/JFHCHz/fbPLkgpCYbeImMpusTP5usncVv82nG4nD61+iLm/zTW7LBERKUNXXpnHf/6TjctlMHx4KG632RVVLMuW+XH//eE4HAZdu2bx2msKukVEROQC2e2kvP46Gf37AxA6ahTBEyagD3pS2hR2i4jprBYrr17zKn0u7oMbN0+seYIZO2aYXZaIiJShESNS8fd38f33vixcqMUqy8ry5b6FQXeXLgq6RUREpARZLKSNHk3as88CEDx5MqFPPw0Oh8mFSXmmsFtEPILFsPDClS/Qv0nBX32HfjeU97a/Z3JVIiJSVqpVc/HYYxkAjBsXQlqaFqssbStW+DJgQAT5+QadO2fz+usp2DSLjIiIiJQkwyDj4YdJefFF3BYLgbNnE37//ZCTY3ZlUk4p7BYRj2EYBqNbj+ahZg8BMHrDaN7Y/IbJVYmISFkZMCCDunUdxMdbefllLVZZmlat8uW++wqC7k6dsnnzzWQF3SIiIlJqsnr1Ivm993D7+uL/1VdE9umDkZZmdllSDinsFhGPYhgGz17+LE9d9hQAE3+YyKTvJ+HWvF4iIuWej8/fi1VOmxbIr78qfS0Nq1f7cu+9EeTlGXTsmM3kyQq6RUREpPTl3HQTiTNn4goKwnf9eqJuvRXL8eNmlyXljMJuEfE4hmHw+KWPM7zlcABe2/waT//vaQXeIiIVwDXX5HLTTdk4nVqssjSsWeNL//4R5OYa3HRTNm+9lYzdbnZVIiIiUlHktW1LwsKFOKOisO/YQVSXLlj37ze7LClHFHaLiMd6sNmDjG0zFoCX17/MsO+G4XK7TK5KRERK26hRafj5uVi/3pfPPtNilSXlm298uOeegqA7Lk5Bt4iIiJjD0aQJCZ9+iqNmTWx//EFUly7YfvnF7LKknFDYLSIe7Z4m9/DiVS9iYDB9x3QGfzsYp8tpdlkiIlKKqld38vDDBYtVjh0bQkaGFqu8UN9+60O/fpHk5BjccEMO77yTjI+P2VWJiIhIReWsU4eETz8lv1EjrPHxRN16Kz4bNphdlpQDCrtFxOP1btSbj7p+hMWwMHvXbB79+lEcLofZZYmISCl64IEMatd2cPSolVdf1WKVF+K773zo2zeCnByD66/P4d13kxR0i4iIiOlcVaqQsHAhua1aYUlPJ7JXL/yWLTO7LPFyHhF2L1u2jEGDBtG7d2+eeeYZdu7cecp9k5OTef3113n00Ue54447mD59etkVKiKm6RPbh7fbv43NsLFozyIeXPUgec48s8sSEZFS4ucHY8YULFb5wQeB7N6tFRTPx/r1Ptx1VwQ5ORbatcvhvfeS8PU1uyoRERGRAu7QUBI//pjsDh0wcnMJv/de/OfMMbss8WKmh93r1q1j+vTpdOvWjYkTJ9KoUSOef/55EhISit0/Pz+fkJAQunXrRq1atcq4WhEx03/q/of3b3gfH4sPS/ct5b4V95HjyDG7LBERKSXt2+dyww05OBxarPJ8bNjgw513FgTd112Xw/vvK+gWERERD+TvT/L775N1xx0YLhfhTz5J0FtvoQ9/cj5MD7uXLFlCu3btaN++PdWrV6dv375ERUWxfPnyYvevXLky/fr145prriEgIKCMqxURs3Wo1YFpHabhZ/VjxYEV9Fvej2xHttlliYhIKRk9OhVfXzdr1/qyZImf2eV4jU2bCoLu7GwL11yTwwcfJOGn7hMRERFPZbOR8vLLpA8aBEDI+PGEjB0LLpfJhYm3MfX7oA6Hg71799KlS5ci22NjY9m1a1eJPU5+fj75+fmF1w3DwN/fv/D/ZeHE45TV45U2tcezlff2XFfzOmbeNJO7vrqLbw59Q5+v+vBR3EcE+QSZWeZZKe/Pjbcrb+0RKQ9q1XIyaFAGr7wSzOjRobRrl0tgoEb5nM733/vQp08EWVkWrr46h6lTFXSLiIiIFzAM0ocOxRURQejYsQS9+y6WxERSXnoJ7HazqxMvYWrYnZaWhsvlIjQ0tMj20NBQUlJSSuxxFi1axIIFCwqv16lTh4kTJ1KpUqUSe4yzFR0dXeaPWZrUHs9Wnttza8ytxFSO4aaPb2LDkQ3cteIuvuz9JWF+YeYVeA7K83NTHpS39oh4u4ED05k/358//7TxxhtBDBmSbnZJHuuHH+z07h1BZqaFK6/M5cMPk/hrjIeIiIiIV8h84AFckZGEPfkkAQsWYElOJvndd3HrQ42cBY9Y6ae4EXQlOaqua9eudOrU6aT7jo+Px+FwlNjjnI5hGERHR3P06FHc5WDOIbXHs1WU9tSx1WFux7n0XNqTDQc3cPXUq5ndcTYRfhEmVnt6FeW58VYl2R6bzWbKH1VFyiN/fxg9Oo177ong3XeDuP32LC66yGl2WR7nxx/t9O4dSWamhbZtc5k+XUG3iIiIeKfs7t1xhYcTfv/9+K1cSWSPHiTOmIE7LMzs0sTDmRp2h4SEYLFYThrFnZqaetJo7wtht9uxn+LrDmUdzrjd7nIRCJ2g9ni2itCe2KhY5t88nx5Le7A9YTu3Lb6NOR3nUCnAs0PGivDceLPy1h6R8qBDhxzatcth1So/nnsulJkzk9CMQ3/bvLkg6M7IsNCmTS4zZiTh76/XMREREfFeuddfT9KcOUTcfTc+P/xA1K23kjhzJq6YGLNLEw9m6gKVNpuNunXrsm3btiLbt23bRsOGDU2qSkS8TePIxizstJAqAVX4NflXbl1yK0cyj5hdloiIlCDDgDFjUvHxcfP113589ZUmoT5hyxY7vXpFkp5uoXXrXD76KImAAAXdIiIi4v3yLr+chE8+wRkdjf3XX4nq0gXrnj1mlyUezNSwG6BTp06sXLmSVatWcfDgQaZPn05CQgI33HADALNmzWLy5MlFjtm/fz/79+8nJyeHtLQ09u/fz8GDB80oX0Q8RP3w+izstJBqQdXYk7qHWxffysF0vS6IiJQndeo4eeCBDABGjgwhO1tDu7dtKwi609IstGypoFtERETKH8fFF5Pw6ac46tTBdvAgUV26YN+61eyyxEOZPmd327ZtSU9PZ+HChSQnJ1OjRg2GDBlSOM9pcnIyCQkJRY4ZPHhw4f/37t3L2rVrqVSpElOmTCnT2kXEs9QJrcMnnT7h9i9u54/0P+i6uCvzbp5HndA6ZpcmIiIl5JFHMli40J9Dh2y8+WYQgwdX3MUqt2+307NnJKmpFi6/PJf//jeJwEAF3SIiIlL+OGvUIOHTT4m48058tm0jsnt3kqZOJe+qq8wuTTyM6WE3QFxcHHFxccXeNmjQoJO2zZs3r7RLEhEvVT24Ogv/s5A7vrijYIT3kluZ23Eu9cPrm12aiIiUAH9/NyNHpjFgQARvvx1E9+5Z1KlT8Rar/PlnGz16RJKSYuH//i+PmTOTCApS0C0iIiLllysqisT584no3x/ftWuJvOsukt94g5z//Mfs0sSDmD6NiYhISYsJjGFhp4U0imjEsaxj3LrkVn5J/MXsskREpIR07JjD1VfnkJdnMHJkyS1q7i1++cXGHXdEkZJi4dJL85g5M1FBt4iIiFQI7qAgEj/6iOybb8bIyyP8wQcJmDHD7LLEgyjsFpFyqVJAJebdPI+mUU1JzEnk9i9uZ2u85vQSESkPDAPGjk3FbnezcqUfy5f7ml1Smdmxw8YddxSM6G7RIo+PP04kOFhBt4iIiFQgvr4kv/02mXfeieF2EzZ0KEGvvgpufSYShd0iUo5F+EUwt+NcLq18KSm5KdzxxR18f+x7s8sSEZESUK+ekwEDTixWGUp2tskFlYFffy0IupOTrTRvXhB0h4TolzoRERGpgKxWUidMIP2JJwAIeeklQocPB5fL5MLEbAq7RaRcC/UNZfZNs2kd3Zr0/HR6Le3FusPrzC5LRERKwKOPZhAd7eTAARvvvBNkdjmlatcuG7ffHklSkpVmzfKYNSuR0FAF3SIiIlKBGQbpTz5JyrhxuA2DwOnTCR80CPLyzK5MTKSwW0TKvSCfIGbeNJOrq11NliOLO7+6k6///NrsskRE5AIFBrp57rlUACZPDubAAavJFZWO334rCLoTE600baqgW0REROSfsvr1I3nKFNx2O/6ff07E3XdjZGaaXZaYRGG3iFQI/jZ/pnWYxvU1ryfHmUO/5f1Y/sdys8sSEZEL1LlzDldckUtOjsGoUSFml1Pifv+9IOhOSLByySX5zJ6dSFiYgm4RERGRf8q55RaSZszAFRCA3zffEHn77ViSkswuS0ygsFtEKgw/mx/vX/8+Het0JM+Vx33/u4/FexebXZaIiFwAw4Bx41Kx2dwsW+bPqlXlZ7HK33+30r17JPHxVho3zmfOnATCwxV0i4iIiBQn95prSJw3D2d4OD5bthDZpQvWQ4fMLkvKmMJuEalQfKw+vN3ubbrV64bD7WDgqoEs2L3A7LJEROQCNGjgoH//gq+qjhgRSm6uyQWVgD17rNx+exTHj1tp1CifuXMTiYhQ0C0iIiJyOvktWpC4aBGOqlWx79lDVOfO2H77zeyypAwp7BaRCsdmsfHaNa/Rs2FPXG4Xj339GB//+rHZZYmIyAV4/PF0Kld2sn+/jXff9e7FKvfuLQi6jx2zcvHFJ4Jul9lliYiIiHgFR/36JHz6Kfn162M9epSorl2x//CD2WVJGVHYLSIVktViZdJVk+jbuC9u3Az+djAf/vyh2WWJiMh5Cg52M2JEGgCvvx7EoUPeuVjlvn1WuneP4uhRKw0bFgTdkZEKukVERETOhataNRI++YS8Fi2wpKQQ2aMHvqtWmV2WlAGb2QWIiJjFYlgY13YcfjY/3tn2DiPWjyDHmcPAZgPNLk2kxC1btozPP/+clJQUqlevTt++fWnUqNEp99+xYwczZszg4MGDhIeH07lzZzp06FB4+59//sncuXPZt28f8fHx3H333dx8880X/LgiF6Jr12w+/jiADRt8GTUqhPffTza7pHOyf//fQXeDBvnMm5dIVJSCbhEREZHz4Y6IIHHePMLvuw+/r78mol8/Ul59lexu3cwuTUqRRnaLSIVmGAbDWw7nsRaPATB+03he+fEV3G43TpeTdYfX8envn7Lu8DqcLqe5xYqcp3Xr1jF9+nS6devGxIkTadSoEc8//zwJCQnF7n/8+HEmTJhAo0aNmDhxIl27dmXatGls2LChcJ/c3FyqVKlCr169CAsLK5HHFblQhgFjx6ZitbpZutSfb77xnsUq//ijYDHKI0es1KunoFtERESkJLgDAkiaNo2srl0xHA7CH36YwA8+MLssKUUa2S0iFZ5hGDz9f0/jZ/Pjhe9f4OWfXuaXxF/YmrCVI5lHCveLCYxhTJsxdKzT0cRqRc7dkiVLaNeuHe3btwegb9++bN26leXLl9OrV6+T9l++fDlRUVH07dsXgOrVq7Nnzx4WL15M69atAahXrx716tUDYNasWSXyuAD5+fnk5+cXXjcMA39//8L/e5MT9Xpb3SWtrPvhkkuc9O2bxdSpgQwfHsrKlfH4+JTJQ5/W6frhzz+tdO8eweHDNi66yMH8+UlUruwGyt+5o5+LAuqHAuoHEREpEz4+pLzxBq6ICIKmTiV05EgsiYmkDx5cMFpCyhWF3SIif3m4+cP4Wf0YtWEUX/3x1Um3H808yoAVA3jv+vcUeIvXcDgc7N27ly5duhTZHhsby65du4o9Zvfu3cTGxhbZ1rx5c1avXo3D4cBmO/PHh/N5XIBFixaxYMGCwut16tRh4sSJVKpU6YyP6amio6PNLsEjlGU/vPQSLF4Me/bYmDs3hsGDy+yhz+jf/fDHH3DHHXDoEDRoAF9/bSMmpopJ1ZUd/VwUUD8UUD+IiEips1hIGz0aV1QUIRMnEvzGG1gSE0mdMAGs3rnWixRPYbeIyD/cc8k9vPrTq6TmpZ50mxs3BgYj148krlYcVoveEMXzpaWl4XK5CA0NLbI9NDSUlJSUYo9JSUkpdn+n00l6ejrh4eGl8rgAXbt2pVOnToXXT4z2i4+Px+FwnPFxPYlhGERHR3P06FHcbrfZ5ZjGrH4YOtSfxx4LY/RoF+3bx1O1qrlTghTXDwcPWrjttkgOHLBRt66DOXMSARdHjpz+vryZfi4KqB8KeEI/2Gw2r/6DqoiInAPDIOORR3BFRhL67LMEfvwxluRkkt98E/z8zK5OSojCbhGRf9h4dGOxQfcJbtwczjzMp3s+pfNFnbFb7GVYncj5K+4r4qf72vi/bzsRQpzrV83P9XHtdjt2e/E/V94aCLndbq+tvSSVdT/cemsWM2cG8MMPPowZE8Lbb3vGYpUn+uHQIQvduxcE3bVrO5g3L4EqVVxUlFNFPxcF1A8F1A8iIlKWsnr3xhUeTvigQfgvXYolOZmkadNwBwebXZqUAC1QKSLyD8ezjp/Vfo98/Qj1PqzHVfOu4q6v7mLU+lF8tOMj1h5ay+GMw7jcWlRMPENISAgWi+Wk0dSpqaknjbo+ISws7KT909LSsFqtBAUFldrjipQkiwXGj0/BYnHz+ef+fPedB0zc/ZfDhy3cfnsUf/xho1atgqA7JkbvGyIiIiJlJadjRxJnzsQVFITv+vVE3nYblvh4s8uSEqCR3SIi/1A5oPJZ7We32Ml35bM3dS97U/ey8s+VRW73s/pRJ7QOdUPrFl7qhNbhorCLiHZrXkopOzabjbp167Jt2zZatmxZuH3btm1cfvnlxR5Tv359fvzxxyLbtm7dSt26dc9qvu7zfVyRktakiYM778xixoyCxSqXL4/nFF8cKDNHjli4/fZI9u+3UbOmg/nzE6lWTUG3iIiISFnLu+IKEhYuJLJ3b3x+/pmoLl1InDUL24EDMHo0PiNHknvVVWaXKedIYbeIyD+0im5FTGAMRzOP4ubkr9MaGMQExrDujnXEZ8cXht370vYV/v9A2gFynDnsTNrJzqSdJ91HuF84dULqFFz+CsQvCr2IOqF1CLQHlkUzpYLp1KkTb775JnXr1qVBgwasWLGChIQEbrjhBgBmzZpFUlISDz30EAAdOnRg2bJlzJgxg/bt2/Pbb7+xatUqHn300cL7dDgcHDx4sPD/SUlJ7N+/Hz8/v8KFxs70uCJlYfDgNBYv9uO33+x8+GEg99+faVothw9D9+6R7Ntno0aNE0G307R6RERERCo6R5MmJHz6KZG9emHbv5+oW27BFREBu3YRPGECuVdeCec4laOYS2G3iMg/WC1WxrQZw4AVAzAwigTeBgVvcKPbjMZutVM1qCpVg6pyZbUri9xHviufP9P/ZF/q3wH4icvhzMMk5ySTnJPMT8d/OunxowOiTxoRXje0LjWDa+Jj9Zyv4It3adu2Lenp6SxcuJDk5GRq1KjBkCFDChfkSk5OJiEhoXD/ypUrM2TIEGbMmMGyZcsIDw+nX79+tG7dunCfpKQkBg8eXHh98eLFLF68mMaNGzNq1KizelyRshAW5mbo0HSeeiqMV14JpkuXbKpUKfuR1MeOWejRA/butVGtWkHQXb26gm4RERERsznr1CkIvHv3xr5zJ9a/pjPx2boV3zVryL32WnMLlHNiuCvwSiDx8fHk5+eXyWMZhkFMTAxHjhwpF4uvqD2eTe25cEv3LeW59c9xJPNI4baqgVUZ3WY0Het0PO/7zXZmk+WTxcbfN7Indc/fI8NT95GYk3jK4yyGhRpBNU4KweuE1qFqYFWsFut51/RvTpeTjUc3cjzrOJUDKtMqutUp71/n2qnZ7XaFuiWoLN+zS0p5+/k4X57QDy4XdO4cxebNPnTrlsWbb6aU6eMfP26he/cofv/dRtWqThYuTKBmzYoZdHvC+eAJ1A8FPKEf9H5dsrzx/fp8eMK5W16oL0uO+vLCGSkpVGnZEktmwTcB3YDb35+snj3Ja9OGvFatcEVGmluklymp8/Jc3q81sltEpBgd63QkrlbcWYe+ZyvAFsBFVS4iyhV10gt9Sm7KSaPBT0yPkpmfyR/pf/BH+h+sPri6yHG+Vl9qh9T+OwAP+XtkeJR/FMY5fOWquJA/JjCGMW3GXFDILyJipoLFKlO5+eYoPvkkgN69s2jdOq9MHjs+3sIdd0Ty++82qleH+fMTK2zQLSIiIuLJfLZsKQy6AQzAyM4m6MMP4cMPAcivX5+8Vq3Ia92a3FatcFWtalK1cioKu0VETsFqsdK2atsye7ww3zBaVG5Bi8otimx3u90czz5eZBT4if/vT9tPrjOXXcm72JW866T7DLYHFxkF/s//h/iEFNl36b6lDFgx4KS5yo9mHmXAigG8d/17CrxFxGs1a5ZPr15ZfPxxwWKVX30Vz1mut3reEhIKgu7ffrMTE+Pk66+tBAQ40WArEREREQ/jdhM8aRJuqxXD+ffABLdh4IqIwFWpEvZff8W+ezf23bsJnDkTAEfNmuS1akVu69bktWqFs3ZtzfFtMoXdIiIezjAMqgRUoUpAFdrEtClym8Pl4FDGoZNC8L2pezmYcZD0/HS2Jmxla8LWk+63kn+lwlHgtUNq8+72d4tdlNONGwODketHElcrrkSnTBERKUvPPpvGF1/4s3OnnRkzAunfv/QWq0xMLAi6d+2yEx3tZP78RC66qDJHjpz5WBEREREpW75r1uCz9eTfmw23G2tiIilvvEFebCy+33+Pz4YN+GzciH37dmwHDmA7cICA+fMBcFap8nf43bo1jvr1C75mKGVGYbeIiBezWWzUCqlFrZBaXFfjuiK35ThyOJB+4KRFMvem7iU+O77wsunYpjM+jhs3hzMPs/HoxjId7S4iUpIiItw8+2wazz4bxosvBtO5czaVKpX8YpVJSQVB96+/2qlSxcm8eQnUrVv2i2KKiIiIyFk4MarbMDCK+Qqe2zAInjSJhC++ICcujpy4OACMjAx8fvihMPz22bIF67Fj+H/+Of6ffw6AMzy8YNqTv6Y+yW/cmFL/emEFp94VESmn/Gx+NAhvQIPwBifdlp6XXmQk+JqDa/jh+A9nvM85u+YQ4htC44jGWAz9dVpEvE+vXlnMmhXAtm0+jB8fwmuvpZTo/SclGdxxRyQ7d9qpXLkg6L7oIicFsz6KiIiIiMfJy8N66FCxQTf8Nbr78GHIywNf38Lt7qAgcq+9ltxrry3YkJ2Nz5Yt+GzYgO/Gjdh/+AFrcjL+X32F/1dfAeAKCiLv8ssLw++82Ngi9ykXTmG3iEgFFOwTTGylWGIrxQLQOqY13b/ofsbjFv6+kIW/LyTUJ5RWMa1oG9OWznSmkquSwm8R8QpWK4wbl0rnzpWYPz+A3r0zufzy/BK57+Rkgx49otixw06lSgVTl9Srp8UoRURERDyary/xS5diTUoq3FSpUiXi4+MLrzsjI88cSvv7k9emDXlt2pABkJ+Pfft2fDZuxHfDBnw2bcKSlobf6tX4rV4NgNvPj7wWLQoWvGzdmvzLLsPt718Kjaw4FHaLiAitolsRExjD0cyjxc7bDRDiE8JllS9j07FNpOalsvyP5Sz/YzmjNowixCeEVtGtaBPThrZV29I4orHm9hYRj3XZZfn06JHJnDmBDBsWxpdfxmO9wJeslBSDHj0i+eUXO1FRTubNS6RePUfJFCwiIiIipcpVrRquatWAgnWziInBceQI7gtZWdxuJ//SS8m/9FIyH3wQnE5sO3fiu3Fj4dQn1sREfNevx3f9eoIBt81GfrNmhQte5l1+Oe6QkJJpZAWhsFtERLBarIxpM4YBKwZgYBQJvI2/vnr/8tUv07FORxwuBz8n/sz6w+tZf2Q9m45tIi0vjf8d+B//O/A/oCAYbxndsiD8jmnLJZGXKPwWEY8ydGg6X37pzy+/2PnvfwPo2zfrvO8rNdWgZ89Ifv7Zh8jIgqC7QQMF3SIiIiLyD1YrjiZNcDRpQmb//uB2Y9uzpzD49l2/HuuRI/j8+CM+P/4IU6bgNgzyL7nk72lPWrXCFRlpdks8msJuEREBoGOdjrx3/Xs8t/45jmQeKdweExjD6Daj6VinI1CwKGbzSs1pXqk5A5sPpFKVSqz4eQXrDq9j3eF1bDpaEH6vOLCCFQdWABBsD6ZldEvaVm1Lm5g2XBJ5CTaL3oJExDyRkS4GD05j2LAwJk0K4T//ySEy8twXkUxNNejVK5Jt23yIiCgIuhs2VNAtIiIiImdgGDjq1cNRrx5ZffqA24314MG/w+8NG7Dt24fPzz/j8/PPMHUqAPn16xeG37mtWuGqWtXkhngWJQ0iIlKoY52OxNWKY+PRjRzPOk7lgMq0im512lHZNouNZpWaERsVywOxD+B0Ofkl8RfWHVnH+iPr2XhkI+n56az8cyUr/1wJ/B1+t4lpQ5uqbWgS2UTht4iUuTvvzGLWrEB++cXOhAnBvPRS6jkdn5Zm0Lt3JFu2+BAeXhB0X3yxgm4REREROQ+GgbNGDbJr1CC7e8GaWpZjxwqC740b8dm4EfvOndh378a+ezeBM2cC4KhZk7xWrcht04a8Vq1w1qoFRsVdHF3JgoiIFGG1WGlbte0FHX9i8csT4feOpB2sO/xX+H10I2l5aUXC7yB70N/hd0wbmkY1VfgtIqXOaoXx41Pp0iWK2bMD6dUri0svPbvFKtPTC4LuzZt9CAtzMXduIo0aKegWERERkZLjqlKFnM6dyencGQAjKQnf778vHP1t374d24ED2A4cIGD+fACc0dHktmpVOPrbUb8+WCxmNqNMKUkQEZFSZbVYaRrVlKZRTbk/9v7C8Hv9kfWFI79T81JZ9ecqVv25CoBAe2DhgpetY1oTGxWr8FtESsXll+dx221ZLFgQwLBhoSxZknDGxSozMgqC7p9+OhF0J3DJJQq6RURERKR0uSMiyImLIycuDgAjIwOfH34oDL99tmzBevQoAZ99RsBnnwHgDA8vCL7/Cr/zGzcGW/n9/br8tkxERDzSP8PvAU0H4HQ52Zm0szD83nBkQ7Hhd8sqLf8OvyvFYrfYTW6JiJQXw4ensWyZH9u2+TB7dgB9+px6scqMDIM+fSL48UcfQkNdzJmTSJMmCrpFREREpOy5g4LIvfZacq+9tmBDdjY+W7bgs2EDvhs3Yv/hB6zJyfh/9RX+X30FgCsoiLzLL/970cvYWPD1Na8RJUxht4iImMpqsdIkqglNoppwX9P7CsLv5J1sOLKB9YfXs+HoBlJyU1h9cDWrD64GIMAWUDjtSeuY1jSr1Ezht4ict0qVXDz1VDojR4YyYUIIHTtmExHhPmm/zEyDO++M4PvvfQuD7qZNz27aExERERGRUufvT16bNuS1aUMGQH4+9m3bCub83rABn++/x5KWht/q1fitLvj92u3nR16LFgULXrZuTf5ll+H29ze1GRdCYbeIiHgUq8VKk8gmNIlswr1N7sXldrEz6a/w+6/R3ym5KXx98Gu+Pvg1UBB+X17lctpULZjzW+G3iJyrvn0zmT07gF9/tTNxYggTJxZdrDIry+CuuyLYtMmXkBAXs2YlEhuroFtEREREPJjdTv5ll5F/2WUwcCA4ndh27vw7/N64EWtiIr7r1+O7fj3BgNtmI79ZM3Jbty4Y/X355bhDQsxuyVlT2C0iIh7NYli4JPISLom8hP5N+uNyu/g16dfCKU/WH1lPcm4yaw6tYc2hNQD42/wLwu+YNrSp2oZmUc3wsfqc9nGcLiebjm0iLyEPnzwfWlZpidVyhol7RaTcsNngscfSeeCBCGbODKBlyzwaNCiYniQnB0aMCGX7dh+CgwuC7ubNFXSLiIiIiJexWnE0aYKjSRMy+/cHtxvbnj2Fwbfv+vVYjxzB58cf8fnxR5gyBbdhkH/JJX9Pe9KqFa7ISLNbckoKu0VExKtYDAuNIxvTOLJxYfi9K3kX6w+vZ/3R9aw/XBB+f3PoG7459A0AflY/Lo8uCL/bxrSlWaWi4ffSfUt5bv1zHMk8UrgtJjCGMW3G0LFOxzJvo4iUvUOHrDz6aPhf1wweeSS8mL3cvPZaMi1aKOgWERERkXLAMHDUq4ejXj2y+vQBtxvrwYN/h98bNmDbtw+fn3/G5+efYepUAPLr1y8Mv3NbtcJVtWqxd+/zzTcwejQ+I0eSe9VVZdIkhd0iIuLVLIaFRhGNaBTRiHua3IPL7eK35N8KpzxZf2Q9STlJfHvoW7499C1QEH7/X5X/o01MGwzD4MUfXsRN0fl5j2YeZcCKAbx3/XsKvEUqgKQkC7m5xhn2MqhWzVUm9YiIiIiIlDnDwFmjBtk1apDdvTsAlqNHC4LvjRvx2bgR+6+/Yt+9G/vu3QTOnAmAo2ZN8lq1IrdNG/JatcJZqxYAwRMmwM6dBE+YQO6VV4Jxps/bF05ht4iIlCsWw8LFERdzccTF9LukH263+6TwOzEnkbWH17L28NpT3o8bNwYGI9ePJK5WnKY0ERERERERkQrHFR1Nzi23kHPLLQAYSUn4fv994ehv+/bt2A4cwHbgAAHz5wPgjI4mv04dfLZuBcBn61Z816wh99prS71ehd0iIlKuGYZBw4iGNIxoSN9L+uJ2u9mdspt1R9axZO8S1h9Zf8pj3bg5nHmYjUc30rZq2zKsWkRERERERMTzuCMiyImLIycuDgAjPb1gju+/wm+fLVuwHj2K9ejRv4+xWgmeNInca64p9dHdCrtFRKRCMQyDBuENaBDegDCfsNOG3ScczzpeBpWJiIiIiIiIeBd3cDC5117796jt7GwCp08ndNy4wn0Mp7PMRndbSvXeRUREPFjlgMolup+IiIiIiIhIhebnh//ixbitRacCPTG6G7f7FAeWDIXdIiJSYbWKbkVMYAwGxX+NysCgamBVWkW3KuPKRERERERERLyP75o1+GzdiuF0Ftn+z9HdpUlht4iIVFhWi5UxbcYAnBR4n7g+us1oLU4pIiIiIiIiciZuN8GTJuE+xbzcbsMo9dHdCrtFRKRC61inI+9d/x7RgdFFtscExvDe9e/RsU5HkyoTkbIUEeHC1/f0H7p9fd1ERLjKqCIRERERES+Tl4f10CGMU4TZhtuN9fBhyMsrtRK0QKWIiFR4Het0JK5WHJuObSLPJw+fPB9aVmmpEd0iFUi1ak6+/fY4SUmnHgsSEeGiWjXnKW8XEfEUy5Yt4/PPPyclJYXq1avTt29fGjVqdMr9d+zYwYwZMzh48CDh4eF07tyZDh06lGHFIiJSLvj6Er90KdakpMJNlSpVIj4+vvC6MzISfH1LrQSF3SIiIhRMadK2altiYmI4cuQI7lJeNENEPE+1ak6F2SLi9datW8f06dO59957adiwIStWrOD555/n1VdfJSoq6qT9jx8/zoQJE2jfvj0PP/wwu3bt4oMPPiAkJITWrVub0AIREfFmrmrVcFWrBoBhGBATg6MMf8fWNCYiIiIiIiIi5cSSJUto164d7du3LxzVHRUVxfLly4vdf/ny5URFRdG3b1+qV69O+/btue6661i8eHEZVy4iInLhNLJbREREREREpBxwOBzs3buXLl26FNkeGxvLrl27ij1m9+7dxMbGFtnWvHlzVq9ejcPhwGY7OTbIz88nPz+/8LphGPj7+xf+v7w70caK0NbSpr4sOerLkqO+LDlm9KXCbhEREREREZFyIC0tDZfLRWhoaJHtoaGhpKSkFHtMSkpKsfs7nU7S09MJDw8/6ZhFixaxYMGCwut16tRh4sSJVKpU6cIb4UWio6PPvJOcFfVlyVFflhz1Zckpy75U2C0iIiIiIiJSjhQ3gu50o+r+fduJeVVPdUzXrl3p1KnTScfHx8fjcDjOuV5vYxgG0dHRHD16VOu8XCD1ZclRX5Yc9WXJKam+tNlsZ/0HVYXdIiIiIiIiIuVASEgIFovlpFHcqampJ43ePiEsLOyk/dPS0rBarQQFBRV7jN1ux263F3tbRQqG3G53hWpvaVJflhz1ZclRX5acsuxLLVApIiIiIiIiUg7YbDbq1q3Ltm3bimzftm0bDRs2LPaY+vXrn7T/1q1bqVu3brHzdYuIiHgyhd0iIiIiIiIi5USnTp1YuXIlq1at4uDBg0yfPp2EhARuuOEGAGbNmsXkyZML9+/QoQMJCQnMmDGDgwcPsmrVKlatWsV//vMfs5ogIiJy3vRnWhEREREREZFyom3btqSnp7Nw4UKSk5OpUaMGQ4YMKZzrNDk5mYSEhML9K1euzJAhQ5gxYwbLli0jPDycfv360bp1a7OaICIict4UdouIiIiIiIiUI3FxccTFxRV726BBg07a1rhxYyZOnFjaZYmIiJQ6TWMiIiIiIiIiIiIiIl5PYbeIiIiIiIiIiIiIeD2F3SIiIiIiIiIiIiLi9RR2i4iIiIiIiIiIiIjXq9ALVNpsZd98Mx6zNKk9nk3t8VzlqS2g9pTWfcjfvLk/vbn2kqR+KKB+KKB+KKB+KGBmP+g5KFkVrT8rWntLk/qy5KgvS476suRcaF+ey/GG2+12X9CjiYiIiIiIiIiIiIiYTNOYlJHs7GyeeeYZsrOzzS6lRKg9nk3t8VzlqS2g9oicjs6nAuqHAuqHAuqHAuqHAuoH8VY6d0uO+rLkqC9Ljvqy5JjRlwq7y4jb7Wbfvn2Ul4H0ao9nU3s8V3lqC6g9Iqej86mA+qGA+qGA+qGA+qGA+kG8lc7dkqO+LDnqy5Kjviw5ZvSlwm4RERERERERERER8XoKu0VERERERERERETE6ynsLiN2u53bbrsNu91udiklQu3xbGqP5ypPbQG1R+R0dD4VUD8UUD8UUD8UUD8UUD+It9K5W3LUlyVHfVly1Jclx4y+NNyagEZEREREREREREREvJxGdouIiIiIiIiIiIiI11PYLSIiIiIiIiIiIiJeT2G3iIiIiIiIiIiIiHg9hd0iIiIiIiIiIiIi4vVsZhdQHixatIhNmzZx6NAhfHx8aNCgAX369KFq1aqnPOaXX35h9OjRJ21/9dVXqVatWmmWe0bz5s1jwYIFRbaFhoby/vvvn/KYHTt2MGPGDA4ePEh4eDidO3emQ4cOpV3qWRk0aBDx8fEnbe/QoQP33nvvSds97bnZsWMHn3/+Ofv27SM5OZmnnnqKli1bFt7udruZP38+K1euJCMjg/r169O/f39q1Khx2vvdsGEDc+fO5dixY1SpUoWePXsWud/Scrr2OBwO5syZw+bNmzl+/DgBAQE0bdqUXr16ERERccr7/Prrr3nrrbdO2j5z5kx8fHxKrS1w5udnypQprFmzpsgx9evXZ/z48ae9XzOenzO15fbbby/2uD59+tC5c+dibzPzuTmb12Zv+/kRz1NarwHepjR/3rzJ2fRDRTgnli9fzvLlyws/f1WvXp3bbruNFi1aABXjXIAz90NFOBeKs2jRImbPnk3Hjh3p27cvUHHOCfE+pfW7WEWjzwklR++xpUfvT+fvTDliWfejwu4SsGPHDuLi4rjoootwOp3MmTOHcePG8corr+Dn53faY1977TUCAgIKr4eEhJR2uWelRo0ajBgxovC6xXLqLwEcP36cCRMm0L59ex5++GF27drFBx98QEhICK1bty6Lck9rwoQJuFyuwusHDhxg3LhxtGnT5rTHecpzk5ubS+3atbnuuut4+eWXT7r9s88+44svvmDgwIHExMTwySefMG7cOF577TX8/f2Lvc/ffvuN1157jTvuuIOWLVuyadMmXn31VcaMGUP9+vVNa09eXh779u3j1ltvpXbt2mRkZDBjxgwmTZrECy+8cNr79ff35/XXXy+yrbTDVDjz8wPQvHlzBg4cWHjdZjv9S69Zz8+Z2vLee+8Vub5582beeecdWrVqddr7Neu5OZvXZm/7+RHPUxqvAd6otH7evM3ZfiYs7+dEREQEvXr1Ijo6GoA1a9YwadIkJk2aRI0aNSrEuQBn7gco/+fCv/3++++sWLGCWrVqFdleUc4J8T6l8btYRaTPCSVH77GlQ+9PF+50OWJZ96OmMSkBw4YN49prr6VGjRrUrl2bgQMHkpCQwN69e894bGhoKGFhYYWX04XKZclisRSp63RB7/Lly4mKiqJv375Ur16d9u3bc91117F48eIyrPjUQkJCirTlp59+okqVKjRu3Pi0x3nKc9OiRQt69OhRbKDodrtZunQpXbt2pVWrVtSsWZNBgwaRm5vL2rVrT3mfX3zxBbGxsXTt2pVq1arRtWtXmjRpwhdffFGaTQFO356AgABGjBhB27ZtqVq1Kg0aNKBfv37s3buXhISE096vYRhFnq+wsLBSakFRp2vPCTabrUhdQUFBp71Ps56fM7Xl3/37/fffc8kll1ClSpXT3q9Zz82ZXpu98edHPE9pvAZ4o9L6efM2Z/uZsLyfE//3f//HpZdeStWqValatSo9e/bEz8+P3bt3V5hzAU7fDyeU93Phn3JycnjzzTe5//77CQwMLNxekc4J8T6l8btYRaTPCSVH77ElT+9PJeNUOaIZ/egZyWo5k5WVBXBWH1YHDx7MgAEDGDNmDD///HNpl3bWjh49yv3338+gQYN47bXXOHbs2Cn33b17N7GxsUW2NW/enL179+JwOEq71HPicDj49ttvue666zAM47T7eupz80/Hjx8nJSWFZs2aFW6z2+00btyYXbt2nfK433777aTnrFmzZvz222+lVuv5ysrKwjCMIqPsi5OTk8PAgQN54IEHeOGFF9i3b18ZVXhmO3bs4N577+XRRx/lnXfeITU19bT7e8Pzk5KSwubNm2nXrt0Z9/WU5+bfr80V4edHPMO5vgaUByX18+btTvWZsCKdEy6Xi++++47c3FwaNGhQYc+Ff/fDCRXpXPjggw9o0aLFSe+hFfWcEO+nc/f86XNCydB7bMnQ+1PJOFWOaEY/lu/vyZnA7XYzY8YMLr74YmrWrHnK/cLDwxkwYAB169bF4XDwzTffMHbsWEaOHHnGEcelrX79+gwaNIiqVauSkpLCJ598wvDhw3nllVcIDg4+af+UlBRCQ0OLbAsNDcXpdJKenk54eHhZlX5GmzZtIjMzk2uvvfaU+3jyc/NvKSkpAMX2/+lGQqekpJw0uhDzKu0AABz2SURBVDYsLKzw/jxFXl4es2bN4oorrjht2F21alUGDhxIzZo1yc7OZunSpYwYMYIXX3yRmJiYMqz4ZC1atKBNmzZERUVx/Phx5s6dy5gxY3jhhRew2+3FHuMNz8+aNWvw8/M74zzVnvLcFPfaXN5/fsQznM9rgLcryZ83b3aqz4QV5Zw4cOAAw4YNIz8/Hz8/P5566imqV69e+EtNRTkXTtUPUHHOBYDvvvuOffv2MWHChJNuq4ivD1I+6Nw9P/qccOH0Hlty9P5UMk6XI5rRjwq7S9jUqVM5cOAAY8aMOe1+J75yckKDBg1ISEhg8eLFpgeqJxY2AKhZsyYNGjTg4YcfZs2aNXTq1KnYY/49Strtdhe73WyrV6+mefPmp13s0JOfm1M5Vf+fC7fb7VHPl8Ph4LXXXsPtdhe7kOg/NWjQoMgoqYYNG/LMM8/w5Zdfcs8995R2qafVtm3bwv/XrFmTiy66iIEDB/LTTz+dca7rf/K052f16tVcddVVZ5x721Oem9O9NpfHnx/xHCX1GuBNSvvnzVucqh8qyjlRtWpVXnzxRTIzM9m4cSNTpkwpsgB4RTkXTtUP1atXrzDnQkJCAtOnT2fYsGGn/dxQUc4JKX907p4bfU64cHqPLRl6fyo5p8sRT6xrVZb9qGlMStCHH37Ijz/+yMiRI4mMjDzn4xs0aMDRo0dLobIL4+fnR82aNTly5Eixtxc3ojEtLQ2r1epR8w7Gx8ezbds22rdvf87Heupzc2J0aXH9/++/mv37uH8fk5qaetpjypLD4eDVV18lPj6e4cOHn3EKk3+zWCxcdNFFHvmchYeHU6lSpVP+PIHnPz87d+7k8OHDZzWFyb+Z8dyc6rW5vP78iGc7m9cAb1bSP2/e6lw+E5bXc8JmsxEdHc1FF11Er169qF27NkuXLq1w58Kp+qE45fVc2Lt3L6mpqTz77LP06NGDHj16sGPHDr788kt69OhR+LxXlHNCyo+K9npWEvQ5oWToPbZk6P2p9PwzRzTjvFTYXQLcbjdTp05l48aNPPfcc1SuXPm87mffvn1ltnDbucjPz+fQoUOnnI6kfv36bNu2rci2rVu3UrduXY9aUX716tWEhoZy6aWXnvOxnvrcVK5cmbCwsCL973A42LFjBw0bNjzlcQ0aNGD79u1Ftm3btq3ICFyznAi6jx49yogRI4qdOudM3G43f/zxh0c+Z+np6SQmJp52eh9Pfn4AVq1aRd26daldu/Y5H1uWz82ZXpvL48+PeL6zeQ3wRqX18+ZtzuczYXk9J/7N7XaTn59fYc6FUznRD8Upr+dC06ZNeemll5g0aVLh5aKLLuLKK69k0qRJVKlSpUKfE+K9Kvrr2bnQ54TSpffY86P3p9LzzxzRjPPSc5JILzZ16lTWrl3L4MGD8ff3L/xrRUBAQOFXIWbNmkVSUhIPPfQQAF988QWVKlWiRo0ahYsmbty4kSeffNKsZhT66KOP+L//+z+ioqJITU1l4cKFZGdnc8011wAnt6VDhw4sW7aMGTNm0L59e3777TdWrVrFo48+amYzinC5XHz99ddcc801WK3WIrd5+nOTk5NTZBTs8ePH2b9/P0FBQURFRdGxY0cWLVpETEwM0dHRLFq0CF9fX6688srCYyZPnkxERAS9evUCoGPHjowcOZJPP/2Uyy+/nO+//57t27efcfqd0m5PeHg4r7zyCvv27eOZZ57B5XIV/jwFBQUV/vHk3+2ZP38+9evXJyYmpnBe6P3799O/f39T2xMUFMS8efNo3bo1YWFhxMfHM3v2bIKDg4vMde0pz8+ZzjUoWExmw4YN3HnnncXehyc9N2d6bTYMw+t+fsTzlMRrQHlQUj9v3u5M/ZCTk1MhzolZs2bRokULIiMjycnJ4bvvvuOXX35h2LBhFeZcgNP3Q0U5FwD8/f1PWsvI19eX4ODgwu0V5ZwQ71MSv4uJPieUJL3Hlhy9P5Wc0+WIZpyXCrtLwPLlywEYNWpUke0DBw4sXAgxOTm5yMTrDoeD//73vyQlJeHj40ONGjV49tlnz2vUcUlLSkri9ddfJy0tjZCQEOrXr8/48eOpVKkScHJbKleuzJAhQ5gxYwbLli0jPDycfv360bp1a7OacJLt27eTkJDAddddd9Jtnv7c7Nmzp8j8Wx999BEA11xzDYMGDeKWW24hLy+PDz74gMzMTOrVq8ewYcPw9/cvPCYhIaHI/EgNGzbkscceY86cOcydO5fo6Ggee+yxwrmUzGpP9+7d+eGHHwAYPHhwkeNGjhzJJZdcApzcnszMTN577z1SUlIICAigTp06jB49mnr16pV2c07bnvvuu48///yTb775hszMTMLDw7nkkkt47LHHPPL5OdO5BrBu3Trcbvcp35Q86bk5m9dmb/v5Ec9TEq8B5UFJ/bx5uzP1g8ViqRDnRGpqKpMnTyY5OZmAgABq1arFsGHDiI2NBSrGuQCn74e8vLwKcS6crYpyToj3KYnfxUSfE0qS3mPLlvrz7JwpRyzrfjTcmlldRERERERERERERLyc5uwWEREREREREREREa+nsFtEREREREREREREvJ7CbhERERERERERERHxegq7RURERERERERERMTrKewWEREREREREREREa+nsFtEREREREREREREvJ7CbhERERERERERERHxegq7RURERERERERERMTr2cwuQERERERERERESt7XX3/NW2+9BcDIkSO55JJLitzudrt55JFHOHbsGI0bN2bUqFEmVCkn/PTTT/z+++/cfvvtZ7X/lClTWLNmTeF1X19fQkJCqFmzJi1btuTKK6/EbrcXOebEc+ztz/Uvv/zC6NGjiz2vpWJT2C0iIiIiIiIiUo75+/uzatWqk0LBHTt2cOzYMfz9/U2qTP5p8+bNLFu27KzDbgAfHx+ee+45APLy/r+9O42q6jobOP6/XOZBAQ0gRG4MMjoiREWJCg2JMRVnhEjUxsQsh7Sxg4naGpKYgjUkotHa1azE5VAFRYUIGBxwJUwuFWodEAcMTkXEAiKKcLm8H3zvqVeuCgYaSJ7fNw77nr3PweVzz7P3eXY9N27coLCwkL/97W/s3r2bxYsX061bN6X9G2+80ebj/jH06tWLZcuW8fTTT//YQxEdjCS7hejgzp49y65duygpKaG6uhobGxucnJzw9vZm+vTpwH9n683MzFi5ciVPPfWUwTliYmKoqakhPj7eoL2eiYkJXbp0wc/Pj6lTp9KjR48Wj2/79u3k5OQQHx+PicmjKyPpdDpmzJhBWFiYMvaCggLi4uIM2llZWeHi4sK4ceMYNmwYAAcOHCAxMZGEhAQsLS1bPD4hhBDif0kfY2NjY/Hw8Gh1zJUYLYQQoj0EBQWRnZ3NrFmzsLa2Vo4fOHAALy8v7ty58yOOrm3U19djZmaGSqX6sYfyP6VSqfDy8jI4NnLkSI4dO0ZcXByffvopH3/8sfK7n0py2Nrautl1CwGS7BaiQysoKGD58uX06dOH6OhoHBwcqKys5Pz58+Tm5ioPo3oNDQ1s3bqVt99+u0Xnnzt3Lq6urjQ0NFBcXMyOHTs4efIkn332Gba2to/9/H/+8x9SUlKYN2/eYx+iAS5fvszdu3fx8PBQjl24cAGAhQsX0qVLFwAqKipISkoiISEBNzc3NBoNI0eOJCUlhdTU1FbNcgshhBAdQWtjrsRoIYQQbSk4OJjs7GxycnIICwsD4Pbt2xw6dIhf/epXpKenN/uMVqslJSWF7777jvLycqysrAgICCA6OlqJCwC5ubkcOHCAixcvUltbi5OTE4GBgUyaNMlgEvTatWts2bKFoqIiampqsLGxoWfPnkyfPp1nnnkGgIiICCZPntwsnsybNw8/Pz/mzZsH/HdyeMmSJeTk5HD06FFqamrYtGkT5ubm5ObmkpaWxsWLFwHw8fHh1VdfpVevXso516xZQ35+PnFxcaxfv57Tp09jZWXFmDFjGD9+PGfOnGHjxo18//33ODo6MmHCBEaNGmUwrqqqKpKSkigoKKC6uhpHR0dGjRrFxIkTUavVAJSXlzN//nyio6MxMTEhIyODmzdv4u7uzowZM5SE7f0lSe6//s8//xwnJ6eW/7H/34ABA/jFL35BZmYmp06dws/PD2hexuT+8el0Ovbu3UtVVRWenp7Mnj0bJycnEhMT+fbbb6mrq6Nv377Mnj2brl27GvTXmnu+YsUKvvrqK06dOoWtrS1BQUFERUUZlFzJzMxk7969lJWVoVKpcHR0ZPDgwbz66qvAw8uYHDlyhJ07d1JaWoqJiQmenp5MnTrVIDGelJTE9u3biY+PJzk5mcLCQszNzfH392fmzJkGE0Ki85FktxAdWEpKCk5OTixZskQJlADDhw8nOjq6WfuBAweSnZ3N2LFjlS8Lj9KzZ0/lobZPnz7odDqSkpI4fPgwISEhj/18eno6NjY2DB48uEXXc+7cOYBmD9LW1tYEBgYqx7y8vGhsbGT16tVcuHABjUaDWq3mhRdeIDk5mXHjxmFhYdGiPoUQQoiOoLUxV2K0EEKItmRlZcXQoUPJyspSkt3Z2dmoVCqGDRvWLNmt0+n4y1/+QlFREePGjcPLy0uZ8IyJiSEuLg5zc3MA/v3vf+Pv78+YMWOwtLTkypUrpKSkcO7cOd5//33lnLGxseh0OqZNm0b37t2pqamhuLiY2traJ76uv/71rwwaNIi3336buro6TE1N2bFjB4mJiYwaNYpJkyah1WpJTU1l6dKlxMbGGqxsbmxs5JNPPiEsLIyxY8eSnZ3NP/7xD2UiYNy4cXTr1o2MjAzWrl2Lu7s7zz77LHAv0b1o0SJMTEyYPHkyzs7OnDlzhh07dnD9+nXmzp1rMNZvvvkGNzc3Zs6cCUBiYiKxsbGsWbMGa2trJk2axN27d8nPz2fZsmXK5xwcHJ74/gQGBpKZmUlRUZGS7H6Yb775Bnd3d2bNmkVtbS0bNmxg+fLleHp6olarmTNnDtevX2fjxo2sW7eOd999V/lsa+/58uXLCQ0N5Ze//CVFRUUkJydjbW3N5MmTAcjJyeGLL75g9OjRvPbaa6hUKsrKyrh8+fIjryE7O5tVq1YxYMAAfvOb39DQ0EBqaioxMTEsXboUHx8fg/bx8fEMGzaM0NBQLl68yJYtWwCa/e1E5yLJbiE6sFu3btGlSxeDRLeesVVa4eHhlJSUsHnzZpYsWdLq/vRBu7q6+rFttVotWVlZhISEGB3Lvn37yMjIoKysDBcXF1577TXOnTuHjY0NLi4uSruSkhKjifkbN24Ahq9YPf/882zatImcnBxCQ0Nbe3lCCCFEh9GamNva9hKjhRBCGBMSEsIHH3zApUuX6NmzJ1lZWQQFBRmt152Xl8c///lPfve73zFkyBDluEajYdGiRRw8eJAXX3wRgEmTJim/b2pqwtvbGzc3N2JiYigtLUWj0VBTU8PVq1eZOXMmI0aMUNrff+4noV9lrFdRUcG2bdt46aWXeP3115Xj/fv359e//jXbtm1jwYIFynGtVktkZKQyjj59+lBQUMCuXbtYvny5sirZw8ODN954g+zsbCUmJyUlUVtby6effkr37t0B6NevH+bm5mzcuJHw8HCDWGllZcV7772nxGYHBwcWL15MYWEhw4cPx8XFRVkt3VblOfQlTisrKx/b1tramj/84Q/K+Gpqali/fj1ubm4sXLhQaXflyhXS09O5ffs21tbWT3TPIyIiCAoKAu7ds/Pnz5Odna0ku4uLi7GxsTE4X79+/R45fp1Ox8aNG3F3d1cmIQBlMmTz5s189NFHBp8JDQ0lPDxcGW9ZWRlZWVnMmTPnZ1cO56fk8e80CiF+NJ6enpw9e5Yvv/ySs2fPotVqH9neysqKiRMncuzYMU6cONHq/srLywFaVA/07Nmz1NTUGN31eP369Xz11Vc899xzLFq0iJdeeok1a9ZQWFhosGKspqaGiooKNBoNjY2NNDY2Ul1dzbfffsvOnTsJDQ2ld+/eSnt7e3tcXV0pKCho9bUJIYQQHUlrYm5r20uMFkIIYYyfnx/Ozs5kZWVx8eJFzp8//9C3hY4ePYqNjQ0BAQFKHGhsbOSZZ57B3t6ekydPKm2vXbtGQkICb775JpGRkURFRSklMq5cuQKAra0tzs7OpKamsnv3bi5cuIBOp/vB1zR06FCDn48dO0ZjYyMjR440GLeZmRl+fn6cOnXKoL1KpcLf31/5Wa1W4+LigoODg0H5DVtbW7p27cr169eVYwUFBfTp0wcHBweDvvTne7CvQYMGGUxCazQaAINztrWmpqYWt/X39zcYn5ubG3Bv3PfTJ/ArKiqAJ7vnAQEBBsc0Go3Bfejduze1tbWsXLmSw4cPc/PmzceO/+rVq1RWVjJixAiD67C0tGTIkCGcOXOGu3fvGnzm/rfX9ONoaGho8WIE0THJym4hOrBp06Zx9epV9uzZw549e1Cr1fTu3ZuAgABGjx5tdBOoF198kYyMDDZv3syf//znR85G6nQ6GhsbaWho4PTp0+zYsQNfX99m/+Ebc+bMGQCDLwAA+fn5pKen88477ygbV/Xt25fa2lq2bNliMIuvrwWakZFBRkaGclytVjNlyhQmTpzYrN9evXpx/Pjxx45PCCGE6EhaG3MlRgshhGhrKpWKkJAQMjIyqK+vp0ePHvj6+hptW11dTW1trVIf+UE1NTUA1NXVsXTpUszNzYmMjKRHjx5YWFhw48YNPvnkE+rr65W+ly5dyvbt20lJSWHDhg3Y2toSHBxMVFSU0dXlLWFvb99s3ACLFi0y2v7B52Nzc3OlHIueqamp0f0xTE1NaWhoMOjr6NGjREVFGe3rwQTtg+fU16fW36P2oE9It6QUyoPjMzU1feRx/b1oq3t+/70dMWIEjY2N7N+/n/j4eJqamvDw8CAyMpL+/fsb7efWrVtA838TcO/6m5qaqK2tNSi39mP8TUT7k2S3EB2YnZ0dH374IefPn+f48eOUlJRw8uRJiouL2bt3L7GxsQYbg8C9IDF16lRWrVpFXl6e8jBrzIOlTvSvJxkrm/KgyspKVCpVs/6Tk5Px8PBo1q9+9vf+VWMlJSUA/P73v6dbt27AvS9NmZmZJCYm4ubm1uy1tq5du3Lz5k0aGxtbNE4hhBCiI2htzJUYLYQQoj2MGjWKxMRE9u7d+9AkLdx7FrWzs2Px4sVGf69PTp84cYLKykpiYmIMakIbq8P91FNPMWfOHODeKty8vDy2bduGVqtVSpGYmZkZfaNZn1x/0IOJVDs7OwB++9vfKiU82oudnR0ajYbIyEijv/8htbbbypEjRwCMvu3VVtrrnoeEhBASEkJdXR1FRUUkJSURFxdHQkKC0X70ieuqqqpmv9N/N7KxsWmz8YmOS5LdQnQCHh4eygOoVqtl8+bNpKWlkZqaanSjyuHDh/P111+zZcuWR25MNX/+fNzc3Lhz5w65ubns27ePhISEh36huV99fT1qtdrg9aCqqipKS0uZMWNGs/b6+p4PPkibm5sTGBhocB4/Pz9mzJjB/v37mz1Im5mZ0dTURENDgzxICyGE6DRaG3MlRgshhGgPjo6OhIeHc+XKFUaOHPnQdgEBAeTm5qLT6fD09HzsefWrffX27dv3yPaurq5MmjSJQ4cOKW8Twb2EeGlpqUHbEydOUFdX99gxAAwYMAC1Ws21a9ealThpa4MGDaKwsBBnZ2ejK8GfxP0rix9c/dxa//rXv9i/fz/e3t7NNmZsS+19zy0tLfH390er1bJixQouXbpkNNnt6uqKo6Mj2dnZjB07VpkIqaur49ChQ3h5eckm2j8TkuwWopMxNTVlypQppKWlcenSJaNtVCoV06ZNY9myZY/8kuHm5qY82Pbt2xedTseBAwfIz89/bJCys7NDq9VSV1enlFPRPywbm8HOycnB3t5eWR0G916Rdnd3b7Z5lqmpKSYmJkZfHbp16xZmZmZGS7gIIYQQHVVrY67EaCGEEO1l2rRpj20zfPhwsrOziY2NZcyYMfTu3Ru1Ws2NGzc4efIkzz33HIMHD8bb2xsbGxv+/ve/M2XKFNRqNd99912zhHVpaSlffvklQ4cOpUePHpiamnLixAlKS0sZP3680m7EiBEkJiaSmJiIn58fly9fZs+ePVhbW7fo2pycnIiIiGDr1q1cu3aNgQMHYmtrS1VVFefOncPS0pKIiIhW3a+HmTp1KsePH+dPf/oTL7/8Mq6urtTX13P9+nUKCwt58803DWJrS7i7uwOwa9cupYa2RqNpNplwv6amJqWEmVarpaKigsLCQvLy8nBzczPYHLI9tMc9X7duHebm5vj4+GBvb09VVRW7du3C2traYM+Q+5mYmBAdHc2qVauIi4sjLCyMhoYGUlNTqa2tbdG/e/HTIMluITqwyspKow+lly9fBh79WlT//v3p378/ycnJLQ6w0dHRHDp0iMTERAYPHtzsAfd++s0qrl27pmysoX9d+uLFiwavSOfn51NcXGywscXt27cpLy83uqPy4cOHaWhoMFo/rry83GBHayGEEKIzak3MbW17idFCCCF+KBMTExYuXEh6erqyObFaraZbt274+voqSVk7OzsWLVrEhg0bWL16NRYWFgQGBvLOO+/w7rvvKuezt7fH2dmZzMxMKioqUKlUODs7M336dF5++WWlXXh4OLdv3+bgwYN8/fXX9O7dmwULFrBixYoWj33ChAk8/fTTpKenk5OTg1arxd7eHg8PD8LCwtrsHjk4OBAbG0tycjKpqancuHEDKysrnJycGDhw4BOVzAgODub06dNkZmaSnJxMU1MTn3/+OU5OTg/9TH19PX/84x+Be/Wwu3Tpgkaj4a233uL5559/ZKK8rbT1Pff19eXgwYPk5eVRW1uLnZ0dPj4+zJ8/v1mZtvsFBwdjYWHBrl27+OyzzzAxMcHLy4v3338fb2/vH3KJohNRNbVma1YhxP+Uvk5mQEAArq6uNDU18f3337N7927u3LnDsmXLcHd35+DBg6xdu5bY2FiDV5AvXLjAe++9R1NTEz179iQ+Ph7goe0BUlNT2bRpE/PnzzfYqOpBFRUVzJ07l9mzZ/PCCy8A92aUFy9ezOXLl4mKikKj0VBUVER6ejq3bt0iIiKCyZMnA/deRfvwww955ZVXCAoKAu7VdSsuLiYtLQ0XFxc++OADgxl8nU7H66+/TmhoKNOnT2+bmyyEEEK0oQdjbGtjrsRoIYQQQgghnpys7BaiA5s4cSJHjhwhLS2NyspKGhoacHBwoF+/fowfP/6xq6d69eqlvH7WUqNHj2bPnj0kJycTHBz80JVj3bt3x9fXl8OHDysP0iqVigULFvDFF1+wdetW1Go1Pj4+REdHs27dOp599lnl8/q6bGlpaaSlpQFgYWGBq6srEyZM4JVXXmlWT+vUqVPcvn2b4ODgFl+PEEII0VG1NOa2tr3EaCGEEEII8XMlK7uFEE8sPz+flStXsnbtWhwdHdu9v9WrV1NeXs5HH33U7n0JIYQQnZnEaCGEEEII8XP06OUjQgjxCEOGDMHDw4OdO3e2e19lZWXk5ubKphJCCCFEC0iMFkIIIYQQP0eS7BZCPDGVSsVbb72Fg4MDOp2uXfuqqKhg1qxZ+Pj4tGs/QgghxE+BxGghhBBCCPFzJGVMhBBCCCGEEEIIIYQQQnR6srJbCCGEEEIIIYQQQgghRKcnyW4hhBBCCCGEEEIIIYQQnZ4ku4UQQgghhBBCCCGEEEJ0epLsFkIIIYQQQgghhBBCCNHpSbJbCCGEEEIIIYQQQgghRKcnyW4hhBBCCCGEEEIIIYQQnZ4ku4UQQgghhBBCCCGEEEJ0epLsFkIIIYQQQgghhBBCCNHpSbJbCCGEEEIIIYQQQgghRKf3f/4nqyY+lthEAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" + "metadata": { + "ExecuteTime": { + "end_time": "2025-10-08T10:16:52.690623Z", + "start_time": "2025-10-08T10:16:50.990348Z" } - ], + }, "source": [ "# Quick calculation for the sake of plotting\n", "imb_db_list = []\n", @@ -22837,7 +4573,31 @@ "ax3.grid(True)\n", "plt.savefig(\"Images/discrete_model_performance.pdf\", format=\"pdf\", bbox_inches=\"tight\")\n", "plt.show()\n" - ] + ], + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/tmp/ipykernel_14740/1228007042.py:8: RuntimeWarning: divide by zero encountered in scalar divide\n", + " IRR_abs = np.abs(r)**2/np.abs(1-r)**2\n" + ] + }, + { + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAABb4AAAIqCAYAAADrS1yjAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjYsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvq6yFwwAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzs3XlYVNUbB/DvnY19EQVBVBYX3BDQ1NzX1FxyL1FzK8us1Ny30korbbOyxTQ1K3ErM80lc820UhOMUnEBzQUEFRBkmWHO7w9+MzHOgIADdxi+n+fpybn33Hvfe2a45953zpwjCSEEiIiIiIiIiIiIiIjshELuAIiIiIiIiIiIiIiIrImJbyIiIiIiIiIiIiKyK0x8ExEREREREREREZFdYeKbiIiIiIiIiIiIiOwKE99EREREREREREREZFeY+CYiIiIiIiIiIiIiu8LENxERERERERERERHZFSa+iYiIiIiIiIiIiMiuMPFNRERERERERERERHaFiW+qUAIDAxEYGCh3GDbJWnUjSRI6der0wPspTx9++CEaNWoEJycnSJKEpUuXyh0SEVGFs2bNGkiShDVr1pTZMQ4cOABJkrBgwYIyO4Ytqohta0HWet/K4zNmbYmJiRg1ahRq1qwJpVIJSZKQmpoqd1hEREQAgE6dOkGSpAfeT0XMtURFRSEiIgJubm6QJAmTJ0+WOySyQUx80wOTJAmSJCEgIADZ2dkWywQGBkKSJOh0unKOrmyMHj3aeN6vvPJKoeW+/PJLY7mK/MBbFMP5Gf5TKpWoVq0aunTpgnXr1pX58devX49JkybB0dERkydPxvz58/Hwww+X+XGJqHIzXPMKc/z4cYwZMwbBwcFwcnKCu7s7wsLCMHPmTCQmJpb4eIZ2NCEh4QGiporC8PlSKBS4cOFCoeU6d+5sLFuRksnFZUiUF/zPwcEBQUFBGD16NP75558yj2H06NH46quv0LFjR8ybNw/z58+Ho6NjmR+XiMoGr68ElD7Ju2DBAuPnYuTIkYWWO3jwoLFcRUsmF5fh3rTg35SnpyfatGmDjz/+uMxzP0ePHsXw4cNx584dPPfcc5g/fz569uxZpsekikkldwBkPy5fvoylS5di1qxZZXaMvXv3ltm+S0OlUmH16tWYP38+lEql2foVK1ZApVLZTcK/KPPnzwcAaLVanDlzBlu3bsX+/ftx/PhxvPfee2V23O3btxv/X6NGjTI7DhFRcQghMGvWLCxZsgQqlQqPPPIIhgwZgtzcXBw5cgRLlizBJ598gqioKPTp00fucMmGGe4fvvjiC7zxxhtm68+dO4cDBw5UivuMsLAw9O/fHwCQlpaGAwcO4Msvv8TGjRuxb9++MvvCOzc3F3v27EG3bt3wzTfflMkxiKj88fpKD0qlUmHz5s348MMP4enpaba+MuUBJk2aBE9PT+Tl5SE+Ph7ffvstjh49ir179+K7774rs+P++OOPEEJg7dq1aNOmTZkdhyo+9vgmq6hSpQq8vLzw1ltvISUlpcyOU6dOHdSpU6fM9l9Sffr0wZUrV7Br1y6zdadPn8avv/6Kvn37yhBZ+VuwYAEWLFiARYsW4dtvv8Xu3buNw46UZQ/Fa9euAQCT3kRkE15//XUsWbIEgYGBiI6Oxo4dO7B48WK8//77+P3337F582bodDoMHDgQv//+u9zhkg2rXr06HnroIaxevdrig/PKlSsBoFLcZ4SHhxvvM95//338+eefGDVqFLKysjB79uwyO25iYiL0ej3vMYjsDK+v9KD69OmDrKwsi1+K3r59G99++22l+fxMnjwZCxYswOuvv46vv/4ax48fh5OTE7Zs2YKDBw+W2XGZB6DiYuKbrMLZ2Rkvv/wy0tLS8Oqrr5Zo240bN6JDhw7w8PCAk5MTQkND8eabbyInJ8esrKWfJOXm5uLDDz9Es2bNUKVKFTg7OyMwMBD9+vXDzz//DCC/8XF2dkadOnUghLAYR9++fSFJEo4fP17s2IcPHw4nJyesWLHCbJ1h2dNPP13o9jk5OXjrrbcQGhoKZ2dnuLu7o3379ti4caPF8kIILFu2DI0bN4ajoyP8/f3xwgsvIC0trcg4o6Ki0LlzZ3h6esLR0RENGzbEwoULLdaxtXTt2hUNGjSAEALHjh0zLr9y5QpeeOEFBAcHw8HBAVWrVsVjjz1mUsbA8FOyAwcOYN26dWjVqhVcXV0RGBhoXLd//34ApkOuFLR371707NkTXl5ecHBwQP369TFr1iyLdWYYHy03NxevvfYaQkJC4ODggNGjR5us12q1eO2111CnTh04OjoiJCTE5DPw2WefITQ0FE5OTqhZsybmz58PvV5vdrw1a9Zg0KBBJkMhtG3bFl9//bXFOjUcX6fT4Y033kC9evXg4OCAWrVqYebMmcjNzbW43ZkzZzB27FgEBgbCwcEBPj4+aN++PT799FOLZUePHo1atWpBo9GgevXqGDZsGM6ePWtx30T0n4SEBLz++utQq9X44Ycf0LhxY7MygwYNwvvvvw+tVovx48c/8DENQ2klJSVh7NixqF69OlxcXNCmTRv88ssvAIDMzExMnz4dAQEBcHBwQOPGjbFp06Yi9/vjjz+iTZs2cHFxQZUqVTB48GCcO3fOrFxcXBxmzZqFhx56CN7e3nBwcEBAQACeeeYZXLlypdjnceLECUyaNAlhYWHw8vKCo6Mj6tWrh6lTp+L27dtm5QuOFb1//3506tQJbm5ucHd3R+/evXH69GmLx7l79y4WL16Mhx56CG5ubnB1dUXDhg0xceJEJCUlmZV98803ER4eDhcXF7i6uqJ169aIioqyuO/c3Fy8/vrrqFOnjnE4jnnz5j1QWztu3DgkJiYaf91koNVqsWbNGrRp0waNGjUqdPtz585h5MiR8Pf3h0ajQY0aNTBy5EiL7yUAJCUl4amnnkL16tXh5OSE8PBwfPnll0XGeOvWLcyePRsNGzaEk5MTPDw80LVrV/z0008lP+FikiQJEyZMAAD88ccfJut2796NXr16oVq1anBwcECdOnUwffp0i+NyG+4r09PTMWXKFAQGBkKtVmPBggUIDAxEQEAAANOh6wz3BEDJ7uMSEhKM28fFxeGJJ56Aj48PFAoFDhw4YLL+woULGDx4MKpWrQo3Nzd0794dsbGxAIDk5GQ888wz8PPzg6OjI1q0aGG8Fyro2rVreO2119C2bVv4+voa3/9hw4ZZHCKm4PETEhIwdOhQVKtWDY6OjnjooYfMPoMFbdiwAV27djX+7QYGBiIyMtLiPbUc96REljzo9bUk1760tDS8/fbb6NKlC2rWrAmNRgNvb2889thjOHr0qMX9//LLL+jbty9q1qwJBwcH+Pr64uGHHzZ71i5qfOfC5lUo6tpnUJJnAsMwoPHx8Vi2bBkaNWpkvBa88cYbxufvTZs2oWXLlnBxcYGPjw9eeOEFZGVlWYy9NMdPSEjA8uXLERoaCkdHR1SvXh3PPPOMyXOfYc6KS5cu4dKlSybPkAWv7/fTs2dP1KxZ0/glSUFfffUVsrOzMW7cuEK31+v1+Oyzz9CiRQu4urrCxcUFLVq0wKeffmrxuRHIH+KzefPmcHJygo+PD5588klj8rcwJWkTraVx48bGYV4LttEl+Zsp+NndtWsXOnXqBA8PD+MySZKwevVqAEBQUJDxPSzY4e7EiRMYNGgQfHx8jPenEyZMwPXr182OZ/gMXbx4ER999BGaNm0KJycn43lY+zP+/fffY8SIEahfvz5cXFzg4uKC5s2b48MPP7T4/pfkM17QlStXMHHiRNSrVw9OTk7w8vJCy5Yt8frrr1ssW9w8TYUjiB4QAOHv7y9yc3NFnTp1hFqtFnFxcSZlAgICBACh1WpNls+ePVsAENWqVRPjx48X06ZNE40bNxYARMeOHUVOTo7ZfgICAkyWRUZGCgCiSZMmYuLEiWLmzJniySefFEFBQWLq1KnGcmPGjBEAxE8//WR2DpcvXxZKpVI0b968WOc8atQoAUDs2bNHjBw5UqhUKnH9+nXj+uzsbFG1alXRsWNHce7cOeP5FJSTkyM6duwoAIgGDRqIadOmiQkTJggfHx8BQMyePdvsuBMnThQAhJ+fn3jxxRfFlClTRJ06dcRDDz0k/Pz8zOqm4HnXrFlTjB07VkyZMkW0adNGABCdOnUye08sxVoUAKKwS0mDBg0EALFp0yYhhBAnTpwQVatWFZIkiZ49e4qpU6eKUaNGCQ8PD6HRaMSPP/5osv38+fMFANGnTx/h4OAgBg8eLGbOnCnGjx8v9u/fL+bPn2/8bM2fP9/4n8Fnn30mJEkSrq6uYsyYMWLmzJmiVatWAoBo1KiRuH37tsnxDO9Hnz59RPXq1cXo0aPFjBkzxDvvvGOyfuDAgcLf31+MGzfO5D1bvXq1eOmll4SXl5cYOXKkmDRpkggKChIAxFtvvWVWP46OjqJ58+Zi1KhRYtasWWLcuHHC399fABDz5s0zK284/pAhQ4Svr68YM2aMmDRpkqhXr54AIEaPHm22zfbt24WTk5NQKBSiV69eYtasWWL8+PGidevWIjAw0KTszp07hZOTk1CpVGLAgAFi+vTpIjIyUjg4OAh3d3dx4sQJi+8zUWVk6dr3yiuvCADi8ccfL3JbrVYr/Pz8BABx9OjRYh3PcK2Lj483iyMsLEzUqVNHhIeHi0mTJoknn3xSqNVq4eTkJKKjo0WrVq1EvXr1xIQJE8S4ceOEq6urkCTJ7NirV68WAETfvn2FSqUSQ4YMEbNnzxaPPvqoACC8vLzEmTNnTLZ58803hYeHh+jfv7948cUXxdSpU0XPnj2FJEnC19dXXLlyxaT8/v37jdfsgp599lnh4+MjhgwZIqZMmSImT54s2rdvLwCIhg0bivT0dIuxDho0SKhUKtG3b18xbdo00atXLwFAeHt7i+TkZJNtbt26JcLCwgQAERISIiZOnCimTZsmBgwYIFxdXcX+/fuNZW/fvi0iIiIEANGsWTPxwgsviAkTJog6deoIAGLu3Lkm+9br9aJfv34CgKhTp46YMmWKeOGFF4Sfn5947LHHStW2+vv7i/T0dOHi4iJ69+5tsn7z5s3Gdmfu3LnGfxf0xx9/CHd3dyFJkujXr5+YPXu2GDBggJAkSbi7u4s//vjDpHxycrIIDg4WAES7du3ErFmzxKhRo4Sjo6PxHO593xISEkRgYKAAINq3by8mT54sxo0bJ/z8/IQkSeLzzz+3+L7dG2thDOVHjRpltu63334TAISLi4tx2YIFC4yf1ZEjR4pp06aJ7t27G9v9tLQ0k30EBAQIPz8/0bx5cxEUFCTGjRsnpk6dKtasWSPef/99MWnSJOPfmOEeY8uWLUKIkt/HxcfHG+vW09NTtGzZUkyePFk8++yz4sSJE8b1HTt2FFWrVhXt2rUTU6ZMEQMHDhSSJImqVauKuLg4ERwcbPa37uDgIC5dumRyvKioKOHk5CR69eolJkyYIGbMmCEGDBgg1Gq1cHFxEdHR0Rbj69Spk/D29hatWrUSkydPFiNHjhQODg5CoVCIffv2mWyj1+uN98TVqlUTTz31lJg1a5YYMWKE8Pf3N/u8lPSelKgsWOP6WtJr39GjR4VarRZdu3YVzzzzjJg5c6aIjIwULi4uQqVSiZ07d5qU37lzp1AoFMLT01OMHDlSzJ49Wzz77LOiQ4cOwsfHx6Ss4TpkSWHX3KKufYbjl+SZwHAdGDhwoPDy8hKjRo0yeQ6aP3+++OCDD4STk5OIjIwUU6ZMEaGhoQKAGD9+vFncpT3+kCFDhLu7uxg+fLiYMmWKsR3v3LmzsWx8fLyYP3++8PDwEB4eHibPkIbre1EMz6crVqww3vcdO3bMpEyTJk1EUFCQyM3NFQAsPqMPGzZMABC1atUSkyZNEpMnTzbe6w0bNsys/HvvvScACE9PT/HMM8+IGTNmiLCwMBEQECCaNm1q8TNQmjbRUqyFKezeVAghevbsKQCIt99+WwhR+vuF3r17C6VSKfr06SNmzJghnnjiCXHy5Ekxf/584z3dpEmTjO+h4fl+27ZtQqPRCLVaLSIjI8WsWbPEI488IgCIGjVqiIsXL5ocz/AZ6tOnj/Dw8BDDhg0TM2fOFHPmzDFZb63PeEhIiGjYsKEYMWKEMb9Rv359AUCMGDHCrHxJPuMGx44dE15eXgKA6NChg5gxY4Z44YUXRJcuXYRCoTApW9I8TUXDxDc9MMPNgxBCbNq0SQAQAwYMMCljKfF95MgR48W+YNJYq9WKPn36CABi0aJFZvspeDFOTU0VkiSJ5s2bC51OZxZbSkqK8d/Hjh0zPiTfy9CA3XvBLUzBxPcvv/wiAIg33njDuD4qKkoAEF9//XWhie833nhDABCPPvqoSb0kJSUZ6+vXX381Lv/111+ND9Q3b940Ls/KyhIPP/ywxUbV0GAMGDBA3L171+I5L1261GS5tRLfe/bsEZIkCUmSREJCgtBqtaJOnTrCwcFBHDhwwKTs1atXRY0aNYSvr6/Izs42i9HZ2Vn8+eefFo9f2M1eQkKC0Gg0ws3NTZw+fdpk3XPPPScAiHHjxlncV2hoqFnCpOD6hx56yCRpfuHCBaFWq4Wnp6cIDAw0SfTcvn1bVK1aVVSrVs3sge78+fNmx8jJyRFdunQRKpXKLGFkOH6zZs1MPgMZGRmiTp06QqFQmPwtJScnC3d3d6FWq83qXAgh/v33X+O/b926JTw9PUXVqlXF33//bVLur7/+Ei4uLiIiIsJsH0SVlaVrX5cuXYrdlhgeeBYvXlys4xWV+AYgnn32WZGXl2dcvnbtWgFAVKlSRfTp00dkZWUZ1x06dEgAEP379zfZl6HNACC2bdtmsm7p0qUCgOjSpYvJ8itXrphctw12794tFAqF2c1+YYnvhIQEi+34ypUrLX55aIhVqVSKn3/+2WTdrFmzLNat4Yvy8ePHm9SVEELcuXNHpKamGl8b2vl795GVlSV69OghJEkSJ0+eNC7/5ptvBADx8MMPm9T1zZs3jcnk0iS+hRDiqaeeEkql0uSa3aNHD+Hu7i4yMzMtJmb0er3xy+evv/7aZN/r1683Jv8L1sO4ceMEADF58mST8seOHRMqlcri+9axY0chSZKIiooyWX779m0RFhYmHB0dRWJionG5tRLfer1ejBw50uQzuW/fPgFAtG7d2uyLbcN+7j03w99V165dRUZGhtnxDclgS4n3kt7HGfZlKSl+7/qFCxearHvttdeMf8+F/a3fe25JSUlmXxgJIUR0dLRwcXERPXv2LPT4CxYsMFm3a9cu47kWtHz5cgFAtGjRwuTvRwghdDqduHbtmvF1ae5JicrCg15fhSj5tS81NdXis8W///4r/Pz8RIMGDUyWDxw4UAAw+4JKCGG2n9Imvgu79pXmmcDQZgYEBFh8DnJ2dhbVqlUT//zzj3Fddna2aNiwodBoNCIpKckqx69Vq5bJl4Bardb4Jfrvv/9uVgclSfIaFEx8JyQkCIVCIZ555hnj+qNHjxqv41qt1uIz+rp16wQAERERIe7cuWNcnpGRIZo3by4AiG+++ca4PD4+XqjValGlShWT+8C8vDzjZ+Xez0Bp20RrJL5jY2OFk5OTACAOHTokhCj9/YIkSWZfDBkY3vd7j3/nzh3h5eUlFAqF8fgGb731lgAgHnnkEYv7spQUL7jeGp9xISznAfLy8oz3Nr/99pvF4xf3M56Tk2P8oqHgZ8mg4DWvNHmaioaJb3pgBW8ehBCidevWAoD45ZdfjMssJb6ffvppAUAsX77cbJ9nz54VCoVCBAUFmSy/92KclpYmAIg2bdoIvV5/31gfeughs97ZOp1O1KxZU7i5uZk0PEUpmPgWIr9nc3BwsDGGLl26iCpVqoisrKxCE99169YVkiSZJWWF+O9Bf8yYMcZlhvpatWqVWXlDIuHehio8PFyoVCqzxs5w3lWrVhUtWrQwWV7axLfhW9Y5c+aIQYMGCaVSKQCIl156SQghxPfffy8AiGnTplncjyGpUvDbRMONxb2NckGF3ewtXLiw0IfLW7duCTc3N+Ho6GhyATfs6/vvvy/yWPcmWYQQonPnzgKA+OKLL8zWjR49WgAQCQkJhZ5HQd9++60AIL788kuLxzd87goy9DgomKx65513BAAxceLE+x7TUP/Lli2zuH7y5MkCgNkNKFFlZekho2HDhgJAoTfoBc2cOVMAEC+++GKxjldU4tvZ2dkswaXT6YzJygsXLpjtLzAw0OxXH4aHjHuT24b9GXo7F/daFhoaataOF5b4Loxerxfu7u5mPVkMsQ4fPtxsm4sXLwrA9IvupKQkoVAohJ+fn8UEZ0EpKSlCqVSKhx56yOL66OhoAUBMnz7duKxbt24CgFmP2IKxljbxbejZ/OqrrwohhPFB+7nnnhNCCIuJmcOHDxsfeC1p166dACAOHjwohBAiNzdXODs7Czc3N7MEphD/3fcUfN8M9TB48GCLxzC0+x9//LFZXZQ08V2wx/XkyZNFeHi4ACCcnJyMv1zo37+/ACBiY2Mt7is8PFx4e3ubLDP8XVlKLglRdOK7pPdxhn1Vr17d4sOjYX1gYKDZl0CXLl267996p06dLJ6DJX379hUODg4iNzfX7PgBAQEWv4SqXbu2qFq1qsmyJk2aCACFdk4oqDT3pERl4UGvr6W59hXlxRdfFABMklmGZObZs2fvu/2DJL4tXftK80xgaCNWrlxpVt7wS4+XX37ZbJ2hR3LBZNuDHH/FihVm5VetWiUAiI8++shkuTUS30Lk92x2c3Mz3luMHTtWKJVKcfXq1UIT34Z7ht27d5vt/+effxaAaQ9ew3PtK6+8Ylb+woULQqFQmH0GStsmlibxbehxPW/ePDF8+HBj0tvQGfJB7hfu7aRRUGGJ76+//loAEJGRkWbbaLVaY0K44N+cYV+FfQFrzc94UU6cOGFyTbr3+MX9jBt+ufLYY4/d95ilydNUNCoQWdm7776LNm3aYNq0afjtt98KLffnn38CALp06WK2rn79+qhZsybi4+ORlpYGDw8Pi/twd3dH3759sW3bNoSHh2PQoEFo3749WrVqBWdnZ7PyEyZMwNixY7Fq1SrMmTMHALBjxw5cuXIFzz33HFxdXUtzyhg3bhymTp2Kffv2ISAgAPv378eLL74IR0dHi+Xv3LmD8+fPw9/fHw0aNDBbb6iTkydPGpcZ6qtjx45m5du1awelUmmy7O7du4iJiUG1atWwdOlSi3E4ODgUOg5qSRnGm5MkCZ6enmjfvj2eeuopjBgxAgCM49ddunTJZPw4A8N4o6dPn0avXr1M1rVs2bLE8RT1+apSpQoiIiJw6NAhnDlzBmFhYSU63kMPPWS2zDCpRvPmzc3W+fv7A8gfN8swXigAXL58GYsXL8bevXtx+fJls/G/rl69Wuzj16pVCwBMxsI1/P09+uijRZ4P8N/7ExMTY/H9iYuLA5D//hQ13iERlUx2dvYD76N+/fpwc3MzWaZUKlG9enVkZmYiODjYbBt/f/9CJ9e01M4olUq0a9cOFy5cwMmTJ43XMiEEvvnmG6xZswYxMTG4ffs28vLyjNtpNJpinYNWq8Xy5cuxfv16/PPPP0hLSzMZ4/BBr4fHjh2DXq9Hhw4d4OLiUmQsx44dQ15eHiRJsng91Gq1AGDSfv75559QKBRo166dWXnD+JCl1apVK4SGhmLVqlWYN28eVq5cCb1eX+TYoUW1gYblhw8fxsmTJ9GhQwecOXMGd+/eRfv27S3ec3Xq1MlsrG9Du5GWlmaxnpKTkwHAKvcZMTExiImJAQCo1Wr4+fnhySefxKxZs4xt0tGjR6FWq7Fp0yaLY9jn5uYiOTkZN2/eRNWqVY3LHR0d0bRp0xLFU5r7OIOwsDA4ODgUuu/w8HCzezrDPUZRf+uWxtT/8ccf8dlnn+H48eNISUkxm8QvJSUFfn5+9z0+kP93VXAs4szMTMTGxqJ69eqIiIgo9HyA8r8nJSqu0lxfS3vt+/XXX/HBBx/g6NGjuHHjhtncPFevXkXt2rUB5M8j9d1336FVq1Z44okn0LlzZ7Rt2xY1a9Z8kNM1Udi170GeCR7kGamsjm/pnsCaxo0bh127dmH9+vUYMmQINmzYgN69e6NGjRoWJ04F/rtnsHR/0LFjRyiVymLnAYKDg1GrVi1cunTJZHlp28TS+OCDDwDk5wFcXV3RtGlTjBgxwjiXzYPcL1g7D6BSqdChQwckJCTg5MmTxr+54h7PGp9xALh58ybefvtt7NixAxcvXkRmZqbJejnyAKXJ01QUTHyT1bVu3RqDBw/G5s2bsWHDBjzxxBMWyxkG4L/3htvAz88Ply9fRmpqaqGJbyB/Qp3Fixdj3bp1mD9/PoD8hnzw4MF45513UL16dWPZoUOHYurUqVixYgVmzZoFhUKBzz//HADw7LPPlup8AWDkyJGYM2cOVq5ciYCAAAghirxhKs65AzCZdMKwTcHzMVCpVKhWrZrJstu3b0MIgeTk5BJPOFoaQogi19+8eRMA7juhWkZGhtkyX1/fEsdTmjou7vEsfR5VKtV91xmSJQBw8eJFtGzZErdv30b79u3RvXt3eHh4QKlUIiEhAV9++WWhEz15enoWeoyCCSfDuRka3KIY3h9LE7UWZOn9IaJ8vr6+OH36NP7999/7ljWU8fb2fuDjFtZGqlSqItcV9kBmqZ0B/rs2FpxAZ8qUKVi6dCn8/PzQo0cP+Pv7w8nJCUD+xET3PogV5oknnsCWLVsQHByMfv36wdfX15gcXLp0qSzXw2PHjhU5oU/B62FaWhq8vLygVqvNypWmDbvXuHHjMHHiROzcuROrV69G8+bNi0w2lrQNLOoeA7B8DoZ62rNnD/bs2VNoLNZoN0aNGmU2OZuleHQ63X3veTIyMkwe8n18fAqdGK4wtnSPYVhf8B4DyE9ETJ48GVWqVMEjjzyC2rVrw9nZGZIk4fvvv0dMTIzFvytLf1OGYxT8Mqokf1PlfU9KVBIlvb6W5tq3ZcsWDB48GI6OjnjkkUdQp04duLi4GCe3PXjwoMnf48CBA7F9+3a8++67WLVqFZYvXw4gP7H25ptv4pFHHnnQ0y702vcgzwTWeEZ6kOMX957Amvr27Yvq1atj5cqV0Gq1yMzMLDIPAPx3z2Cpc4Dhuf7GjRsm5YGi2+h777dK2yaWRnx8PAIDAwtd/yD3C/aYB0hNTUWLFi0QHx+Pli1bYuTIkfDy8oJKpUJqaio++OADWe57S5OnqSiY+KYy8eabb2Lr1q2YPXs2BgwYYLGM4cKQmJiIOnXqmK03zLZbVNIbAJycnLBgwQIsWLAA//77Lw4dOoQ1a9bg66+/RkJCAn755ReTsqNHj8b777+Pn376CY0bN8bOnTvRqlUrs16/JVGtWjUMGDAAW7Zsgbu7O1q3bo0mTZoUWr7guVti6dwN/05KSjLrvafT6ZCSkmLSC8BQPiIiwvitp5wM8WzduhWPPfZYibYt6QNpweMlJiaicePGZuuL+nyV5ngl9d577+HmzZtYvXq12QziUVFRZj3rSsPQMF69ehWhoaFFljXUQ0xMTIl7vhFRvnbt2mH//v34+eefi3zoycvLw4EDBwBY7h0it6SkJIvLDW2W4Xpx48YNfPjhh2jSpAmOHDli1hM1KiqqWMc7fvw4tmzZgm7dumHnzp3GG3gA0Ov1WLJkSWlOw0TB6+H9GM7vpZdewnvvvVes/Xt4eODWrVvQarVmye/C2vqSePLJJzFz5kyMHz8eV69exSuvvHLfeIo69r1tYMF7DEss7cewzQcffICJEycW4yzKloeHB/R6PW7dulWi7R70HsMSue8xdDodFixYAF9fX/z5559mD/8Fe26XVmn+pmzlnpSooNJeX0ty7Xv55Zeh0Whw/PhxNGzY0GTds88+i4MHD5pt07t3b/Tu3RuZmZn4/fffsX37dnz66afo06cPTp48aeztrFAoAOT/3RdsPwHLiT2Dwq5Fcj8TyH38klKr1RgzZgzeeustXLlyBTVr1rxvL9ui7hkMz/Xu7u4m5YH8NtrSc21hbXRp2sSy8CD3C/bYRq9cuRLx8fGYP3++WQ/ro0ePGnvQP4jStNGlydNUFAq5AyD7VLduXUyYMAHx8fH46KOPLJYxfJNuePgv6Pz587hy5QqCgoIK7XliSa1atTB8+HDs3r0bdevWxeHDh43fYBk899xzkCQJy5cvxxdffIG8vLwH6u1tMG7cOOTk5CA5Ofm+3/K6ubmhTp06uHr1qvGnIwXt378fANCsWTPjMsO/Ld0YHT582OxbbFdXVzRu3Bh///23TTR4Dz/8MACYfBFRlor6fKWmpiI6OhqOjo5mN5/l5fz58wCAQYMGma2z9B6XhqHOd+7cWeyy5fX+ENmjMWPGQKVSYcuWLfj7778LLbdq1Spcu3YNXl5e6NmzZzlGWDyWrkF5eXk4fPgwgP+urxcvXoRer0f37t3Nkt5XrlzBxYsXi3U8w/XwscceM3to/+OPP8yGgSqNli1bQqFQ4NChQ2Y/Jy2sbEmuh82aNYNerzfWUUGW2qGS8vT0xODBg3HlyhW4uLggMjKyyPJFtYGA+X1GgwYN4OzsjOjoaJMe/QaW9mNr7cbDDz+M27dvF/m3Zy2luY8rTykpKUhNTUWbNm3Mkt4ZGRlWST67uLigSZMmSEpKsjikS0G2dk9KVFBJr6+lufadP38ejRo1MnvuKKzdKMjFxQVdunTBe++9hzlz5iA3N9fk3r5KlSoAYPHXZsePHy92jAZyX9vL6/hKpdJqvcCffvppSJKEK1euYOzYsRaHiyooIiICer0ehw4dMlt36NAh5OXlFTsPcPHiRYvvfXm2ifdjS3kAnU5njEOuNpp5gPLHxDeVmVdeeQWenp5YtGiRxZ9FjB07FgCwcOFC47hOQP7D9bRp06DX6/HUU08VeYzk5GT89ddfZsszMzORkZEBlUpl9hOievXqoWvXrti+fTs+++wzeHp6YujQoaU5RROdO3fG1q1bsWXLlmLtb+zYsRBCYPr06SaNbkpKCl5//XVjGQNDr+BFixaZPDRkZ2dj9uzZFo8xZcoU5ObmYuzYsRa/8b99+3a59bzp168f6tSpg48//hg7duywWObo0aO4e/euVY43YsQIqNVqfPTRR8bGxeDll19Geno6RowYUeQ4m2XJ8HOwexvk3bt3Y+XKlVY5xqhRo+Du7o5PP/3U4o1VwbHGxowZA09PT7z66qv4448/zMrq9XqrJG+I7FlQUBDmzZsHrVaLxx57DP/8849Zme+//x6TJk0CACxevNjifBRy27dvH7Zv326ybNmyZbhw4QI6d+5sHN/bcB2798vXjIwMjBs3rtChVO5V2PXwxo0beP7550t3Evfw9vbG0KFDcf36deM9RkEZGRnGhK+Pjw+GDx+O48eP4/XXX7f4YHzhwgXEx8cbX48ZMwYAMHfuXJNx22/duoWFCxda5RwWLlyILVu2YPfu3WZfNNyrbdu2CAkJweHDh7F582aTdZs3b8Yvv/yC+vXrG8ckV6vVGD58OO7cuWPW++j48eP45ptvzI7x0EMPoX379vjuu++watUqi3H89ddfJj/XLksvvfQSgPyOCNeuXTNbn5mZWeTcMyVV0vu48uTj4wNnZ2ecOHHC5B5cq9Vi0qRJSElJscpxDD33nn32WbMvTPR6vbFXHWBb96RE9yrJ9bU0177AwECcO3fO5NokhMCCBQss3iscOnTIYhtq+FVOwXsHw5jE9w4Nsnfv3mL/8qoguZ8Jyuv4VatWRXJyslW+XK9Tpw527dqFLVu2FKtHs6FtmD17tsmz7927dzFr1iwAMMmDDB8+3Phcm5CQYFyu1+sxffp0s3saoPzbxKKU9/1C//794eXlhaioKLNzXLp0KeLj49GtWzez8b3LS2H3vSdPnsSbb75plWP07dsXgYGB+OGHHyxeBwrmAco7TyMHDnVCZcbLywtz5szBjBkzLK5v06YNZsyYgSVLlqBJkyYYPHgwXFxcsHPnTsTGxqJdu3aYPn16kce4evUqIiIiEBoaiqZNm6JWrVpIT0/H9u3bkZiYiIkTJ1q8eZkwYQJ+/vlnJCUl4cUXXzSOR/ogJEkq0U9Dpk2bhp07d2Lr1q0ICwtDr169cPfuXWzatAk3btzAjBkzTCbJatu2LV588UV89NFHxvpSq9XYunUrqlSpYnEMq7Fjx+LEiRP45JNPUKdOHfTo0QO1a9fGrVu3EB8fj0OHDmHMmDH47LPPHvj870etVuO7775Djx490Lt3b7Rp0wbh4eFwdnbGv//+i2PHjuHixYu4fv26VRJBgYGBWLp0KZ5//nk0a9YMjz/+OLy9vXHw4EEcPXoUDRo0wOLFi61wZqUzYcIErF69GkOGDMHgwYNRo0YNxMbGYteuXXj88cexYcOGBz5GtWrVsG7dOgwePBidO3fGo48+iqZNmyI9PR2nTp3Cv//+a0zcVK1aFZs3b8aAAQPw8MMPo2vXrmjcuDEkScK///6Lo0eP4ubNm1aZiI/Inr3yyivIzMzE22+/jbCwMPTo0QONGzeGVqvFkSNHjBNKzpgxA08//bTM0VrWt29fDBgwAAMGDEDdunURHR2NnTt3wsvLC5988omxnK+vL4YOHYr169cjPDwc3bt3R1paGvbs2QNHR0eEh4cjOjr6vsdr0aIF2rZti++++w5t2rRBu3btkJSUhJ07dyIkJMQ4adCDWrZsGWJjY/HZZ5/hwIED6NGjBzQaDeLj47F792788MMPxommli1bhnPnzuGVV17BV199hXbt2qF69eq4du0aTp8+jWPHjiEqKgpBQUEAgMjISGzYsAE//PADmjRpgn79+kGr1WLz5s1o0aIFLly48MDx165du9gPaZIk4csvv8QjjzyCJ554Av369UODBg1w9uxZfP/993Bzc8PatWuNP5EHgDfeeAN79+7F0qVLcfz4cbRr1w7Xr1/Hhg0b0KtXL/zwww9mx1m3bh26dOmCp556Ch9++CFatWoFT09PXLlyBadOnUJsbCyOHj0KHx+fBz7/++natSveeustzJ49G/Xq1UOvXr0QFBSEjIwMXLp0CQcPHkS7du2wa9cuqxyvpPdx5UmhUGDixIl46623EBoain79+iE3Nxf79+/HrVu30LlzZ2Ov9Afx9NNP45dffsFXX32FevXqoV+/fvD29sa1a9ewb98+jB071vhFii3dkxLdqyTXV6Dk176XXnoJ48ePR0REBAYNGgS1Wo1ff/0V//zzD/r27Ytt27aZ7H/ixIm4evUq2rZti8DAQGg0Gpw4cQL79u1DQECASSerMWPG4O2338abb76JmJgYNGrUCHFxcdi5cycGDBiAb7/9tkR1IfczQXkdv2vXrjh27Bh69uyJDh06wMHBAWFhYejbt2+p9te9e/dilx02bBi2bt2KjRs3onHjxujfv79x/oX4+Hg88cQTGD58uLF8YGAg3nrrLUydOhURERF44okn4OHhgd27dyM1NRVNmzbFqVOnzM6vPNvE+ynP+wVXV1esWrUKQ4YMQceOHTFkyBDUrl0bJ06cwE8//QRfX1/juPlyGDlyJN5++21MnjwZ+/fvR7169XDu3Dls374dAwcOtEoeQKPRYNOmTejevTuGDRuG5cuX4+GHH0Z2djZOnz6NvXv3Gr9cK+88jSwE0QMCIPz9/S2uy87OFoGBgQKAACC0Wq1ZmaioKNG2bVvh6uoqHBwcRKNGjcTChQtFVlaWWdmAgAAREBBgfH379m3x6quvis6dO4saNWoIjUYjfH19RceOHcW6deuEXq+3GJdOpxPVqlUTAERsbGyJz3nUqFECgNizZ899y547d04AEB07djRbl5WVJRYtWiQaN24sHB0dhaurq2jbtq1Yt26dxX3p9Xrx0UcfiQYNGgiNRiP8/PzEhAkTRGpqqlndFLRt2zbRu3dv4e3tLdRqtahevbpo0aKFmDt3rjh9+rRJ2cJiLYzhvS2upKQkMXPmTNG4cWPh5OQkXFxcRN26dcWgQYPEV199ZfIZmT9/vgAg9u/fX+j+OnbsWOTxd+/eLR555BHh6ekpNBqNqFOnjpg+fbq4fft2ifdV1HrDZyI+Pt5sXWHn8euvv4rOnTsLT09P43u/ZcsWsX//fgFAzJ8/v9jHX716tQAgVq9ebbYuNjZWPPnkk6JGjRpCrVYLHx8f0aFDB7F8+XKzsvHx8eL5558XdevWFQ4ODsLNzU2EhISIESNGiC1btlg8NlFldL9r3x9//CFGjRolAgMDhYODg7G8n59fsdqOewUEBFi8xhR1zS6qXbB0PSl4Hdm2bZt4+OGHhbOzs/Dw8BADBw4UZ8+eNdtPZmammDNnjqhTp45wcHAQNWvWFBMmTBApKSkWj1HY9e3mzZviueeeEwEBAcLBwUEEBweL2bNni8zMTIvnUdQ1r6h6ycjIEAsXLhShoaHCyclJuLq6ioYNG4pJkyaJpKQkk7I5OTnio48+Eq1btxbu7u5Co9GIWrVqiS5duoj3339fpKSkmJV/9dVXRVBQkNBoNCIgIEDMmTNHZGdnl6ptLeze6l5z584ttC7OnDkjRowYIXx9fYVKpRK+vr5i+PDh4syZMxb3df36dTFmzBhRrVo14ejoKMLCwsTq1asLfd+EECI9PV0sWrRINGvWTLi4uAhHR0cRGBgoevXqJZYvXy4yMjKMZe/3vt3LUH7UqFHFKi+EEL/88osYMmSI8PPzE2q1WlSrVk2EhYWJl156SRw7dsykbFF/I0Lkt4lFHb8k93H329f91pf0b12r1Yp3331XNGzYUDg6Oorq1auLESNGiISEBIv3LPc7flH3IF9//bXo0KGDcHd3Fw4ODiIwMFAMGzZMnDhxwqxsSe5JicqCta6vJbn2CZF/PQsLCxPOzs6iatWqon///uLUqVMWnxM2bNgghg4dKurWrStcXFyEm5ubaNy4sZgzZ464ceOGWSyxsbHi0UcfFa6ursLFxUV07NhRHDhwoNBr7v2ufUKU7JmgNM9BhjoprH6tdfzC2q+MjAwxfvx44e/vL5RKZbHbGsP5rFix4r5ltVqtAGCxrvPy8sTHH38smjdvLpycnISTk5No1qyZWLZsmcjLy7O4v3Xr1omIiAjh4OAgqlWrJoYPHy6uXr1a5PXZmm3ivQq7Ny2Mte8Xinrfhci/F+/fv7+oVq2aUKvVolatWmL8+PHi6tWrJd6XtT/jf//9t+jbt6/w9vYWzs7OolmzZmLFihWFtsWl+YwLIcSlS5fEc889JwIDA4VarRZeXl6iZcuWYtGiRWZlS5KnqWgkIYR40OQ5UUVz8eJF1K1bF23btrXrsYyIiMg23LlzB+3atcM///yDTZs2oX///nKHREREREREZNc4xjdVSu+88w6EEHjhhRfkDoWIiCoBNzc3bN++Hd7e3njiiSfK7aelRERERERElRV7fFOlcfnyZaxbtw7nzp3D6tWr0bRpU/z5558m41sSERGVpZiYGGzZsgXOzs6YPHmy2QTMREREREREZB1MfFOlceDAAXTu3BnOzs5o164dPv30UwQHB8sdFhEREREREREREVkZE99EREREREREREREZFc4xgMRERERERERERER2RUmvomIiIiIiIiIiIjIrjDxTURERERERERERER2hYlvIiIiIiIiIiIiIrIrKrkDsBW3b9+GTqcrt+N5e3sjOTm53I5X1ng+to3nY7vs6VwAnk9hVCoVqlSpYoWICCj/Ntta7O3vo7RYD/lYD/lYD/lYD/nkrge219ZVUdvr0pD7s2tPWJfWw7q0Htal9VijLkvSXjPx/X86nQ5arbZcjiVJkvGYQohyOWZZ4vnYNp6P7bKncwF4PlR+yrPNthZ+nvKxHvKxHvKxHvKxHvKxHsrGP//8gx9++AHx8fG4ffs2pk2bhpYtWxa5zd9//421a9fi33//RdWqVTFo0CB06tSpxMeuiO11afCzaz2sS+thXVoP69J65KhLDnVCREREREREZIdycnIQGBiIp556qljlb9y4gbfeeguNGzfGkiVL0Lt3b3z22WeIjo4u20CJiIjKAHt8ExEREREREdmhiIgIREREFLv8Tz/9BB8fH4wcORIAULNmTZw5cwY//vgjwsPDyyhKIiKissHENxERERERERHh3LlzCA0NNVkWFhaGNWvWFLqNVqs1GdJEkiQ4OTkZ/23vDOdYGc61rLEurYd1aT2sS+uRoy6Z+CYiIiIiIiIipKamwsPDw2SZh4cHsrKykJubC41GY7bNli1bsHnzZuProKAgLF68GN7e3mUery3x9fWVOwS7wbq0Htal9bAurac865KJbyKqNHJycpCTkyN3GCYMDxH2ojKfj4ODAxwcHMo4IiIi+2eL7XVZs7f2s7TKox7YXlvfgAED0KdPH+NrQ0++5ORk6HQ6ucIqN5IkwdfXF4mJiZz47gGxLq2nvOoyOzu7UrTZGo2G7bSVFLcuJUmCm5ubxd7hKpWq2F+uMvFNRJVCZmZmkRdOuajVarua7b6yno8QAllZWcjMzISLi0s5REZEZJ9stb0ua/bWfpZWWdcD2+v78/T0RFpamsmytLQ0ODk5WeztDeS/b2q12uK6ypS8FEJUqvMtS6xL6ynLuqxMbTbbaespbl3m5ubizp07cHNze6DjKR5oayKiCkKn08HZ2dnuG2SShyRJcHZ2rhS9moiIyhLbaypLbK/vr169evjrr79Mlp06dQr169eXKSIislVss6ksaTQaq3xpw8Q3EVUKbIypPPBzRkT0YHgdpfJQmT5n2dnZSEhIQEJCAgDgxo0bSEhIQEpKCgBg3bp1WLZsmbF89+7dcePGDXz99de4evUqdu/ejaNHj6J3795yhE9ENqwyXUup4uJQJ0RERERERER26MKFC3j11VeNr9euXQsA6NixI55//nncvn3bmAQHAB8fH8yaNQtffvklduzYgapVq2L8+PEIDw8v79CJiIgeGBPfRERERERERHaocePG2LhxY6Hrn3/+eYvbLFmypCzDIiIiKhcc6oSIqATy9Hk4cu0Ivj//PY5cO4I8fZ7cIRn5+/tj165dcodRYbz77rt45JFHil3+33//hb+/P2JjY8swKiIiehBXryrx11/qQv+7elUpd4hsr0uI7TUREcmB7XXJ2Gp7zcQ3EVEx7YjfgVbrW2HIj0Pw/P7nMeTHIWi1vhV2xO8os2NOnjwZ/v7+8Pf3R0BAAMLCwjB06FCsX78eer3epOzJkyfRuXPnMovlfjZs2IC6detaZV+tWrWCv78/tm7darauc+fO8Pf3x4YNG6xyLCIisg9XryrRvr0Pevb0LvS/9u19yiT5XdHa64YNG1plX2yviYjoQWkOHYJ3p07QHDpU5sdie1352msmvomIimFH/A488/MzuJ553WR5YmYinvn5mTJNfnfu3BknT57Eb7/9hq+//hpt2rTBK6+8glGjRkGn0xnL+fj4wMHBwerHz8vLM7sJKA81atQwa3xPnDiBGzduwNnZudzjISIi23brlgI5OUVPtJWTI+HWrbJ5BGJ7/R+210REVCxCwP2tt6A+dw7ub70FCFHmh2R7/Z/K0F4z8W0ltjz8ARGZE0LgrvZusf67k3MHLx95GQLmjbBh2StHXsGdnDv33ZcoRUOu0Wjg4+MDPz8/hIaGYuLEiVi1ahX27dtnMmZjwZ9i5ebmYu7cuYiIiEBwcDBatmyJjz76yFg2LS0NM2bMQFhYGIKDg9GlSxfs2bMHwH/fLP/000/o1KkTgoKCcPXqVeTk5OC1115D8+bNUbduXfTp0wdHjhwBABw5cgRTpkxBenq68Rv0d999FwCK3K4oAwcOxG+//YarV68al23YsAEDBw6ESmU6RcXVq1cxZswY1KtXDyEhIXj22WeRnJxsUmbZsmUICwtD/fr1MXXqVOTk5Jgdc926dejYsSOCg4PRoUMHrFq16r5xUsVQEYY/ICJzQgB370rF+i87u3j7zM4u3j5L2mQ/SHvdpEkTttf/V5r2es2aNfeNk4iIypAQkO7eLfF/Dj/9BE1MDABAExMDh59+KvE+Stpg8/m6crXXnNzSCnbE78ArR18x6Qnq5+KH11q/hl5BvWSMjIgKk6XLQr019ayyLwGB63evo8HaBvcte270OTirH/zb1Hbt2qFRo0bYuXMnhg0bZrZ+1apV+Omnn/DZZ5/B398f165dw7Vr1wAAer0eI0aMQGZmJj766CMEBAQgLi4OSuV/ib+srCx8/PHHePvtt1GlShVUq1YN8+bNQ1xcHD755BNUr14du3btwogRI/Dzzz/joYcewquvvop33nkHh/7/EzUXFxcAKHK74ODgQs+xWrVq6NixIzZt2oTJkycjKysLP/zwAzZv3ozNmzcby+n1eowZMwYuLi749ttvodPpMHfuXDz33HPGcj/88APee+89LFq0CC1atMC3336LVatWoXbt2sb9fPfdd3jnnXewcOFCNGnSBLGxsZgxYwYcHBzw+OOPP8C7RXIzDH9QVE9QBweBX365AX9/fnFNZEuysiTUq+dn1X327+9drHLnzl2Hs/OD9Twrbnu9cuVKVK9evdK311u3bi1Vez19+nQ4OzuzvbZDmkOH4PHKK0h77TXkduggdzhEVAgpKwt+9R78+brq2LEl3ub6uXMQD9hj+X7t9YoVK/h8bYXn6+nTp8PNzQ2DBg16gHerZJj4fkCG4Q/u7QlqGP7g826fM/lNRGWibt26OH36tMV1V69eRVBQEFq2bAlJklCzZk3jul9++QXR0dE4cOAA6tSpAwAICAgw2V6r1eKNN95A48aNjfvbsGED/vjjD/j6+gIAxo8fj/3792PDhg2YPXs23NzcIEkSfHx8TOK433ZFGTp0KF577TVMmjQJ27dvR0BAAJo0aWJS5vDhwzhz5gyOHj0Kf39/AMAHH3yAzp07Izo6GuHh4Vi5ciWGDh2KyMhIAMDMmTPxyy+/mHwr/e677+KVV15Br1751+zatWvjwoUL+Prrr/kgXcGVZPgDJr6JyNqK0163atUKOp2u0rfXy5cvL1V7HRcXx/baHt0zBEJK+/aAVHR7TkRUWny+zleWz9dxcXFYu3YtE98VRZ4+D68cfaXQ4Q8kSJh/dD56BPSAUsGfUBPZEieVE86NPlessr9f/x0jdo+4b7mve3yNVn6t7ntcaxFCQCrk5v/xxx/H0KFD0b59e3Tu3BndunVDx44dAQB///03/Pz8jI2yJRqNBo0aNTK+Pn36NPLy8tC+fXuTcrm5uahSpUqh+yntdgZdu3bFzJkz8dtvv2HDhg0YOnSoWZlz586hRo0axkYZAOrXrw8PDw+cO3cO4eHhOH/+PJ588kmT7Zo3b278Sdjdu3eRkJCAqVOnYvr06cYyeXl5cHNzu2+cRERUNpycBM6du37/ggD+/ltVrN7c33+fjMaNdfct5+RknXFGi9Net27dGp06dar07fW5c+cwYoTpPRfb68rLYe9e0yEQDh5ETqdO8gZFRBYJJydcP1e85+v8DQSqDhoE9d9/Qyow3rVQKKBt3Bg3v/222F90CSfrPGMX1V4PHToUgwcP5vN1BXy+ZuL7Afye+LvZRHcFCQhcy7yG3xN/R5sabcoxMiK6H0mSij3kSIeaHeDn4ofEzESLX3RJkODn4ocONTuU65dc58+fR61atSyuCw0NxW+//YZ9+/bh8OHDGD9+PNq1a4cVK1bA0dHxvvt2dHQ0afQzMzOhVCqxc+dOk59sAf/95MqS0m5noFKpMGjQILz77rs4efIkVq5ced9tSiMzMxMA8PbbbyMiIsLk+KUZl52IiKxDklDs4UaK0bwZyz3oECYlUZz2+tChQzhw4ADb6/sorL0GYBY3VXBCwHPq1P9eKpVwW7IEOR07stc3kS2SpBINN+Jw4AA0f/1lvhu9Hpq//oLm2LFy/6KrqPa6adOmfL4ugaLa67KYMLQoTHw/gBt3b1i1HBHZJqVCiddav4Znfn4GEiST5LeE/Mbr1davlmvS+/Dhwzh9+jTGjRtXaBk3Nzf069cP/fr1Q+/evTF8+HDcvn0bDRs2xPXr13HhwoUiv5UuqEmTJsjLy8PNmzfRqpXlXu0ajQZ5eXkl3u5+hg4dis8++wyPPfYYPD09zdbXq1cP165dw9WrV43fSsfFxSEtLQ3169cHkP+ztZMnT2LIkCHG7f7880/jv729veHr64tLly5h4MCBxuVqtRparbZUcRMRERW3ve7fvz969+5d6dvrevXqlaq9JvvjcPAglCkpxtdSXh57fRPZCyHgtmQJhCRBstDJSEhSuX/Rxefr/5Tl8zVQ/s/YTHw/AB9nn/sXKkE5IrJdvYJ64fNun1ucyPbV1q+W6Vj+ubm5uHHjBvLy8pCSkoL9+/dj2bJl6NatGwYPHmxxm+XLl6N69epo0qQJJEnC9u3b4ePjAw8PD7Ru3RqtWrXCM888g/nz5yMwMBDnz5+HJEno3Lmzxf3VqVMHAwcOxKRJk/DKK6+gSZMmuHnzJg4fPoyGDRuiW7duqFmzJjIzM/HLL7+gcePGcHJyKtZ291OvXj389ddfcCrkJ2zt27dHgwYN8OKLL+LVV1+FTqfDnDlz0Lp1a4SFhQEAnnrqKUyZMgVhYWF46KGHsGXLFsTFxZlMvjF16lS8/PLLcHd3R6dOnZCbm4u///4bN2/exLPPPnvfOImISF5eXno4OIj7TmTr5aUvdP2DeJD2Ojw8HHl5eZW+vX7mmWcwceLEErfXp06dQmpqKttre2FIiimVkAokfdjrm8hO5OZCefWqxaQ3AEhCQHntGpCbC5RB7+DStNeffvopqlWrxufrB3y+PnXqFO7cuYOnn376vnFaCxPfD6CVb6tiDX/Qyrd038IQkW3pFdQLPQJ64PfE33Hj7g34OPuglW+rMu/pvX//fkREREClUsHDwwONGjXC66+/jiFDhkChUFjcxtXVFZ988gni4+OhVCoRFhaGr776ylh+xYoVeP311zFhwgRkZWUhMDDwvhNhvPfee/jggw/w2muvITExEV5eXmjWrJmxcW3RogVGjRqF5557Drdv38aUKVMwderU+25XHF5eXoWukyQJq1evxrx58zBw4EAoFAp06tQJCxcuNJbp168fLl26hIULFyInJwe9evXCyJEjceDAAWOZYcOGwcnJCZ9++ikWLlwIZ2dnNGzYEE899VSx4yQiIvn4++fhl19u4NYty20jkJ8cL6tJbCtSe/3kk0/aZHvdv39/XLhwocTtdYMGDcr1IZrKlsPBg8axvQtir28iO+HggOQdO6C8davQInlVq5ZJ0htgew3I93zdoEGDcv+SWhIcvBQAkJycXKqu9jvid+CZn58BALPktwQJn3f73KwnqCRJ8PPzw/Xr1+1i7Fiej23j+eRLT0+Hu7t7GUZWOvY2lEZlP5/CPmdqtRre3vefcI2Kp6Rt9l9/qdGz5/3rf9euZISGls3n196uxaXFesjHeshnqR5stb0ua/bWfpZWedUD2+vyUapnbCFQrXdvqE+dKnQIBG3Tpkj58Ueb6fXNa7r1sC6tpzzqsjK12WynrackdWmN9rrw7hBULIbhD3xdfE2WKyQFPuv6WZkOf0BERET3Zxj+oChlOfwBERERFVNJhkAgIiK6Dw51YgUFhz+4mnEVc4/MRaY2E04qy+PlEBERUfmxNPzBsmWu2L7dCQMH3sUzz2SW6fAHREREVEyFDIHg+v77cNq9GzkREbj9+edlNgQCERHZFya+rUSpUKJNjTYAgL9u/oUvYr/A+rPr0bV2V5kjIyIiIn//PJPEdpcu2di+3QnXrinLbHgTIiIiKjm9vz/0/v4my9JffRWOe/fC4eRJqP79F7k1asgUHRERVSQc6qQMRIZEAgB+uvQTku8myxwNERER3Ss8PD/ZfeqUGnns6E1ERGTT8mrVwt2hQwEAbu+8I3M0RERUUbDHdxlo6NUQ4d7hiE6Oxrfnv8X4puPlDomIiMho165d2LZtG1JTUxEQEICxY8eibt26hZY/evQoNmzYgOTkZPj6+mL48OFo1qyZcf3vv/+OPXv24OLFi8jIyMCSJUsQGBhoso/U1FR89dVXOHXqFLKzs1GjRg0MGDAADz/8cFmdZpHq1tXBxUWPzEwFzp1ToUEDnSxxEBERUfFkTJwI5w0b4HDkCDRHjiC3TRu5QyIiIhvHHt9lxNDrO+psFGcjJrIRej0nrqOyU1E+X0eOHMHatWsxePBgLF68GAEBAVi0aBHS0tIslj979iw++OADdOnSBYsXL0aLFi3w9ttv4/Lly8YyOTk5aNCgAYYPH17ocZctW4Zr165h5syZeOedd9CyZUu8//77iI+Pt/o5FodSCTRtmt/rOyZGLUsMRGRZRbmeUsXEz1fFlefvj7vDhgEA3N59F+BzNpHseE2lsmKtXCoT32WkX51+cFI54XzqeRxPOi53OESVnrOzM+7cucOGmcqEXq/HnTt34OzsLHco97V9+3Z07doVnTt3Rs2aNTFu3DhoNBrs37/fYvkdO3YgPDwcjz32GGrWrImhQ4ciODgYu3btMpbp0KEDBg8ejNDQ0EKPe/bsWTz66KOoW7cuqlevjkGDBsHFxQUXL160+jkWV1hYfuL75EmNbDEQkSm211SWKlJ7TZbdeeEFCAcHOPz2GzSHD8sdDlGlxjabytLdu3fhYIWJjG1uqJOS/vw6MzMTUVFR+OOPP5CRkQFvb2+MGjXK5CfYcnDTuKFvcF9sjNuIqLNRaOHbQtZ4iCo7lUoFFxcXZGRkyB2KCY1Gg9zcXLnDsJrKfD4uLi5QqWyuWTWh0+lw8eJF9O/f37hMoVAgNDQUcXFxFreJi4tDnz59TJaFhYXh2LFjJTp2SEgIjhw5gmbNmsHZ2RlHjx6FVqtF48aNC91Gq9VCq/1v4klJkuDk5GT894OKiPivx7c19lcUw/7L+ji2jvWQj/WQz1I9qNVqm2yvy5q9tZ+lVR714OLiArWav/SpqPQ1aiBzxAi4fvEF3N59FzfbtQMq+bWUSC62+oxdFthOW09x6lIIAZVKZX+Jb8PPr8eNG4d69erhxx9/xKJFi7B06VJ4eHiYldfpdFi4cCHc3d0xZcoUeHl5ISUlxWa+wY8MicTGuI344eIPeLX1q3DTuMkdElGlplKp4O7uLncYRpIkwc/PD9evX7eLIZF4PrYvPT0der0enp6eJss9PT1x7do1i9ukpqaatcEeHh5ITU0t0bFfeuklLF26FGPHjoVSqYRGo8G0adPg6+tb6DZbtmzB5s2bja+DgoKwePFieHt7l+jYhenePf//p09rUKWKHxwdrbLbIhV1vpUJ6yEf6yEf64GISiLj+efh8s03cDh2DA6HDiGnY0e5QyKqtGztGbss2ONzoVzkqEubSnwX/Pk1AIwbNw5//vkn9u/fb9I7zWDfvn3IyMjA66+/buxl5+PjU54hF6lF9Rao41EHF9Iu4IeLP2B4g8LHPiUiIrJnGzZsQGZmJl5++WW4ubnh2LFjeP/99/Haa6+hdu3aFrcZMGCASW9zQ6/Q5ORk6HQPPhmlRgN4efng1i0l9u5NQbNm2vtvVEqSJMHX1xeJiYmV+oaZ9ZCP9ZCP9ZCP9ZDPFupBpVJZ7ctVKjv66tWR+eSTcF2xAm5vv42cDh3Y65uIiCyymcR3aX5+feLECdSrVw9ffPEFjh8/Dnd3d7Rt2xb9+/eHQmF5+PKy/tl0QZIkIbJBJBb+vhDrz67HiIYjTI5jLz9v5fnYNp6P7bKncwF4PhWBu7s7FAqFWW/t1NRUs17gBp6enmYTX6alpRVa3pLExETs2rUL7777LmrVqgUACAwMxJkzZ7Br1y4888wzFrdTq9WF/hzdWkmR8HAt9u1TIjpahYiIsv/5ohCiUie2DFgP+VgP+VgP+VgP+VgPVBwZzz8P56++gubkSTjs24ecrl3lDomIiGyQzSS+S/Pz66SkJCQnJ6Ndu3aYPXs2EhMTsXLlSuTl5WHIkCEWtynrn03f6wW3F/DWsbfw540/cVN5E018mhjX2dvPOnk+to3nY7vs6VwAno8tU6lUCA4ORmxsLFq2bAkgf6Kv2NhY9OzZ0+I29evXx19//YXevXsbl506dQr16tUr9nENY7jd+yWCQqGQPbmRn/h2RHS0BsBdWWMhIiKi4tF7e+Pu6NFw/ewzuL37LnK6dGGvbyIiMmMzie/SEELA3d0dzz77LBQKBYKDg3Hr1i388MMPhSa+y/pn05Z0q90NuxJ24cNfPsSrbV61iZ/xWRPPx7bxfGyXPZ0LwPMpii39dLpPnz74+OOPERwcjLp162LHjh3IyclBp06dAADLli2Dl5cXhg0bBgDo1asXFixYgG3btqFZs2b49ddfceHCBZNe2hkZGUhJScGtW7cAwPiFtaenJzw9PVGjRg34+vpixYoVePLJJ+Hq6opjx47h1KlTmDlzZvlWwD3Cw/OT8tHRnOiMiIioIsmYMAHOa9dCExMDhz17kGOYvIOIiOj/bCbxXdqfX6tUKpNhTfz9/ZGamgqdTmcc97ug8vjZ9L0iQyKxK2EXNp/bjNktZ8NR5Wg8nj0khwx4PraN52O77OlcAJ6PrWvTpg3S09OxceNGpKamIjAwEHPmzDG2tSkpKSY9s0NCQjBx4kSsX78eUVFR8PPzw/Tp003G5T5+/Dg++eQT4+ulS5cCAAYPHozHH38cKpUKs2fPxjfffIPFixcjOzsbvr6+eP7559GsWbNyOe/ChIfnD3924YIK6ekS3N3t570mIiKyZ/qqVZE5dizcli2D+zvvIPmRR9jrm4iITNhM4rs0P78OCQnBr7/+Cr1eb0x+X79+HVWqVLGY9JZLp5qd4Ovsi8S7ididsBv96vaTOyQiIqrEevbsWWjbumDBArNlrVu3RuvWrQvdX6dOnYw9xgvj5+eHadOmlSTMclG1qh41a+pw5YoKp06p0a5d2Y/zTURERNaR8eyzcFm9Guq//4bjrl3IfvRRuUMiIiIbYnkGSJn06dMHe/fuxYEDB3DlyhWsXLnS7OfX69atM5bv3r07MjIysGbNGly7dg1//vkntmzZgh49esh0BpapFCo8Xv9xAMD6s+tljoaIiIgKMvT6jonRyBwJERERlYTw8kLmU08BANzefRfQ62WOiIiIbIlNJb7btGmDJ598Ehs3bsSMGTOQkJBg9vPr27dvG8tXq1YNc+fOxYULFzB9+nSsXr0ajz76KPr37y/PCRRhaMhQAMChq4dw5c4VmaMhIiIiA47zTUREVHFlPPMM9G5uUJ8+DccdO+QOh4iIbIjtjAfyfyX9+XX9+vWxaNGiMo7qwQW4B6CNXxscuX4E68+uR4v6LeQOiYiIiACEheX3+Gbim4iIqOIRVaogc9w4uL33Htzeew/ZvXoBCpvq40dERDJha1COhjUYBgDYELcBefo8maMhIiIiAGjaVAtJErh2TYXkZN4aERERVTQZTz8NvYcH1GfPwnHbNrnDISIiG8Gnu3LUM7AnPDQeuJpxFXvj98odDhEREQFwdRWoV08HgL2+iYiIKiLh4YGMceMAAG7vvQfksaMZEREx8V2unFROGFB3AABg5Z8rZY6GiIiIDP4b7oQTXBIREVVEmU8/Db2nJ9Tnz8Np61a5wyEiIhvAxHc5i2wQCQD4/sz3uJl9U+ZoiIiICPhvgsuYGPb4JiIiqoiEmxsyxo8H8P9e3zqdzBEREZHcmPguZ02qNkFotVBo9Vp8G/et3OEQERERgPDw/ya4FELmYIiIiKhUMseMQV6VKlDFx8Npyxa5wyEiIpkx8S2DyJD8Xt9RZ6Mg+HRNREQku4YNtVCrBW7fVuLyZaXc4RAREVEpCFdXZE6YAABwW7oU0GrlDYiIiGTFxLcMBtQdAEeVI87ePouTySflDoeIiKjSc3AAGjf+r9c3ERERVUyZo0cjr2pVqBIS4PQtf2VNRFSZMfEtAw8HDwxuNBgAEHUmSuZoiIiICPhvgsuYGE5wSUREVFEJZ2dkPP88gP/3+s7NlTcgIiKSDRPfMnk64mkAwNaLW5GpzZQ5GiIiIjJMcMke30RERBXb3ZEjkeftDdW//8J50ya5wyEiIpkw8S2TDgEdEOQehExtJrZf3C53OERERJWeYYLLU6fU0OlkDoaIiIhKTTg5IeOFFwAArh98AOTkyBwRERHJgYlvmUiShKEhQwEA686ukzkaIiIiqlNHBxcXPbKyFDh3TiV3OERERPQAMocPR56vL1RXr8J5/Xq5wyEiIhkw8S2jIfWHQCkpcTzpOM7dPid3OERERJWaUgk0bWoY55vDnRAREVVoTk648+KLAAC3jz4CsrNlDoiIiMobE98y8nXxRZdaXQAA6+P4DTQREZHcDMOdREdzgksiIqKK7m5kJPL8/KC8fh3OUVFyh0NEROWMiW+ZRYZEAgA2xW1Cbh5nmyYiIpJTWBgnuCQiIrIbDg64M3EigP/3+s7KkjkgIiIqT0x8y6xL7S7wcfLBzeyb+Pnyz3KHQ0REVKlFROT3+D59Ws1fRBMREdmBu0OHQufvD2VSEly+/lrucIiIqBwx8S0ztUKNIfWHAACizvKnV0RERHLy989D1ap50Okk/PMPe30TERFVeBoNMiZNAgC4fvwxJPb6JiKqNJj4tgFDQ4YCAA5cOYBrGddkjoaIiKjykiQgLIzjfBMREdmTu48/Dl3t2lAmJ8P5yy/lDoeIiMoJE982INgjGA/7Pgy90GNj3Ea5wyEiIqrUIiI4zjcREZFdUatxZ/JkAIDrJ59AysyUNx4iIioXTHzbCEOv7/Vn10Mv9DJHQ0REVHkZenzHxDDxTUREZC+yBg2CLjAQyps34bJmjdzhEBFROWDi20b0Ce4DN7Ub/s34F79e+1XucIiIiCqt8PD8xPf582qkp0syR0NERERWoVIZe327fPoppIwMeeMhIqIyx8S3jXBSOaF/3f4A8nt9ExERkTyqVtWjVi0dAODUKfb6JiIishdZAwZAFxwM5e3bcFm1Su5wiIiojDHxbUMiQyIBADsTduJ29m2ZoyEiIqq8/hvuhBNcEhER2Q2VCnemTAEAuC5fDik9XeaAiIioLDHxbUOaVmuKRl6NkJOXgy3nt8gdDhERUaXFCS6JiIjsU9Zjj0Fbrx4Uqalw+eILucMhIqIyxMS3DZEkydjre93ZdRBCyBwRERFR5WTo8c3ENxERkZ1RKnHnpZcAAK6ffw4pLU3mgIiIqKww8W1jBtQdAAelA07fOo1TKafkDoeIiKhSCg3VQpIErl1T4cYN3i4RERHZk+y+faENCYEiPR2uK1bIHQ4REZURPsnZmCqOVfBo4KMAgKizUTJHQ0REVDm5ugrUr58/wSV7fRMREdkZhQJ3pk4FALisWAHpNufYIiKyR0x826ChIUMBAN+f/x5ZuiyZoyEiIqqcOMElERGR/cp+9FFoGzaEIiMDrp9/Lnc4RERUBpj4tkFta7RFbbfauKO9g+0Xt8sdDhERUaUUFsYJLomIiOyWQoE706YBAFy++AKKW7dkDoiIiKyNiW8bpJAUeKL+EwCA9WfXyxwNERFR5RQRYZjgUgPON01ERGR/snv0QG6TJlBkZsLls8/kDoeIiKyMiW8b9Xj9x6GQFPgt8TdcSL0gdzhERESVTsOGWmg0AqmpCly+rJQ7HCIiIrI2Sfqv1/eqVVCkpMgcEBERWRMT3zaqhmsNdKrZCQCwIW6DvMEQERFVQhoN0KiRodc3hzshIiKyRznduiE3PByKrCy4fvqp3OEQEZEVMfFtwyJDIgEAm+I2QavXyhwNERFR5RMe/t9wJ0RERGSHJAl3pk4FADivWQPFjRsyB0RERNbCxLcN61a7G6o5VcONrBvYd3mf3OEQERFVOoYJLmNi2OObiIjIXuV07ozcZs2gyM6G68cfyx0OERFZCRPfNkyj1GBwvcEAgKizUTJHQ0REVPkYenyfOqWGTidzMERERFQ2JAl3pk8HALh89RUUiYkyB0RERNbAxLeNMwx3svffvUjMZONLRERUnurU0cHVVY+sLAXOnVPJHQ4RERGVkZz27ZHTogWknBz2+iYishNMfNu4up510aJ6C+iFHpvObZI7HCIiokpFqQRCQ/N7fXO4EyIiIjsmSbgzbRoAwOXrr6G4dk3mgIiI6EEx8V0BGHp9rz+7HkIImaMhIiKqXCIi8sf5PnmSE1wSERHZs9y2bZHTujWk3Fy4ffSR3OEQEdEDYuK7AugT3AcuahckpCfg6PWjcodDRERUqYSFscc3ERFRpSBJuDN1KgDAOSoKyqtXZQ6IiIgeBBPfFYCL2gX96/QHwEkuiYiIypthgsvTp9XIzpY5GCIiIipTua1bI6dtW0haLVw/+EDucIiI6AEw8V1BDA0ZCgDYEb8DaTlpMkdDRERUefj756FatTzodBL+/pu9vomIiOydYaxv5w0boLx8WeZoiIiotJj4riAivCPQoEoDZOdlY8uFLXKHQ0REVGlIUsHhTjjONxERkb3LbdkS2R07QtLp2OubiKgCY+K7gpAkydjre/3Z9TJHQ0REVLmEhxsmuGSPbyIiosrAONb3pk1QJiTIGwwREZUKE98VyKB6g6BWqPFXyl+ITYmVOxwiIqJKwzDONye4JCIiqhy0zZsju0sXSHl5cFu6VO5wiIioFJj4rkC8HL3QM7AnAE5ySUREVJ4Mie8LF9RIT5dkjoaIiIjKg6HXt9O330J54YLM0RARUUkx8V3BRIZEAgC2nN+CLF2WzNEQERFVDl5eetSqpQPAXt9ERESVhTY8HNmPPAJJr2evbyKiCoiJ7wqmvX97+Lv6Iy03DTsTdsodDhERUaXx33AnnOCSiIiosjD2+v7+e6jOnZM5GiIiKgkmvisYhaTA0Pr5k1xGneFwJ0REROXFMMEle3wTERFVHtrQUGT17AlJr4fr++/LHQ4REZUAE98V0BMhT0CChCPXjyAhPUHucIiIiCqFsLD8Ht8nT7LHNxERUWVyZ8oUAIDTDz9AdfaszNEQEVFxMfFdAfm7+qNjzY4AgPVn18scDRERUeXQtKkWCoXA9etK3LjBWygiIqoYdu3aheeffx7Dhw/HnDlzcP78+SLL//jjj5g0aRKGDx+O5557DmvWrEFubm45RWubdI0bI6tXL0hCwO299+QOh4iIiolPbRXU0JD84U42xW2CTq+TORoiIiL75+IiUK9efpsbHc3hToiIyPYdOXIEa9euxeDBg7F48WIEBARg0aJFSEtLs1j+8OHDWLduHYYMGYL3338f48ePx9GjRxEVxWE270ydCiFJcNq+Hap//pE7HCIiKgYmviuo7gHdUcWhChLvJuLAlQNyh0NERFQpGIY7iY7mcCdERGT7tm/fjq5du6Jz586oWbMmxo0bB41Gg/3791ssf/bsWYSEhKBdu3bw8fFBWFgY2rZte99e4pWBrkEDZPftCwDs9U1EVEGo5A6ASsdB6YDB9QZjRewKRJ2JQrfa3eQOiYiIyO6Fh+di40ZnTnBJREQ2T6fT4eLFi+jfv79xmUKhQGhoKOLi4ixuExISgl9++QXnz59H3bp1kZSUhJMnT6J9+/aFHker1UKr1RpfS5IEJycn47/tScbUqXDctg1OO3ciIzYWutBQ4zna27nKgXVpPaxL62FdWo8cdcnEdwUWGRKJFbEr8PPln3Hj7g34OPvIHRIREZFdCw//r8e3EADvf4mIyFalp6dDr9fD09PTZLmnpyeuXbtmcZt27dohPT0dL7/8MgAgLy8PjzzyCAYOHFjocbZs2YLNmzcbXwcFBWHx4sXw9vZ+8JOwNX5+QGQksG4dvD/+GNi61bjK19dXxsDsC+vSeliX1sO6tJ7yrEsmviuwEK8QRPhE4OSNk9h8bjMmhE2QOyQiIiK71rChFhqNQGqqApcuKREYmCd3SERERFbz999/Y8uWLXj66adRr149JCYmYvXq1di8eTMGDx5scZsBAwagT58+xteGnnzJycnQ6exvPirl+PHwXr8e0g8/IGXXLujCw+Hr64vExEQIIeQOr0KTJIl1aSWsS+thXVqPtepSpVIV+8tVJr4ruGEhw3DyxklEnY3Cc02f408viIiIypBGAzRurMXJkxrExKiZ+CYiIpvl7u4OhUKB1NRUk+WpqalmvcANNmzYgA4dOqBr164AgNq1ayM7Oxuff/45Bg4cCIXCfJowtVoNtdryEGD2mCTS1amDrIED4bx5M1zffhu3v/4aQP652uP5yoF1aT2sS+thXVpPedYlJ7es4B4LfgzOKmdcTLuIY0nH5A6HiIjI7hkmuDx5khNcEhGR7VKpVAgODkZsbKxxmV6vR2xsLOrXr29xm5ycHLPOVJaS3ZXdncmTIZRKOO7bB/WJE3KHQ0REhWALVsG5alzRNzh/Zul1Z9bJHA0REZH9Cw/PBQBOcElERDavT58+2Lt3Lw4cOIArV65g5cqVyMnJQadOnQAAy5Ytw7p1/z1HNm/eHHv27MGvv/6KGzdu4NSpU9iwYQOaN2/OBHgBeUFByPr/0C/uc+cCjRpBc+iQzFEREdG9ONSJHYhsEIkNcRuwPX47Xm/zOtw0bnKHREREZLcME1z+9ZcaOh2g4t0UERHZqDZt2iA9PR0bN25EamoqAgMDMWfOHONQJykpKSY9vAcNGgRJkrB+/XrcunUL7u7uaN68OSIjI2U6A9t1Z9IkOG3eDM2pUwAAtzffRE67dpz5mojIhvBRzQ485PMQ6nrWxfnU89h6YStGNBwhd0hERER2q04dHVxd9cjIUCAuToVGjexv4i4iIrIfPXv2RM+ePS2uW7BggclrpVKJIUOGYMiQIeUQWcWWFxCAnA4d4Lh/PwBAExMDh4MHkfP/3vRERCQ//lbJDkiShMiQ/G/go85GyRwNERGRfVMogKZN83t9x8RwnG8iIqJKSQgoExNhmJ5NKBRwW7IE4OR3REQ2wyZ7fO/atQvbtm1DamoqAgICMHbsWNStW9di2QMHDuCTTz4xWaZWq/HNN9+UR6g2Y3C9wXjzjzcRnRyN07dOo6FXQ7lDIiIislvh4bk4csQB0dFq8NffRERElY/DwYNQnz5tfC3p9ez1TURkY2wu8X3kyBGsXbsW48aNQ7169fDjjz9i0aJFWLp0KTw8PCxu4+TkhA8++KCcI7Ut1ZyqoXtAd+xI2IGos1F4rfVrcodERERkt8LC8nt8R0dzgksiIqJKRwi4LVkCoVRCysv7b7EkwW3JEuR07MixvomIbIDNDXWyfft2dO3aFZ07d0bNmjUxbtw4aDQa7P//uFmWSJIET09Pk/8qo8gG+V3Ovj33LXLycmSOhoiIyH5FROQnvs+cUSM7W+ZgiIiIqFw5HDwITUyMSdIbACQhjL2+iYhIfjbV41un0+HixYvo37+/cZlCoUBoaCji4uIK3S47OxsTJkyAEAJBQUGIjIxErVq1LJbVarXQarXG15IkwcnJyfjv8mA4jrWP16lmJ/i5+OF65nXsvrQb/er0s+r+C1NW5yMXno9ts6fzsadzAXg+VLnUqJGHatXykJKixN9/q9G8ufb+GxEREVHFZ+jtLUmQLIznLQD2+iYishE2lfhOT0+HXq8367Ht6emJa9euWdymRo0aeO655xAQEIC7d+/ihx9+wLx58/Dee++hatWqZuW3bNmCzZs3G18HBQVh8eLF8Pb2tuq5FIevr6/V9/lUs6ew8JeF+Db+W4xvN97q+y9KWZyPnHg+ts2ezseezgXg+VDlIEn5w53s3atEdLSGiW8iIqLKIjcXyqtXLSa9AUACoLx6FcjNBRwcyjc2IiIyYVOJ79KoX78+6tevb/L6pZdewp49ezB06FCz8gMGDECfPn2Mrw09+ZKTk6HT6co+4P8f09fXF4mJiRBWnvG5j38fLMRC/HzxZ/wR9wdquVnu+W5NZXk+cuD52DZ7Oh97OheA51MUlUolyxesVLYiInKxd68jx/kmIiKqTBwckLxjB5S3bhkXeXt7IzkpCZ7PPQf1pUvI6tWLSW8iIhtgU4lvd3d3KBQKpKammixPTU0t9rjdKpUKQUFBSExMtLherVZDrbb8gFreiRohhNWPWcutFtrVaIfD1w5j/dn1mNZ8mlX3X5SyOB858Xxsmz2djz2dC8DzocrDMMFlTAwT30RERJWJ3t8fen9/AP/vTOfnB93160h/7TVUHTUKLhs2IPOFF5D3/zJERCQPm5rcUqVSITg4GLGxscZler0esbGxJr26i6LX63H58mVUqVKlrMK0ecMaDAMArD+7Hnn6vPuUJiIiotIID89PfF+4oEZaGsfwJCIiquxyunZFTuvWkHJy4LZkidzhEBFVejaV+AaAPn36YO/evThw4ACuXLmClStXIicnB506dQIALFu2DOvWrTOW37x5M2JiYpCUlISLFy/iww8/RHJyMrp27SrTGcivR0APeDp44nrmdRy6ekjucIiIiOySl5cetWvnD5N26hR7fRMREVV6koT0efMAAE7ffgvV33/LHBARUeVmU0OdAECbNm2Qnp6OjRs3IjU1FYGBgZgzZ45xqJOUlBTjuNwAkJGRgeXLlyM1NRUuLi4IDg7GwoULUbNmTZnOQH6OKkcMrDsQq/5ehaizUehcq7PcIREREdmlsDAtLl9WITpag/btc+UOh4iIiGSmDQ/H3X794Lx1K9zfeAO3vvlG7pCIiCotm0t8A0DPnj3Rs2dPi+sWLFhg8nr06NEYPXp02QdVwUSGRGLV36vw06WfcDPrJqo6VZU7JCIiIrsTHp6LbducOM43ERERGd2ZORNOO3bA8cABOBw6hJwOHeQOiYioUrK5oU7IOhpVbYSwamHQ6rXYfG6z3OEQERHZJcM439HRGpkjISIiIluRFxCAzJEjAQDuCxcCer3MERERVU5MfNuxoSFDAQBRZ6MghJA5GiIiIvsTGqqFQiFw/boSSUm8rSIiIqJ8GZMnQ+/mBvXff8Npyxa5wyEiqpT4hGbH+tftD0elI86lnsOJGyfkDoeIiMjuuLgI1K+fP8ElhzshIiIiA72XFzJeeAEA4LZkCZCdLXNERESVDxPfdsxd444+wX0AAOvPrpc5GiIiIvsUFsbhToiIiMhcxlNPIc/XF6orV+CyZo3c4RARVTpMfNu5YSHDAABbL2xFRm6GzNEQERHZn7CwXABAdDR7fBMREVEBTk5InzEDAOD24YeQbt+WOSAiosqFiW8719K3JYI9gnFXdxfbLm6TOxwiIiK7ExGR3+M7JkYDTqlBREREBWUNHgxtgwZQpKXBbdkyucMhIqpUmPi2c5IkYWj9/ya5JCIiIutq0EALjUYgNVWBS5eUcodDREREtkSpRPrcuQAAl9WrobxyReaAiIgqDya+K4Eh9YdAKSlx4sYJxN2OkzscIiIiu6LRAI0bc5xvIiIisiync2fktG0LKScnf6JLIiIqF0x8VwI+zj7oVrsbAPb6JiIiKgvh4Rznm4iIiAohSUifNw8A4PTdd1DFxsocEBFR5cDEdyUxNCR/uJPN5zYjNy9X5miIiIjsS1iYYZxvJr6JiIjInLZpU9zt3x+SEHBftEjucIiIKgUmviuJLrW6oLpzddzKvoWfLv0kdzhERER2xTDB5alTauh0MgdDRERENunOzJkQajUcDx2Cw8GDcodDRGT3mPiuJFQKFYbUHwIAWH92vczREBER2ZfgYB3c3PTIzlYgLk4ldzhERERkg/Jq10bm6NEAAPeFCwG9Xt6AiIjsHJ/MKpGh9YdiWfQyHLhyAFczrsLf1V/ukIiISAa7du3Ctm3bkJqaioCAAIwdOxZ169YttPzRo0exYcMGJCcnw9fXF8OHD0ezZs2M63///Xfs2bMHFy9eREZGBpYsWYLAwECz/cTFxSEqKgrnz5+HQqFAYGAg5s6dC42m4k8IqVAAoaFaHDnigJgYDRo1YrdvIiIiMndn4kQ4b9gA9T//wOm775A1eLDcIRER2S32+K5EgjyC0NqvNQQENsZtlDscIiKSwZEjR7B27VoMHjwYixcvRkBAABYtWoS0tDSL5c+ePYsPPvgAXbp0weLFi9GiRQu8/fbbuHz5srFMTk4OGjRogOHDhxd63Li4OCxatAhhYWF444038Oabb6JHjx6QJMnq5yiXiIj8OTROnuQ430RERGSZ8PJCxgsvAADcFi8GsrNljoiIyH4x8V3JRIZEAsgf7kQv+LMqIqLKZvv27ejatSs6d+6MmjVrYty4cdBoNNi/f7/F8jt27EB4eDgee+wx1KxZE0OHDkVwcDB27dplLNOhQwcMHjwYoaGhhR73yy+/xKOPPor+/fujVq1aqFGjBtq0aQO12n6SxJzgkoiIiIojY+xY5Pn5QXXtGlxWr5Y7HCIiu8WhTiqZXkG9MO/IPFzJuILDVw+jQ80OcodERETlRKfT4eLFi+jfv79xmUKhQGhoKOLi4ixuExcXhz59+pgsCwsLw7Fjx4p93LS0NJw7dw7t2rXDvHnzkJSUhBo1aiAyMhINGjQodDutVgutVmt8LUkSnJycjP+2NeHh+bGePq1GdraE/4cK4L94bTHu8sR6yMd6yMd6yMd6yMd6oErFyQnpM2agyksvwe2jj3B36FCIKlXkjoqIyO4w8V3JOKmcMKDuAHz5z5eIOhvFxDcRUSWSnp4OvV4PT09Pk+Wenp64du2axW1SU1Ph4eFhsszDwwOpqanFPm5SUhIAYNOmTXjyyScRGBiIgwcP4rXXXsO7774LPz8/i9tt2bIFmzdvNr4OCgrC4sWL4e3tXexjlydfX6B6dSApSUJSkh9at7ZUxrf8A7NBrId8rId8rId8rId8rAeqLLIGDYLr559Dffo03D76COmvvCJ3SEREdoeJ70ooMiQSX/7zJXYl7MKt7FvwcvSSOyQiIrJjQggAQLdu3dC5c2cA+Uns2NhY7N+/H8OGDbO43YABA0x6mxt6ASYnJ0Ons83JI0NDqyApyRE//5yGwMC7xuWSJMHX1xeJiYnG+qiMWA/5WA/5WA/5WA/5bKEeVCqVzX65SnZIqUT6vHmoOnw4XFavRuaYMcirVUvuqIiI7AoT35VQaLVQNKnaBLE3Y/Hd+e/wdJOn5Q6JiIjKgbu7OxQKhVlv7dTUVLNe4Aaenp5mE1+mpaUVWt6SKv//6W7NmjVNlvv7+yMlJaXQ7dRqdaFjgNtqcig8PBc//+yI6Gi1xRiFEDYbe3liPeRjPeRjPeRjPeRjPVBlktOxI3LatYPD4cNwW7IEqR99JHdIRER2hZNbVlIFJ7nkjSURUeWgUqkQHByM2NhY4zK9Xo/Y2FjUr1/f4jb169fHX3/9ZbLs1KlTqFevXrGP6+3tjSpVqpgNp3L9+nVUq1atBGdg+wzjfEdHa2SOhIiIiGyeJCF93jwAgPN330F9zz0XERE9GCa+K6n+dfvDUemI07dOIyYlRu5wiIionPTp0wd79+7FgQMHcOXKFaxcuRI5OTno1KkTAGDZsmVYt26dsXyvXr0QExODbdu24erVq9i4cSMuXLiAnj17GstkZGQgISEBV65cAQBcu3YNCQkJxp7lkiThsccew86dO/Hbb78hMTER69evx9WrV9GlS5dyO/fyEBaWn/i+eFGFtDRO0EZERERF04aG4u7AgQAA94ULAXZMIyKyGg51Ukl5OniiV1AvfHf+O6w7sw7h3uFyh0REROWgTZs2SE9Px8aNG5GamorAwEDMmTPHOHRJSkqKcSxtAAgJCcHEiROxfv16REVFwc/PD9OnT0ft2rWNZY4fP45PPvnE+Hrp0qUAgMGDB+Pxxx8HAPTu3RtarRZffvklMjIyEBAQgJdfftnuJjHz8tKjdm0dLl9WISZGjQ4dcuUOiYiIiGzcnRkz4LR9OxwOH4bDwYPI+X+HBCIiejBMfFdiQ0OG4rvz32Hrha1Y8PACOKud5Q6JiIjKQc+ePU16bBe0YMECs2WtW7dG69atC91fp06djD3Gi9K/f3/079+/mFFWXOHh2v8nvjVMfBMREdF95dWqhcwxY+C6fDncFy5Ecvv2gFIpd1hERBUehzqpxFr7tUageyAytBnYFr9N7nCIiIjsQlhYfrI7JsbyxJxERERE97rz4ovQe3hAffo0nL79Vu5wiIjsAhPflZhCUuCJ+k8AANafWS9zNERERPYhIiJ/nO+TJznBJRERERWPqFIFd158EQDgvmQJkJUlc0RERBUfE9+V3JD6Q6CQFPgj6Q+cTz0vdzhEREQVXmioFgqFQGKiEklJvNUiIiKi4skcMwY6f38or1+H66pVcodDRFTh8WmskvNz8UOXWl0AAOvPstc3ERHRg3J2FqhfXweAw50QERFRCTg64s6MGQAA12XLIN26JXNAREQVGxPfhMiQSADApnOboNVrZY6GiIio4gsPzx/nm8OdEBERUUlkDRwIbaNGUKSnw+3DD+UOh4ioQmPim9C1dld4O3kjJSsFey/vlTscIiKiCi8sLP+LZPb4JiIiohJRKJA+bx4AwGXNGigvX5Y5ICKiiouJb4JaocaQekMAAOvOrJM5GiIiooovPNyQ+NZACJmDISIiogolp2NHZHfoAEmrhdvixXKHQ0RUYTHxTQCAJ0KeAADsv7If1zOvyxwNERFRxdaggRYODgKpqQokJCjlDoeIiIgqmPS5cyEkCc7ffw/1qVNyh0NEVCEx8U0AgLqeddHKtxX0Qo+NcRvlDoeIiKhC02iARo3+6/VNREREVBK6Jk2QNXAgAMD99dfBn5AREZUcE99kNDRkKABgw9kN0Au9zNEQERFVbP9NcMlxvomIiKjk7syYAaHRwOHIETjs3y93OEREFQ4T32TUJ6gPXNWuuHTnEo5ePyp3OERERBXaf+N8M/FNREREJZdXsyYyx44FALgvWgTk5ckcERFRxcLENxk5q53Rv05/AEDUmSh5gyEiIqrgDInvv/5SQ6eTORgiIiKqkO68+CL0np5QnzkDp82b5Q6HiKhCYeKbTEQ2iAQA7EjYgdScVHmDISIiqsCCg3Vwc9MjO1uBs2dVcodDREREFZDw9MSdF18EALgvWQJkZckcERFRxcHEN5kIqxaGhl4NkZOXg+/Pfy93OERERBWWQgE0bZrf6zs6msOdEBERUelkjh4NXc2aUCYmwvWLL+QOh4iowmDim0xIkoTIkPxe3+vOrpM5GiIioorNMMElx/kmIiKiUnN0xJ0ZMwAArsuWQXHrlswBERFVDEx8k5kBdQdAo9Dg75t/46+Uv+QOh4iIqMIyjPN98qRG5kiIiIioIssaMADaxo2huHMHrkuXyh0OEVGFwMQ3mfFy9MKjQY8CAKLOcpJLIiKi0goLy+/xfeaMikNyEhERUekpFEibNw8A4LJ2LZSXLskcEBGR7WPimywaGjIUALDl/BZk6fikTkREVBo1aujh7Z2HvDwJ0dFyR0NEREQVWW6HDsju1AmSVgu3xYvlDoeIyOYx8U0WtavRDrVcayE9Nx074nfIHQ4REVGFJEn/DXfyxx8yB0NEREQVXvqcORCSBOetW6Hmt+pEREVi4pssUkgKPBHyBAAOd0JERPQgDMOdHDsmcyBERERU4ekaN0bWoEEAAPeFCwEhZI6IiMh2MfFNhXq8/uOQIOHo9aOIT4uXOxwiIqIKiT2+iYiIyJruzJgB4eAAh6NH4bB3r9zhEBHZLCa+qVD+rv7oVLMTAGB93Hp5gyEiIqqgDD2+z50D0tIkmaMhIiKiii7P3x8ZTz0FAHB/4w0gL0/miIiIbBMT31SkyAaRAIBNcZug0+tkjoaIiKji8fISCAjIb0NjYtQyR0NERET2IOOFF6D39IT67Fk4bdokdzhERDaJiW8q0iO1H0FVx6pIupuEff/ukzscIiKiCiksLH+4k+hoJr6JiIjowQkPD9yZOBEA4P7225CysmSOiIjI9jDxTUXSKDUYXG8wAGD9WQ53QkREVBoREYbEt0bmSIiIiMheZI4eDV2tWlAmJsJlxQq5wyEisjlMfNN9RYbkD3fy8+WfkXQ3SeZoiIiIKp7w8PxxvjnUCREREVmNgwPuzJwJAHD9+GMobt6UOSAiItvCxDfdV70q9dDcpznyRB42x22WOxwiIqIKJzRUB4UCuH5dicRE3n4RERGRdWT164fc0FAoMjLgunSp3OEQEdkUPnlRsQxrMAwAEHU2CkIImaMhIiKqWJydBRo3zv93TAyHOyEiIiIrUSiQPm8eAMBl7Voo4+NlDoiIyHYw8U3F0je4L1zULohPj8fvib/LHQ4REVGF06JF/v85wSURERFZU267dsju3BmSTgf3xYvlDoeIyGYw8U3F4qJ2wWPBjwHI7/VNREREJdOyZf7/mfgmIiIia0ufMwdCkuC0bRvUf/4pdzhERDaBiW8qNsMkl9svbkd6brrM0RAREVUshh7fp05pwFHDiIiIyJp0jRoha8gQAID7okXgzQYRERPfVALNfJqhvmd9ZOdl4/vz38sdDhERUYUSGgo4OAikpiqQkKCUOxwiIiKyM+nTpkE4OsLht9/gsGeP3OEQEcmOiW8qNkmSENkgv9f3+rPrZY6GiIioYlGrgSZNtACA6GhOcElERETWpff3R8bTTwMA3N98E9DpZI6IiEheTHxTiQyuNxhqhRoxKTH4++bfcodDRERUoYSFGRLfHOebiIiIrC9jwgToPT2hjouD88aNcodDRCQrJr6pRLwcvdA9oDsA9vomIiIqqfDw/MR3TAwT30RERGR9wsMDdyZPBgC4vfMOpLt35Q2IiEhGTHxTiQ0LGQYA+O78d8jWZcscDRERUcURHp4LAPjrLzV/fUxERERlInPkSOhq14YyKQkun38udzhERLJh4ptKrL1/e9RwqYHUnFTsStgldzhEREQVRnBwHtzc9MjOVuDsWZXc4RAREZE9cnBA+qxZAADXTz+FIiVF5oCIiORhk4nvXbt24fnnn8fw4cMxZ84cnD9/vljb/frrr3j88cexZMmSMo6wclMqlHgi5AkAQNTZKJmjISIiqjgUCqBpU05wSURERGUru29f5IaFQZGRAdelS+UOh4hIFjaX+D5y5AjWrl2LwYMHY/HixQgICMCiRYuQlpZW5HY3btzAV199hYYNG5ZTpJXbE/WfgAQJh68dxqX0S3KHQ0REVGFEROQPd8JxvomIiKjMKBRInzsXAODy1VdQXrwoc0BEROXP5hLf27dvR9euXdG5c2fUrFkT48aNg0ajwf79+wvdRq/X46OPPsLjjz8OHx+fcoy28qrlVgvt/dsDAN45/g6i/orCkWtHkKfPkzkyIiIi2xYWxh7fREREVPZy27ZFdpcukHQ6uL/1ltzhEBGVO5saXFKn0+HixYvo37+/cZlCoUBoaCji4uIK3W7z5s1wd3dHly5dcPr06SKPodVqodVqja8lSYKTk5Px3+XBcJzyOl5ZaejVEIeuHsK357/Ft+e/BQD4ufjh9Tavo1dQL5mjKz17eX8MeD62y57OBeD5EBVXWFh+j+8zZ1TIypLg5CRkjoiIiIjsVfrcuXA4cABOP/6IjBMnoG3eXO6QiIjKjU0lvtPT06HX6+Hp6Wmy3NPTE9euXbO4zZkzZ7Bv375ij+u9ZcsWbN682fg6KCgIixcvhre3d6njLi1fX99yP6a1fHf6O3z+l/ns0ImZiRi3Zxw2P74ZAxsOlCEy66nI748lPB/bZU/nAvB8iO6nRg09fHzycOOGErGxKrRoob3/RkRERESloGvQAHcffxwu69fDfdEi3Pz2W4AdO4iokrCpxHdJZWVl4aOPPsKzzz4Ld3f3Ym0zYMAA9OnTx/ja0JMvOTkZOp2uTOK8lyRJ8PX1RWJiIoSoeL288vR5eOHHFyBgHruAgAQJL/74Ilq6t4RSoZQhwgdT0d+fe/F8bJc9nQvA8ymKSqWS5QtWsk2SlD/cyZ49SsTEaJj4JiIiojJ1Z+pUOH3/PRx+/x0Oe/Ygp3t3uUMiIioXNpX4dnd3h0KhQGpqqsny1NRUs17gAJCUlITk5GQsXrzYuMyQnBg6dCiWLl1q1lNPrVZDrbY8mVR5J2qEEBUyOfTb9d9wPfN6oesFBK5lXsNv139DmxptyjEy66qo709heD62y57OBeD5EBVHeHgu9uxxRHQ0J7gkIqKytWvXLmzbtg2pqakICAjA2LFjUbdu3ULLZ2ZmIioqCn/88QcyMjLg7e2NUaNGoVmzZuUYNVmTvkYNZD79NNyWLYP7okVI7tIFUNlUOoiIqEzY1JVOpVIhODgYsbGxaNmyJYD8iStjY2PRs2dPs/I1atTAO++8Y7Js/fr1yM7OxujRo1GtWrVyibuyuXH3hlXLERERVTbh4ZzgkoiIyt6RI0ewdu1ajBs3DvXq1cOPP/6IRYsWYenSpfDw8DArr9PpsHDhQri7u2PKlCnw8vJCSkoKnJ2dZYierCnj+efh/M03UJ8/D+f163F3xAi5QyIiKnMKuQO4V58+fbB3714cOHAAV65cwcqVK5GTk4NOnToBAJYtW4Z169YBADQaDWrXrm3yn4uLCxwdHVG7dm2o+A1mmfBx9rFqOSIiosqmadP8CS7j41VITeU4m0REVDa2b9+Orl27onPnzqhZsybGjRsHjUaD/fv3Wyy/b98+ZGRkYPr06WjQoAF8fHzQqFEjBAYGlm/gZHXC3R0ZL70EAHB7911Id+/KHBERUdmzucxwmzZtkJ6ejo0bNyI1NRWBgYGYM2eOcaiTlJQU47jcJI9Wvq3g5+KHxMxEi+N8A0BVx6po5duqnCMjIiKqGLy8BAIDdUhIUOHUKQ06dMiROyQiIrIzOp0OFy9eRP/+/Y3LFAoFQkNDERcXZ3GbEydOoF69evjiiy9w/PhxuLu7o23btujfvz8UCsv95rRaLbTa/+arkCQJTk5Oxn/bO8M5VoRzvTtyJFy++AKqS5fg+vnnxkS4rahIdWnrWJfWw7q0Hjnq0uYS3wDQs2dPi0ObAMCCBQuK3Pb5558vg4ioIKVCiddav4Znfn4GEiSLye87uXfwR9IfaO3XWoYIiYiIbF9YWC4SElSIjlYz8U1ERFaXnp4OvV5vNl+Wp6cnrl27ZnEbwzxa7dq1w+zZs5GYmIiVK1ciLy8PQ4YMsbjNli1bsHnzZuProKAgLF68uNJN7H3v/GI2a/FiYOhQuH36KdymTgWqV5c7IjMVpi4rANal9bAurac869ImE99k+3oF9cLn3T7HK0dfMZno0s/FD1UdqyL2Ziye3PUkvur5FZPfREREFoSFabF1KxATwwkuiYjINggh4O7ujmeffRYKhQLBwcG4desWfvjhh0IT3wMGDECfPn2Mrw09+ZKTk6HT6colbjlJkgRfX18kJiZWjAnR27VD1fBwaKKjkTlzJtLffFPuiIwqXF3aMNal9bAurcdadalSqYr95SoT31RqvYJ6oUdAD/yR9AdyNbnQ5GrQsnpLaPVaPL3naey/sh9P7noSa3usRZsabeQOl4iIyKZERHCCSyIiKjvu7u5QKBRITU01WZ6ammrWC9zA09MTKpXKZFgTf39/pKamQqfTWZxHS61WQ622/CVuZUoSCSEqxvlKEtLnzkW1IUPg/PXXyBg7Fnl168odlYkKU5cVAOvSeliX1lOedWlzk1tSxaJUKNGmRhtEhkaiTY02UCqUcFQ5YuUjK9GlVhdk6bIwcvdIHLl2RO5QiYiIbEqTJlooFAKJiUpcv85bMiIisi6VSoXg4GDExsYal+n1esTGxqJ+/foWtwkJCUFiYiL0er1x2fXr11GlShWLSW+qmHLbtEF2t26Q8vLgvnix3OEQEZUZPmVRmXBUOWJFtxVMfhMRERXC2VkgJCT/J+AxMez1TURE1tenTx/s3bsXBw4cwJUrV7By5Urk5OSgU6dOAIBly5Zh3bp1xvLdu3dHRkYG1qxZg2vXruHPP//Eli1b0KNHD5nOgMpK+pw5EAoFnHbsgPr4cbnDISIqE0x8U5m5N/n95K4n8eu1X+UOi4iIyGaEh+cCAKKjOc43ERFZX5s2bfDkk09i48aNmDFjBhISEjBnzhzjUCcpKSm4ffu2sXy1atUwd+5cXLhwAdOnT8fq1avx6KOPon///vKcAJUZXUgI7j7xBADAfeFCgEM4EJEd4m+VqEwZkt/jfh6Hff/uw8hdI7G251q0rdFW7tCIiIhkFxamRVQUJ7gkIqKy07NnT/Ts2dPiugULFpgtq1+/PhYtWlTGUZEtuDN1Kpy2bIHDsWNw3L0b2YV8ToiIKir2+KYyV3DM7+y8bIzcNRKHrx6WOywiIiLZhYfnT3AZE6NhRysiIiIqV3o/P2Q+8wwAwH3RIkCrlTkiIiLrYuKbyoWD0sEk+T1q9ygmv4mIqNJr0EALBweBtDQF4uOVcodDRERElUzGhAnI8/KC6uJFOEdFyR0OEZFVMfFN5caQ/O5aq6sx+f3L1V/kDouIiEg2ajXQuPF/vb6JiIiIypNwc8OdKVMAAG7vvQcpM1PmiIiIrIeJbypXDkoHrHhkhTH5PXr3aCa/iYioUouIyJ/g8uRJjvNNRERE5e/u8OHQBQZCmZwMl+XL5Q6HiMhqmPimcsfkNxER0X/Cwtjjm4iIiGSk0SB91iwAgOunn0Jx44bMARERWQcT3yQLQ/K7W+1uTH4TEVGlFhaW3+M7NlbFOaWIiIhIFtl9+iA3IgKKu3fh9t57codDRGQVTHyTbByUDvi82+cmye9DVw/JHRYREVG5Cg7Og7u7HtnZCpw9q5I7HCIiIqqMJAnp8+YBAJzXrYPy/HmZAyIienBMfJOsDMnvR2o/guy8bIzZPYbJbyIiqlQUCqBpUw53QkRERPLKffhhZHXvDikvD+5vvSV3OERED4yJb5Kdg9IBy7stN01+X2Hym4iIKo/w8PzhTmJiOMElERERyefO7NkQCgWcdu6E5tgxucMhInogTHyTTTBLfv/E5DcREVUe4eH5Pb5PnmSPbyIiIpKPrn593I2MBAC4v/46IITMERERlR4T32QzzIY9+WkMDl45KHdYREREZc4wweXZsypkZUkyR0NERESV2Z0pU6B3coLmxAk47twpdzhERKXGxDfZFI1Sg8+7fY7uAd2RnZeNsT+NZfKbiIjsnp+fHj4+ecjLkxAby+FOiIiISD56X19kPvssAMD9zTcBrVbmiIiISoeJb7I5GqUGy7suNya/2fObiIjsnST9N853dDQT30RERCSvjOeeQ17VqlBdvAjndevkDoeIqFSY+CabZEh+9wjogZy8HCa/iYjI7oWF5fem4gSXREREJDfh6oo7U6YAANzeew9SRobMERERlRwT32SzNEoNPuv6mUny+8C/B+QOi4iIqExwgksiIiKyJXeHD4cuKAjKlBS4fvaZ3OEQEZUYE99k0wzJ754BPZGTl4Oxe8Yy+U1ERHbJMMFlQoIKqamc4JKIiIhkplYjffZsAIDLZ59BkZQkc0BERCXDxDfZPI1Sg0+7fmqS/N7/7365wyIiIrKqKlUEAgN1AIBTp9jrm4iIiOSX3asXcps1gyIrC27vvSd3OEREJcLEN1UIhuT3o4GPIicvB0/teYrJbyIisjuGCS5PnuQ430RERGQDJAnpL78MAHCOioLq3DmZAyIiKj4mvqnC0Cg1+KTLJ0x+ExGR3eIEl0RERGRrclu2RFaPHpDy8uD25ptyh0NEVGxMfFOFwp7fRERkzwwTXMbEcKgTIiIish135syBUCrhtHs3NL//Lnc4RETFUuLE98qVK3HhwgXja51OhyNHjiA9Pd2s7KlTp/Dqq68+WIRE91Ar1CbJ77E/jcW+f/fJHRYREdEDa9JEC6VSIDFRievX2T+BiIiIbIOubl3cjYwEALgvXAgIIXNERET3V+Inqj179uD69evG11lZWfjggw9w+fJls7JpaWn4559/HixCIgsMye9egb2Qq8/FUz89xeQ3ERFVeM7OAvXr509wyV7fREREZEvuTJ0KvbMzNH/+CccdO+QOh4jovtiViCostUKNT7p+YpL83nt5r9xhERERPRDDBJfR0Rznm4iIiGyH3scHmc8+CwBwf+MNQKuVOSIioqIx8U0VmjH5HZSf/H56z9NMfhMRUYVmGOc7Opo9vomIiMi2ZIwfj7xq1aBKSIDzN9/IHQ4RUZGY+KYKT61Q45Mupsnvny//LHdYREREpWLo8X3qlJrDZxIREZFNEa6uuDNlCgDA7b33IN25I3NERESFY+Kb7IIh+d07qDdy9bkYt2cck99ERFQhhYTo4OgokJamQHy8Uu5wiIiIiEzcHTYMuuBgKG/ehOunn8odDhFRoVSl2ejgwYOIi4sDAGj/P6bTrl278Mcff5iUKzgJJlFZUyvU+LjLx8A+4Mf4HzFuzzh83u1zPBLwiNyhERHR/9i78zgby/+P46/7bLPvlpn42qOFSFmLtFpSEUloIZKUb5tIC4kyqAit2oiYyJq0KGQJLbYUCZV9tjP7dpbfH/M1NT+7ZuY+Z+b9fDzOI+c+9/K+rjnTnPM517kuOWN2O1x8cQE//OBg82YHderkmB1JRERE5G92O+kjRhDdvz8hb71F1l134YmNNTuViMhxzqnwvXXrVrZu3Vps26ZNm0okkMi/caz4bXxtsHTvUgZ8NYC3r3tbxW8REfErTZrk/6/wbefWW1X4FhEREd+S26ED+ZdfjuP77wl7+WXSxo83O5KIyHHOuvA9d+7c0sghUmLsFjtTr5kKX6Pit4iI+KXGjbXApYiIiPgwwyD96aep1KULwR99RFb//rjq1zc7lYhIMZrjW8qlY8XvzrU7U+ApYMBXA/jijy/MjiUiInJGji1w+fPPdv43q5yIiIiIT8lv1oycjh0xPB7CX3jB7DgiIscp0cJ3eno6q1evZtGiRWzatAmPx1OSpxc5K8emPTlW/L7vq/tU/BYREb9Qu7ab8HAPubkGO3ee08x0IiIiIqUuffhwvFYrgV9+ieO778yOIyJSzFkXvtesWcPo0aNJT08vtn3Xrl088sgjTJs2jdmzZzNx4kSeeeYZcnNzSyysyNmyWWxMu2YaN9W5ScVvERHxGxaLpjsRERER3+euV4/s3r0BCB8zBrxekxOJiPztrAvfa9euxe12Ex4eXrTN6/UyZcoUsrOz6d69O8OGDeP6669n9+7dLF68uEQDi5wtm8XG1KunqvgtIvI/y5cvZ/DgwfTu3ZsRI0awe/fuU+6/fv16Hn74YXr37s1jjz3Gjz/+WOzxDRs2MGbMGPr160ePHj3Yt2/fSc/l9Xp54YUX6NGjBxs3biyJ5pRbjRsXTneyZYvd5CQiIiIiJ5fx6KN4goNx/PQTgUuXmh1HRKTIWRe+//jjDy688MJi23bu3MnRo0e5/vrrue2222jatCn9+/enadOmbNiwocTCipyrY8Xvm+vcXFT8/nzf52bHEhEpc+vWrWPGjBl0796d+Ph4atasydixY0lLSzvh/jt37mTy5Mlcc801xMfH06xZMyZMmMCff/5ZtE9eXh4XXHABvf832udUPv30UwzDKLH2lGdNmmjEt4iIiPg+T+XKZA4aBED4uHGQn29yIhGRQmdd+E5LS6NKlSrFtm3duhWA1q1bF9t+ySWXcPTo0X8RT6Tk2Cw2plw9paj4PXDFQBW/RaTCWbp0Kddeey1XX3011atXZ8CAATgcDr755psT7r9s2TKaNGnCzTffTPXq1enZsyd16tRh+fLlRfu0bduW7t2706hRo1Nee9++fSxdupRB/3tjJKd2bIHLnTtt5OTowwIRERHxXVkDB+KuXBnbvn2EfPih2XFERAA469WSwsLCyMzMLLbt119/xWazUadOnWLbAwIC/l06kRJ2rPgNsHjPYgauGMib175J+1rtTU4mIlL6XC4Xe/bsoUuXLkXbLBYLjRo1YteuXSc8ZteuXXTu3LnYtsaNG7Np06azunZeXh6TJ0/m3nvvJTIy8oyOKSgooKCgoOi+YRgEBQUV/dufHMt7NrnPO89L1apujhyxsn27nebNC05/kI87l34oj9QPhdQPhdQPhdQPIv7NGxJCxmOPETl8OKGvvEL2bbfhDQszO5aIVHBnXfiuWbMm69at48Ybb8RqtZKSksLOnTu5+OKLcTiKfxX3yJEjREdHl1hYkZJwrPhtGAaLfl/EfV/dx1vXvaXit4iUe+np6Xg8nuMKz5GRkRw8ePCExzidTiIiIopti4iIwOl0ntW1P/jgAxo0aECzZs3O+JgFCxYwb968ovu1a9cmPj6eypUrn9W1fUlsbOxZ7d+iBSxeDHv3VuKWW0oplAnOth/KK/VDIfVDIfVDIfWDiP/KvuMOQt5+G/vvvxP62mtkDBtmdiQRqeDOuvDdtWtXRo4cybBhw6hbty7bt2/H5XIdNxoM4IcffqBu3bolElSkJNksNl5t9ypAUfH7zevepEOtDiYnExEpf77//nu2b9/O+PHjz+q4rl27Fnt9cWwUYGJiIi6Xq0QzljbDMIiNjeXw4cN4vd4zPu7CC0NZvDiMVatyuP12Z+kFLCPn2g/ljfqhkPqhkPqhkC/0g81m8+sPV0VMZ7ORMWIE0ffeS8hbb5F111144uLMTiUiFdhZF74vuOACHn74YebNm8eaNWuoXLky999/P5dcckmx/bZv387Ro0e59dZbSyysSEk6Vvw2MFj4+0IGfjWQN697k461O5odTUSkVISHh2OxWI4bre10Ok86/UhkZORxC1+mpaWd8XQlUPia4MiRI9xzzz3Ftr/00ktceOGFjBo16oTH2e127Hb7CR/z1+KQ1+s9q+yNGxfO8715s91v23wiZ9sP5ZX6oZD6oZD6oZD6QcS/5bZvT16zZgRs2kTYSy+RNnGi2ZFEpAI768I3QKtWrWjVqtUp92nYsCEzZsw4p1AiZcVmsTG53WSAYsXvfnH9TE4mIlLyjq3HsX37dpo3bw6Ax+Nh+/btdOhw4m+81K9fn23btnHjjTcWbdu6dSvnn3/+GV+3S5cuXHPNNcW2Pf7449x9991cfvnl59CSiuOSSwoL3/v22UhNNYiKUjFIREREfJhhkP7001S+5RaC584la8AAXA0amJ1KRCooi9kBRMx2rPjdtW5XXF4XA78ayIJfFpgdS0SkVHTu3JkVK1awcuVK9u/fz/Tp08nLy6Ndu3YATJ06ldmzZxft36lTJ7Zs2cKSJUs4cOAACQkJ/P7778UK5ZmZmezbt4/9+/cDcPDgQfbt21c0sjwyMpIaNWoUuwFUqlSJKlWqlE3D/VRUlJdatQqnddm61XGavUVERETMV3D55eR06oTh8RD+wgtmxxGRCuysR3zv2bPnrC9Sp06dsz5GpCzZLDYmtZsEwILfF9BjXg/euPYNOtbStCciUr60bt2a9PR0EhIScDqd1KpVixEjRhRNXZKUlFQ0lzZAgwYNGDJkCHPmzOGjjz4iLi6OoUOHFhWvoXAO79dee63o/qRJkwDo3r07PXr0KJN2lWdNmuSzb5+NzZvtXHVVntlxRERERE4rffhwAj//nMCvvsKxbh35rVubHUlEKqCzLnw/+eSTZ32RuXPnnvUxImWtqPhtwILdC7j/q/t5/drX6VS7k9nRRERKVIcOHU46tcmJ5ts+3RRn7dq1KxoxfqYSEhLOav+KrHHjAhYuLJznW0RERMQfuOvWJbtPH0I++IDwMWNIWroULJp0QETK1jnN8e1wOLj00ktp0qQJFv2PS8qRYwteBgUFMXvbbAatGMRr177GjbVvPP3BIiIipeDSSwsA2LJFU52IiIiI/8h45BGC5s3DsWULgUuWkHvLLWZHEpEK5qwL3wMGDGDt2rVs3LiRHTt20LJlS6688kouuOCC0sgnUuasFiszuswgNyeXT3Z/wgMrHlDxW0RETNOwYQFWq5cjR6wcOmQhLs5jdiQRERGR0/JUrkzmoEGET5xIeHw8uR07gkMf5ItI2Tnrwvd1113HddddR0pKCmvWrGHt2rV8+eWXVKpUiSuuuIIrrriCmjVrlkZWkTJjtViZ3G4yAJ/s/oRBKwbx+rWvq/gtIiJlLijIS4MGLnbssLN5s4O4uFyzI4mIiIickayBAwmZMQPbH38QMnMmWffea3YkEalAznmekujoaG6++Wbi4+N56aWXaNOmDevXr+eJJ57gscceY/PmzSUYU6TsWS1WJl01iVvr3Yrb62bQikF8uvdTs2OJiEgF1KRJPqB5vkVERMS/eIODyXjsMQBCX3kFIz3d5EQiUpGUyATd1atXp2fPnjz++ONcdNFF7N+/n927d5fEqUVMdaLi99I9S3F73Kw7uI6Fuxey7uA63B632VFFRKQca9xY83yLiIiIf8ru2ZOCevWwpqYSOm2a2XFEpAI5p8Ut/+no0aNFU57s37+fqlWrcuutt9KuXbsSiCdivmPFbwOD+bvnM2jFICICIkjNSy3aJy4kjtGtRtOpdicTk4qISHl1bMT3li12PB7Q2uIiIiLiN2w20p96ipi+fQmdPp2su+/Gc955ZqcSkQrgnArfaWlprFu3jjVr1rB7924iIyNp1aoVgwYNol69eiWdUcR0VouVV656hQOZB/ju8HfFit4Ah7MOc99X9/HWdW+p+C0iIiWuQQMXgYFe0tMt7N1rpW5dfdNIRERE/Efe9deT16IFARs2ED5xIs6XXzY7kohUAGdd+B4zZgw///wzgYGBNG/enNtvv52GDRti0dAjqQD+yPjjhNu9eDEwGLl+JO1rtsdqsZZxMhERKc/sdrj44gJ++MHBli0O6tbNMTuSiIiIyJkzDNKffprKN91E0McfkzlgAK4LLzQ7lYiUc2dd+N62bRsOh4O6deuSnp7OZ599xmeffXbS/Q3D4IknnvhXIUV8wYbDGziUdeikj3vxcjDrIBsOb6D1ea3LMJmIiFQETZrk88MPDjZvtnPrrSp8i4iIiH8paNqUnBtvJOjTTwl/4QVSZs40O5KIlHNnXfiuVKkSAIcOnbwA+E+GYZztJUR80tHsoyW6n4iIyNlo0qRwgcvNm7XApYiIiPin9OHDCfz8cwK//hrHmjXkX3ml2ZFEpBw768L3NK3AKxVUleAqJbqfiIjI2WjcuHCBy59/tlNQUDj9iYiIiIg/cdepQ9addxL63nuEjx1L0qefatVuESk1+r+LyBlqEduCuJA4DE78LQYDg/NCzqNFbIsyTiYiIhVB7dpuIiI85OYa7Nx5TuuTi4iIiJgu8+GH8YSG4ti6laDFi82OIyLl2Fm/a3r88cfPan/DMJgwYcJZHbN8+XKWLFmC0+mkZs2a9OvXj3r16p1w3w0bNrBgwQIOHz6M2+0mNjaWm266ibZt257VNUVOx2qxMrrVaO776j4MDLx4iz3uxctzrZ7TwpYiIlIqLBa45JICvv02gM2bHTRs6DI7koiIiMhZ81SqROYDDxA+fjxh8fHkdOwIAQFmxxKRcuisR3yHhoYSFhZ22pvb7eavv/7izz//PKvzr1u3jhkzZtC9e3fi4+OpWbMmY8eOJS0t7aR5br31VsaMGcOECRO4+uqree2119i8efPZNk3ktDrV7sRb171FbEjscY85LA4uq3qZCalERKSiODbdyebNmudERERE/FfWgAG4q1bF9uefhMyYYXYcESmnznrE96hRo075uNPpZOHChfz2229YLBbatGlzVudfunQp1157LVdffTUAAwYM4Mcff+Sbb76hS5cux+1/8cUXF7vfqVMnVq1axa+//kqTJk3O6toiZ6JT7U60r9meDYc3cDT7KJWDKvPCphfYnLiZ8ZvG89JVL5kdUUREyqlLL9UClyIiIuL/vMHBZDz+OJFDhxI2aRLZPXpAZKTZsUSknCmxCSKPFbxXrFiBy+WiTZs23HrrrcTGHj8y9mRcLhd79uwpVuC2WCw0atSIXbt2nfZ4r9fL9u3bOXjwIL179z7hPgUFBRQUFBTdNwyDoKCgon+XhWPXKavrlbaK2B6b1cYV1a4ouj/aPpqbF93M3F1z6dewHw0rNSz1nGeqIv58/EV5aguoPSJl4diI7127bGRnGwQHe09zhIiIiIhvyu7Rg5C338a+axeh06aR+dRTZkcSkXLmXxe+T1Tw7tatG1WrVj3rc6Wnp+PxeIj8f5/yRUZGcvDgwZMel52dzcCBA3G5XFgsFu69914uueSSE+67YMEC5s2bV3S/du3axMfHU7ly5bPO+2+dzYcC/qAit+emuJvo+XtP5myfw4s/vsiKu1b4XLGsIv98fF15aguoPSKlKS7OQ2ysm8OHrWzfbqd583yzI4mIiIicG5uN9BEjiLnnHkLfeQfXhRfCtGk4Ro4k7yxnDxAROZFzLnz//4J327Zt6datG1WqVCnJfGckMDCQCRMmkJuby7Zt25gxYwZVq1Y9bhoUgK5du9K5c+ei+8eKk4mJibhcZbNIlGEYxMbGcvjwYbxe/x+ppfYUerTRoyz4ZQHf7PuG9797nw61OpRiyjOnn4/vKk9tAbXnVGw2mykfsEr51LhxPocPB7F5swrfIiIi4t/yrruOvFatCFi/nvBnnoHUVMJefJG8K68EHxtMJiL+56wL36mpqUUFb7fbzVVXXcWtt95aIgXv8PBwLBYLTqez2Han03ncKPB/slgsRSPyatWqxYEDB1i4cOEJC992ux27/cQLQpV1ocbr9ZaL4tAxFb091UKrMaDRAKZunsro70ZzdfWrcVh9Zw7Wiv7z8WXlqS2g9oiUtsaNC/j88yC2bNEClyIiIuLnDIP0p56icufOWFNTAXBs2ULAqlXktWtnbjYR8XtnXfh+6KGHKCgooFatWnTt2pUqVaqQmZlJZmbmSY+pU6fOmYWx2ahTpw7bt2+nefPmAHg8HrZv306HDmc+etbj8RSbx1ukrDzU+CHm7pzLvvR9fLDjAwY0GmB2JBERKWe0wKWIiIiUJwVNmuCJiMCSlgaA12olbPx48q66SqO+ReRfOevC97GC8r59+3jllVfO6Ji5c+ee8fk7d+7MtGnTqFOnDvXq1WPZsmXk5eXR7n+f9E2dOpXo6Gh69eoFFM7ZXbduXapWrUpBQQE//fQT3377Lf379z+7homUgFBHKE9c/gRDvx3KKz++QrfzuxEdGG12LBERKUcuuaRwepN9+2ykphpERekbCSIiIuK/AlatKip6Axhut0Z9i0iJOOvC96BBg0ojR5HWrVuTnp5OQkICTqeTWrVqMWLEiKKpTpKSkootGpiXl8f06dNJTk7G4XBQrVo1HnroIVq3bl2qOUVO5vb6t/Puz+/yS8ovvPLjKzzf+nmzI4mISDkSGemlVi0X+/bZ2LrVwVVX5ZkdSUREROTceL2EjR+P12rFcLv/3mwYGvUtIv/aWRe+25XBp20dOnQ46dQmo0aNKna/Z8+e9OzZs9QziZwpq8XKyJYj6bmsJx/s+IC7L7qbepH1zI4lIiLlyKWX5rNvn42ffrKr8C0iIiJ+K2DVKhxbthy33fB6NepbRP41i9kBRMqjNtXacH2N63F73Ty/QSO+RUSkZDVuXDj1nBa4FBEREb91bLT3SUZ0e4GIp58GLTQvIudIhW+RUvJ0i6exGTa++vMrVh9YbXYcEREpR5o0+XuBS70XFBEREb+Un4/1wAGMk7yYMQDr3r041q0r21wiUm6o8C1SSupF1uPui+4GYPR3o3F73Kc5QkRE5Mw0bFiA1erl6FErhw7p5ZyIiIj4oYAAEpctI3H58qIbP/xQ+O+lS8lr3hwDiB4wANuvv5qdVkT8kN4piZSiR5o+QmRAJL+k/MJHOz8yO46IiJQTQUFeGjRwAbBli8PkNCIiIiLnxlOtGgWNGlHQqBGuSy6Bpk1xXXIJBZdeSsrs2eQ1a4YlLY2Y3r2x7t9vdlwR8TMqfIuUoqjAKB5p+ggAE36YQEZ+hsmJRESkvGjSJB+AzZs1z7eIiIiUP96gIFLee4+CBg2wHj5MdK9eWFJSzI4lIn5EhW+RUnb3RXdTJ6IOSTlJTN081ew4IiJSTvxznm8RERGR8sgbFUXyhx/iOu887L//TvSdd2JkZZkdS0T8hArfIqXMbrHzTItnAHh7+9v8lfGXyYlERKQ8aNy4cMT31q12PB6Tw4iIiIiUEs9555Hy0Ue4o6JwbN5M1IABkJ9vdiwR8QMqfIuUgetrXM8V511BnjuPsRvHmh1HRETKgQYNXAQGekhPt7Bnj9XsOCIiIiKlxlWvHikzZuAJCiJw1SoiH3kEffIvIqejwrdIGTAMg5EtR2JgsGTPEjYd3mR2JBER8XN2OzRsqAUuRUREpGIoaNqU1OnT8dpsBC9cSPioUeD1mh1LRHyYCt8iZeTimIu5o8EdADz33XN4vPp0WkRE/p1j051s2aIFLkVERKT8y2vXDucrrwAQ+s47hE6bZnIiEfFlKnyLlKGhlw8lxB7CT4k/sfD3hWbHERERP3fppYULXP70k0Z8i4iISMWQc+utpI0aBUD4iy8SNGeOuYFExGep8C1ShqoEV+HBxg8C8MLGF8hx5ZicSERE/NmxEd87dtgpKDA5jIiIiEgZyRowgIzBgwGIHDqUgC++MDmRiPgiFb5FytiARgOoFlqNQ1mHeGPrG2bHERERP1a7tpuICA+5uQY7d9rMjiMiIj5o+fLlDB48mN69ezNixAh27959RsetXbuWHj16MH78+FJOKHJuMp58kuzbb8fweIgeNAjHhg1mRxIRH6PCt0gZC7IF8VTzpwCYtmUah7MOm5xIRET8lWH8Pepb052IiMj/t27dOmbMmEH37t2Jj4+nZs2ajB07lrS0tFMed/ToUWbOnMmFF15YRklFzoFh4Bw/ntzrr8fIzSX6nnuw/fKL2alExIeo8C1igpvr3EzTKk3JceUw/nuNoBARkXPXuHHhHCda4FJERP6/pUuXcu2113L11VdTvXp1BgwYgMPh4JtvvjnpMR6PhylTptCjRw+qVKlShmlFzoHNRurrr5PXrBmW9HRievfG+tdfZqcSER+h78SKmMAwDEa1HMXNi28mYVcCfS/uS6NKjcyOJSIifqhJk8LC9+bNGvEtIiJ/c7lc7Nmzhy5duhRts1gsNGrUiF27dp30uHnz5hEeHs4111zDL2cweragoICCfyw0YRgGQUFBRf8u7461sSK0tbSdc18GB5P6wQfE3Hor9l9/JaZXL5IXLcITE1MKKf2DnpclR31ZcszoSxW+RUxyWdXL6FK3Cwt/X8hz3z3Hxzd+rP+RiojIWWvSpHCqk507bWRnGwQHe01OJCIiviA9PR2Px0NkZGSx7ZGRkRw8ePCEx/z66698/fXXZzWv94IFC5g3b17R/dq1axMfH0/lypXPKbe/io2NNTtCuXFOfRkXB199BVdcgW3PHqr27QvffAOhoSUf0I/oeVly1Jclpyz7UoVvERONaD6C5fuWs/7Qej7/43M61OpgdiQREfEzsbEeYmPdHD5sZft2O82b55sdSURE/FBOTg5Tpkxh4MCBhIeHn/FxXbt2pXPnzkX3jw3mSUxMxOVylXhOX2MYBrGxsRw+fBivVx8+/xv/ui8tFqwzZ1LplluwfP89eTfeSMqMGeCoeN+K0/Oy5KgvS05J9aXNZjvjD1dV+BYxUbXQatzX6D5e3fwqz294nmv+cw0Oa8X7oywiIv9O48b5HD4cxObNKnyLiEih8PBwLBYLTqez2Han03ncKHCAI0eOkJiYSHx8fNG2Y4WJnj17MmnSpBOO0rPb7djtJ15noiIVibxeb4Vqb2n6N33pqluX5JkzienRg4DVq4l4+GGcU6aApWIucafnZclRX5acsuxLFb5FTDa48WDm7JzDvvR9vPfzewy8ZKDZkURExM80aVLA558XFr5FRESgcERcnTp12L59O82bNwcKF67cvn07HToc/03T8847j4kTJxbbNmfOHHJzc7nnnnuoVKlSmeQW+bcKLr2U1OnTib7rLoIXLsQTE0P6c8+BphYVqXAq5kdeIj4k1BHKE5c/AcCknyaRkpticiIREfE3xxa43LJF3xoSEZG/de7cmRUrVrBy5Ur279/P9OnTycvLo127dgBMnTqV2bNnA+BwOKhRo0axW0hICIGBgdSoUQObTePmxH/kXXUVzkmTAAh95x1Cp0wxN5CImEKFbxEf0KN+Dy6OuZj0/HRe/uFls+OIiIifueSSwulN9u2zkZKi0UwiIlKodevW3HnnnSQkJPDEE0+wb98+RowYUTTVSVJSEqmpqeaGFCklOV27kvbccwCEx8cT/L8PeUSk4tBHtiI+wGqxMrLlSHp82oMZv8zg7ovu5vyo882OJSIifiIy0kvt2i727rWxdauDdu3yzI4kIiI+okOHDiec2gRg1KhRpzx28ODBpZBIpOxk9e+PJTGRsKlTiRg2DE90NLkn+X0QkfJHI75FfMQV511B+5rtcXvdjN4w2uw4IiLiZ5o0KRz1rXm+RURERP6WMXw4WT17Yng8RD3wAI7vvjM7koiUERW+RXzIU82fwmbY+Pqvr1m1f5XZcURExI8cm+d782bN8y0iIiJSxDBIi48n54YbMPLyiO7bF9uOHWanEpEyoMK3iA+pG1mXey6+B4DnvnsOl8dlbiAREfEbjRsXjvjessWO12tyGBERERFfYrOR+tpr5DVvjiU9nZg+fbD++afZqUSklKnwLeJjHmn6CJEBkexM3clHOz8yO46IiPiJhg1dWK1ejh61cuiQXuKJiIiIFBMURMp771FwwQVYjxwhplcvLElJZqcSkVKkd0UiPiYyIJLHmj4GwITvJ5Cen25yIhER8QdBQV4uuKDwm0Ka7kRERETkeN7ISJJnzcJVvTq2vXuJvvNOjMxMs2OJSClR4VvEB9150Z3UjahLcm4yU36aYnYcERHxE8cWuNyyRQtcioiIiJyIJzaW5NmzcUdH49i6lej+/SEvz+xYIlIKVPgW8UF2i51nWjwDwPTt0/kj/Q+TE4mIiD9o3FgLXIqIiIicjrtuXVJmzsQTHEzAt98S9fDD4PGYHUtESpgK3yI+6roa19GmWhvyPfm8sPEFs+OIiIgf+OeIb713ExERETm5giZNSH3nHbx2O0GLFxP+7LNohXCR8kWFbxEfZRgGI1uOxGJYWLp3KRsPbzQ7koiI+LgGDVwEBnrIyLCwZ4/V7DgiIiIiPi2vbVuckyYBEPree4S++qq5gUSkRKnwLeLDLoy+kDsa3AHAqPWj8Hg1fE9ERE7OZoOGDQsXuNyyRdOdiIiIiJxOTpcupI0eDUD4+PEEz5plciIRKSkqfIv4uKGXDSXUHsqWpC18svsTs+OIiIiPOzbdyebNWuBSRERE5Exk3XsvGQ89BEDE8OEEfvaZyYlEpCSo8C3i4yoHV+ahJoV/gF/c9CI5rhyTE4mIiC9r0kQLXIqIiIicrYxhw8jq1QvD4yFq8GAc69ebHUlE/iUVvkX8QP+G/akeWp3DWYd5Y+sbZscREREfdmzE988/28nPNzmMiIiIiL8wDNJefJGcDh0w8vKI7tsX288/m51KRP4FFb5F/ECgLZARzUcAMG3LNA5lHTI5kYiI+KpatdxERnrIyzPYuVPTnYiIiIicMZuN1KlTyWvRAktGBjF9+mD94w+zU4nIOVLhW8RP3FznZi6vejk5rhziN8WbHUdERHyUYcAll2iebxEREZFzEhREynvvUXDhhViPHiWmVy8sSUlmpxKRc6DCt4ifMAyDUS1HAfDxbx+zNXGruYFERMRn/T3PtwrfIiIiImfLGxFB8ocf4vrPf7Dt20f0nXdiZGaaHUtEzpIK3yJ+5NIql3JrvVsBeO675/B6vSYnEhERX3Ss8L1lixa4FBERETkXnthYkmfNwh0djWPrVqLvvRfy8syOJSJnQYVvET8zvNlwAq2BfHf4Oz7b95nZcURExAc1blw41cnOnTaysw2T04iIiIj4J3fduqR8+CGekBAC1qwh6r//Bbfb7FgicoZU+BbxM9VCqzHwkoEAjNkwhjy3PnEWEZHiYmM9xMa68XgMtm3TdCciIiIi56qgcWNSpk/Ha7cTtGQJEc8+C/r2tYhfUOFbxA8NbjyYqsFV+SPjD977+T2z44iIiA9q0kQLXIqIiIiUhPy2bUmdPBmvYRDy/vuETppkdiQROQMqfIv4oRB7CMMuHwbA5J8mk5yTbHIiERHxNY0bH5vnW4VvERERkX8r95ZbSB89GoDwiRMJnjnT5EQicjoqfIv4qdvq30bDmIak56fz0o8vmR1HRER8zN8jvrXApYiIiEhJyOrXj4whQwCIGDGCwGXLTE4kIqeiwreIn7IYFka2HAnAh798yK7UXSYnEhERX3JsxPcff9hISdEClyIiIiIlIeOJJ8jq3RvD4yHqwQdxrF9vdiQROQkVvkX8WOvzWtOhZgfcXjfPb3je7DgiIuJDIiK81K7tAmDrVo36FhERESkRhkHaCy+Q06EDRl4e0X37Ytu+3exUInICKnyL+LmnWzyN3WLn67++ZuVfK82OIyIiPuTSSwunO/npJ83zLSIiIlJibDZSp00jr2VLLBkZxPTpg/WPP8xOJSL/jwrfIn6udkRt+l7cF4DnvnsOl8dlciIREfEVfy9wqRHfImfqwAEr27bZT3o7cMBqdkQREfEFgYGkvPsuBRdeiDUxkZhevbAkJpqdSkT+wWZ2ABH59/576X/5eNfH7HLuYtavs7j7orvNjiQiIiY7cMBKWJgHgE2b7Gzdasf4x1Tf0dEeqlVzm5ROxDcdOGClTZsq5OWdfF78gAAv3357VL8/IiKCNyKC5FmzqHTLLdj27SO6Tx+S583DGxZmdjQRQSO+RcqFyIBIHrvsMQAm/jCR9Px0kxOJiIiZjhXvHn00CgCn00rHjpXp0OHvW5s2VTRyVeT/SUmxnLLoDZCXZ5CSordRIiJSyFO1KsmzZ+OOicGxfTvR994LeXlmxxIRVPgWKTf6XNiHepH1SMlN4dWfXjU7joiImEjFOxEREZGy465Th5QPP8QTEkLA2rVEPfQQuPXNIBGz6d2OSDlht9h5tsWzALyz/R3+SNfCGiIiIiIiIiJloeCSS0iZPh2v3U7Qp58S8cwz4PWaHUukQlPhW6QcueY/19C2WlvyPfmM2TjG7DgiIiIiIiIiFUZ+27akvvoqXsMg5IMPCJ00yexIIhWaCt8i5YhhGIxsORKLYWHZ3mV8d+g7syOJiIiIlDtbt9rMjiAiIj4q9+abSRtTOBAtfOJEgmfMMDmRSMWlwrdIOXNB9AX0atALgOe+ew6P12NyIhERERH/kJ19Zvs98UQUvXpFs2WLvXQDiYiIX8q+5x4yHn4YgIgRIwj89FNzA4lUUCp8i5RDQy8fSpg9jK1JW5n/23yz44iIiIj4vJwcg5EjI85oX6vVy6pVgXTqVJn+/aPYuVMjwEVEpLiMxx8nq3dvDK+XqAcfxLF2rdmRRCocFb5FyqFKQZUYcukQAF7c+CJZ+VkmJxIRERHxXbm50K9fFNu2OYBTL0QWEODl44+T6N49G8Pw8tlnQVx7bWUeeiiSffusZRNYRER8n2GQ9uKL5HTsiJGfT3S/fti2bzc7lUiFoqEJIuVUv4v7MWPHDP7K/IsJ6yYwsMFAsyOJiEgZiY72EBDgJS/POOk+AQFeoqM1HZZIfj7cd180q1cHEhzsYfLkVP7zn5P/bkRHe6hWzU2LFk4eeCCTiRPDWLYsiE8+CWbx4iDuuCOb//43g7g4/X6JiFR4ViupU6di6dOHgPXrienTh6SFC3HXqmV2MpEKQYVvkXIq0BbIUy2e4v4V9zN+7Xhurn4zscGxZscSEZEyUK2am2+/PUpKSvEv92VkwIAB0TidVvr2zaRaNbdJCUV8Q0EBPPBAFCtWBBIY6GHGjBRatco/4+MbNHDx9tupbNmSyfjxYaxcGcjMmSF8/HEwd9+dxYMPZuoDJhGRii4wkJR336VSt27Yd+wgpndvkhYuxFO5stnJRMo9n5zqZPny5QwePJjevXszYsQIdu/efdJ9v/rqK5599ln69u1L3759ef7550+5v0hF0rl2Z5rHNifHlcO4jePMjiMiImWoWjU3jRoVFLu1bl3A88+nA/D++6GalkEqNLcb/vvfSD77LIiAAC/vvZd6VkXvf2rcuIBZs1KYPz+J5s3zyM01ePPNUFq1qsLEiWGkp5/82xciIlL+ecPDSf7wQ1w1amDbt4/oPn0wMjLMjiVS7vlc4XvdunXMmDGD7t27Ex8fT82aNRk7dixpaWkn3H/Hjh1cccUVjBw5kjFjxhATE8OYMWNISUkp4+QivscwDEa1HAXAx799zJbELeYGEhER03XtmsOVVxYW5kaMiMB76umMRcoljwceeyySRYuCsdu9vPlmCm3b5v3r87Zsmc8nnyQzc2YyDRvmk5lp4ZVXwmjVqiqvvx5CTo4K4CIiFZWnalWSZ8/GXakSju3bie7Xr3CRCREpNT5X+F66dCnXXnstV199NdWrV2fAgAE4HA6++eabE+4/ZMgQ2rdvT61atahWrRr3338/Xq+Xbdu2lXFyEd/UpEoT+lzSB4BR60fhVYVDRKRCMwx44QUnDoeXVasCWbw40OxIImXK64XhwyP4+ONgrFYvr72WyvXX//ui9zGGAddck8dnnyXx5psp1KtXgNNpYcyYCK64ogrvvx9M/rkNLBcRET/nrl2blA8/xBMSQsC6dUQ99FDhV5BEpFT4VOHb5XKxZ88eGjVqVLTNYrHQqFEjdu3adUbnyMvLw+VyERoaesLHCwoKyM7OLrrl5OQUPWYYRpndyvp6ak/Fbs+L175IoC2QjUc28tm+z0zPo59P+WyL2nPq84j4krp13Tz0UOHXa0eNiiAtTc9TqRi8Xhg5MpxZs0KwWLxMmZJKp06lM9rOYoHOnXNZsSKRl19OpXp1F0eOWHnqqUjatq3Cxx8HqdYhIlIBFTRqRMo77+B1OAhatoyIp55CX8ETKR0+tbhleno6Ho+HyMjIYtsjIyM5ePDgGZ1j1qxZREdHFyue/9OCBQuYN29e0f3atWsTHx9PZRMWFYiNLV8LDao9vu2J1k8wevVoXvzhRe5scScBtgCzI/0r5ennU57aAmqPP1i+fDlLlizB6XRSs2ZN+vXrR7169U66//r165k7dy6JiYnExsbSu3dvmjZtWvT4hg0b+PLLL9mzZw+ZmZmMHz+eWv9YqT4zM5OEhAS2bNlCUlIS4eHhNGvWjJ49exIcHFyaTZVTGDw4kwULgtmzx0Z8fDgvvHDiaeVEyguvF8aODeeddwoHyLz0kpNbbin9r5jbbHD77Tl06ZLDRx8FM3lyGH/9ZePhh6OYNi2UJ57I5N57Sz2GiIj4kPw2bUh99VWiBg0iZOZMPJUrk/HYY2bHEil3fKrw/W8tXLiQtWvXMmrUKBwOxwn36dq1K507dy66f2wkXmJiIi6Xq0xyGoZBbGwshw8fLhfTTqg9vu1Ye+6udzdvfv8me1L3MOarMTzQ+AGzo52T8vTzKU9tAbXnVGw2mykfsJ7IsbU0BgwYwPnnn8+nn37K2LFjmTRpEhEREcftv3PnTiZPnkyvXr1o2rQpa9asYcKECcTHx1OjRg2g8NtWF1xwAa1ateLNN9887hwpKSmkpKRw5513Ur16dZKSknj77bdJTU3lMb3AN01AAIwb56RHj0rMmBHMbbdlc+mlBWbHEik1EyeG8frrhUXv+HgnPXrknOaIkhUQAPfck83tt+fw3nshTJsWym+/2RkwIIo33oBHHw3gqqty0ReFREQqhtybbiItOZnIp54i7OWXcVeqRPbdd5sdS6Rc8ampTsLDw7FYLDidzmLbnU7ncaPA/7/FixezcOFCnn76aWrWrHnS/ex2O8HBwUW3oKCgose8Xm+Z3cr6emqP2hNkC2JYs2EATP5xMonZiabn0s+nfLVF7Tn1eXzF2a6lsWzZMpo0acLNN99M9erV6dmzJ3Xq1GH58uVF+7Rt25bu3buf9NtWNWrU4PHHH+fyyy8nNjaWhg0b0rNnT3744Qfc+p6/qa64Ip9u3bLxeg2GDYukjMYAiJS5yZNDmTQpDIDRo9Po0yfbtCxBQV4eeCCT9euP8PDDGYSEePjhB+jdO5pu3WLYsOHEA3hERKT8yb7nHjIeeQSAiKeeInDpUpMTiZQvPlX4ttls1KlTh+3btxdt83g8bN++nfr165/0uEWLFjF//nxGjBhB3bp1yyKqiF+67fzbaFSpERkFGbz0w0tmxxGRMnYua2ns2rXruIJ248aN+e233/5VluzsbIKCgrBarSfdx1fW5fC1OeNL+jZyZAaRkR5+/tnOu++GVth+0POh/PbDm2+GMn58OABPP51O//7ZprfbMAwiIuCJJzL57rtEHn0UAgK8bNgQwK23VqJPn2i2bbObnrE8Ph9Od30RkbKW8dhjZPXpg+H1EvXQQzjWrDE7kki54XNTnXTu3Jlp06ZRp04d6tWrx7Jly8jLy6Ndu3YATJ06lejoaHr16gUUTm+SkJDAkCFDqFKlStFo8cDAQAIDA01qhYhvshgWRrUcRbel3fjw1w+556J7aBDdwOxYIlJGzmUtDafTedwUKBEREcd9O+tsc8yfP5/rrrvulPv50rocJcUX54yPi4MJE2DAAJg4MZx+/cL53yw2pcYX+8EM6odCpdkP06bB6NGF/37+eXj66XAgvNSudy7i4uCll+CRRwzGjIF33oFvvgnkm28C6d69MP+FF5qdsuzo90JEKhzDIO2FF7CkpBC0bBnR995L0vz5uBo2NDuZiN/zucJ369atSU9PJyEhAafTSa1atRgxYkTRm/SkpKRin8Z/+eWXuFwuXn755WLn6d69Oz169CjL6CJ+oWVcSzrV6sSyfcsYvWE0szrOMjuSiFQg2dnZjBs3jurVq3Pbbbedcl9fWJejpBiGb8+B37EjNGsWw6ZNDu67L5f33kstlev4ej+UFfVDodLuh1mzghg6NBKA//43g3vvzeTQoRK/zL92rB9stsOMHOnlrrusvPRSGAsWBDJvnsEnn3jp3j2HRx/NpEaN8js9lC/8XvjSmhwiUsFYraROmYIlNZWA9euJ6d2bpIULcdeubXYyEb/mc4VvgA4dOtChQ4cTPjZq1Khi96dNm1YGiUTKlxHNR/Dln1+ycv9Kvv7ra675zzVmRxKRMnAua2lERkaSlpZWbFtaWtpp1944kZycHF544QWCgoJ4/PHHsdlO/TLEbrdjt9tP+Ji/Fgt9cd53AMMoXOzvhhsq8/nngSxfHkD79rmldj1f7Yeypn4oVBr9MG9eEE88UfhtlYEDMxk6NANf7+pj/VCrlospU1IZPNjGhAlhLF8eREJCMAsWBNG7dzZDhmRQtarH7LilRr8XIlJhBQaS8u67VOrWDfuOHUXFb0+VKmYnE/FbPjXHt4iUjdoRtel3cT8ARn83GpfHv0ZOisi5OZe1NOrXr8+2bduKbdu6dSvnn3/+WV07OzubMWPGYLPZeOKJJ3A4tHibr2nQwMX992cChdNBZGVpvlvxT4sXB/LII5F4vQb33JPFM8+k44/TN19wgYt33kll6dJE2rbNpaDA4P33Q2jdugpjx4aRkuKHjRIRkVPyhoeTPGsWrpo1sf3xBzG9e2Okp5sdS8RvqfAtUkH999L/Eh0YzW/O3/jw1w/NjiMiZaRz586sWLGClStXsn//fqZPn37cWhqzZ88u2r9Tp05s2bKFJUuWcODAARISEvj999+LfTMrMzOTffv2sX//fgAOHjzIvn37ikaWZ2dnM3bsWPLy8rj//vvJycnB6XTidDrxeMrvqEV/9PDDmdSo4eLgQRsTJ4aZHUfkrC1fHsiDD0bh8Rj06pXF88+n+WXR+58uvbSAjz5KISEhicsuyyc318Jrr4XRunVVXnkllMxMP2+giIgU46lSheTZs3FXqoR9xw6i+/WD3NL7Jp5IeeaTU52ISOmLCIjgscse46m1TzHx+4l0rduViICI0x8oIn7tbNfSaNCgAUOGDGHOnDl89NFHxMXFMXToUGr8Y/XD77//ntdee63o/qRJk4C/19vYu3cvv/32GwBDhgwplmfq1KlU0dc3fUZQkJexY9O4884Y3nknhG7dsmnYUN8KEv+wYkUA998fhdtt0K1bNuPGpWEpR8N8rrgin0WLklixIoD4+HB27LAzcWI4774bwuDBmdx9dxZBQWanFBGRkuCuVYvkWbOo1K0bAevXE/XQQ6S+8QZYrWZHE/ErhlcTqAGFC2UVFBSUybUMwyAuLo5Dhw6Vi/nr1B7fdqr2uDwurpt/Hb85f2Ngo4E82/JZk1KeufL08ylPbQG151TsdrsWyypBZfk3u6T42+/HwIFRLF0axKWXFhbaSuo9lr/1Q2lRPxQqyX749lsHd98dQ16ewU035TB1aiqnWUbAZ5xLP3g8sGRJIBMmhLN3b2FDY2PdPPxwBj17ZnOS5RF8mi/8Xujvdcnyx7/X58IXnrvlhfryeI61a4np0wcjP5+sPn1IGzeOM/kqk/qy5KgvS05J9eXZ/L0uR2MgRORs2Sy2omL3uz+/y960vSYnEhERX/Dcc2mEhnr46ScHM2cGmx1H5JS++87BPfdEk5dn0L59DlOm+E/R+1xZLHDLLbmsXHmUl15K5bzzXBw+bGX48EiuuqoK8+cH4XabnVJERP6t/CuuIHXKFLyGQciHHxL20ktmRxLxKyp8i1Rw1/znGtpVb0eBp4AXNr5gdhwREfEBsbEehg3LAGDcuHCOHNFLRvFN339v5667osnNtXDNNbm8/nqqX452Plc2G/TsmcOaNUd5/vk0KlVy88cfNoYMieL66yvz2WeBaHCaiIh/y+3cmbSxYwEIe+UVgt9/39xAIn5E72JEhGdbPIvVsLJs3zLWH1pvdhwREfEBd9+dRePG+WRkWBg1SmtAiO/ZssVOnz4xZGVZaNMmj7feSiEgwOxU5ggIgH79sli//ijDh6cTEeFh5047/ftH07lzJVavDlABXETEj2XffTcZjz4KQMTTTxO4eLHJiUT8gwrfIkKD6Ab0vqA3AM999xwer8fkRCIiYjarFeLj07BYvCxeHMTKlRW0oig+6eefbfTqFUNGhoWWLfN4990ULewIBAd7eeihTNavP8KQIRkEB3vYvNnBHXfEcNttMWzaVIGGw4uIlDMZjz5K1p13Yni9RA0ZguPbb82OJOLzVPgWEQAev+xxwuxhbEvaxse/fWx2HBER8QGNGhXQt28WACNGRJCTY3IgEWDXLht33BGD02mhadN8PvggheBgDWf+p4gIL8OGZbBu3VHuvTcTh8PL+vUBdOlSmbvuimb79nI+CbqISHlkGKSNHUvOjTdiFBQQfe+92LdtMzuViE9T4VtEAIgJiuG/l/4XgPhN8WQXZJucSEREfMETT2QQG1s4b/Crr4aZHUcquD17rNx+ewzJyVYuuSSfDz9MJjRURe+TqVzZw+jR6axZc5RevbKwWr2sWBFI+/ZVuP/+KHbvtpodUUREzobVSuqUKeS1bo0lK4voPn2w7t1rdioRn6XCt4gU6dewHzXDanIk+wivbX3N7DgiIuIDQkO9PP98GgCvvx7Kb79ppKiY488/rfToUYmjR61ceGEBs2YlExGhoveZqFbNzYQJaaxceZQuXQoHNyxZEsTVV1fhscci2L9fBXAREb8REEDKu++S37Ah1qQkYnr1wnLkiNmpRHySCt8iUiTAGsBTLZ4C4PUtr3Mw86DJiURExBd07JjLddflUlBgMHx4hBbJkzJ34ICFHj1iOHTIyvnnFzBnTjLR0Xoinq06ddxMm+bkiy+Ocv31uXg8BnPmhNCmTRWeeSaco0f19lBExB94w8JI+fBDXLVqYfvzT2L69MFITzc7lojP0SsbESmmU61OtIhtQa47lxc3vWh2HBER8QGGAWPHphEU5OG77wJISNAqglJ2jhyx0KNHJf76y0atWi7mzk2mUiUtxP1vXHyxi/ffT2Hx4kSuuCKP/HyDd98NpXXrKrz4YhipqYbZEUVE5DQ8lSuTPGsW7sqVse/YQXS/fpCba3YsEZ+iwreIFGMYBiNbjgTgk92fsDlxs7mBRETEJ1Sv7uaxxzIAeP75cFJS9DJSSl9SkoXbb49h3z4b//mPi4SEJKpWVdG7pFx2WQEJCcnMmZPEpZfmk5NjYerUMFq3rsrkyaFkZakALiLiy9y1apH84Yd4QkMJWL+eqAcfBLcbx+rVcNFFhf8VqcD0jkVEjtO4cmO6n98dgFHrR+HVd9pFRATo3z+LCy8sIDXVyvPPh5sdR8q5lBSDnj1j+O03O3FxbhISkqlWTUXv0tCmTT5LliTx3nvJXHBBAenpFsaPD6dVqyq8/XaIBhCKiPgwV8OGpLz7Ll6Hg6DPPiNi+HDCXnwRfvml8L96Py8VmArfInJCw5sNJ9AayKYjm1i6d6nZcURExAfY7TBunBPD8JKQEMz69Q6zI0k5lZZm0KtXDL/8YqdKFTcJCUnUqOE2O1a5Zhhwww15fPllItOmpVKrlovkZCujRkVw5ZVVmT07mIICs1OKiMiJ5F9xBalTp+I1DEJmz8axZQsAji1bCFi1yuR0IuZR4VtETiguJI4HGj8AwNgNY8l1aaiPiIjA5ZcX0Lt3NgDDh0eQl2dyICl3MjMNeveOYds2BzExbubOTaZOHRW9y4rFAl265LBy5VHGj3cSF+fm0CErQ4dG0q5dFRYuDMKjgfciIj4n98YbSXvhhWLbvFYrYePHa9S3VFgqfIvISQ26ZBCxwbH8lfkX7/78rtlxRETERzz5ZDqVKrnZvdvO66+Hmh1HypHsbIO77ormp58cREZ6mDMnmfr1XWbHqpDsdujdO5s1a44walQaMTFu9u2zMXhwFDfcUJkvvghQHUVExMe4a9Qodt9wuzXqWyo0Fb5F5KSC7cEMbzYcgMk/TSYpJ8nkRCIi4gsiI72MGpUOwKuvhrF3r9XkRFIe5OTAPfdEs2FDAOHhHj76KJmLLlLR22yBgTBgQBbr1x/liSfSCQ/38Msvdvr2jeGmmyqxZo2mPBIR8QleL2Hjx+O1Fn9d5jUMwuLjNepbKiQVvkXklLqd343GlRqTWZDJhO8nmB1HRER8RJcuObRpk0densGIERF6LyX/Sl4e3HdfNGvXBhAS4uHDD5O55BJNKO1LQkK8/Pe/maxbd4QHH8wgMNDDTz85uP32SvToEcMPP9jNjigiUqEFrFqFY8sWDHfx6cEMrxfH1q0EfPWVSclEzKPCt4icksWwMLLlSABm/TqLj3Z+xMLdC1l3cB1uj+bbFBGpqAwDXnjBSUCAl9WrA1m0KMjsSOKnCgpg0KAovv46kKAgDzNnpnDZZSp6+6qoKC9PPpnB+vVH6dcvE7vdy9q1Adx8c2XuuSeaHTtsZkcUEal4jo32NoyT7hL14IMY6ellGErEfCp8i8hptYhrQdMqTfHi5fHVjzP4m8Hc9ulttJjTgmV7l5kdT0RETFKnjpuHHsoAYNSocNLSTv5mS+REXC548MFIPv88iIAAL++9l0KLFvlmx5IzUKWKh+efT2fNmqP07JmFxeLlyy8DueGGygweHMmePZoCSUSkzOTnYz1wAOMUX8GzZGYS0707lsTEMgwmYi4VvkXktJbtXcaPR388bvvhrMPc99V9Kn6LiFRgDzyQSd26BSQmWhk3LtzsOOJH3G7o2xeWLAnCbvcyfXoKbdqo6O1vqld389JLaXzzTSI33ZSD12uwcGEw7dpVYejQCA4c0FtOEZFSFxBA4rJlJC5fXnTjhx+K/p366qu4IyNx/Pwzlbp0wfrHH2YnFikTehUiIqfk9rh5dv2zJ3zMS+GnySPXj9S0JyIiFVRAALz4YhoAM2cG8+OPmudXTs/jgWHDIvjwQ7DZvLz5ZirXXJNndiz5F+rVc/HGG6l8/vlRrr02F7fbYPbsEK68siojR4aTlKS3niIipclTrRoFjRpR0KgRrksugaZNcV1yCQWNGpHTrRtJixfj+s9/sO3bR6UuXbBt3252ZJFSp1cfInJKGw5v4FDWoZM+7sXLwayDbDi8oQxTiYiIL7niiny6d8/G6zUYNiwSl8vsROLLvF545pkIZs8OxmKBqVOdtG+fa3YsKSENG7qYMSOFhQuTaNUqj/x8g+nTQ2nVqgrx8WGaEklExCTuunVJWriQggsvxHr0KJW6d8exbp3ZsURKlQrfInJKR7OPluh+IiJSPj37bDqRkR527LAzfXqI2XHER3m9MHp0OO+/H4JhePngA7j5ZhW9y6NmzfL5+ONkPvoomcaN88nOtvDqq2G0alWVKVNCyc5WAVxEpKx5YmNJmj+fvJYtsWRkENO7N4Gffmp2LJFSo8K3iJxSleAqJbqfiIiUTzExHp5+Oh2AiRPDOHBAC9tJcV4vjBsXxltvhQIwYUIaffqYHEpKlWFA27Z5fPppEtOnp9CgQQFpaRbGjQundesqvPtuCHma4UZEpEx5IyJInjWLnI4dMfLziRo4kOAZM8yOJVIqVPgWkVNqEduCuJA4DE4+KifYFszlVS4vw1QiIuKLbr89m+bN88jJsfD001roUoqbNCmUqVPDABg71kmvXjkmJ5KyYhjQsWMuX36ZyKuvplKzpovERCvPPBNBmzZVmDMnSFMkiYiUpcBAUt98k6zevTG8XiKffJLQl18u/JRapBxR4VtETslqsTK61WiAkxa/s13ZPP7t41rgUkSkgrNYYNy4NGw2L198EcTy5YFmRxIf8dproUycWPhhyMiRadxzT7bJicQMVit065bDypVHefFFJ7Gxbg4csPHYY1G0a1eZuXMLFz4VEZEyYLWSFh9PxsMPAxD+0ktEPPUUuPW+XsoPFb5F5LQ61e7EW9e9RWxIbLHt54Wcx30N78NqWJm/ez4PrXwIl0fDdUREKrIGDVzcf38mAE8/HUFmpubxrejeeSeEsWMLi97Dh6dz331ZJicSszkccNdd2axZc4RnnkkjKsrNnj02evaEG26oxFdfBWjQoYhIWTAMMoYOxTlmDF7DIOSDD4gaNAjNQyXlhc3sACLiHzrV7kT7mu3ZcHgDR7OPUiW4Ci1iW2C1WGke25xBXw9i0e+LKPAU8No1r2G32M2OLCIiJnn44UwWLw7izz9tTJwYxqhR6WZHEpPMnBnMs89GAPDIIxk89FCmyYnElwQFwf33Z9G7dzbTp4fy5pth7Nhh5+67Y7jssnyGD0+ndet8s2P6veXLl7NkyRKcTic1a9akX79+1KtX74T7fvXVV6xevZq//voLgDp16nDHHXecdH8RKR+y+/bFExND1JAhBH36KZbUVFLefRdvWJjZ0UT+FY34FpEzZrVYaX1ea7rU60Lr81pjtRQuXNaxdkfeuu4tHBYHy/YuY+BXA8lz6xNiEZGKKijIywsvpAGFo323b9dYi4ooISGI4cMjAXjggQweeyzD3EDis8LCvDz6aCZ798KgQZkEBnr54QcHt91WiTvuiGbzZg2oOFfr1q1jxowZdO/enfj4eGrWrMnYsWNJS0s74f47duzgiiuuYOTIkYwZM4aYmBjGjBlDSkpKGScXkbKWe/PNJM+ciSckhIB166jUrRuWo0fNjiXyr6jwLSIl4oaaN/DODe8QYA3g8z8+Z8CXA8h15ZodS0RETHL11XncdFMOHo/BsGGRmi6yglm4MIjHHosE4N57MxkxIgNDs97IacTEwDPPZLB27RHuvjsLu93L6tWB3HhjZe69N4pffy38EO3AASvbttlPejtwwGpyS3zH0qVLufbaa7n66qupXr06AwYMwOFw8M0335xw/yFDhtC+fXtq1apFtWrVuP/++/F6vWzbtq2Mk4uIGfLbtCF5/nzclSph//lnKnXpgnXfPrNjiZwzDb8RkRJzzX+u4f3279P3876s+GsF/b7oxzs3vEOQLcjsaCIiYoJRo9JYuTKAzZsdzJwZTN++OWZHkjKwbFkgQ4ZE4vEY9OmTxXPPpavoLWclNtbDCy+kcf/9mbz8chjz5wexfHkQn38eSPv2uXz9dSD5+Sd/UgUEePn226NUq1axP3FzuVzs2bOHLl26FG2zWCw0atSIXbt2ndE58vLycLlchIaGnnSfgoICCgoKiu4bhkFQUFDRv8u7Y22sCG0tberLkvNv+tJ1ySUkL1pE9B13YPvjDyp16ULKhx/iatSopGP6BT0vS44ZfanCt4iUqLbV2jKzw0zu+vwuVh1Yxd2f3837N7xPsD3Y7GgiIlLGYmM9DBuWztNPRzJuXDgdO+YRF2d2KilNX34ZwAMPROF2G/Tokc2LL6ap6C3nrEYNN5MmOXnggUwmTAhj2bLCAvjp5OUZpKRYKnzhOz09HY/HQ2RkZLHtkZGRHDx48IzOMWvWLKKjo2l0ioLXggULmDdvXtH92rVrEx8fT+XKlc8pt7+KjY01O0K5ob4sOefcl3Fx8N130LEj1i1bqNy9OyxaBFdfXbIB/YielyWnLPtShW8RKXGtz2vNrA6zuPPzO1l7cC13Lr+TD9p/QKjj5CNFRESkfLrrrmw+/jiYLVscjBoVzqJFZieS0rJqVQD33RdNQYHBLbdkM3GiE4smVpQSUL++i7ffTmXr1kyeeSac778PMDtShbBw4ULWrl3LqFGjcDgcJ92va9eudO7cuej+sZF8iYmJuFyuUs9pNsMwiI2N5fDhw3i9XrPj+DX1Zckpqb405s4lqm9fAtavx9uhA86pU8n9x+97RaDnZckpqb602Wxn/OGqXoqKSKloEdeC2R1nE2YP47vD39F7eW8y8rWolYhIRWO1Qnx8GhaLl8WLg/j8c7MTSWlYt85Bv37R5OcbdOqUw+TJTqyaZllK2CWXFDBmTLrZMfxGeHg4FosFp9NZbLvT6TxuFPj/t3jxYhYuXMjTTz9NzZo1T7mv3W4nODi46HZsmhMAr9dbIW4Vqa3qS/+5lURfesLCSP7wQ3I6dcLIzydy4ECC3n/f9Lb5Y1/qVnJ9eTZU+BaRUnN51cuZc+McIhwRfH/ke+5YdgdpeSdeQV5ERMqvRo0K6NcvC4AHHoAcTfVdrmza5ODuu6PJzTW47rpcpk1LxW43O5WI2Gw26tSpw/bt24u2eTwetm/fTv369U963KJFi5g/fz4jRoygbt26ZRFVRHxZYCCpb7xBVp8+GF4vkSNGEPbSS3CWBUgRM6jwLSKlqknlJiTcmEBkQCQ/Jf5Ez2U9Sc1NNTuWiIiUsaFDM4iLc7NnD0yeHGZ2HCkhP/1kp0+faLKzLVx1VS5vvpnCKWZEEJEy1rlzZ1asWMHKlSvZv38/06dPJy8vj3bt2gEwdepUZs+eXbT/woULmTt3LoMGDaJKlSo4nU6cTie5ubkmtUBEfILVStq4cWQ8+igAYS+/TMSTT4K7Yq+lIL5Pc3yLSKlrWKkhH9/4Mbcvu52tSVvp8WkP5t44l+jAaLOjiYhIGQkN9TJmTBr33hvN66+H0LVrNvXrl/+5X8uz7dtt9O4dQ2amhVat8njnnVQCA81OJSL/1Lp1a9LT00lISMDpdFKrVi1GjBhRNNVJUlJS0ZzcAF9++SUul4uXX3652Hm6d+9Ojx49yjK6iPgawyDjscdwV6pExFNPETJzJpbkZFKnTEEvAMRXqfAtImXiopiLmHfjPG5fdjs7UnZw29LbmNNpDpWDK9Zq7yIiFVmHDnncdBMsWWIwfHgE8+Yla/FDP/XrrzZ69owhLc3C5Zfn88EHKQQF6SvPIr6oQ4cOdOjQ4YSPjRo1qtj9adOmlUEiEfFn2XffjScmhqiHHiJo2TIsqamkvPsu3vBws6OJHEdvNUSkzDSIbsC8zvOIDY7l19Rf6f5pd45kHzE7loiIlBHDgClTICjIw4YNASQkBJ3+IPE5u3db6dkzhtRUK02a5DNzZjIhISp6S9mIjvYQEHDq51tAgJfoaE8ZJRIRqXhyO3cmeeZMPKGhBKxfT6Vu3bAcPWp2LJHjaMS3iJSpepH1mNd5Hrd9ehu7nbvptqQbCTcmcF7oeWZHExGRMlCzJjz+eCbPPx/O889HcP31ecTEqEDlL/bts3L77ZVITLRy8cUFzJqVTHi4it5SdqpVc/Ptt0dJSTn5GK7oaA/VqmneWRGR0pR/5ZUkzZ9PTJ8+2HfsoFKXLiTPmoW7dm2zo4kU0YhvESlztSNq80nnT6geWp296XvpvrQ7+zP2mx1LRETKSP/+WVx4YQFOp4Xnn9fXYv3F/v1WevSI4fBhKw0aFPDRR8lERqroLWWvWjU3jRoVnPSmoreISNlwNWxI0sKFuGrWxPbHH1Tq0gX7tm1mxxIposK3iJiiRngN5neeT82wmvyR8Qfdlnbjz/Q/zY4lIiJlwG6H+HgnhuHl44+DWbfOYXYkOY1DhyzcfnsMBw7YqFPHxZw5yRqpLyIiIrhr1SJp0SIKLr4Ya1ISMd264fj2W7NjiQAqfIuIiaqHVWde53nUDq/N/sz9dFvajb1pe82OJSIiZeCyywro0ycbgOHDI8jLMzmQnFRiYmHRe98+GzVrukhISKJKFRW9RUREpJCncmWS5s8nr3VrLFlZxNx1F4GLF5sdS0SFbxEx13mh5zH/pvnUi6zHwayDdF/and3O3WbHEhGRMvDkk+lUruzm99/tvPZaqNlx5ARSUiz07BnD77/bqVbNRUJCMnFxKnqLiIhIcd6wMJJnziTnxhsx8vOJeuABgt9/3+xYUsGp8C0ipqsaXJV5N86jQVQDDmcfpvvS7uxK3WV2LBERKWUREV5GjUoHYMqUMPbssZqcSP7J6TTo2TOGX3+1ExvrJiEhmerVNXeyiIiInERgIKmvv07WXXdheL1EPvUUYRMmgFdrgog5VPgWEZ9QObgyH9/4MRdFX0RiTiLdl3ZnR/IOs2OJiEgpu+WWHNq0ySMvz2DEiEi9L/IRGRkGvXvH8PPPdipXdjN3bhK1aqnoLSIiIqdhtZL2wgukP/44AGGTJhExbBi49TpCyp4K3yLiM2KCYki4MYFLKl1Ccm4yPT7twfak7WbHEhGRUmQY8OKLTgICvHz7bQALFwaZHanCy8oyuPPOaDZvdhAV5WbOnGTq1dObVRERETlDhkHmI4/gHDcOr8VCyKxZRA0cCLm5ZieTCkaFbxHxKVGBUczpNIdLK19Kal4qPT7twebEzWbHEhGRUlS7tpuHHsoAYNSocJxOw+REFVdOjsHdd0ezaVMAEREe5sxJ5oILXGbHEhERET+UfeedpL75Jl6Hg6DPPiOmd2+MtDSzY0kFosK3iPiciIAIZneazeVVLyctP42en/bkhyM/mB1LRERK0QMPZFK3bgFJSVbGjQs3O06FlJsL994bxfr1AYSGepg1K5mGDVX0FhERkXOX26kTybNm4QkLI+C776jUrRuWI0fMjiUVhArfIuKTwh3hzOowi5axLckoyKDXZ73YeHij2bFERKSUBATAuHGFI4A+/DCYH36wm5yoYsnPh/vvj2bVqkCCgz18+GEKl15aYHYsERERKQfyW7cmad483JUrY//lFyp16YJ1zx6zY0kFoMK3iPisUEcoMzvM5IrzriCzIJPen/Vm3cF1ZscSEZFS0rp1Prfdlo3XazBsWCQFqruWCZcLBg+O4ssvAwkM9PL++yk0a5ZvdiwREREpR1wNG5K0aBGuWrWw/fknlbp0wb51q9mxpJxT4VtEfFqwPZgP2n/AVdWuItuVTZ/P+vDVnq/MjiUiIqXk2WfTiYz08Msvdt55J8TsOOWe2w0PPxzJsmVBOBxe3nknhSuuUNFbRERESp67Zk2SFi4kv1EjrMnJxHTvjmP1arNjSTmmwreI+LwgWxDv3vAu1/znGnLduXSe3Zlv/vrG7FgiIlIKoqM9PPNM4ZQnEyeGsX+/1eRE5ZfHA0OHRrJgQTA2m5c330yhXbs8s2OJiIhIOeapXJnkjz8m74orsGRlEXPXXQQuWmR2LCmnVPgWEb8QaAtk+vXTaV+zPXnuPPp+3pcv//jS7FgiIlIKbr89hxYt8sjJsfD00xF4vWYnKn+8XhgxIoK5c4OxWr289loqN9ygoreIiIiUPm9YGMkzZ5LTuTNGQQFRgwcT8u67ZseSckiFbxHxGwHWAN66/i26XdiNfE8+A74awGd7PzM7loiIlDDDKFzo0m738uWXgSxfHmh2pHLF64WRI8OZOTMEw/Dy6qtObrwx1+xYIiIiUpEEBJD62mtk3XMPhtdLxDPPEDZ+PBrxICVJhW8R8St2i5053edwS91bKPAUMHDFQBb/vtjsWCIiUsLq13dx//2ZADz9dASZmYbJicoHrxdeeCGMd94JBeCll5x06ZJjcioRERGpkKxW0saMIX3oUADCJk8m4oknClfeFikBKnyLiN+xWWxMuXoK3ep1w+11M/ibwSzYvcDsWCIiUsL++98MatZ0cfiwlQkTwsyOUy68/HIYr71W2Jfjxjm5/XYVvUVERMREhkHmww/jHD8er8VCyOzZRA0cCDl6jSL/ns8VvpcvX87gwYPp3bs3I0aMYPfu3Sfd96+//mLixIkMHjyYHj168Omnn5ZhUhExk81i45WrXqFn/Z54vB6GrBxCwq4Es2OJiEgJCgqCF14oXOjy3XdD2LbNbnIi/zZlSigvv1xY9H7uuTTuvDPb5EQiIiIihbJ79yb1rbfwBgQQtHw5Mb17Y6SlmR1L/JxPFb7XrVvHjBkz6N69O/Hx8dSsWZOxY8eSdpInel5eHlWrVqVXr15ERkaWbVgRMZ3VYmVC2wn0uaAPHq+HR1c9yuxfZ5sdS0RESlC7dnncfHMOHo/BsGERuN1mJ/JPb70Vwrhx4QA89VQ6/ftnmZxIREREpLjcjh1JnjULT1gYARs2UKlbNyyHD5sdS/yYTxW+ly5dyrXXXsvVV19N9erVGTBgAA6Hg2+++eaE+9erV48777yTK664ArtdI4BEKiKLYWHclePoe1FfvHgZ+u1QPtjxgdmxRESkBI0alUZYmIctWxzMmBFsdhy/8/77wTz3XAQAjz+ezgMPZJqcSEREROTE8lu1Imn+fNxVqmD/5RcqdemC9fffzY4lfspmdoBjXC4Xe/bsoUuXLkXbLBYLjRo1YteuXSV2nYKCAgoKCoruG4ZBUFBQ0b/LwrHrlNX1Spva49sqQnsMw2DMFWOwW+28te0tRqwdgcvron/D/mbFPCMV4Wfjz8pbe0T8WdWqHoYPT+eppyIZNy6cjh1ziY31mB3LL8yZE8RTT0UC8OCDGTz8sIreIiIi4ttcF19M0qJFxNxxB7Z9+6jUpQspM2dS0KSJ2dHEz/hM4Ts9PR2Px3PclCWRkZEcPHiwxK6zYMEC5s2bV3S/du3axMfHU7ly5RK7xpmKjY0t82uWJrXHt1WE9rzR9Q2iwqOIXxvPs+ueJTgkmMdaP2ZCurNTEX42/qy8tUfEX915ZzYffxzM5s0ORo2K4I03Us2O5PM++SSIxx+PBGDAgEyGD89An+WJiIiIP3DXqEHSokVE33knjq1bibntNlLfeYe8tm3NjiZ+xGcK32Wla9eudO7cuej+sZF8iYmJuFyuMslgGAaxsbEcPnwYr9dbJtcsTWqPb6to7Rly0RDycvKY9OMkHv/ycZKdyTx06UMmJD29ivaz8Tcl2R6bzWbKB6wi5YnVCvHxTjp2rMySJUHcfns2V1+dZ3Ysn7VkSSD//W8kXq/BXXdlMXJkuoreIiIi4lc8lSqR/PHHRPfvT8C33xJ91104J00i5x+zRYicis8UvsPDw7FYLDidzmLbnU5niS5cabfbTzofeFkXarxeb7koDh2j9vi2itSeoZcNxWbYmPjDRF7c9CIFngIeafpIGSc8cxXpZ+OPylt7RPxZw4Yu7r03i7ffDmXEiAi+/jqRoCD9fv5/n38eyIMPRuHxGPTsmcXYsWkqeouIiIhf8oaGkjxjBlH//S9BixcTNXgwluRksu691+xo4gd8ZnFLm81GnTp12L59e9E2j8fD9u3bqV+/vonJRMQfPdL0EZ5s9iQAE3+YyPjvx6t4KSJSDgwdmkFcnJs//7QxaVKo2XF8ztdfBzBwYBQul8Gtt2YzfnwaFp95xS8iIiJyDhwOUqdNI7NfPwAinn2WsHHjQO/x5TR86mVw586dWbFiBStXrmT//v1Mnz6dvLw82rVrB8DUqVOZPXt20f4ul4t9+/axb98+XC4XKSkp7Nu3j8OHD5vUAhHxJQ82eZBnWzwLwOSfJvPCxhdU/BYR8XMhIV7GjEkD4I03Qtm502e+wGi6b791MGBANAUFBp075/DKK06sVrNTiYiIiJQAi4X00aNJHzYMgLApU4gYOhTKaNpi8U8+9U6hdevWpKenk5CQgNPppFatWowYMaJoqpOkpKSiObkBUlJSeOKJJ4ruL1myhCVLlnDRRRcxatSoMk4vIr5o4CUDsVvsPLP+GV7b+hr5nnxGtRxV7P8lIiLiXzp0yOWGG3L44osghg+PYP785Ao/qnnDBgd9+0aTm2vQvn0OU6emYvOpV/oiIiIi/5JhkDlkCJ5KlYgYNoyQjz7CkpxM6muvQVCQ2enEB/ncy+EOHTrQoUOHEz72/4vZVapUISEhoQxSiYg/69ewHzaLjSfXPsn07dNxeVw83/p5LEYFr5KIiPixMWPSWbMmgI0bA5g7N5g77sg2O5JpfvjBzp13RpOTY+Hqq3N5/fVUTrKkjYiIiIjfy+7VC09MDFEPPEDQF19g6dWLlPfew1uCawRK+aCqj4hUCHdddBcvtX0JA4P3d7zP8DXD8Xg9ZscSEZFzVK2am8ceywBgzJhwkpMr5svabdvs9OkTQ1aWhSuuyOPtt1MICDA7lYiIiEjpym3fnuTZs/GEhxOwcSOVunXDcuiQ2bHEx1TMdwgiUiH1bNCTSe0mYTEszPp1Fo+tfgy3x212LBEROUf9+2dx0UUFOJ0WRo8ONztOmfvlFxs9e8aQnm6hefM83n8/Rd/yFRERkQojv0ULkj75BHfVqth//ZVKXbpg3b3b7FjiQ1T4FpEKpfv53ZnSbgpWw0rCrgQeXvUwLo8WwxAR8Uc2G8THOzEML/PmBbN2rcPsSGXmt99s3H57DE6nhUsvzWfGjBSCg7WAs4iIiFQsrgsvJGnRIlx16mDbv59KXbpg/+kns2OJj1DhW0QqnC71ujDtmmnYDBuf7P6EISuHUOApMDuWiIicg6ZNC7jzzsL5vYcPjyQvz+RAZWDvXiu33x5DcrKVRo3ymTUrmbAwFb1FRESkYnL/5z8kLVxIfuPGWFNTienRg4CVK82OJT5AhW8RqZBuqnMTb173JnaLnUW/L+KBrx8g351vdiwRETkHw4enU6WKmz17bLz2WqjZcUrVX39Z6dEjhiNHrFx4YQGzZycTEaGit4iIiFRsnpgYkj/+mNyrrsKSnU303XcT9MknZscSk6nwLSIVVodaHZh+/XQcFgfL9i5j4IqB5LkrwFBBEZFyJiLCy6hRaQBMmRLGnj1WkxOVjoMHLfToEcPBgzbq1Svgo4+SiY5W0VtEREQEwBsSQsr775PdpQuGy0XUQw8R8vbbZscSE6nwLSIV2nU1ruO9G94j0BrIF398Qf8v+5PryjU7loiInKWbb87lqqtyycszePLJSLzlrB585IiFHj0q8eefNmrVcjF3bjKVK3vMjiUiIiLiWxwOnFOmkHnvvQBEjBpF2IsvUu5eHMoZUeFbRCq8dv9px/vt3yfQGsjXf31N3y/6kuPKMTuWiIicBcOAsWPTCAjwsmZNAAsWBJkdqcQkJVm4/fYY9u618Z//uEhISCI2VkVvERERkROyWEh/7jnSn3wSgLCpU4l87DFwuUwOJmVNhW8REaBNtTZ82PFDgm3BrD6wmruW30V2QbbZsURE5CzUru1myJAMAJ57Lhyn0zA50b+XmmrQs2cMv/1mJy7OTUJCMtWqqegtIiIickqGQeaDD5L60kt4LRaC584l+t57MXI0yK0iUeFbROR/WsW1YnbH2YTaQ1l3aB19lvchMz/T7FgiInIWBg3KpF69ApKSrLz4YrjZcf6V9HSDXr1i+OUXO1WquJk7N4kaNdxmxxIRERHxGzk9e5Lyzjt4AwMJ/Oorou+4AyM11exYUkZU+BYR+Ydmsc2Y3XE24Y5wNhzeQK/PepGen47b42bdwXUs3L2QdQfX4fao8CAi4osCAmDcuMKFLj/8MITvv7ebnOjcZGYa9OkTw9atDqKj3cydm0zduvrbIyIiInK28m64geSPPsITEUHApk1U6tYNy8GDZseSMqDCt4jI/3NZ1cuY02kOkQGR/HD0Bzot6ESzj5px26e3Mfibwdz26W20mNOCZXuXmR1VREROoFWrfHr0KJyuavjwSAoKTA50lnJyDO6+O5offnAQGelhzpxk6tfXnJQiIiIi5yq/eXOSPvkEd2ws9p07qdSlC7bdu82OJaVMhW8RkRNoXLkxc2+cS4gthL3pezmSfaTY44ezDnPfV/ep+C0i4qOeeSadqCg3v/xiZ/r0ELPjnLHcXOjbN5rvvgsgLMzD7NnJXHyxit4iIiIi/5brggtIWrSIgrp1sR04QEyXLth//NHsWFKKVPgWETmJC6MuJMgedMLHvHgBGLl+pKY9ERHxQdHRHp55Jh2Al14KY/9+q8mJTi8/HwYMiObbbwMIDvbw4YfJNG7sZ8PVRURERHyYu3p1khcuJP/SS7GmphLTowcB33xjdiwpJSp8i4icxIbDG0jKSTrp4168HMw6yLPrn2X1/tUczDyI1+stw4QiInIqPXrk0LJlHjk5Fp56KgJf/l90QQE88EAUX38dSGCghxkzUrj8chW9RUREREqaJzqa5LlzyW3XDktODtH33EPQ/Plmx5JSYDM7gIiIrzqaffSM9nt/x/u8v+N9AELtoZwfdT71I+tTP6o+9SLrUT+yPtXDqmMx9FmjiEhZMozChS6vv74yX30VyGefBdKpU67ZsY7jdsOQIVF89lkQAQFe3nsvhVat8s2OJSIiIlJueUNCSHnvPSIfe4zgTz4hasgQLElJZA0caHY0KUEqfIuInESV4CpntF/zqs1JyUthb9peMgsy+enoT/x09Kdi+wRaAzk/6nzOjyy81Y8qLIxXrlq5NKKLiMj/nH++i0GDMnn11TCeeSaCtm3zCA31naHfHg88+mgkixcHYbd7efvtFNq2VdFbREREpNQ5HDgnT8YTE0Po228TMXo0lqQkMkaMKBxBIX5PhW8RkZNoEduCuJA4DmcdLprT+58MDOJC4pjXeR5Wi5V8dz570/ayy7mL31J/4zdn4e135+/kunPZlrSNbUnbip3DYXVQJ7xO0SjxY8Xx2hG1CbAGlFVTRUTKtSFDMli8OIh9+2yMHx/G6NHpZkcCCovew4ZFMG9eMFarlzfeSOXaa/PMjiUiIiJScVgspI8ciadKFcLHjiXstdewJibinDAB7Haz08m/pMK3iMhJWC1WRrcazX1f3YeBUaz4bVD46e9zrZ7DailcMM1hddAgugENohsUO4/L4+KP9D/Y7dzNLucudqXu4jfnb+x27ibHlcOvqb/ya+qvxa9tWKkVXov6UfULR4n/rzBeN7IuQbYTL7gpIiInFhQEL7yQRq9eMbz3Xgi33ZZDo0bmzp/t9cIzz4Qze3YIFouXKVNS6dDB96ZhERERESn3DIPMBx7AHRND5NChBH/8MZaUFFLffBPH99/Dc8/hGDmSvDZtzE4qZ0mFbxGRU+hUuxNvXfcWz65/lkNZh4q2x4XE8Vyr5+hUu9Npz2Gz2KgbWZe6kXVpT/ui7V68FAQXsGbnGnal/l0Q/y31NzIKMvg97Xd+T/udz/is6BgDgxphNf6eNuXYSPHI8wl1hJZs46XcWr58OUuWLMHpdFKzZk369etHvXr1Trr/+vXrmTt3LomJicTGxtK7d2+aNm1a9PiGDRv48ssv2bNnD5mZmYwfP55atWoVO0d+fj4zZsxg3bp1FBQU0LhxY/r3709kZGQptVKkuKuuyuOWW7JZtCiYYcMiWLIkCavVnCxeLwwdCu+9F4JheHnlFSe33KKit4iIiIiZcm6/HU90NFH330/gihXE9OgB+fnwyy+EvfgieVdeqSlQ/IwK3yIip9Gpdifa12zPhsMbOJp9lCrBVWgR26JopPe5shgWakXWIqBGANf855qi7V6vl8PZh/kt9bdi06bsTN2JM8/JHxl/8EfGH3z151fFzhcXElc0XUr9qPrUjyxcXDMqMOqcM7o97hJvt5hr3bp1zJgxgwEDBnD++efz6aefMnbsWCZNmkRERMRx++/cuZPJkyfTq1cvmjZtypo1a5gwYQLx8fHUqFEDgLy8PC644AJatWrFm2++ecLrfvDBB/z44488+uijBAcH88477/DSSy/x/PPPl2p7Rf5p1Kh0vvkmkC1bHHzwQQj9+mWZkmPChFAmTSr8d3x8Gt2755iSQ0RERESKy7v+epLnzCHmnntw/Phj0XbHli0ErFpFXrt25oWTs6bCt4jIGbBarLQ+r3WZXMswCucOjwuJo231tkXbvV4vybnJ/Ob8rXB0+P8K47uduzmSfYRDWYc4lHWIVQdWFTtf5aDKRQtq/nOUeKWgShin+LR62d5lJxzpPrrV6DMa6S6+aenSpVx77bVcffXVAAwYMIAff/yRb775hi5duhy3/7Jly2jSpAk333wzAD179mTbtm0sX76c++67D4C2bQufp0ePHj3hNbOzs/n666/573//S8OGDQF44IEHeOSRR9i1axf169cv6WaKnFCVKh6GDUvnqaciiY8Po2PHHOLiPGWaYdKkUCZNCgNgzJg0evfOLtPri4iIiMipFTRrRtL8+VRu3x7D5QLAC0QNGkTGww+T37IlBRdfDDaVVX2dfkIiIn7CMAwqBVWiUlAlWsW1KvaYM89ZNE3KrtRdRfOJH8g8QGJOIok5iaw7tK7YMZEBkcUW1DxWGI8LieOzfZ9x31f3Hbeo5+Gsw9z31X28dd1bKn77IZfLxZ49e4oVuC0WC40aNWLXrl0nPGbXrl107ty52LbGjRuzadOmM77unj17cLvdNGrUqGhbtWrVqFSp0ikL3wUFBRQU/D0Ps2EYBAUFFf3bnxzL62+5S5ov9MNdd+Uwb14wP/3k4LnnInjzTWeZXfv110OYMCEcgIkToXfvHLzeivuc8IXngy9QPxRSP4iIiC+xHj5cVPQGMAAjPZ2I0aMB8ISEkN+sGfktWpDfsiX5jRtDQIBJaeVkVPgWESkHIgMiaVa1Gc2qNiu2PTM/k91pu/8uhv9vHvE/0v/Amedk45GNbDyysdgxIbYQ8j35xxW9oXBecgODketH0r5me0174mfS09PxeDzHzasdGRnJwYMHT3iM0+k8bgqUiIgInE7nGV/X6XRis9kICQk5q/MsWLCAefPmFd2vXbs28fHxVK5c+Yyv7WtiY2PNjuATzO6Hd9+Fyy+HJUuCGDQoiI4dS/+aU6fCsZl9xoyBxx4D0PMBzH8++Ar1QyH1g4iImM7rJWz8eLxWK4bb/fdmw8AbWri2liUjg8CVKwlcubLwsYAA8i+99O9C+GWX4f1/73+k7KnwLSJSjoU6QmlSuQlNKjcptj3HlcOetD3HzSO+N20vWa5Tz3nrxcvBrINsOLyhzKZ/kYqpa9euxUabHxsFmJiYiOsfoy/8gWEYxMbGcvjwYbze4z9Uqih8pR+qVoX+/cN4881QBg508c03iQQHl971Zs0KYujQSAAefjiDe+/NAszvB7P5yvPBbOqHQr7QDzabza8/XBURkZIRsGoVji1bjttueL0YGRkkz5yJu2pVHBs3EvDddzg2bMCamEjAd98R8N13MHkyXquVgkaNyG/RgryWLclv1gxv1LmvvyXnRoVvEZEKKMgWxMUxF3NxzMXFtue783ln+zuM2TjmtOcYuX4k3c/vzlXVr6JBVAN9NdkPhIeHY7FYjhtl7XQ6jxsFfkxkZCRpaWnFtqWlpZ10/5Odw+VykZWVVWzU9+nOY7fbsdvtJ3zMX4tDXq/Xb7OXJF/oh8cey2DJkkD++svGpEmhPPlkRqlc5+OPg3jiicJvTdx/fyaPP55RNL2JL/SDL1A/FFI/FFI/iIiIqY6N9jYMjBP8PfIaBmETJ5L06ae4Lr6Y7L59wevFumcPARs24PjfzfbXXzg2b8axeTOhb74JQMEFFxQWwlu0IL9FCzz6llOpU+FbRESKOKwOGldufEb77kjZwegNo2EDVA2uSttqbbml4S00CmlEpaBKpZxUzoXNZqNOnTps376d5s2bA+DxeNi+fTsdOnQ44TH169dn27Zt3HjjjUXbtm7dyvnnn3/G161Tpw5Wq5Vt27bRsmVLAA4ePEhSUpIWthTThIR4GTMmnX79onnjjVC6ds3hggtK9psEixYF8uijkXi9Bv36ZfL00+noM0IRERERH5afj/XAgRMWvaFw1Lf14EHIz/97Tm/DwF23Ltl165LdqxcA1gMHiorgjg0bsP/2G/Zff8X+66+EfPABAK5atYoVwt01a6IXiyVLhW8RESmmRWwL4kLiOJx1+ITzfBsULrI5sNFA1hxcw3eHvuNI9hE+/u1jPv7tYwAuir6Iq6pfRdvqbWletTmBtsCyboacROfOnZk2bRp16tShXr16LFu2jLy8PNq1awfA1KlTiY6Optf/XrB16tSJUaNGsWTJEpo2bcratWv5/fffue+++4rOmZmZSVJSEikpKQBF84VHRkYSGRlJcHAw11xzDTNmzCA0NJTg4GDeffdd6tevr8K3mKp9+1zat8/h88+DGD48gk8+ScZiKZlzf/ZZIA89FIXHY9C7dxajR6voLSIiIuLzAgJIXLYM6//e2wBUrlyZxMTEovvumJjTLmTprlaNnFtvJefWWwGwJCXh2Ljx70L4zz9j27cP2759BM+dW3hMbGxRETy/RQtc9etTYi9OKygVvkVEpBirxcroVqO576v7MDCKFb8NCqs2L1zxAp1qd2JQ40HkunLZdGQTqw+sZt2RdWw+vJkdKTvYkbKD17e+TqA1kBaxLWhbvS1tq7XlwugLNS2KiVq3bk16ejoJCQk4nU5q1arFiBEjiqYcSUpKKvbzadCgAUOGDGHOnDl89NFHxMXFMXToUGrUqFG0z/fff89rr71WdH/SpEkAdO/enR49egBw9913YxgGL730Ei6Xi8aNG9O/f//Sb7DIaTz/fBrffhvApk0BzJkTTK9e2f/6nF99FcCgQVG43Qa33ZbNuHFpKnqLiIiI+AlPtWp4qlUD/rfOUFwcrkOH/tVUXJ5Klcjt1IncTp0Kz5uejuP77/8eFb55M9bDhwletIjgRYsKj4mM/LsQ3rIlBRdfDDaVcs+G4dUEakDhQlkFBQVlci3DMIiLi+PQv/yl8RVqj29Te3yXr7dl2d5lPLv+WQ5lHSradl7IeTzX6jk61e503P7H2rNtzzZW71/Nqv2r+PbAtxzOPlxsvypBVWhTrQ1XVb+KNtXaUCW4Sqm35VyU5M/HbrdrsawSVJZ/s0uKr/++lxVf7Yc33wxh9OgIIiM9rFp1lEqVPOd8rtWrA7jnnmjy8gxuuSWbKVOcWK3F9/HVfihr6odC6odCvtAP+ntdsvzx7/W58IXnbnmhviw56suSU2Z9mZOD46efcGzYQMB332H/4QcsOTnFdvGEhJB/+eVFhfD8xo0h0H++XV1SfXk2f6/1MYGIiJxQp9qdaF+zPRsOb+Bo9lGqBFehRWwLrBbrKY+rFFSJrvW60rVeV7xeL7tSd7HqQGERfN3BdRzNOcr83fOZv3s+ABdGX1g4LUq1tjSPbU6QLagsmiciUuTee7OYPz+Yn3+2M3p0OK++6jyn86xf76Bv3yjy8gw6dsxh8uTji94iIiIiIscJCiK/dWvyW7cmE6CgAPu2bUWFcMemTVjS0ghctYrAVasA8Doc5F966d+F8MsuwxsaamozfI0K3yIiclJWi5XW57U+5+MNw6BBdAMaRDfgvkb3kefOY9PhTXx74FtWHVjFtqRt/JLyC7+k/MIbW98gwBpQOC1Ktba0rd6Wi6Iv0rQoIlLqbDaIj3dy002VmD8/mB49srnyyvyzOsemTXbuuiua3FwL116by2uvpWK3l1JgERERESnf7HYKmjaloGlTsgYNAo8H26+//l0I37ABa2IiARs2ELBhA7z6Kl6rlYKGDYsK4XnNmuGNjja7JaZS4VtERMpMgDWAK6tdyZXVruRJniQ5J5k1B9ewav8qVh1YxeGsw6w+sJrVB1bDRqgcVJk21doUFcKrBlc1uwkiUk5demkBd92VzQcfhPDkk5F89dXR061ZVGTLFjt33hlDdraFNm3yeOutFByO0s0rIiIiIhWIxYLrootwXXQR2X37gteLde9eAjZswPG/Qrjtr79wbNmCY8sWeOstAAoaNCC/RQvyWrYkv3lzPHFxJjekbKnwLSIipokJiuGWurdwS91b8Hq97HbuZtWBVazav4r1h9aTmJPIJ7s/4ZPdnwCF06K0qdaGq6pdRYu4FpoWRURK1PDh6Xz2WSB79tiYNi2URx/NPO0xP/9so1evGDIyLLRsmcd776X401SLIiIiIuKPDAN3nTpk16lD9h13AGA5cICAjRuLCuH2337DvnMn9p07CZkxAwBXzZp/F8JbtMBdsybleRV2Fb5FRMQnGIbB+VHnc37U+fRv2J88dx4/HPmhcH7w/d+yNWlr0bQob217iwBrAM2qNiucH/x/06JYDIvZzRARPxYe7mXUqDQeeCCaKVPCuOWWHOrWdZ90/127bPTsGYPTaeGyy/L54IMUgoK0gJSIiIiIlD1PtWrkdO1KTteuAFiSk3H8sxD+88/Y/vgD2x9/EJyQAIC7atXCQniLFuS3aIGrQQOwlJ/31Sp8i4iITwqwBtD6vNa0Pq81TzZ7kpTcFL498G3h/OD7V3Ew6yBrDq5hzcE1jN04lpjAmKIpUdpWa0tsSKzZTRARP3TzzbkkJOSycmUgTz4Zydy5ySccBPP771Zuvz2GlBQrjRvn8+GHyYSGqugtIiIiIr7BExNDbseO5HbsCICRkYHj+++LCuGOzZuxHjlC0OLFBC1eXHhMZCR5zZsXzRNe0LBh4YI4fsp/k4uISIUSHRhdbFqU39N+Z/X+1aw6sIp1B9eRnJvMgt8XsOD3BQA0iGpQVAhvGduSYHuwyS0QEX9gGDB2bBrXXhvA2rUBLFgQxK235hTb548/rPToUYmjR61cdFEBs2YlEx6uoreIiIiI+C5vWBh5V19N3tVXF27IycHx00+FC2Zu2ID9+++xOJ0EffEFQV98AYAnOJj8yy8vKoTnN2mCP83rp8K3iIj4HcMwqBdZj3qR9ejXsB/57nx+PPojq/avYvWB1WxJ3MLO1J3sTN3J29vfxmFx0Cy2GW2rteWq6ldxcczFp5wWxe1xs/HIRvKT8nHkO2hetTlWi7UMWygiZqpVy80992TyxhthPPNMOLGxLsLCCh87etTC449HcPSolfr1C5gzJ5moKBW9RURERMTPBAWR37o1+a1bkwlQUIB92zYcGzcS8N13ODZuxJKWRuDq1QSuXg2A1+Egv0mTvwvhl1+ONzTU1GacigrfIiLi9xxWBy3jWtIyriXDmg0jJTeFtQfX8u2Bb1m5fyUHMg+w9uBa1h5cy4ubXiQ6MLpwNHi1trSp1obzQs8rOteyvct4dv2zHMo6VLQtLiSO0a1G06l2JzOaJyJl7MABK++9V/gC3um0ctttlY/bxzC8TJqUSkyMp6zjiYiIiIiUPLudgqZNKWjalKz77wePB9uvv/5dCN+wAevRowRs3EjAxo0wZQpei4WChg3/LoQ3b44nOvqEp3esXg3PPYdj5Ejy2rQpkyap8C0iIuVOdGA0N9W5iZvq3ITX62VP2p7CucEPrGLtwbWk5Kaw8PeFLPx9IQD1I+vTpnobgm3BTN08FS/FR28ezjrMfV/dx1vXvaXit0gFkJJiIS/v1Kvbe70GFsup9xERERER8VsWC66LLsJ10UVk33MPeL1Y9+4lYMOGwjnCN2zA9uefOLZuxbF1K7z9NgAF9esXFcLzmjfHc9554PUS9uKL8MsvhL34InlXXskJF9IpYSp8i4hIuWYYBnUj61I3si73XHwPBZ4CfjzyI6sPFM4PviVxC7ucu9jl3HXSc3jxYmAwcv1I2tdsr2lPREREREREpGIxDNx16pBdpw7Zd9wBgOXAAQI2biwqhNt37Sq6hcycCYCrRg1cNWvi2LIFAMeWLQSsWkVeu3alHlmFbxERqVDsFjst4lrQIq4FQy8fijPPydqDa0nYmcBXf3110uO8eDmYdZANhzfQ+rzWZZhYRERERERExPd4qlUjp2tXcrp2BcCSnIxj40Yc/5sj3L59O7Y//8T2559Fx3itVsLGjyfvqqtKfdS3Ct8iIlKhRQZEcmPtGylwF5yy8H3M0eyjZZBKRERERERExL94YmLI7diR3I4dATAyMgh5913Cx48v2sdwu8ts1LelVM8uIiLiJ6oEVynR/UREREREREQqMm9oKIGff47XWny60GOjvvF6T3JkyVDhW0REBGgR24K4kDgMTvxVKwOD80LOo0VsizJOJiIiIiIiIuJ/AlatwrFlC4bbXWz7P0d9lyYVvkVERACrxcroVqMBjit+H7v/XKvntLCliIiIiIiIyOl4vYSNH4/3JPN4ew2j1Ed9q/AtIiLyP51qd+Kt694iNiS22Pa4kDjeuu4tOtXuZFIyESlL0dEeAgJO/QI8IMBLdLSnjBKJiIiIiPiZ/HysBw5gnKSwbXi9WA8ehPz8UougxS1FRET+oVPtTrSv2Z6NRzaS78jHke+gedXmGuktUoFUq+bm22+PkpJy8jEi0dEeqlVzn/RxERFfsXz5cpYsWYLT6aRmzZr069ePevXqnXT/9evXM3fuXBITE4mNjaV37940bdq0DBOLiEi5EBBA4rJlWFNSijZVrlyZxMTEovvumBgICCi1CCp8i4iI/D9Wi5XW57UmLi6OQ4cO4S3lBTdExPdUq+ZWYVtE/N66deuYMWMGAwYM4Pzzz+fTTz9l7NixTJo0iYiIiOP237lzJ5MnT6ZXr140bdqUNWvWMGHCBOLj46lRo4YJLRAREX/mqVYNT7VqABiGAXFxuMrwPbamOhEREREREREph5YuXcq1117L1VdfTfXq1RkwYAAOh4NvvvnmhPsvW7aMJk2acPPNN1O9enV69uxJnTp1WL58eRknFxER+fc04ltERERERESknHG5XOzZs4cuXboUbbNYLDRq1Ihdu3ad8Jhdu3bRuXPnYtsaN27Mpk2bTnqdgoICCgoKiu4bhkFQUFDRv8u7Y22sCG0tberLkqO+LDnqy5JjRl+q8C0iIiIiIiJSzqSnp+PxeIiMjCy2PTIykoMHD57wGKfTedwUKBERETidzpNeZ8GCBcybN6/ofu3atYmPj6dy5crnnN0fxcbGnn4nOSPqy5Kjviw56suSU5Z9qcK3iIiIiIiIiJyTrl27FhslfmwkX2JiIi6Xy6xYZcYwDGJjYzl8+LDWhfmX1JclR31ZctSXJaek+tJms53xh6sqfIuIiIiIiIiUM4hnYFkAACjGSURBVOHh4VgsluNGazudzuNGgR8TGRlJWlpasW1paWkn3R/Abrdjt9tP+FhFKhJ5vd4K1d7SpL4sOerLkqO+LDll2Zda3FJERERERESknLHZbNSpU4ft27cXbfN4PGzfvp369euf8Jj69euzbdu2Ytu2bt3K+eefX6pZRURESoMK3yIiIiIiIiLlUOfOnVmxYgUrV65k//79TJ8+nby8PNq1awfA1KlTmT17dtH+nTp1YsuWLSxZsoQDBw6QkJDA77//TocOHUxqgYiIyLnTVCciIiIiIiIi5VDr1q1JT08nISEBp9NJrVq1GDFiRNHUJUlJSUVzcgM0aNCAIUOGMGfOHD766CPi4uIYOnQoNWrUMKkFIiIi506FbxEREREREZFyqkOHDicdsT1q1KjjtrVq1YpWrVqVcioREZHSp6lORERERERERERERKRcUeFbRERERERERERERMoVFb5FREREREREREREpFxR4VtEREREREREREREyhUtbvk/NlvZd4UZ1yxNao9vU3t8V3lqC6g9pXUO+Zs/96c/Zy9J6odC6odC6odC6odCZvaDfgYlq6L1Z0Vrb2lSX5Yc9WXJUV+WnH/bl2dzvOH1er3/6moiIiIiIiIiIiIiIj5EU52YICcnh2HDhpGTk2N2lBKh9vg2tcd3lae2gNojcip6PhVSPxRSPxRSPxRSPxRSP4i/0nO35KgvS476suSoL0uOGX2pwrcJvF4ve/fupbwMtld7fJva47vKU1tA7RE5FT2fCqkfCqkfCqkfCqkfCqkfxF/puVty1JclR31ZctSXJceMvlThW0RERERERERERETKFRW+RURERERERERERKRcUeHbBHa7ne7du2O3282OUiLUHt+m9viu8tQWUHtETkXPp0Lqh0Lqh0Lqh0Lqh0LqB/FXeu6WHPVlyVFflhz1Zckxoy8NryapEREREREREREREZFyRCO+RURERERERERERKRcUeFbRERERERERERERMoVFb5FREREREREREREpFxR4VtEREREREREREREyhWb2QHKmwULFrBx40YOHDiAw+Ggfv369OnTh/POO++kx6xcuZLXXnut2Da73c6sWbNKO+5pJSQkMG/evGLbzjvvPCZNmnTSY9avX8/cuXNJTEwkNjaW3r1707Rp01JOemYGDx5MYmLicdtvuOEG+vfvf9x2X/vZ7Nixg8WLF7N3715SU1N5/PHHad68edHjXq+XhIQEVqxYQVZWFhdccAH9+/cnLi7ulOddvnw5S5Yswel0UrNmTfr160e9evVKuzmnbI/L5WLOnDn89NNPHD16lODgYBo1akSvXr2Ijo4+6TnP5TlbUk7385k2bRqrVq0qdkzjxo156qmnTnleM34+p2tLjx49Tnhcnz59uPnmm0/4mJk/mzP5f3N+fj4zZsxg3bp1FBQU0LhxY/r3709kZORJz3uuv3NSPpXW/wP8TWn9vvmbM+mHUaNGsWPHjmLHXXfdddx3331lHbfUfPHFF3zxxRdFr7+qV69O9+7dufTSS4GK8VyA0/dDRXgunMjChQuZPXs2nTp14p577gEqznNC/E9pvReraPQ6oeTob2zp0d+nc3e69/1l3Y8qfJewHTt20L59e+rWrYvb7eajjz5izJgxvPzyywQGBp70uKCgICZPnlyGSc/cf/7zH5555pmi+xbLyb8osHPnTiZPnkyvXr1o2rQpa9asYcKECcTHx1OjRo2yiHtKL774Ih6Pp+j+n3/+yZgxY2jVqtVJj/Gln01eXh61atXimmuuYeLEicc9vmjRIj777DMGDx5MlSpVmDt3LmPHjuXll1/G4XCc8Jzr1q1jxowZDBgwgPPPP59PP/2UsWPHMmnSJCIiIkxrT35+Pnv37qVbt27UqlWLzMxM3n//fcaPH8+4ceP+r707j+uqSvw//mJTdlHZBVEkXBDEJTWXXMgl08a0UcSsnCkrKfM7U9k3a8pKm4elY1P2bfnalKOjqV9HLdTUxITEJcUFzSURyAVBFFA+guDn8/vDH5/xI7uCbO/n49EjOZ9z7z333HPvuffcc88pd71VKbPVqaLjAxAeHs7UqVPNf9valn8Zrq3jU9G+fP755xZ/JyYm8umnn9KrV69y11tbx6Yy1+avv/6affv28ac//QlHR0cWLVrEvHnzeOedd8pc7+2cc9Jw1cQ1oD6qqfOtvqnsPWFERATjx483/93Qrh0tWrQgKioKHx8fTCYTP/74I3PnzmXu3Ln4+/s3irIAFecDNPyycKtff/2VzZs3ExAQYBHeWMqE1D818SzWGOk+ofqojq0Zqp/uXHnP/Xc7HzXUSTWbOXMmAwcOxN/fnzZt2hAdHc2FCxdITk4udzkrKyvc3Nws/qsrrK2tLdLl6upaZtz169cTHh7Oww8/jJ+fH5GRkQQGBrJx48a7mOKyubq6WuzLvn378PLyolOnTmUuU5eOTdeuXYmMjLToWVDMZDKxfv16xowZw7333ktAQADPP/88ly5dYs+ePWWu87vvviMiIoJBgwbh5+fH008/TZMmTYiNja3JXQHK3x9HR0feeOMN+vTpg6+vL8HBwfzhD38gOTmZCxculLveqpTZ6lTe/hSztbW1SJuzs3O566yt41PRvtx6TuzZs4eQkBC8vLzKXW9tHZuKrs0Gg4GtW7fyxBNP0LlzZwIDA5k6dSrHjh3j+PHjpa7zds85abhq4hpQH9XE+VYfVfaesGnTphZlwtHRsZZSXDN69OhBt27d8PHxwdfXlwkTJmBvb8+JEycaTVmA8vOhWEMvCzfLz8/no48+4plnnsHJyckc3pjKhNQ/NfEs1hjpPqH6qI6tfqqfqkdZz/21kY8Nr5tRHWMwGAAqfLDNz89n6tSpmEwm2rZty4QJE8y9P2pbeno6zzzzDHZ2dgQHBxMVFYW7u3upcY8fP87IkSMtwrp06VInK/uioiLi4uJ46KGHsLKyKjNeXT42N8vIyCA7O5uwsDBzmKOjI0FBQRw/fpy+ffuWWKaoqIjk5GRGjx5tDrO2tiY0NLROXrwNBgNWVlYVPghWpczebUeOHOGpp57CycmJzp07ExkZiYuLS6lx68vxyc7OJjExkejo6Arj1pVjc+u1OTk5mevXrxMaGmqO06pVK9zd3Tl+/DjBwcEl1nE755xIVa4BDUV1nG8NQVn3hHFxccTFxeHm5kb37t0ZO3YsTZs2rY0k1jij0UhCQgIFBQUEBwc32rJwaz4Ua0xl4X//93/p2rUrYWFhrF692hzeWMuE1H+6L7x9uk+oHqpjq4fqp+pR1nN/beSjGr5rkNFo5KuvvqJ9+/blDvPh6+vLc889R0BAAAaDgXXr1vH6668zf/58WrZseRdTXNI999zD1KlT8fX15dKlS6xatYq//OUvzJs3DwcHhxLxs7OzSwy/0KxZM7Kzs+9Siitv9+7d5OXlMXDgwDLj1OVjc6viPK5K/ufm5mI0Gkv0Yndzc+Ps2bM1kMrbd+3aNZYuXUrfvn3Lbfiuapm9m8LDw+nVqxeenp6kp6ezbNky5syZw+zZs0sd8qO+HJ8ff/wRe3v7cnu5Qt05NqVdm7Ozs7G1tbV4qw/lnz+3c85J41bVa0BDUF3nW31X1j1hv379cHd3p0WLFqSmprJ06VLOnj3LSy+9VIuprX5paWnMnDmTwsJC7O3teemll/Dz8yMlJaVRlYWy8gEaT1kA+Omnnzh16hTvvfdeid8a4/VBGgbdF94e3SfcOdWx1Uf1U/Uo77m/NvJRDd81aNGiRfz222+8/fbb5cYLDg62eKsRHBzMf/3Xf7F582YiIyNrOpnlKp4UASAgIMBcgBMSEhg8eHAtpuzOxcbGEh4eXu5EiXX52DQmRUVF/O1vfwModRLSm9XlMntzT4/WrVsTEBDACy+8wOHDhy3eeNY3sbGx9O/fv8KxC+vKsanstVmkujXUa0B5dL7dUFY+PPDAA+Z/t27dmubNm/P222+Tnp6Ot7f33U5mjfH19eX999/HYDCwc+dOFi5cyKxZs2o7WXddWfng5+fXaMrChQsX+Oqrr3j99dc15rGI6D6hGqiOrR6qn6pPec/9tZG3DbN7UR2waNEi9u3bx5tvvlnlnsG2tra0bduW9PT0Gkrd7XNycsLX17fMtLm5uZGTk2MRlpOTU6fGLAfIzMzk4MGDREREVGm5unxsivO4Kvnv6uqKtbV1iTdr2dnZdeaYFTd6X7hwgddff73K411WVGZrk5eXFy4uLmWmrT4cn19++YWzZ8/eVsN1bRybsq7Nbm5uFBUVkZeXZxG/vPPnds45kZtVdA2o76rzfKvPqnJPGBQUBNDgyoStrS3e3t4EBgYSFRVFmzZtWL9+faMrC2XlQ2kaallITk4mJyeHGTNmEBkZSWRkJEeOHGHDhg1ERkbSrFmzRlUmpOHQfWHV6T6heqiOrR6qn2rOzc/9tVEu1fBdzUwmE4sWLWL37t385S9/wdPTs8rrMBqNpKWl0bx58xpI4Z3Jz883F9bSBAcHc+jQIYuwgwcPcs8999yF1FVebGwszZo1o1u3blVari4fG09PT9zc3Czy32Aw8Ouvv5Y5TpKtrS2BgYEkJSWZw4xGI0lJSXVijKriRu/09HTeeOON2xoHt6IyW5uysrK4cuVKmeWprh8fgK1btxIYGEibNm2qvOzdPDYVXZsDAwOxsbGxOH/Onj3LhQsXyszr2znnRG5W0TWgvqqJ860+up17wpSUFIAGVyZuZTQaKSwsbDRloSzF+VCahloWQkND+eCDD5g7d675v3bt2tGvXz/zvxtzmZD6S/eFlaf7hJqlOvb2qH6qOTc/99dGudRQJ9Vs0aJFxMfH88orr+Dg4GDuqeno6Gju0v/xxx/TokULoqKiAFi1ahX33HMP3t7e5OXlsW7dOjIzM6vcG7kmLF68mB49euDu7s6lS5dYsWIF1tbW9OvXDyi5LyNGjOCtt97i22+/pVu3bvz000+cPHmSKVOm1OZuWDAajWzbto0BAwZgY2Nj8VtdPzbFF4xiGRkZpKSk4OzsjLu7OyNGjGD16tX4+Pjg6enJ8uXLad68Offee695mbfffpuePXsyfPhwAEaOHMnChQsJDAwkKCiI9evXU1BQUO7Y53djf9zc3Jg/fz6nTp1ixowZGI1G8/nk7OyMra1tqftTUZmtrf1xdnZm5cqV9OrVCzc3N86fP8+SJUvw9vamS5cu5mXqyvGpqKwB5s/pJk2aVOo66tKxqeja7OjoyODBg1m8eDHOzs44Ojry5ZdflhjuaPr06URFRdGzZ0+srKwqdc5J41Ed14CGoLrOt/quonxIT08nPj6ebt264ezsTFpaGl9//TUdO3YkICCgdhNfjf71r38RHh6Ou7s7+fn5xMfHc+TIEWbOnNloygKUnw+NpSwAODg4lJj7qGnTpri4uJjDG0uZkPqnOp7FRPcJ1Ul1bPVR/VR9ynvur41yqYbvarZp0yYA3nrrLYvwqVOnmhuqLly4gJWVlfm3K1eu8Nlnn5GdnY2TkxOBgYG8++675sluatPFixf58MMPuXz5Mq6urnTo0IHZs2fj6uoKlNyX9u3bM23aNJYvX86yZcvw8fHh5ZdfLndyz7vt0KFDXLhwgUGDBpX4ra4fm5MnT1qM17V48WIABgwYQHR0NL/73e8oKCjgs88+w2Aw0KFDB1577TWLcZTOnz9Pbm6u+e8+ffqQm5vLihUryM7Opk2bNrz22mt3pRduefvz+9//np9//hmAV155xWK5N998k5CQEKDk/lRUZmtSefvz9NNPk5aWxo8//kheXh4tWrQgLCyM8ePHY2dnZ16mrhyfisoawI4dOzCZTGU2XNelY1OZa/MTTzyBlZUV8+bNo6ioiC5dupQYU/7s2bPmmeeBSp1z0nhUxzWgIaiu862+qygfbG1tOXTokPmFZsuWLenVqxdjxoyphdTWnJycHBYuXMilS5dwdHQkICCAmTNnEhYWBjSOsgDl58OFCxcaRVmorMZSJqT+qY5nMdF9QnVSHXt3KT8rp6Ln/rudj1Ymk8lUY2sXEREREREREREREbnLNMa3iIiIiIiIiIiIiDQoavgWERERERERERERkQZFDd8iIiIiIiIiIiIi0qCo4VtEREREREREREREGhQ1fIuIiIiIiIiIiIhIg6KGbxERERERERERERFpUNTwLSIiIiIiIiIiIiINihq+RURERERERERERKRBUcO3iIiIiIiIiIhIIzNu3DhWrFhR28m4YwsXLiQ6Orq2kyF1kG1tJ0BERERERERERGrWtm3b+OSTTwB4++236dChg8XvJpOJqVOnkpWVRbdu3Xj11VdrI5ny/8XHx5OTk8NDDz1UqfjR0dFkZmYCYGVlhYODAy1btiQ4OJjBgwdzzz331GRyReok9fgWkWqzdu1apk+fjtForDCuyWRi0qRJLFmypMrb2bRpE8899xyFhYW3k0wREZFGR3W0iIgUs7OzIz4+vkT4kSNHyMrKws7OrhZSJbeKj49n/fr1VVqmTZs2PP/880RHRxMVFUVISAh79+5l5syZfP311yXiL1myhLFjx1ZXkmvNM888w4IFC2o7GVIHqce3SD2SlpbGypUrOXnyJDk5OTg7O+Pn50ePHj148MEHgf+8xbezs+Ojjz6iRYsWFut46623uHz5MvPmzbOIX8za2ppmzZoRFhbGhAkTSixfFoPBwNq1a5k0aRLW1hW/U8vMzKSgoIDWrVubw/bv38+cOXMs4jk4OODr68sjjzxCz549ARg4cCArV65k8+bNjBgxolLpExERuduK69j33nuPdu3aVbnOVR0tIiI1oWvXriQkJDB58mRsbGzM4fHx8QQGBnL58uVaTF31yM/Px97evraTcde1aNGC+++/3yLsscce48MPPyQmJgYfHx+GDh1q/q1JkyZ3O4k1wtZWzZtSOpUMkXri2LFjzJo1C3d3dyIiInBzcyMrK4sTJ06wfv16c8N3scLCQtasWcMf/vCHSq1/3LhxeHp6UlhYyIkTJ9i2bRtHjx5l3rx5laoMY2NjuX79On379q3U9n777TcAi4fq1NRUACZPnoyTkxMmk4msrCw2bNjA3/72Nz744ANatWpFkyZNGDBgADExMTz44INYWVlVapsiIiJ1QVXrXNXRIiJSnfr168eePXs4ePAgXbt2BaCoqIidO3cyduxYNmzYUGIZo9HIhg0b+OGHHzh//jyOjo7ce++9REVF4ezsbI63Z88etmzZQkpKCpcvX6Zly5YMGDCAMWPGWLx8PXfuHEuXLuXYsWMYDAZcXFzo0KEDU6ZMwdHRkYyMDJ5//nmmTp3KwIEDLdIybtw4Hn30UcaNGwfAihUrWLVqFfPnz+f//u//2L9/Px4eHsydOxeA7du3ExMTw+nTp2nSpAldunThsccew93d3bzO4g5i06ZN48svv+TkyZM0b96ciRMn0rt3b44cOcKSJUtITU3F3d2dP/7xj4SFhVmk6+LFiyxfvpzExETy8vLw9vZm5MiRDB482Bzn8OHDzJo1i+nTp5Oens6mTZu4fPky7du3Z8qUKXh7e5vTc+TIEfP+Anh4eLBw4cKqHWxuNG6/8MILTJ06ldWrVzNkyBBz/VxWXi5YsIBVq1axd+9ebG1tGTJkCOPHjycrK4svv/ySw4cP06RJEx5++GFGjRplsb3CwkL+/e9/ExcXR1ZWFs2aNaNv376MHz/e4muCcePGMWzYMEJDQ/nmm284d+4c3t7ePP7444SHh5vjXb16lW+++YY9e/Zw6dIlHB0dCQgIYOLEiQQGBgI3xvg+cuSIRf7k5+ezYsUKEhISyMnJwcPDg4iICEaNGmVxf1LZdEj9pIZvkXpi9erVODo68t577+Hk5GTxW05OTon4bdq04YcffmD06NGV6hHWtWtX2rVrB0BERAQuLi6sXbuWn3/+mT59+lS4/LZt2+jRo0el3xj/9ttv2NjY4OfnZw5LTU3FycmpRCO+i4sLX3zxBSkpKbRq1QqAPn36sG7dOg4fPkznzp0rtU0REZG6oKp1rupoERGpTh4eHgQHB/PTTz+ZG74TExMxGAz06dOn1Ibvzz//nB9//JGBAwfy4IMPkpGRwcaNGzl16hTvvPOOucfttm3bsLe356GHHsLe3p6kpCRWrFjB1atXmTRpEnCjkX327NkUFhby4IMP4ubmxsWLF9m7dy95eXk4Ojre1n7Nnz8fb29vJkyYgMlkAm48R3/zzTfcd999REREkJuby4YNG3jzzTeZO3euxbP1lStX+Otf/0rfvn2577772LRpEwsWLGDatGl89dVXDBkyhH79+rFu3Trmz5/P//zP/+Dg4ABAdnY2M2fOBGDYsGG4urqyf/9+Pv30U65evVpinO61a9diZWXFqFGjMBgMrFu3jr///e/mr6vGjBmDwWAgKyuLJ554AuCOerDb29vTs2dPtm7dyunTp/H39y83/oIFC2jVqhUTJ05k3759rF69GmdnZ7Zs2ULnzp2ZOHEicXFx/POf/6Rdu3Z06tQJuPGCZO7cuRw9epSIiAj8/PxIS0sjJiaGs2fP8sorr1hs5+jRo+zevZuhQ4fi4ODAhg0bmDdvHp988gkuLi4AfPHFF+zcuZPhw4fj5+fH5cuXOXr0KGfOnDE3fN/KZDIxd+5cDh8+zKBBg2jTpg0HDhxgyZIlXLx4kSeffLLK6ZD6SQ3fIvXE+fPn8ff3L9HoDdCsWbMSYY888gh///vfq9Tr+2YdO3Zk7dq1nD9/vsK4GRkZpKamljnpxo4dO/j3v//N2bNn8fPz4+mnn+b06dP4+PhYfJKUmppK27ZtSyyfnZ0NYH6gBggMDMTZ2Zk9e/booVpEROq1qtS5VY2vOlpERErTt29fli1bxrVr12jSpAlxcXF06tSp1E5TR48eZevWrUybNo1+/fqZw0NCQpgzZw47d+40h7/44osWL1qHDh3K559/zqZNm4iMjMTOzo7Tp0+TkZHBn/70J3r37m2O++ijj97RPgUEBPDiiy+a/87MzGTFihWMHz+eMWPGmMN79uzJjBkz+P777y3CL126ZLGPYWFhTJ8+nQ8//JB3333XPDlkq1atmD17Nrt27TL3Rl++fDlGo5EPPvjA3FA6dOhQFixYwMqVKxkyZIhFvly7do3333/fXNc6OTnx1VdfkZaWRuvWrQkLC6NFixbk5eWVGLrkdhU3dhe3LZQnKCiIKVOmAPDAAw8QHR3NP//5TyZMmMDo0aOBG2XomWeeITY21tzwHR8fz8GDB5k1a5bF5Kn+/v588cUXHDt2jPbt25vDz5w5Y35hATfK1Msvv8xPP/3E8OHDAdi3bx8RERE8/vjj5uV+97vflZv+n3/+maSkJCIjI83HePjw4cyfP58NGzYwfPhw8zYrmw6pnzS5pUg94eHhQXJyMmlpaZWK7+npyf33388PP/zAxYsXq7y9jIwMgFIb2m917NgxgFLftn733XcsWLAAT09PJk+eTHBwMH/96185ceKExSfURUVFnD17llatWpGbm0tubi7nzp1j48aNrF27luHDh9OmTRuLdbdt29a8bRERkfqqKnVuVeOrjhYRkdL06dOHa9eusXfvXq5evcq+ffssGrVvlpCQgKOjI2FhYeZ6IDc3l8DAQHOv7mI3N+5evXqV3NxcOnbsSEFBAWfOnAEw9+jev38/BQUF1bZPQ4YMsfh7165dmEwm+vTpY5FuNzc3vL29OXz4sEV8e3t7i2HBfH19cXJyws/Pz9zoDZj/XfwC2mQysWvXLrp3747JZLLYVnh4OAaDgeTkZIttDRo0yOIFc8eOHYH/1PE1objH+NWrVyuMe/PwLNbW1gQGBmIymSzCnZyc8PX1tUjzzp078fPzw9fX1yIfil+E35rnoaGhFg3QAQEBODg4WLzcd3Jy4tdff61Su0ZiYiLW1tYlvlQbOXIkJpOJ/fv3VzkdUj+px7dIPTFq1CjmzJnDK6+8QlBQEB06dCA0NJSQkJAyJ3IYM2YM27dvZ+3atUyePLnc9RsMBnJzc83jh65atQo7Ozu6d+9eYdqKb2A8PT0twlNSUli6dCmPPPIIEyZMMIebTCY2bdpk8eb69OnTXL9+ne+//57vv//eHG5jY8OkSZNKnSDLy8uL7du3V5g+ERGRuqSqda7qaBERqW6urq6EhoYSHx9PQUEBRqPRovf1zdLT0zEYDDz11FOl/p6bm2v+92+//cby5ctJSkoq0cBqMBiAG3XSyJEj+e6774iPj6djx450796d+++//7aHOSle763pNplMTJs2rdT4tz5Ht2zZssTcFI6OjrRs2bJEGEBeXh5wY//z8vLYsmULW7ZsKXVbN+cRYDG+OPznZfaVK1dKXb465OfnA5iHZynPrelzdHTEzs4OV1fXEuE3T4Z67tw5zpw5U2ZZuXWY1lu3A+Ds7GzOW4CJEyeycOFCnnvuOQIDA+natSsDBgzAy8urzPRnZmbSvHnzEvtaPIxbZmZmldMh9ZMavkXqibCwMN59913WrFnDgQMHOH78OOvWrcPV1ZVnn32WHj16lFjGy8uL/v37s2XLFkaPHk3z5s3LXP8777xj8beHhwcvvPBCiUq+NFeuXMHGxqbEmGPF45Lf/PkYQKdOndi0aVOpk2ZFR0eb05mTk8P69etZunQpQUFBBAcHW6zHycmJa9euUVBQQNOmTStMp4iISF1Q1TpXdbSIiNSEfv368dlnn5GdnU14eHiZXxIZjUaaNWvGCy+8UOrvxY2heXl5vPXWWzg4ODB+/Hi8vLyws7Pj1KlTLF261DzuNsDjjz/OwIEDzZNs/uMf/2DNmjXMnj271Abom9NSllvnsjAajVhZWfHf//3fFhNrFru1biwtTnnhxftT/P/+/fszYMCAUuMGBARUap01qXjy6pt7NpeltPRVJs0mk4nWrVtbDEtys1sbmCvKW7jxdULHjh3ZvXs3Bw4c4Ntvv2Xt2rW89NJL5jHq71Rl0iH1kxq+ReqRoKAgXnrpJYqKikhJSWH37t3ExMQwb9483n//fYtJqIqNHTuWuLg41qxZU26v7z/+8Y/4+PhgMBiIjY3ll19+sZhxuaoKCwtJTEwkIiKixAPv9evXAUo8VNvY2NC3b1+LN+8hISE8++yzbNy4scRDdXElVNZNkYiISF1U1TpXdbSIiNSEnj178vnnn3PixAmmT59eZjwvLy8OHTpEhw4dyp0o+fDhw1y+fJk///nP5jGfoezhO1q3bk3r1q0ZO3Ysx44d44033mDz5s1ERkaaG+Fv7XF7a0/d8nh7e2MymfD09MTX17fSy1WVq6srDg4OGI1GwsLCamw7dyI/P5/du3fTsmVLi3k5qpuXlxepqamEhoZW6z1A8+bNGTZsGMOGDSMnJ4cZM2awevXqMhu+PTw8OHToEFevXrXo9V38JZyHh0e1pU3qNo3xLVIP2draEhQURFRUFE8//TTXr18nISGh1Lg39/q+dOlSmesMCgoiLCyM3r17M2PGDPz9/fnwww/Nn0OVx9nZmevXr1t8ynb+/HkKCgpKHVP05MmT2NvbW3yKlpqaipeXV4nPzVq0aEHTpk3JysoqsZ68vDyaNm1a7s2XiIhIXVPVOld1tIiI1AR7e3ueeuopfv/735f6BXGxPn36YDQaWbVqVYnfrl+/bm6cLq3XbFFREZs2bbIIMxgM5hetxVq3bo2VlRWFhYXAjSE0XFxc+OWXXyzi3TzkVkV69uyJtbU1q1atKtFz12QyWQzRcSesra3p1asXu3btKnVOrluHOakse3t78/Awd+LatWt89NFHXLlyhTFjxtToS+n77ruPixcv8sMPP5Sajsrcu9zMaDSWyINmzZrRvHlzioqKylyua9euGI1GNm7caBEeExODlZUV4eHhVUqH1F/q8S1SzxU/tJbXqD1mzBji4uJYu3ZtpdZpbW1NVFQUs2bNYuPGjeZZm8tS/MY4IyPD/AlXWZOU5Ofns337dvz9/S0q3LS0tBK9xeDGTUJBQQFubm4lfsvIyKjRt9UiIiI1rap1rupoERGpTgMHDqwwTqdOnXjggQdYs2YNqamphIWFYWNjQ3p6OgkJCUyePJnevXvTvn17nJycWLhwoXlSwbi4uBKNzklJSXz55Zf07t0bX19frl+/zvbt280NyMUiIiJYs2YNn376KYGBgfzyyy+cO3eu0vvm7e1NZGQk//rXv8jMzOTee+/F3t6ejIwM9uzZQ0REBA8//HCl11eeqKgoDh8+zMyZM4mIiMDPz48rV66QnJzMoUOH+Mc//lHldQYGBrJjxw6+/vpr2rVrh729fbkvKAAuXrxonmMjPz+f06dPs3PnTrKzsxk5cmSJCUCr2/33309CQgJffPEFSUlJdOjQAaPRyJkzZ0hISGDmzJm0a9eu0uu7evUqzz77LL179yYgIAB7e3sOHTrEyZMnyxxOBaB79+6EhISwfPlyMjMzCQgI4MCBA/z888+MGDGiUsO9SMOghm+ReiIpKYmQkJASb2cTExMByv10y9vbm/79+7N582Y8PDywsbGpcHshISEEBQURExPDiBEjyu2xVfwwfPLkSfNDdfGnQ0lJSRYTZK1evZorV67g7+9vDsvOziYnJ6fUB+Q1a9YAWNwAFTt16lSZM4+LiIjUF1Wpc6saX3W0iIhUhylTphAYGMiWLVtYtmwZNjY2eHh40L9/f9q3bw+Ai4sLr776KosXL2b58uU4OTnRv39/QkNDmT17tnldbdq0oUuXLuzdu5fNmzfTtGlTAgICeO211yxetD766KPk5uayc+dOEhISCA8P57XXXitz4sTSjB49Gh8fH2JiYli5ciVwY5zpsLCwChuRq8LNzY05c+awatUqdu3axffff4+Liwv+/v5MnDjxttY5dOhQUlJS2LZtGzExMXh4eFSY5pSUFD7++GOsrKywt7fH3d2d7t27ExERQVBQ0G2loyqsra15+eWXiYmJYfv27ezZs4cmTZrg5eXFiBEj8PHxqdL6mjZtyrBhwzhw4AC7d+/GaDTi7e3NU089xdChQ8tNx4wZM/jmm2/YsWMHsbGxeHp68thjjzFq1Kg73U2pR6xMGqldpF7485//TEFBAT179sTX15eioiKOHz/Ojh07aNmyJXPnzsXJyYlt27bxySef8N5771m8SU1PT2f69OkYjUb8/f2ZN28eQJnxAXbu3Mn8+fMrrFSK09e6dWtefPFFc9js2bM5ePAgDzzwAG3btmX//v0cPXqU3NxcnnzySUaMGAHA/v37mTNnDoMHDzaPBXf58mUOHjxIYmIiffr04cUXX7Ro9E9OTubVV1/ljTfeIDQ09M4yV0REpAbcWsdWtc5VHS0iIiIicvs0xrdIPTFp0iRCQkJITExk8eLFLF68mF9//ZWhQ4cyZ86cMmfgLlbc67sqevbsiZeXF99++225s2cDDBo0iL1793Lt2jVzWHR0NN27dyc+Pp5ly5Zha2vLk08+CVhOmlU8DtrWrVv5+OOP+fjjj1mxYgUGg4Fnn322xAM1QEJCAu7u7nTu3LlK+yQiIlIXVaXOrWp81dEiIiIi0hipx7eIVAuDwcDzzz/PY489xuDBg2t0W4WFhURHRzN69GhzjzQREREpnepoEREREWmM1ONbRKqFo6MjDz/8MOvWratUT7U7ERsbi42NTY1PzCEiItIQqI4WERERkcZIPb5FREREREREREREpEFRj28RERERERERERERaVDU8C0iIiIiIiIiIiIiDYoavkVERERERERERESkQVHDt4iIiIiIiIiIiIg0KGr4FhEREREREREREZEGRQ3fIiIiIiIiIiIiItKgqOFbRERERERERERERBoUNXyLiIiIiIiIiIiISIOihm8RERERERERERERaVDU8C0iIiIiIiIiIiIiDcr/AzAw2x8C/hUJAAAAAElFTkSuQmCC" + }, + "metadata": {}, + "output_type": "display_data", + "jetTransient": { + "display_id": null + } + } + ], + "execution_count": 45 }, { "cell_type": "markdown", @@ -22856,9 +4616,12 @@ }, { "cell_type": "code", - "execution_count": 40, - "metadata": {}, - "outputs": [], + "metadata": { + "ExecuteTime": { + "end_time": "2025-10-08T10:18:45.880281Z", + "start_time": "2025-10-08T10:16:52.750244Z" + } + }, "source": [ "import itertools\n", "\n", @@ -22894,7 +4657,22 @@ " max_RIC = temp_RIC\n", "\n", " RIC[model] = max_RIC" - ] + ], + "outputs": [ + { + "ename": "KeyboardInterrupt", + "evalue": "", + "output_type": "error", + "traceback": [ + "\u001B[31m---------------------------------------------------------------------------\u001B[39m", + "\u001B[31mKeyboardInterrupt\u001B[39m Traceback (most recent call last)", + "\u001B[36mCell\u001B[39m\u001B[36m \u001B[39m\u001B[32mIn[46]\u001B[39m\u001B[32m, line 26\u001B[39m\n\u001B[32m 23\u001B[39m mod_mat = W_cols.T.conj() @ W_cols - np.eye(\u001B[32m3\u001B[39m)\n\u001B[32m 25\u001B[39m \u001B[38;5;66;03m# Compute eigenvalues of the Gram matrix\u001B[39;00m\n\u001B[32m---> \u001B[39m\u001B[32m26\u001B[39m eig_vals, _ = \u001B[43mnp\u001B[49m\u001B[43m.\u001B[49m\u001B[43mlinalg\u001B[49m\u001B[43m.\u001B[49m\u001B[43meig\u001B[49m\u001B[43m(\u001B[49m\u001B[43mmod_mat\u001B[49m\u001B[43m)\u001B[49m\n\u001B[32m 27\u001B[39m eigenvalues = np.abs(eig_vals) \u001B[38;5;66;03m# They should be real and close to 1\u001B[39;00m\n\u001B[32m 29\u001B[39m temp_RIC = np.max(eigenvalues)\n", + "\u001B[36mFile \u001B[39m\u001B[32m~/DL-based-CS-under-IQ-imbalance/.venv/lib/python3.12/site-packages/numpy/linalg/_linalg.py:1523\u001B[39m, in \u001B[36meig\u001B[39m\u001B[34m(a)\u001B[39m\n\u001B[32m 1519\u001B[39m signature = \u001B[33m'\u001B[39m\u001B[33mD->DD\u001B[39m\u001B[33m'\u001B[39m \u001B[38;5;28;01mif\u001B[39;00m isComplexType(t) \u001B[38;5;28;01melse\u001B[39;00m \u001B[33m'\u001B[39m\u001B[33md->DD\u001B[39m\u001B[33m'\u001B[39m\n\u001B[32m 1520\u001B[39m \u001B[38;5;28;01mwith\u001B[39;00m errstate(call=_raise_linalgerror_eigenvalues_nonconvergence,\n\u001B[32m 1521\u001B[39m invalid=\u001B[33m'\u001B[39m\u001B[33mcall\u001B[39m\u001B[33m'\u001B[39m, over=\u001B[33m'\u001B[39m\u001B[33mignore\u001B[39m\u001B[33m'\u001B[39m, divide=\u001B[33m'\u001B[39m\u001B[33mignore\u001B[39m\u001B[33m'\u001B[39m,\n\u001B[32m 1522\u001B[39m under=\u001B[33m'\u001B[39m\u001B[33mignore\u001B[39m\u001B[33m'\u001B[39m):\n\u001B[32m-> \u001B[39m\u001B[32m1523\u001B[39m w, vt = \u001B[43m_umath_linalg\u001B[49m\u001B[43m.\u001B[49m\u001B[43meig\u001B[49m\u001B[43m(\u001B[49m\u001B[43ma\u001B[49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[43msignature\u001B[49m\u001B[43m=\u001B[49m\u001B[43msignature\u001B[49m\u001B[43m)\u001B[49m\n\u001B[32m 1525\u001B[39m \u001B[38;5;28;01mif\u001B[39;00m \u001B[38;5;129;01mnot\u001B[39;00m isComplexType(t) \u001B[38;5;129;01mand\u001B[39;00m \u001B[38;5;28mall\u001B[39m(w.imag == \u001B[32m0.0\u001B[39m):\n\u001B[32m 1526\u001B[39m w = w.real\n", + "\u001B[31mKeyboardInterrupt\u001B[39m: " + ] + } + ], + "execution_count": 46 }, { "cell_type": "code", @@ -22922,17 +4700,12 @@ }, { "cell_type": "code", - "execution_count": 54, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "dict_values([np.float64(0.39845745250663667), np.float64(0.45594867721150867), np.float64(0.5544156168557608), np.float64(0.6420593436429728), np.float64(0.8315236647501129), np.float64(0.9616962994909836), np.float64(0.37987388568075664), np.float64(0.4193121033518054), np.float64(0.4028988449709346), np.float64(0.3663469659833077), np.float64(0.3744706636790715), np.float64(0.40027265395419326), np.float64(0.3861284263583062), np.float64(0.39845745250663667), np.float64(0.4722258580307045), np.float64(0.3973709224115855), np.float64(0.413254836949123), np.float64(0.42401313321889705), np.float64(0.4157523454343734)])\n" - ] + "metadata": { + "ExecuteTime": { + "end_time": "2025-10-08T10:18:51.364199Z", + "start_time": "2025-10-08T10:18:51.286602Z" } - ], + }, "source": [ "models = discrete_models\n", "\n", @@ -22951,7 +4724,17 @@ " mu[model] = np.max(A_no_diag)\n", "\n", "print(mu.values())\n" - ] + ], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "dict_values([np.float64(0.39845745250663606), np.float64(0.4559486772115089), np.float64(0.5544156168557605), np.float64(0.642059343642973), np.float64(0.8315236647501129), np.float64(0.9616962994909836), np.float64(0.3798738856807569), np.float64(0.41931210335180485), np.float64(0.4028988449709345), np.float64(0.36634696598330824), np.float64(0.37447066367907095), np.float64(0.40027265395419315), np.float64(0.3861284263583065), np.float64(0.39845745250663606), np.float64(0.47222585803070455), np.float64(0.3973709224115854), np.float64(0.41325483694912335), np.float64(0.424013133218897), np.float64(0.4157523454343733)])\n" + ] + } + ], + "execution_count": 47 }, { "cell_type": "markdown", @@ -26729,6 +8512,1135 @@ "print(normalized_losses)\n", "print(unnormalized_losses)" ] + }, + { + "metadata": {}, + "cell_type": "markdown", + "source": "### Section 9: CoSamp\n" + }, + { + "metadata": { + "ExecuteTime": { + "end_time": "2025-10-08T13:10:36.590086Z", + "start_time": "2025-10-08T13:10:36.581468Z" + } + }, + "cell_type": "code", + "source": [ + "from cosamp import cosamp\n", + "import scipy\n", + "\n", + "max_amplitude = 100\n", + "min_sparsity = 7\n", + "max_sparsity = 9\n", + "vector_size = 100\n", + "data_set_size = 1\n", + "\n", + "b = 1 - (0.2)\n", + "d = np.pi/8\n", + "r = torch.tensor(0.5*(1+b*np.exp(1j*d)), dtype=torch.complex64)\n", + "variance = 1\n", + "\n", + "dense_data, sparse_data = buildDataSet(max_amplitude,min_sparsity,max_sparsity,vector_size,data_set_size)" + ], + "outputs": [], + "execution_count": 21 + }, + { + "metadata": { + "ExecuteTime": { + "end_time": "2025-10-08T14:15:09.837630Z", + "start_time": "2025-10-08T14:15:09.822096Z" + } + }, + "cell_type": "code", + "source": [ + "y_real = torch.tensor(dense_data.real)\n", + "y_imag = torch.tensor(dense_data.imag)\n", + "y = torch.complex(y_real,y_imag)\n", + "yiq = r * y + (1-r.conj()) * (y.conj())\n", + "yiqr = yiq.real\n", + "yiqi = yiq.imag\n", + "yiqstack = torch.cat((yiqr,yiqi),dim=0).flatten()\n" + ], + "outputs": [], + "execution_count": 27 + }, + { + "metadata": { + "ExecuteTime": { + "end_time": "2025-10-08T14:17:45.032029Z", + "start_time": "2025-10-08T14:17:43.791715Z" + } + }, + "cell_type": "code", + "source": [ + "p = 103 # random sampling (Note that this is one eighth of the Shannon–Nyquist rate!)\n", + "aquis = np.round((vector_size-1) * np.random.rand(p)).astype(int)\n", + "y = np.array(yiqstack[aquis]) # our compressed measurement from the random sampling\n", + "\n", + "# Here {y} = [C]{x} = [C][Phi]{s}, where Phi is the inverse discrete cosine transform\n", + "\n", + "Phi = scipy.fft.dct(np.eye(vector_size*2), axis=0, norm='ortho')\n", + "CPhi = Phi[aquis,:]\n", + "# l1 minimization (through linear programming)\n", + "s = cosamp.cosamp(CPhi, y, 10) # obtain the sparse vector through CoSaMP algorithm\n", + "xrec = scipy.fft.idct(s, axis=0, norm='ortho') # Reconstructed signal\n" + ], + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/tmp/ipykernel_4296/3505468807.py:3: DeprecationWarning: __array__ implementation doesn't accept a copy keyword, so passing copy=False failed. __array__ must implement 'dtype' and 'copy' keyword arguments. To learn more, see the migration guide https://numpy.org/devdocs/numpy_2_0_migration_guide.html#adapting-to-changes-in-the-copy-keyword\n", + " y = np.array(yiqstack[aquis]) # our compressed measurement from the random sampling\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Iteration 1\r\n", + "Iteration 2\r\n", + "Iteration 3\r\n", + "Iteration 4\r\n", + "Iteration 5\r\n", + "Iteration 6\r\n", + "Iteration 7\r\n", + "Iteration 8\r\n", + "Iteration 9\r\n", + "Iteration 10\r\n", + "Iteration 11\r\n", + "Iteration 12\r\n", + "Iteration 13\r\n", + "Iteration 14\r\n", + "Iteration 15\r\n", + "Iteration 16\r\n", + "Iteration 17\r\n", + "Iteration 18\r\n", + "Iteration 19\r\n", + "Iteration 20\r\n", + "Iteration 21\r\n", + "Iteration 22\r\n", + "Iteration 23\r\n", + "Iteration 24\r\n", + "Iteration 25\r\n", + "Iteration 26\r\n", + "Iteration 27\r\n", + "Iteration 28\r\n", + "Iteration 29\r\n", + "Iteration 30\r\n", + "Iteration 31\r\n", + "Iteration 32\r\n", + "Iteration 33\r\n", + "Iteration 34\r\n", + "Iteration 35\r\n", + "Iteration 36\r\n", + "Iteration 37\r\n", + "Iteration 38\r\n", + "Iteration 39\r\n", + "Iteration 40\r\n", + "Iteration 41\r\n", + "Iteration 42\r\n", + "Iteration 43\r\n", + "Iteration 44\r\n", + "Iteration 45\r\n", + "Iteration 46\r\n", + "Iteration 47\r\n", + "Iteration 48\r\n", + "Iteration 49\r\n", + "Iteration 50\r\n", + "Iteration 51\r\n", + "Iteration 52\r\n", + "Iteration 53\r\n", + "Iteration 54\r\n", + "Iteration 55\r\n", + "Iteration 56\r\n", + "Iteration 57\r\n", + "Iteration 58\r\n", + "Iteration 59\r\n", + "Iteration 60\r\n", + "Iteration 61\r\n", + "Iteration 62\r\n", + "Iteration 63\r\n", + "Iteration 64\r\n", + "Iteration 65\r\n", + "Iteration 66\r\n", + "Iteration 67\r\n", + "Iteration 68\r\n", + "Iteration 69\r\n", + "Iteration 70\r\n", + "Iteration 71\r\n", + "Iteration 72\r\n", + "Iteration 73\r\n", + "Iteration 74\r\n", + "Iteration 75\r\n", + "Iteration 76\r\n", + "Iteration 77\r\n", + "Iteration 78\r\n", + "Iteration 79\r\n", + "Iteration 80\r\n", + "Iteration 81\r\n", + "Iteration 82\r\n", + "Iteration 83\r\n", + "Iteration 84\r\n", + "Iteration 85\r\n", + "Iteration 86\r\n", + "Iteration 87\r\n", + "Iteration 88\r\n", + "Iteration 89\r\n", + "Iteration 90\r\n", + "Iteration 91\r\n", + "Iteration 92\r\n", + "Iteration 93\r\n", + "Iteration 94\r\n", + "Iteration 95\r\n", + "Iteration 96\r\n", + "Iteration 97\r\n", + "Iteration 98\r\n", + "Iteration 99\r\n", + "Iteration 100\r\n", + "Iteration 101\r\n", + "Iteration 102\r\n", + "Iteration 103\r\n", + "Iteration 104\r\n", + "Iteration 105\r\n", + "Iteration 106\r\n", + "Iteration 107\r\n", + "Iteration 108\r\n", + "Iteration 109\r\n", + "Iteration 110\r\n", + "Iteration 111\r\n", + "Iteration 112\r\n", + "Iteration 113\r\n", + "Iteration 114\r\n", + "Iteration 115\r\n", + "Iteration 116\r\n", + "Iteration 117\r\n", + "Iteration 118\r\n", + "Iteration 119\r\n", + "Iteration 120\r\n", + "Iteration 121\r\n", + "Iteration 122\r\n", + "Iteration 123\r\n", + "Iteration 124\r\n", + "Iteration 125\r\n", + "Iteration 126\r\n", + "Iteration 127\r\n", + "Iteration 128\r\n", + "Iteration 129\r\n", + "Iteration 130\r\n", + "Iteration 131\r\n", + "Iteration 132\r\n", + "Iteration 133\r\n", + "Iteration 134\r\n", + "Iteration 135\r\n", + "Iteration 136\r\n", + "Iteration 137\r\n", + "Iteration 138\r\n", + "Iteration 139\r\n", + "Iteration 140\r\n", + "Iteration 141\r\n", + "Iteration 142\r\n", + "Iteration 143\r\n", + "Iteration 144\r\n", + "Iteration 145\r\n", + "Iteration 146\r\n", + "Iteration 147\r\n", + "Iteration 148\r\n", + "Iteration 149\r\n", + "Iteration 150\r\n", + "Iteration 151\r\n", + "Iteration 152\r\n", + "Iteration 153\r\n", + "Iteration 154\r\n", + "Iteration 155\r\n", + "Iteration 156\r\n", + "Iteration 157\r\n", + "Iteration 158\r\n", + "Iteration 159\r\n", + "Iteration 160\r\n", + "Iteration 161\r\n", + "Iteration 162\r\n", + "Iteration 163\r\n", + "Iteration 164\r\n", + "Iteration 165\r\n", + "Iteration 166\r\n", + "Iteration 167\r\n", + "Iteration 168\r\n", + "Iteration 169\r\n", + "Iteration 170\r\n", + "Iteration 171\r\n", + "Iteration 172\r\n", + "Iteration 173\r\n", + "Iteration 174\r\n", + "Iteration 175\r\n", + "Iteration 176\r\n", + "Iteration 177\r\n", + "Iteration 178\r\n", + "Iteration 179\r\n", + "Iteration 180\r\n", + "Iteration 181\r\n", + "Iteration 182\r\n", + "Iteration 183\r\n", + "Iteration 184\r\n", + "Iteration 185\r\n", + "Iteration 186\r\n", + "Iteration 187\r\n", + "Iteration 188\r\n", + "Iteration 189\r\n", + "Iteration 190\r\n", + "Iteration 191\r\n", + "Iteration 192\r\n", + "Iteration 193\r\n", + "Iteration 194\r\n", + "Iteration 195\r\n", + "Iteration 196\r\n", + "Iteration 197\r\n", + "Iteration 198\r\n", + "Iteration 199\r\n", + "Iteration 200\r\n", + "Iteration 201\r\n", + "Iteration 202\r\n", + "Iteration 203\r\n", + "Iteration 204\r\n", + "Iteration 205\r\n", + "Iteration 206\r\n", + "Iteration 207\r\n", + "Iteration 208\r\n", + "Iteration 209\r\n", + "Iteration 210\r\n", + "Iteration 211\r\n", + "Iteration 212\r\n", + "Iteration 213\r\n", + "Iteration 214\r\n", + "Iteration 215\r\n", + "Iteration 216\r\n", + "Iteration 217\r\n", + "Iteration 218\r\n", + "Iteration 219\r\n", + "Iteration 220\r\n", + "Iteration 221\r\n", + "Iteration 222\r\n", + "Iteration 223\r\n", + "Iteration 224\r\n", + "Iteration 225\r\n", + "Iteration 226\r\n", + "Iteration 227\r\n", + "Iteration 228\r\n", + "Iteration 229\r\n", + "Iteration 230\r\n", + "Iteration 231\r\n", + "Iteration 232\r\n", + "Iteration 233\r\n", + "Iteration 234\r\n", + "Iteration 235\r\n", + "Iteration 236\r\n", + "Iteration 237\r\n", + "Iteration 238\r\n", + "Iteration 239\r\n", + "Iteration 240\r\n", + "Iteration 241\r\n", + "Iteration 242\r\n", + "Iteration 243\r\n", + "Iteration 244\r\n", + "Iteration 245\r\n", + "Iteration 246\r\n", + "Iteration 247\r\n", + "Iteration 248\r\n", + "Iteration 249\r\n", + "Iteration 250\r\n", + "Iteration 251\r\n", + "Iteration 252\r\n", + "Iteration 253\r\n", + "Iteration 254\r\n", + "Iteration 255\r\n", + "Iteration 256\r\n", + "Iteration 257\r\n", + "Iteration 258\r\n", + "Iteration 259\r\n", + "Iteration 260\r\n", + "Iteration 261\r\n", + "Iteration 262\r\n", + "Iteration 263\r\n", + "Iteration 264\r\n", + "Iteration 265\r\n", + "Iteration 266\r\n", + "Iteration 267\r\n", + "Iteration 268\r\n", + "Iteration 269\r\n", + "Iteration 270\r\n", + "Iteration 271\r\n", + "Iteration 272\r\n", + "Iteration 273\r\n", + "Iteration 274\r\n", + "Iteration 275\r\n", + "Iteration 276\r\n", + "Iteration 277\r\n", + "Iteration 278\r\n", + "Iteration 279\r\n", + "Iteration 280\r\n", + "Iteration 281\r\n", + "Iteration 282\r\n", + "Iteration 283\r\n", + "Iteration 284\r\n", + "Iteration 285\r\n", + "Iteration 286\r\n", + "Iteration 287\r\n", + "Iteration 288\r\n", + "Iteration 289\r\n", + "Iteration 290\r\n", + "Iteration 291\r\n", + "Iteration 292\r\n", + "Iteration 293\r\n", + "Iteration 294\r\n", + "Iteration 295\r\n", + "Iteration 296\r\n", + "Iteration 297\r\n", + "Iteration 298\r\n", + "Iteration 299\r\n", + "Iteration 300\r\n", + "Iteration 301\r\n", + "Iteration 302\r\n", + "Iteration 303\r\n", + "Iteration 304\r\n", + "Iteration 305\r\n", + "Iteration 306\r\n", + "Iteration 307\r\n", + "Iteration 308\r\n", + "Iteration 309\r\n", + "Iteration 310\r\n", + "Iteration 311\r\n", + "Iteration 312\r\n", + "Iteration 313\r\n", + "Iteration 314\r\n", + "Iteration 315\r\n", + "Iteration 316\r\n", + "Iteration 317\r\n", + "Iteration 318\r\n", + "Iteration 319\r\n", + "Iteration 320\r\n", + "Iteration 321\r\n", + "Iteration 322\r\n", + "Iteration 323\r\n", + "Iteration 324\r\n", + "Iteration 325\r\n", + "Iteration 326\r\n", + "Iteration 327\r\n", + "Iteration 328\r\n", + "Iteration 329\r\n", + "Iteration 330\r\n", + "Iteration 331\r\n", + "Iteration 332\r\n", + "Iteration 333\r\n", + "Iteration 334\r\n", + "Iteration 335\r\n", + "Iteration 336\r\n", + "Iteration 337\r\n", + "Iteration 338\r\n", + "Iteration 339\r\n", + "Iteration 340\r\n", + "Iteration 341\r\n", + "Iteration 342\r\n", + "Iteration 343\r\n", + "Iteration 344\r\n", + "Iteration 345\r\n", + "Iteration 346\r\n", + "Iteration 347\r\n", + "Iteration 348\r\n", + "Iteration 349\r\n", + "Iteration 350\r\n", + "Iteration 351\r\n", + "Iteration 352\r\n", + "Iteration 353\r\n", + "Iteration 354\r\n", + "Iteration 355\r\n", + "Iteration 356\r\n", + "Iteration 357\r\n", + "Iteration 358\r\n", + "Iteration 359\r\n", + "Iteration 360\r\n", + "Iteration 361\r\n", + "Iteration 362\r\n", + "Iteration 363\r\n", + "Iteration 364\r\n", + "Iteration 365\r\n", + "Iteration 366\r\n", + "Iteration 367\r\n", + "Iteration 368\r\n", + "Iteration 369\r\n", + "Iteration 370\r\n", + "Iteration 371\r\n", + "Iteration 372\r\n", + "Iteration 373\r\n", + "Iteration 374\r\n", + "Iteration 375\r\n", + "Iteration 376\r\n", + "Iteration 377\r\n", + "Iteration 378\r\n", + "Iteration 379\r\n", + "Iteration 380\r\n", + "Iteration 381\r\n", + "Iteration 382\r\n", + "Iteration 383\r\n", + "Iteration 384\r\n", + "Iteration 385\r\n", + "Iteration 386\r\n", + "Iteration 387\r\n", + "Iteration 388\r\n", + "Iteration 389\r\n", + "Iteration 390\r\n", + "Iteration 391\r\n", + "Iteration 392\r\n", + "Iteration 393\r\n", + "Iteration 394\r\n", + "Iteration 395\r\n", + "Iteration 396\r\n", + "Iteration 397\r\n", + "Iteration 398\r\n", + "Iteration 399\r\n", + "Iteration 400\r\n", + "Iteration 401\r\n", + "Iteration 402\r\n", + "Iteration 403\r\n", + "Iteration 404\r\n", + "Iteration 405\r\n", + "Iteration 406\r\n", + "Iteration 407\r\n", + "Iteration 408\r\n", + "Iteration 409\r\n", + "Iteration 410\r\n", + "Iteration 411\r\n", + "Iteration 412\r\n", + "Iteration 413\r\n", + "Iteration 414\r\n", + "Iteration 415\r\n", + "Iteration 416\r\n", + "Iteration 417\r\n", + "Iteration 418\r\n", + "Iteration 419\r\n", + "Iteration 420\r\n", + "Iteration 421\r\n", + "Iteration 422\r\n", + "Iteration 423\r\n", + "Iteration 424\r\n", + "Iteration 425\r\n", + "Iteration 426\r\n", + "Iteration 427\r\n", + "Iteration 428\r\n", + "Iteration 429\r\n", + "Iteration 430\r\n", + "Iteration 431\r\n", + "Iteration 432\r\n", + "Iteration 433\r\n", + "Iteration 434\r\n", + "Iteration 435\r\n", + "Iteration 436\r\n", + "Iteration 437\r\n", + "Iteration 438\r\n", + "Iteration 439\r\n", + "Iteration 440\r\n", + "Iteration 441\r\n", + "Iteration 442\r\n", + "Iteration 443\r\n", + "Iteration 444\r\n", + "Iteration 445\r\n", + "Iteration 446\r\n", + "Iteration 447\r\n", + "Iteration 448\r\n", + "Iteration 449\r\n", + "Iteration 450\r\n", + "Iteration 451\r\n", + "Iteration 452\r\n", + "Iteration 453\r\n", + "Iteration 454\r\n", + "Iteration 455\r\n", + "Iteration 456\r\n", + "Iteration 457\r\n", + "Iteration 458\r\n", + "Iteration 459\r\n", + "Iteration 460\r\n", + "Iteration 461\r\n", + "Iteration 462\r\n", + "Iteration 463\r\n", + "Iteration 464\r\n", + "Iteration 465\r\n", + "Iteration 466\r\n", + "Iteration 467\r\n", + "Iteration 468\r\n", + "Iteration 469\r\n", + "Iteration 470\r\n", + "Iteration 471\r\n", + "Iteration 472\r\n", + "Iteration 473\r\n", + "Iteration 474\r\n", + "Iteration 475\r\n", + "Iteration 476\r\n", + "Iteration 477\r\n", + "Iteration 478\r\n", + "Iteration 479\r\n", + "Iteration 480\r\n", + "Iteration 481\r\n", + "Iteration 482\r\n", + "Iteration 483\r\n", + "Iteration 484\r\n", + "Iteration 485\r\n", + "Iteration 486\r\n", + "Iteration 487\r\n", + "Iteration 488\r\n", + "Iteration 489\r\n", + "Iteration 490\r\n", + "Iteration 491\r\n", + "Iteration 492\r\n", + "Iteration 493\r\n", + "Iteration 494\r\n", + "Iteration 495\r\n", + "Iteration 496\r\n", + "Iteration 497\r\n", + "Iteration 498\r\n", + "Iteration 499\r\n", + "Iteration 500\r\n", + "Iteration 501\r\n", + "Iteration 502\r\n", + "Iteration 503\r\n", + "Iteration 504\r\n", + "Iteration 505\r\n", + "Iteration 506\r\n", + "Iteration 507\r\n", + "Iteration 508\r\n", + "Iteration 509\r\n", + "Iteration 510\r\n", + "Iteration 511\r\n", + "Iteration 512\r\n", + "Iteration 513\r\n", + "Iteration 514\r\n", + "Iteration 515\r\n", + "Iteration 516\r\n", + "Iteration 517\r\n", + "Iteration 518\r\n", + "Iteration 519\r\n", + "Iteration 520\r\n", + "Iteration 521\r\n", + "Iteration 522\r\n", + "Iteration 523\r\n", + "Iteration 524\r\n", + "Iteration 525\r\n", + "Iteration 526\r\n", + "Iteration 527\r\n", + "Iteration 528\r\n", + "Iteration 529\r\n", + "Iteration 530\r\n", + "Iteration 531\r\n", + "Iteration 532\r\n", + "Iteration 533\r\n", + "Iteration 534\r\n", + "Iteration 535\r\n", + "Iteration 536\r\n", + "Iteration 537\r\n", + "Iteration 538\r\n", + "Iteration 539\r\n", + "Iteration 540\r\n", + "Iteration 541\r\n", + "Iteration 542\r\n", + "Iteration 543\r\n", + "Iteration 544\r\n", + "Iteration 545\r\n", + "Iteration 546\r\n", + "Iteration 547\r\n", + "Iteration 548\r\n", + "Iteration 549\r\n", + "Iteration 550\r\n", + "Iteration 551\r\n", + "Iteration 552\r\n", + "Iteration 553\r\n", + "Iteration 554\r\n", + "Iteration 555\r\n", + "Iteration 556\r\n", + "Iteration 557\r\n", + "Iteration 558\r\n", + "Iteration 559\r\n", + "Iteration 560\r\n", + "Iteration 561\r\n", + "Iteration 562\r\n", + "Iteration 563\r\n", + "Iteration 564\r\n", + "Iteration 565\r\n", + "Iteration 566\r\n", + "Iteration 567\r\n", + "Iteration 568\r\n", + "Iteration 569\r\n", + "Iteration 570\r\n", + "Iteration 571\r\n", + "Iteration 572\r\n", + "Iteration 573\r\n", + "Iteration 574\r\n", + "Iteration 575\r\n", + "Iteration 576\r\n", + "Iteration 577\r\n", + "Iteration 578\r\n", + "Iteration 579\r\n", + "Iteration 580\r\n", + "Iteration 581\r\n", + "Iteration 582\r\n", + "Iteration 583\r\n", + "Iteration 584\r\n", + "Iteration 585\r\n", + "Iteration 586\r\n", + "Iteration 587\r\n", + "Iteration 588\r\n", + "Iteration 589\r\n", + "Iteration 590\r\n", + "Iteration 591\r\n", + "Iteration 592\r\n", + "Iteration 593\r\n", + "Iteration 594\r\n", + "Iteration 595\r\n", + "Iteration 596\r\n", + "Iteration 597\r\n", + "Iteration 598\r\n", + "Iteration 599\r\n", + "Iteration 600\r\n", + "Iteration 601\r\n", + "Iteration 602\r\n", + "Iteration 603\r\n", + "Iteration 604\r\n", + "Iteration 605\r\n", + "Iteration 606\r\n", + "Iteration 607\r\n", + "Iteration 608\r\n", + "Iteration 609\r\n", + "Iteration 610\r\n", + "Iteration 611\r\n", + "Iteration 612\r\n", + "Iteration 613\r\n", + "Iteration 614\r\n", + "Iteration 615\r\n", + "Iteration 616\r\n", + "Iteration 617\r\n", + "Iteration 618\r\n", + "Iteration 619\r\n", + "Iteration 620\r\n", + "Iteration 621\r\n", + "Iteration 622\r\n", + "Iteration 623\r\n", + "Iteration 624\r\n", + "Iteration 625\r\n", + "Iteration 626\r\n", + "Iteration 627\r\n", + "Iteration 628\r\n", + "Iteration 629\r\n", + "Iteration 630\r\n", + "Iteration 631\r\n", + "Iteration 632\r\n", + "Iteration 633\r\n", + "Iteration 634\r\n", + "Iteration 635\r\n", + "Iteration 636\r\n", + "Iteration 637\r\n", + "Iteration 638\r\n", + "Iteration 639\r\n", + "Iteration 640\r\n", + "Iteration 641\r\n", + "Iteration 642\r\n", + "Iteration 643\r\n", + "Iteration 644\r\n", + "Iteration 645\r\n", + "Iteration 646\r\n", + "Iteration 647\r\n", + "Iteration 648\r\n", + "Iteration 649\r\n", + "Iteration 650\r\n", + "Iteration 651\r\n", + "Iteration 652\r\n", + "Iteration 653\r\n", + "Iteration 654\r\n", + "Iteration 655\r\n", + "Iteration 656\r\n", + "Iteration 657\r\n", + "Iteration 658\r\n", + "Iteration 659\r\n", + "Iteration 660\r\n", + "Iteration 661\r\n", + "Iteration 662\r\n", + "Iteration 663\r\n", + "Iteration 664\r\n", + "Iteration 665\r\n", + "Iteration 666\r\n", + "Iteration 667\r\n", + "Iteration 668\r\n", + "Iteration 669\r\n", + "Iteration 670\r\n", + "Iteration 671\r\n", + "Iteration 672\r\n", + "Iteration 673\r\n", + "Iteration 674\r\n", + "Iteration 675\r\n", + "Iteration 676\r\n", + "Iteration 677\r\n", + "Iteration 678\r\n", + "Iteration 679\r\n", + "Iteration 680\r\n", + "Iteration 681\r\n", + "Iteration 682\r\n", + "Iteration 683\r\n", + "Iteration 684\r\n", + "Iteration 685\r\n", + "Iteration 686\r\n", + "Iteration 687\r\n", + "Iteration 688\r\n", + "Iteration 689\r\n", + "Iteration 690\r\n", + "Iteration 691\r\n", + "Iteration 692\r\n", + "Iteration 693\r\n", + "Iteration 694\r\n", + "Iteration 695\r\n", + "Iteration 696\r\n", + "Iteration 697\r\n", + "Iteration 698\r\n", + "Iteration 699\r\n", + "Iteration 700\r\n", + "Iteration 701\r\n", + "Iteration 702\r\n", + "Iteration 703\r\n", + "Iteration 704\r\n", + "Iteration 705\r\n", + "Iteration 706\r\n", + "Iteration 707\r\n", + "Iteration 708\r\n", + "Iteration 709\r\n", + "Iteration 710\r\n", + "Iteration 711\r\n", + "Iteration 712\r\n", + "Iteration 713\r\n", + "Iteration 714\r\n", + "Iteration 715\r\n", + "Iteration 716\r\n", + "Iteration 717\r\n", + "Iteration 718\r\n", + "Iteration 719\r\n", + "Iteration 720\r\n", + "Iteration 721\r\n", + "Iteration 722\r\n", + "Iteration 723\r\n", + "Iteration 724\r\n", + "Iteration 725\r\n", + "Iteration 726\r\n", + "Iteration 727\r\n", + "Iteration 728\r\n", + "Iteration 729\r\n", + "Iteration 730\r\n", + "Iteration 731\r\n", + "Iteration 732\r\n", + "Iteration 733\r\n", + "Iteration 734\r\n", + "Iteration 735\r\n", + "Iteration 736\r\n", + "Iteration 737\r\n", + "Iteration 738\r\n", + "Iteration 739\r\n", + "Iteration 740\r\n", + "Iteration 741\r\n", + "Iteration 742\r\n", + "Iteration 743\r\n", + "Iteration 744\r\n", + "Iteration 745\r\n", + "Iteration 746\r\n", + "Iteration 747\r\n", + "Iteration 748\r\n", + "Iteration 749\r\n", + "Iteration 750\r\n", + "Iteration 751\r\n", + "Iteration 752\r\n", + "Iteration 753\r\n", + "Iteration 754\r\n", + "Iteration 755\r\n", + "Iteration 756\r\n", + "Iteration 757\r\n", + "Iteration 758\r\n", + "Iteration 759\r\n", + "Iteration 760\r\n", + "Iteration 761\r\n", + "Iteration 762\r\n", + "Iteration 763\r\n", + "Iteration 764\r\n", + "Iteration 765\r\n", + "Iteration 766\r\n", + "Iteration 767\r\n", + "Iteration 768\r\n", + "Iteration 769\r\n", + "Iteration 770\r\n", + "Iteration 771\r\n", + "Iteration 772\r\n", + "Iteration 773\r\n", + "Iteration 774\r\n", + "Iteration 775\r\n", + "Iteration 776\r\n", + "Iteration 777\r\n", + "Iteration 778\r\n", + "Iteration 779\r\n", + "Iteration 780\r\n", + "Iteration 781\r\n", + "Iteration 782\r\n", + "Iteration 783\r\n", + "Iteration 784\r\n", + "Iteration 785\r\n", + "Iteration 786\r\n", + "Iteration 787\r\n", + "Iteration 788\r\n", + "Iteration 789\r\n", + "Iteration 790\r\n", + "Iteration 791\r\n", + "Iteration 792\r\n", + "Iteration 793\r\n", + "Iteration 794\r\n", + "Iteration 795\r\n", + "Iteration 796\r\n", + "Iteration 797\r\n", + "Iteration 798\r\n", + "Iteration 799\r\n", + "Iteration 800\r\n", + "Iteration 801\r\n", + "Iteration 802\r\n", + "Iteration 803\r\n", + "Iteration 804\r\n", + "Iteration 805\r\n", + "Iteration 806\r\n", + "Iteration 807\r\n", + "Iteration 808\r\n", + "Iteration 809\r\n", + "Iteration 810\r\n", + "Iteration 811\r\n", + "Iteration 812\r\n", + "Iteration 813\r\n", + "Iteration 814\r\n", + "Iteration 815\r\n", + "Iteration 816\r\n", + "Iteration 817\r\n", + "Iteration 818\r\n", + "Iteration 819\r\n", + "Iteration 820\r\n", + "Iteration 821\r\n", + "Iteration 822\r\n", + "Iteration 823\r\n", + "Iteration 824\r\n", + "Iteration 825\r\n", + "Iteration 826\r\n", + "Iteration 827\r\n", + "Iteration 828\r\n", + "Iteration 829\r\n", + "Iteration 830\r\n", + "Iteration 831\r\n", + "Iteration 832\r\n", + "Iteration 833\r\n", + "Iteration 834\r\n", + "Iteration 835\r\n", + "Iteration 836\r\n", + "Iteration 837\r\n", + "Iteration 838\r\n", + "Iteration 839\r\n", + "Iteration 840\r\n", + "Iteration 841\r\n", + "Iteration 842\r\n", + "Iteration 843\r\n", + "Iteration 844\r\n", + "Iteration 845\r\n", + "Iteration 846\r\n", + "Iteration 847\r\n", + "Iteration 848\r\n", + "Iteration 849\r\n", + "Iteration 850\r\n", + "Iteration 851\r\n", + "Iteration 852\r\n", + "Iteration 853\r\n", + "Iteration 854\r\n", + "Iteration 855\r\n", + "Iteration 856\r\n", + "Iteration 857\r\n", + "Iteration 858\r\n", + "Iteration 859\r\n", + "Iteration 860\r\n", + "Iteration 861\r\n", + "Iteration 862\r\n", + "Iteration 863\r\n", + "Iteration 864\r\n", + "Iteration 865\r\n", + "Iteration 866\r\n", + "Iteration 867\r\n", + "Iteration 868\r\n", + "Iteration 869\r\n", + "Iteration 870\r\n", + "Iteration 871\r\n", + "Iteration 872\r\n", + "Iteration 873\r\n", + "Iteration 874\r\n", + "Iteration 875\r\n", + "Iteration 876\r\n", + "Iteration 877\r\n", + "Iteration 878\r\n", + "Iteration 879\r\n", + "Iteration 880\r\n", + "Iteration 881\r\n", + "Iteration 882\r\n", + "Iteration 883\r\n", + "Iteration 884\r\n", + "Iteration 885\r\n", + "Iteration 886\r\n", + "Iteration 887\r\n", + "Iteration 888\r\n", + "Iteration 889\r\n", + "Iteration 890\r\n", + "Iteration 891\r\n", + "Iteration 892\r\n", + "Iteration 893\r\n", + "Iteration 894\r\n", + "Iteration 895\r\n", + "Iteration 896\r\n", + "Iteration 897\r\n", + "Iteration 898\r\n", + "Iteration 899\r\n", + "Iteration 900\r\n", + "Iteration 901\r\n", + "Iteration 902\r\n", + "Iteration 903\r\n", + "Iteration 904\r\n", + "Iteration 905\r\n", + "Iteration 906\r\n", + "Iteration 907\r\n", + "Iteration 908\r\n", + "Iteration 909\r\n", + "Iteration 910\r\n", + "Iteration 911\r\n", + "Iteration 912\r\n", + "Iteration 913\r\n", + "Iteration 914\r\n", + "Iteration 915\r\n", + "Iteration 916\r\n", + "Iteration 917\r\n", + "Iteration 918\r\n", + "Iteration 919\r\n", + "Iteration 920\r\n", + "Iteration 921\r\n", + "Iteration 922\r\n", + "Iteration 923\r\n", + "Iteration 924\r\n", + "Iteration 925\r\n", + "Iteration 926\r\n", + "Iteration 927\r\n", + "Iteration 928\r\n", + "Iteration 929\r\n", + "Iteration 930\r\n", + "Iteration 931\r\n", + "Iteration 932\r\n", + "Iteration 933\r\n", + "Iteration 934\r\n", + "Iteration 935\r\n", + "Iteration 936\r\n", + "Iteration 937\r\n", + "Iteration 938\r\n", + "Iteration 939\r\n", + "Iteration 940\r\n", + "Iteration 941\r\n", + "Iteration 942\r\n", + "Iteration 943\r\n", + "Iteration 944\r\n", + "Iteration 945\r\n", + "Iteration 946\r\n", + "Iteration 947\r\n", + "Iteration 948\r\n", + "Iteration 949\r\n", + "Iteration 950\r\n", + "Iteration 951\r\n", + "Iteration 952\r\n", + "Iteration 953\r\n", + "Iteration 954\r\n", + "Iteration 955\r\n", + "Iteration 956\r\n", + "Iteration 957\r\n", + "Iteration 958\r\n", + "Iteration 959\r\n", + "Iteration 960\r\n", + "Iteration 961\r\n", + "Iteration 962\r\n", + "Iteration 963\r\n", + "Iteration 964\r\n", + "Iteration 965\r\n", + "Iteration 966\r\n", + "Iteration 967\r\n", + "Iteration 968\r\n", + "Iteration 969\r\n", + "Iteration 970\r\n", + "Iteration 971\r\n", + "Iteration 972\r\n", + "Iteration 973\r\n", + "Iteration 974\r\n", + "Iteration 975\r\n", + "Iteration 976\r\n", + "Iteration 977\r\n", + "Iteration 978\r\n", + "Iteration 979\r\n", + "Iteration 980\r\n", + "Iteration 981\r\n", + "Iteration 982\r\n", + "Iteration 983\r\n", + "Iteration 984\r\n", + "Iteration 985\r\n", + "Iteration 986\r\n", + "Iteration 987\r\n", + "Iteration 988\r\n", + "Iteration 989\r\n", + "Iteration 990\r\n", + "Iteration 991\r\n", + "Iteration 992\r\n", + "Iteration 993\r\n", + "Iteration 994\r\n", + "Iteration 995\r\n", + "Iteration 996\r\n", + "Iteration 997\r\n", + "Iteration 998\r\n", + "Iteration 999\r\n", + "Iteration 1000\r\n" + ] + } + ], + "execution_count": 37 + }, + { + "metadata": { + "ExecuteTime": { + "end_time": "2025-10-08T14:17:49.773001Z", + "start_time": "2025-10-08T14:17:49.646317Z" + } + }, + "cell_type": "code", + "source": [ + "plt.plot(yiqstack)\n", + "plt.plot(xrec)\n", + "plt.show()" + ], + "outputs": [ + { + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAioAAAGdCAYAAAA8F1jjAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjYsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvq6yFwwAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzs/XecbVlZJo4/a4cTKt7UNzSdoJvUIkFiKyog2jIzjgiYxhFFDMMAozKjP5nhi6OiraIyMtMIKAiICIISFVBaaFCa1AE60TnfHCqesMNavz/Welfae586qbqqLvv9fO6n6lad2mfvfdZe61nP+7zPy4QQAnXUUUcdddRRRx3bMIKtPoE66qijjjrqqKOOqqiBSh111FFHHXXUsW2jBip11FFHHXXUUce2jRqo1FFHHXXUUUcd2zZqoFJHHXXUUUcddWzbqIFKHXXUUUcdddSxbaMGKnXUUUcdddRRx7aNGqjUUUcdddRRRx3bNqKtPoFJg3OOw4cPY35+HoyxrT6dOuqoo4466qhjiBBCYHV1Feeeey6CoJo32fFA5fDhwzj//PO3+jTqqKOOOuqoo44x4oEHHsB5551X+fsdD1Tm5+cByAtdWFjY4rOpo4466qijjjqGiZWVFZx//vl6Ha+KHQ9UKN2zsLBQA5U66qijjjrq2GGxkWyjFtPWUUcdddRRRx3bNmqgUkcdddRRRx11bNuogUodddRRRx111LFtowYqddRRRx111FHHto0aqNRRRx111FFHHds2aqBSRx111FFHHXVs26iBSh111FFHHXXUsW2jBip11FFHHXXUUce2jRqo1FFHHXXUUUcd2zZqoFJHHXXUUUcddWzbqIFKHXXUUUcdddSxbaMGKnXUUUcdddRRx7aNGqh8K8b1fw3c9dmtPos66qijjjrq2DA2Faj82Z/9GZ74xCfqzsaXXXYZPvnJT+rf93o9vPKVr8TevXsxNzeHF7/4xTh27NhmnlIdK4eBj/5X4MP/ZavPpI466qijjjo2jE0FKueddx5+//d/H9deey2+9rWv4XnPex5++Id/GDfffDMA4Fd/9Vfx8Y9/HB/84Adx9dVX4/Dhw3jRi160madUR39NfV3d2vOoo4466qijjiGCCSHEw/mGe/bswRvf+Ea85CUvwTnnnIP3ve99eMlLXgIA+OY3v4nHP/7xuOaaa/CsZz1rqOOtrKxgcXERy8vLWFhY2MxTPzvi+K3AW54FRC3gdTV7VUcdddRRx9bEsOv3w6ZRyfMc73//+7G+vo7LLrsM1157LdI0xfOf/3z9msc97nG44IILcM0111Qep9/vY2VlxflXxwghuPu1jjrqqKOOOrZxbDpQufHGGzE3N4dms4n/8l/+Cz784Q/j0ksvxdGjR9FoNLBr1y7n9QcOHMDRo0crj3fFFVdgcXFR/zv//PM3+QrOsiCAwvOtPY866qijjjrqGCI2Hag89rGPxQ033IAvf/nLeMUrXoGf+ZmfwS233DL28V772tdieXlZ/3vggQemeLbbOzpJhokzdQRQRA1U6iiPbpKD84c1I1xHHXXUURmbDlQajQYuueQSPPWpT8UVV1yBJz3pSfjTP/1THDx4EEmSYGlpyXn9sWPHcPDgwcrjNZtNXUVE/74V4qGlLp76O5/Br3/oG5MdyE758Dr9U4cby50Uz/y9z+AX/+prW30qddRRRx0AtsBHhXOOfr+Ppz71qYjjGFdddZX+3W233Yb7778fl1122cN9Wts+7jy+hm6a48aHlic7kA1UalalDi/uO72OlV6Gbzw44Tiro4466phSRJt58Ne+9rV4wQtegAsuuACrq6t43/veh8997nP49Kc/jcXFRbz85S/Ha17zGuzZswcLCwt49atfjcsuu2zoip9vpSAqnk+a+nGASs2o1OEGZXwmHmd11FFHHVOKTQUqx48fx0tf+lIcOXIEi4uLeOITn4hPf/rT+P7v/34AwJve9CYEQYAXv/jF6Pf7uPzyy/GWt7xlM09pxwYtHPmk2gEn9VMzKnW4kWtAvMUnUkcdddShYlOByjve8Y6Bv2+1Wrjyyitx5ZVXbuZpnBUxtQXEBid16qcOL6YGiOuoo446phR1r58dErRu1IxKHZsZ+bRSjHXUUUcdU4oaqOyQmF7qx2ZUao1KHW5oLVTNqNRRRx3bJGqgskOCgMrEPiq1mLaOAWHEtFt7HnXUUUcdFDVQ2SFBTEo+TaBSp37q8ILG18TjrI466qhjSlEDlR0SJvUz6YFqH5U6qqNO/dRRRx3bLWqgskOC8MVUfVRqRqUOL3Iu8JLwajwJt231qdRRRx11ANjk8uQ6phf5pohpa6BShxvNlXvwR/HbcBc/BCF+BYyxrT6lOuqo41s8akZlhwSJaGtn2jo2M8JkBQAwz7qoZSp11FHHdogaqOyQIG3KxNoBO91TNyWswwuRZwCAALwW1NZRRx3bImqgskOCT6sao25KWMeAEArIhuC16VsdddSxLaIGKjskaNGYmASpxbR1DApuGJWacKujjjq2Q9RAZYcE3wwflVqjUocXJvUjakaljjrq2BZRA5UdErl2DK1TP3VsXlDqp9ao1FFHHdslaqCyQ0JoC/0JbfQdMW0NVOrwQqV+QvCacKujjjq2RdRAZYeE7Z8ykZdKnfqpY0AQo8Igakaljjrq2BZRA5UdEjY2mWgBqcW0dQwIYTEqtUaljjrq2A5RA5UdEvaiMdH64TjT1oxKHW4wNT4ixut+P3XUUce2iBqo7JDgm5L6qRmVOtygqh+gbkxYRx11bI+ogcoOCTvdM1Hqh9epnzoGhDUmcp4NeGEdddRRx8MTNVDZIWHvbifa6daMSh2DQliMSl6PjzrqqGProwYqOyQcMe20gEptPVqHHxY4ETWjUkcddWyDqIHKDgk73TORdKAW09YxKKzxkef1+Kijjjq2PmqgskOCO0ClTv3UsUnBbTFtPT7qqKOOrY8aqOyQmFrVT+1MW8egEHXqp4466theUQOVHRKbolGpGZU6/HAYlTr1U0cddWx91EBlh4QNTiZL/Vh/WzMqdfhhjQme14xKHXXUsfVRA5UdEqIW09bxMASzx0fNqNRRRx3bIGqgskPCMXyrmxLWsUnBbMO32keljjrq2AZRA5UdEjY2mSj1U4tp6xgUvBbT1lFHHdsraqCyQ6Lu9VPHwxKWM62oUz911FHHNogaqOyQ4JuR+qkZlTq8YE55cj0+6qijjq2PGqjskLBNQifJ/NRi2joGha1RqQ3f6qijju0QNVDZISGm1T3Z/ts69bPzQwhg+aEpHo9b39bjo4466tj6qIHKDompVf3wuvz0rIov/RnwpkuBb3xwKodjojZ8q6OOOrZX1EBlh8T0DN9qMe1Uor8G3PoJIO1u7XmcvF19vW0qh2O81qjUsT2DT2QgVcdOjhqo7JAQm2GhXy9E48c1VwIf+Cng2ndt7XkQ2MyTqRyO1b1+6tiG8Uefvg1P/93P4PDSFm8M6tiSqIHKDonpMSq1mHYqsXZUfl0/sbXnQZ/hlOzuHaCS1+Njp8U9J9dxen06oHU7xefvOIFT6wluemh5q0+lji2IGqjskLDByUTSgTr1M53IU/l1q1kpGgw8ncrhHKBSj48dFafXE/zAm67Gf/6LL2/1qUw9aKM20Satjh0bNVDZIcGnVfVTO9NOJygtstWLuU79TB+o8JpR2VFxbKWHNBd46CxMjxBQqYfkt2bUQGWHhGOhP5FGxS5Prp/6sYOAwVbv8AhsbgKjYrvU1rH9I8tpMT/7WIdMXVNWV6J9S0YNVHZI5FOz0K8ZlakE3yapH82oTAdUBDajUi8KOypoET8bgUqd+vnWjhqo7JBwNCpTK0/eHgvR2z9/F37xPV9DuoN43aW1DgDg9NoW0+xTZ1RqDdNODWIdJkoNb9MwIGyLT6SOLYkaqGxmTNFjY3OAyvZYiN75r/fin245htuOrm71qQwdx5fWAAD3n9zic9ZVP5sgps23x/ioY7ig1M/Z6DeS67RWjVS+FaMGKpsV//Zm4Irzgfuumcrh7Odzol3FNhTTEpOS7KDtElNiWrHVrBS9/5Q8TwK7e/JWX1sdI4VmHc5KRqUW034rRw1UNise/Iqk4w9fP5XD5VPr9bP9GBW6HtoR7oRg26Xqh0+56gdWr5+aUdlRQYu5EGcfq2Kqfmqk8q0YmwpUrrjiCjz96U/H/Pw89u/fjxe+8IW47TbX6rvX6+GVr3wl9u7di7m5Obz4xS/GsWPHNvO0Hp6gByrrTeVwwvFRmZaYdns89ETr7iRFv2YetpqVEtPVqAS1IeCODRvon22simFUzq7rqmO42FSgcvXVV+OVr3wlvvSlL+Gf//mfkaYpfuAHfgDr6+v6Nb/6q7+Kj3/84/jgBz+Iq6++GocPH8aLXvSizTythydoxz0la/PpOdNuv/JkXXq4gxgVDVS2+h7yzav6qXv97Kyw2YazbUHXjMrZdVl1DBnRZh78U5/6lPP/d73rXdi/fz+uvfZafM/3fA+Wl5fxjne8A+973/vwvOc9DwDwl3/5l3j84x+PL33pS3jWs561mae3uUFAZUqMij3vTK3Xz1anLVTkO9AjIRDko7JdNCqbwahsj/FRx3CR5lPazGzDMFU/O2eOqGN68bBqVJaXZZ+GPXv2AACuvfZapGmK5z//+fo1j3vc43DBBRfgmmvKRaj9fh8rKyvOv20ZNMln02FUplb1sw3FtDQJ7ShGRd07ttX3cNpVP7ZGZauvrY6RYmpeS9swamfab+142IAK5xy/8iu/gu/6ru/CE57wBADA0aNH0Wg0sGvXLue1Bw4cwNGjR0uPc8UVV2BxcVH/O//88zf71McLTcn3p3I4dxKa4EDbjFERQmi2KNtBk2sotpmYdhMYlRqo7KywfYjONuIhq8W039LxsAGVV77ylbjpppvw/ve/f6LjvPa1r8Xy8rL+98ADD0zpDKccNMlvQupnat2Tt8FCZAOwnWT4tm00KlPu9RNsQ0PAOoYL+1naSWnUjYJzoaV1O2iKqGOKsakaFYpXvepV+MQnPoHPf/7zOO+88/TPDx48iCRJsLS05LAqx44dw8GDB0uP1Ww20Ww2N/uUJw+tUZlS6mdqYlp7Idp6BiPboXR1CPn5sq1ezKdcnhygZlR2aqT2s7QNnu1pRXaWXte0I+cCYcC2+jQ2JTaVURFC4FWvehU+/OEP41/+5V/wyEc+0vn9U5/6VMRxjKuuukr/7LbbbsP999+Pyy67bDNPbfNj6mLaafX62V6pH2cXuIM0KpT6YVt9D6dcnhzW5ck7NvKzNPXjzn1n0YVNMY6v9PC0N/wzfucTt2z1qWxKbCqj8spXvhLve9/78NGPfhTz8/Nad7K4uIh2u43FxUW8/OUvx2te8xrs2bMHCwsLePWrX43LLrtsZ1f8ABYlP6Xy5GkBFftB3wY7Znu3lO6gSUgv6Fu9mGsx7XTKk10x7c75POo4e5mHbFr6vLM4bj6ygjOdFP9258mtPpVNiU0FKn/2Z38GAHjOc57j/Pwv//Iv8bM/+7MAgDe96U0IggAvfvGL0e/3cfnll+Mtb3nLZp7WwxNT1qiIqWlUti+jUqd+xggCE5vCqGz9+Khj+LAX9LPJmTbPa0ZlozCmmWfP527HpgIVMcSC2mq1cOWVV+LKK6/czFN5+INPtzzZNXyb4EDbjNq3RX/pDkz9bPliPm0xLbYX41bH8JFZdMNOAv0bReYY2W3hiWzjONude+teP5sV2pl2OuXJm6JR2QYLkb1BynbQLBSqBX3rGRXSqEwn9RNiewHZOoaPzKn6OXsWrKm5cp/Fob2ozlLGqQYqmxXa8G1KQGVatO42Kz+1H6wdM7kKgXi7pH42sTy51qjsrMjOUmfa7Cwtu55maHfvHcRKjxI1UNms0FU/02JUzPcTCeW2mTPtjqz6se6bLT7dkpi2hb7FqGx5RVMdI8VOLfXfKKZmdnkWR3aWa1RqoLJZwafIqKwcdkRk02NUtn4h2pG7JQsUbPlizq3qoyncP1ujIraaLapjpDh7NSpnp0h4mmEYlbPzma2BymbFtCz0r3sP8CePx4v4p82hJxLTbq/Uj+tMu0MmodwGKtuEUQGmwqo4GpVtwLjVMXxkZ6mWI9+J6eGHOXQH+rP0/tRAZbNiWoZvJ28HADyV36R/NFHqZ5uJabOdWHpoCVe3PPVjf4ZT0KlEqMuTd2rsSL3XEHG2ArBpxk5s7DpK1EBls2Ja3ZPVALwID1k/OntSP/bEUzMqY4TTu2lyoOKUJ2/1tdUxUuRnaYrEXnzPJgA2zaB7dDal/OyogcpmhZ36mUITwQvFEb2ITOZMay9sW78Q7XSNSrDVYM8GE1Nwpw1rRmXHRuqwk2fPgnW2ArBpBt2jneTuPUrUQGWzglvddSfxuFALUZOleAQ7AWCKqZ9tsBDlfAcKAG1GBVt8znyKjIoQCK3rYTXNvqPCqY45iz67s7WaaZpB90iIsxPM1UBls8JeQCap/LGOcwk7DGDCpsfbzZk233mpH7FdUz+T9pXyNUvbQMNUx/CRnqVNCR0Lg7NwEZ5GnO2C4xqobFbYLMokQMVaCC9WQOVscqZ1fVR2xuyaWboj23dkS4JPMfXjMWx1efLOirOVUamdaTeONN+BKfQRogYqmxFCeDvdSYCKOY4GKhMZvm1C6ufI14HPv3EsQLYTbb95ZmtUthGjMmnqx0tRbrlHTB0jRboTK+iGiJpR2TjO9nu0qU0Jv2XDX7wmKVG2GZVAApWpVf1Mi1H5zG8Bd10FHPh24LE/ONKf2qBrp5TWZWmCpvp+W2lUJi1P9rVUWw3C6hgp8rO0eV82LbPLszicDd8OmUdHiZpR2YzwAcAkJcp8E1M/01qI+ivya7I28p/mO5CyzFM79bPVjMr0DN+EP25roLKj4mwVneZn6XVNM1yNytn33NZAZTPC35lOlPoxg24vW8VurEzoTLsJYlpK+YxR3bQjUz8Wc7HlGhUnxTiZRkV4f8+2gYapjuHjW6EpYQ1UysPRqNSMSh1Dhbdg/85Hr8dnbzs+3rE8ncDF7PBkk9BmpH5o4R4DqOzEpoS5xZBtaQmvEFNlVPIC0JkMyP7vj92M3//kNyc6Rh3DR7YTS/2HiLNVJDzNONtZpxqobEZ44OLm+0/gvdfcN+ax3MXi4uDI9AzfpiSW7PWlBidNR09x2ZNrukMS646YdszF/KaHlvHGT38T6/3JPXZ0TKhRyb2/n6T0+vR6gnd98V689eq7sNqbTmfnOgbH2co8nK3XNc3Yicz0KFEDlc0Ij6loIsXKuJO1OlZfSN3zxezwwF3Fai8d/DDbfzslRmVtfR0AcOfR5ZH/dqo7gS+/HXjLdwKrxyY7zgbBLUYlHBOovPmqO3DlZ+/CVd8ck2kDSnxPNgY9K720UpAocvd4k1T9LHfNeD+6PGG/qzqGimybONPmXOCV77sOb7v6rikd7+xkiqYZjkZlh2z4RokaqGxGeAtIAylWe2PunNWu9m5xLgDgEvZQ5UJzaq2PZ/7eVfilv/rahseT308HqARCLkrjMCpO9+RJJ6GbPgQcvxm4/4uTHWeD4NnkYtr1RI6Hh5NRObLcxdPf8Bn88gduKP29z6hMomFas8b74RqoPCyRbZMUyR3HV/EP3ziCt33+7qkcb7sAsO0cNaNSx+jh7WybUwAq94oDAIBD7HSlRuW+0x10khy3HF4ZcDw79TPegL7rxBq6iTlOJDJ16Ek1KhPuBOi+T6GL8KDIvdTPOCWTNPna6a4HTnccJmLD8IHmBhqVu46vo59x3HqkfHwUGZXxPw873XNkqTv2ceoYPjLHmXbrFisa2xOBcCvORv3Fh659EM/+g3/BN48OmKtHiKwW09YxcnhARTIqk6V+Osq5o4G00iNBd9AcBEAmFNPefmwV3/fHV+OX33+9/hkBlUmrfiaehAigTOIEPEQIp+pHjLWD0U3E1Gd2cq2P5/3x5/DSd35l+IP4n98GAI3GRRUg5D7QnACorFjA/EjNqDwssV1Ep3Qe/YxPBVhsF6ZomvGZW47hwTNd/Nudp6ZyPNfwrU791DFMeDvdBsuw1s8gxnnI1GLRFw0AQIysklGhATqQmJhQTPvgmQ4A4P7THf2zGKk61ckYlYnFtHbH6k0Muzw5xHiTccpdRuXIUg9pLvCgdV83jAKjMvj+07ipAlZ8imJah1FZrhmVhyPSbWKMZoOJTjI5qzLN7smfve04fuxt1+C+U+uTntZEQc9gZ0qsU1b3+vnWjJsPL+N/ffhGXHf/mdH/uERMywWwnoyhCVGLUQ8SqDRYVrkwEqMyEBBNyKjQ86BBhRCIoVI/W+2jMij188X/C3zyNybs6EhvY64zAB9rB0PitzSTXxN1P0cqPfffdwNGhSb5KmrYT/1MpFHp14zKwx2ueeLWMyoA0BlnzvNimnPEh659EF+55zQ+c+sEIvYpBD3na1MAcsDOtHkYJWoL/Yp417/diw9e+yC6aY7vuGD3aH9cIqYFpMBwrjniLVeLBQGVQYwKDdahUz9jMCp0bG0wZC2O42lUbLX6lIBKWernX34XyLrAZf8V2HXBRG8jcldMOw6j4mtU6OtIx/I/vw26J9OxKxkVT+Myievuap36edjDFqNvddUPxTR0KtOs+umnKpU+JSZj3Mg1ozKdgoasTv18a8ZPPEMuZv9445HRBI5AqZgWwHg6FQV6ekOlfhRQqXqYhQDs3jRj7Ji5l7Kw0yxsrNSP+X7iB0y9f6/fxbv+7R6cWFXnJoQEKQDQm1y8JqaQ+qHPyk8BjXQo//MbMvVT1bBOeKm3ScqT7bFelyc/PLFdugzzTWRUJgYqisHspFvrukyfz7QEx9k2YdM2K2qgUhHfccEuPObAHHopx0dveGi0P/bFtExO2ivjVP5oRiUGADQxKPWjFrtKoOIvbGMAFXVoA1QsRmWMVNJ0GRX5/t+49wT+98dvwV98QZVHWp/HydOTi9ccoMIE8jG0NVpMm7mMymipnxHFtOo0q+6zr1GZJPVjMypr/Wx8H6HtGNf/NfCnTwZO3LbVZ+KErfHaSisNV6MyOSCw57NJxbT9VN6Y7hTOa5Kg5399Sqkfx5X4LEz91EClIhhj+ImnS1blb77ywGhCWFHUqABjMiokprVTPxUDMdso9VNoOjd+6ifJCKhY6YZtolE5s7IKwDIds87x/qMnJnsPuEAFGI8J8lM+SbYBG1Z+Iu7/NyhPzjcQ0061PNnbKR5ZOotYlVs/Dpy5B7jn81t9Jk5sF0bF1ahMvhDb43VSMW0/U6mfKQGEcUMDlSmlfoat+jmx2kdvi9mkcaIGKgPiRd/xCDSiALceWcE3HhzBdbWgUZEPxdo4NJ+nUQmYAET5cWiAVo7TAqMyjpjW16hMBlQ2w0dlZV1WzpBA1e52fPzkycneQx7Q/W82/nUnnlZlMkZlg9SP1qhUlCfzaVb9eEDlbKr8oTG/gSbo4Y7t4qUxbTFtPsXNjE79nHWMysb36PhKD9/1+/+Cn3/3AEPQbRo1UBkQu2YaeMETDgIA3v/V+4f/Q28BaTE5GMcyfdMalVj/iFXsnDf0UfEXnjEYFS7chVVkk2lU7IdqYmda9f79vlwUCUylidnNnzx9erL3QJFRKTbz2zjo3LLcT/2MciI+8Nwo9bMRo+J1T55ITCvPJQwYgNEFtTkX+PUPfR1/+9UHxj6HTQsCKNn2Yokc+n+bMCrT0GBMl1HZJqmfzdSoVIDU+053kOQcd59Ym8p7PpxRA5UN4oeeKK3rr7tvafg/8hbsPU35cEyS+iFGBQBCXr6T01U/lRqVyctP7cVOCIEssSpstgmj0lCMk9Z/pOYcl5fGKDf3oghUxtfmEEDRIHOk1M+I5cmCytfLJ3zhMS3TYFQu3DsDYHSgcsvhFfzt1x7E//nM7WOfw6aFri7bPowK58IBudPyUbnu/jP4k3++XadMhjoXCyR1p5BmmCqjQlU/WwxU6POZVupnGEaF0vU70TSvBiobxEJbMhkjmZF5gGBPS34di1FRx0pgGBXqreOHzUiUamoKjAof2VfEnoTSXCBLJ636sfPqE06w6v1jxWDpkl8LTHXXlo2+Zszwr3McoKKrfnJKAY1h1lVoSjgcUAFcczBzuOmlfqjXz2P2zwMY3UafFsax0qWbHTr1s7nGgqOE/3lOazH6w099E2++6g5cc9fwInR7qpzGQuz0+pnwunrbpOpHMypT81HZuCmhBio7sHq5BiobRBRK6rpsYq8MbyFbjOVDMR5QUSkBBOir9E9QsSDljuq/5IEu06SMuBjZh01zjsxKq4yjefHPc6IdEzEqSrxMwC2zdr5tdHH3ycmozyKjMjpTlnkAxQbCQ+tUCj4qg8eXPUENMz4CTF6e/JgDcwBGZ1QIwE1jRz710Kmf7cOo+J/ntBiV5a4cU6OkSqbvTDs9x11iVLpbLqaVXzfHR6X8HhH430qh9bhRA5UNIg7kLRpJnDZVjYpCwQiQKH++sGJh3LAnRtnPRgQXvuW9LVRlFSLfQeELO8f2UhHCAipu6sdOT82ih9uOro73HhQeUORjpX7KNSrACLvGERmV3GPDiofze/2MN6HlXGA9yfGa6G/xguW/ATC6mDbTqTExMQM29dA9pbaPRsX/PKdl+EYVIqMwGTaw2G7OtNtFTEuAK8n5VMb3MI0b+5pRqYHKWReaUZkAqDQmKk9WKBjMAJWK1I8rOis7VskPRxTU2mg8yTlyJ/WzhYyKdW0aqJD+I50uUGH55Kmf1FqI7a/ACPY2BUZlOAt9oIpRca9rXGfatV6GBazhv0UfweNvfhPm0cGR5d5IJf72xmCrhY+FoPs8Yern/lMd/O+P3YyHptBdeqrMpBV070dZ3Gzmbtq9foDxWZUs5/q+bPWYyhwwNwXBcW5vQganfmpG5SyMWAGVkXb6Jd2TgclTP6kCKlUalQ27p5aBklFTPw6jIhygUlU2PSh8pmrsskrrnvtAxWZ9Ztn0GZVRgQrnQpMVifZRGSP144/JDTRCG3kt+L2axtWorPZTzMKMiwvYMXSSfCTDQ3uy7aTbTKeiGZXJUj9//ZX78K4v3ou3X33XxKfk6xKmtRj1xkgXbKYzLTC+TsXWgW05o2JdwjR0WNkQbQZ0P7GaUTmL4uSdwO2fRvuMrDoYaQH1AEGkgMVqf3wLfS4YUiGBSlRR9ZNupFEpW3hGTf3YGpWMI08N/R2MYyDn7wTHVXrZQEU5AZNHCfcYlW9Oyqh4C3ohZbJBZLy4+xkr9TNm1Q9QPp4LVT9jMiqrvQxtZu75t7Wkd80o6Z9syovdVGNKYloqTb3u/qUJT6hkMR9jMRJC4Nr7TmOpY+YXw6gMfxx7/E5DTOtfy7ipC3KlBaT2aUs7TG+B10xd9XM2xnXvBt73Y1i47W8BjFj1Y4ELAIiFfPDXJmBUbI3KMIxK6UNIoIRZH/uoqR9vkeXWrnKs1I/30IxNWVvgoRXI8yDQk1teL7Osh4eWuuOl4VT4PjZ8xOvOStoGOGLaYe/BqM60G6R+fB+VYFxGpZehDTMuHt+UFSPHV4Zf2B1GZUqCw6mFFtNOBlRS5UZ865GViVMRPvAch1H5xoPLePGfXYNf+9A35DG4sHQNw4+FzXSm9Y8/SvQ9LUhvhJLraYd9DdNhVAZvQgBz/TuxZ2ENVKoilv4PYUbmYaOnfrrK+4R8TyYpTxa2RqWC4t9YTKuuITClzqOO2oJGJasQ06a9ocSY/iQ0durHWmTnI89EzUr9LIaSAbr92PiVP5OWJ5czKm6Z9lAxYq8f+7ilgNBP/YzNqKRoWamf88RRAKM9Q/b92Gq780IM6tI9QhAVn3GBmw6P4HxdEn4qb5zFnLQyD5yWzs72wj4SozJ1tsAX3I8LVNxz2Uqmzp5HpwHE7f4+VTKFmlE5G6MhgUqggMpIHh9qAemgCWBSoGIzKhJgRKI89WOnTUp3VBqoRNbPRk39uBoVYaV+dLfd9VPAHz8G+NDPbXw8D5iMVAZuh7XIzoa5Pj8ADphaDOT395xcH+99vPcCikzERmFfs9aobJS2K4tRxbRO6qdao9JXKcaxxbT9DG1m7vlBLoHKKItn5mhUtimjMqGFvv2ZX3ffmYmOVQD8YyzmtJBTSbjdE2a0qp8pMyo+WzQlRmUrBbVljMqJ1f7Y7Io9b26Y+qk1KmdREKOSm4V46EVUTfgdIZ3emJrQkpyP3hCK+vdYYtqwstfPkFU/QajTP53+aJPtoNSP1qicvB3oLQMPDugpkWfAu38ILzrxFvfHU0j9xEpMSwuBbfPfFmMwZF74qbdRLfTTstTPWGLa8VM/ZZMZARUaZ+OKaVd6GdoWo3IwPyJPb4TFzjYv3OoKjUJMLfVj7u/1E+pUprGY+52FbQ+bUY7nsAXT6J7sjZtxGQFbowJMdm6fv/0ELrviKnz2m8fH+nsfzK30UjznjZ/Fj771momPV2n4Nk56eZtEDVSqIm4DMIwKMEJaQriMCrNEdyOzKiVVP9WMypCpH8YgWAgA+KE3fx6n14cHK47hW1YBVPgQ5Zun7wLu+Tyeu/JRABuX1m18Yua+knhZp36sc2wqoDJJ+WZRTDvaOfteNPZXYBTDt9HEtO5kVq1h0tVlE6V+zD3fy0+iiWSke25PttPqhzKV4Lm571NK/QDSqn6kDu1eFFI/YxzK74NjA5XRypM3uepnaqmf8cfVB699EEeWe/inW46N9feu4DjDvSfXsZ7kY/fhGcVC33//nRA1UKkKxaiwrKN/NDRQURN+l4BK1sdcU07+I1N7lo9KqlI/wzEq1QuRYCFSJfTt9RPcd2r4NIg9SSQ5h8hLNCraZ2IAAFLnEiPFAsa4x4XjmXtCPjN0LBuoNESCELnj4jtqBL5GZcTWAWWeB7YmY/jUj3sNJ1cGf45O6qe0PNlt18DGnMxWexlaVuongMB57MSIqR+LUdlOqR8bDE5Y9WOD0+Or/ZHde+3wF6exGBW1kHfSHEIIh/0dhQ3zF+FJY2pVP1NM/VCq7sTqeGPAadyY5DilNovjbKBsuwP/2HbYQG2npX9qoFIVBFRSw6gMn/pRD7xoqv+nWGjKWz1ytYmlUcnZYMO3fKNaenWs9YQj5RKoBIyPNGj9Xj/CKv01jIoHWMrC0lecw5b09+NX/ZjjBdyk2gBAeH4Xs+iOtePUx/eB4shVPxbYy4oalaHXBO99Hzy5gi/fXd2TZUP3SnW8TDMq403kq73USf0AwIXs2Iipn+3jeeGEDb6nVPVDMUn6xwf44yxElBrJuUCau0BlJEbFOpd+Ntr8UhbTuDZ5LtMR0x5f6Wnh8Ym18caADSTX+xlOrclxlXMxMrPmr0tV5qQ2UNthhEoNVCpDpX5Y2kWkWtUPz6hQ1U9T/2hPS/7tyKkftXjkCJAxudONq5xpN0z9KACVyVQSIHe7o4CDOF3G3zdej58NPyV3hHlJ6kcbYg14iC02YL8NVKaQ+gm5Sf0IIUqASn+kcks//FYBo1b95CXCtw09cMrCE9OGyPD/Pntn9ftuYKFP9zBjE4ppvfJkQAKVUT7azKn62U5AxWZUJhPT9tUNOXdRatmuu398QW0x9TMOo2L5jCQ5eul4qQL/tZMKajfDRwUYX6Rt+96cHJdR8bxmTlmAZyQXdJTdn8FVP/7774SogUpVNGbl13TdstEfUUyLlv7RboVZRmdUTHkyAZWxUz9a78IglJg2xGg7noMrN+I7gjvx4+HnJBCwgQrtwEmjwtNq6G6xAfthJuhp+KgEIgMDhxDqIfYWlFnWnaiDqJ/6ESMyKmlJ6mesDrHe+0YY7P66IT1MQIXEtBjvs/AN3wDgAnZ8pHSEU/WznTQqDqMyWa8fEtM+45F7AAA3Pjh+ifJUGBWLceikmZMaGUlM6712Yo+YKXWGLqZ+xhtX11uA8sRqfyxtkX1J6/3M0QmOqtMb1uLBASp16ucsCcWoIO2axoQj7nR7oqF/tLshB8koNuLyWPI97dRPVNnrZwPEbAEVw6jwkcABCUmbSOSCWyamtatgqnad1vmdw8wEPT5Qce+JsdEXhW7Hs+hNxKj4DryjNiV0xbSS6nVTP+NpVGLkAxkp530HaFQmZVRWe5kR0zYXAAAXsaMjfbZ21c+2Kk+2x9mEFvq0IB1clHPN+gTMA322T2R3jawHoigwKo6mYYRz8cbv+oRAZXoalemkfmzmK8k5VrqTNWNdTzKcXDNjaVSdnm/xUCmmrat+yuPzn/88fuiHfgjnnnsuGGP4yEc+4vxeCIHXv/71OHToENrtNp7//Ofjjjvu2MxTGj4soEKMytBpCStdk4eSSllUQGVkd1pyuQVDpozaYmyc+ildh61SZwIqklEZfhZiatFvs6SQ+gn9qh9gAFCxGJWppH78RpAKqHCX9QGkO+0kVT++RoWPKKb1d0xpLrzUz5AHUvewL5S/DvKBk5yjUSl5HdOpH3m8cZ1pV2yNyv5LAUhGZZSdsD0OtqI8ebWX4j3X3Ivjqx5rMkUxbZJzzKODdiwr8CbZ5aY5xzlYwocbr8c74z8cy5nWTo10kty576P5qLj/n1RQu1nOtOMAlTTn+IZivphcFnBibTRmTQjhVE+u9zOcWrdSPzRPc4H7Tq1vuHEpeuiUP7f9MVN52yE2Faisr6/jSU96Eq688srS3//hH/4h3vzmN+Otb30rvvzlL2N2dhaXX345er1t0D49VqmfZF1rVIbOHVpARQSSVdkVj6lRIRZEBOAbpH4cC/1BjIpg4Fbqp3Rx6y4B/ZKeOOq9WyCgYiZuk/qxGZWKVJejUTE7lFHzszo8sEBeKmnGC+cwh+5EOwr//o9qoV/sdMvH06ioCalPRoAsHyj4dqt+iu8hSLg9qUalb2lUDkigcj47PpIxXpkz7ZHlLt7/lftH9yJSkWR86H5DH/zag3j9R2/G266+2/2FDXp5NrKQ2o7v738GN7Z+Ht9++tPy0COOyZVeii/edRKcC+Rc4By2hJAJHGKnJ079dNMcvWy8Hbg/90xatbVZGpVxAPCtR1bQzzgWWhEeuU+uEcdH1Kn4p7+e5E7qh+bjP7v6LnzvGz+Hj3398MDj+cCkMvVTMyrl8YIXvABveMMb8CM/8iOF3wkh8H/+z//B6173OvzwD/8wnvjEJ+I973kPDh8+XGBetiSIUYHAbKB2miMavmUIwUMJVBYb8qEYV6PCYYBKFaNi0+XlVT8WgFIfPYMovjZLgP/3dOBt31PQmNCuu40+koxrMzsACAmo2MCgSlBrTfDnwKR+pmH4BgCzoUn9MI9RmUF/IkbFBypiAgt9QFZ/2BUgw/uoKEZFaUpiZEMzKmVj2TAqcsxORaOy9xJkiNBgOZqdo0MfIyup+vmjT9+O3/j7G/HJm46MdV6//P7r8Z2//y9DeVXQDveM7zHkM4QTVP5ckt8FADi0drM89Ihj8nc/cSv+059/GZ+97ThSLjQ4byCbTupnTEbFH4Pbh1GZPPVDZclPuWA3DsxLDeKoJcr++dtVP4BhXMk9+96THQyKQgf62kdlenHPPffg6NGjeP7zn69/tri4iGc+85m45ppqd75+v4+VlRXn36aEBirAbEhVJKNV/eQIIFTqZyGWg2RcRiVHgFyxMw1kpYg4H1qj4qZ+CgO7cwpYPw6cvruggyAhaYulSLMcjJelfobRqLhVP7qyagoW+gDQDshGnxfOYY51J6LZA7UgUNPJUcW0/sSS5C6jMqozbV/1lIo20KjYxx1UnqzL4MdgVIQQWOtbGpXGHE43DgEAZjsPDn2csqqfw6ok9PT6eA0l7zqxBiGAu09s7BvUTRRb5aUL4LNCE6R/KIXY5hI4jQqeDyt26KGlLnLOdbqzydKxfILsa+0k+VScaYHJU3cFRmVaYtp0dABFFT/fccFunDMv5/ZRgYp/f9b7GU46VT8ksFdfN5gTiwztZGJaqpbcTrFlQOXoUbm7OnDggPPzAwcO6N+VxRVXXIHFxUX97/zzz9+cEwxj3bxvLpCDaGj9hMVccAUu5lT/mZEN38ikDQy51qhkpQ+r09huYNVPMLjqx65m8Bdhi00QaU9rVuSxShiVytSPrVE5g5bK04+f+nHPsx1aQMUT2s6gNxFQIUDWUwBhku7JdI6T9PohjUqM3GHV/PBFvMXjKYBNGpUxgEonyZFzYTQq8Qx6gaTIg2zwztCOtASoLHVdx+FRg445TCqCXuPvwouMynCCWiEEXveRG/HH/3Sb/hmB/nYmU6yjjsme1ZMnzQViZp5NViG4HxRu6icb30fFZwymXfUzoUaFNkXjMCp3n5Sg8tvOXTBAZUQvFf/8T6z2HRBlLAvcr1VRZJwqypOd1E/5sXppju/5w8/iZe/66sD3fLhjx1X9vPa1r8Xy8rL+98ADD2zem6nGhHNMOZ0OrR0goBJCRHIwU0fflVFSP0KA7OVtvUsVtTusoRcHA1cW+qVVPzad7VW42PbxIu2A8RKgwocQHFqL+yLrYDFK1XlPh1GxGxMyv+pnQjEtpX5StaCLEc+5QNXmAnmW4oroz/Gfw38evnuyAp66WeWGVT/29yWvo/GhAPE43ZMJiLfVM4O4rcea/xkNCntxojLS5Y4EBanPcpT9fc7xt199APefMuCIdpTDAJWeBio+o+KngoZbpI6u9PDeL92P//fZO/UmghiVZi6ByqhsorG8l5uNhpUSDsfweLE1HN2Euxb6W+mjMi3DN3U9u2ZidV6jAxW6R7PNaGxGxZ97fCDnm0ButEEubnzK709/iM/zwTMdHFnu4Zq7qo0jtyK2DKgcPHgQAHDsmNsr4dixY/p3ZdFsNrGwsOD827RQ7rQzquPu8D4qlhZEpX5IMzFS6sdKj3AwvYDELCtND9gPwEblyWJQ1Y/DqLjn6wKVrnaBlccarzwZAA6GcqcyLTGtnfqh9BRVs8xNyKhEJNRVAGHUqh9/okpyjkvyu/CT0Wfx6ujDY6R+CKgM1qiIDcS0JvWjRNvgI4vuSIM1q54ZxG1w6tY9gpjWvo71IRgV3/L9C3ecxK//3TfwO/9wi/4ZTfzDiHEpXeELMAsM4ZAaFdIgCCHPI+dCi8/jlBiVoQ6lQzMqmQSolPoBxmVU7NRP5hi+TeKjMqlh3zTaAwDm+nbNyA3fOCkpOkYzDnDO3Jipnw3O3zeB3GhTNayHTjJEepneq5/xsZnLzYgtAyqPfOQjcfDgQVx11VX6ZysrK/jyl7+Myy67bKtOyw2lU6FJd1RnWheojCGmdYBKABHKBaSBtHTXnW1E7VnCXEr9BKzEmdapbHAfZtvsjKVdl1Gh8+WjpX4A4FC4VLiGkcJ7n5YCKknOEajz6cWLAFTqZ9wcrBBau5Eo0emoGhV/Iklzjv257MIajyKEFG7VT4PlSAeci33NZWOZHHcJEAcQI5e5kk/QDPX6iWcglObF/8wHhT1JdpMc/SzXC16/ZIy86m+uxzN/7yotfqUqijMlRlrDLFDkIVJI/fgdqocEKnZVRz+Vi0BUACqjjX0CEr00R8YFYqvlQbBBJ+2ycFI/Se6mfkYR0/pAZUIxLY3BUOvYJgMquzWjMvp50T1qRgH2jcmobHQvtTYldwFL5fEKhm8V5clDVHE5G4RtZLS4qUBlbW0NN9xwA2644QYAUkB7ww034P777wdjDL/yK7+CN7zhDfjYxz6GG2+8ES996Utx7rnn4oUvfOFmntbwoUqUZ1W+feSqHxECqupnZhxGxVp0OJiV+sk3TP2UlycLcyxmDN8GalQ8Ma1jH592nQkxZrl8j2GqfrzjHghk5c80ev0AQDsw5ckEpvrxLgBKTDsuc2NdWzZu6odzLGAN3xncBKbKw8/hJwCMCA6IUVEaFXl+1ePLrfopAyqKcQtMefKogI7Gty5Pjtu6U/doqR9bo5JhuWPuu98jBwCuv+8Mlrup1hDQ7tHeRaYjpH40ozKl1M+ZjgVU8hxJzjWwCBNZEDDq2KdFs5dK/xwn9cNHF/k6VT+pB1RGGOK0CIYTaEHsoPvSjOScNb6YllI/jbHPSzMqUagZlZMjalTo/jAGqFvkBLHKiQdYqqLoozJ+1Y8NikbWU25ibCpQ+drXvoanPOUpeMpTngIAeM1rXoOnPOUpeP3rXw8A+PVf/3W8+tWvxi/+4i/i6U9/OtbW1vCpT30KrVZr0GEfvlCMSptR6mc0kSNHACiNCi2cI3341mIuhblGTFuGiIdN/djlyaU+Kja48AAAs3bFLOsi5N7ELTzxalXqxzsumb5lXOD+Ux08542fxV9dc2/535Yezt1BtgNDmxKYSmKZJpxBf0QDK4GfePs1+JX3X+9cW64YlVEWYEBOPL8Zvwfva/wenhdcjyTnOCAIqPBKoVshdHmycUAGzyoV+27VT5lGpYRRGZHgol1YyxLTao3KoCaVXrhVUNKr4t8FX8JHGq/DfOe+wutp7CeZuwu1J2ctph2GUanUqPiMSsX4Xj8FfP0DQCI1Mnb5aT/lSDPDqITpmuzoPbKYluuvGffEtOMwKr7h25hVP/RsUcf4iZ1p1efWIKAy5iaDro8YlXH8XegYzSjQGpVT68lITDDdn5AxzDaiwu9NR3X1ddSqn5L747tfV401ew35lgEqz3nOc2RTOO/fu971LgAAYwy//du/jaNHj6LX6+Ezn/kMHvOYx2zmKY0WCqgQjT08oyIfgMxK/cSKiUiGEALqEDajYo7VQFq60Lqpn2oNgkCgd7kbVv14dL3NoLCsV6CYRZ56GpWNDd8A4BzV7yfLOb50zynce6qDj399eL8MXyfSUpO2nfpJGrsAjF6e/MDpDr5092l85IbD4NbClAXjV/1cwqSJ07cH96Cf5jiXSfFaOAqL4aV+AGWjX3FtG1f9kJi2oc9l1NSPpsY1UGlDkEalwqiwLPzJ9qGlLn4u+hSeHNyNRy19qfB6urbEAyi6g7Y1UY9U9eO/tgBUKswpv/BHwId/EfjGBwB4jErGZZWOpSmZQ3dkRoXAVDcpalSiEcGzPK/ppH7os5hvyc99UjHt9BgVAirjMSpCCDO+4wB7ZhsImCSRT/t+OwMitxin2WYRqNA6Q8/ARnOVD5LK1inZqsP8v2op+5ZM/ez4UI0JqdRyHGdaYlRiQWCnxGBtg+MAyvvEFtNuxKgMLE92Uz8Dq358Ma0FXIK8h9AT7WVZOlzVjweA9iqgkuZC73iXusM//CLzNSom9UPnmCmgMovRqn5IxAkAvb65HioXH9WdNOMCe5mk+y9kx7Ce5DiXnQQwIjjQYloz2Q0S1LpVPyWpHwKyCqiMk/rpp7KTVEMUUz9shPvkT7ZHT6/gCeweeV55ERwYRsUFKGZ3aq5jOEZFgcANUz8VY3RVgeyO/FwdjUqWI7EYFQBYYOsjgWe5aCpGJZPg1AYqBaZziPBTP91xxbQeozJp6ofuCzEq44tp3dTPqGLajBvr+2YUIgwY9qr0zyjutDZQmWmGhd+nnjZl1NRP2ThKPDBT9Vzbz93Inl+bGDVQGRQ69UM+KqOKaUMNVCJhJo6hWZVC6kc++A1kFWLajTQqFoDSQEWUVP1Up35sMW2Q9QourXmWDemj4r7nHi6BSs6F3s0udYanr7mnzWgyU55M55w1dwGQYtpRJrslazdMQCUXDCKgqp/R8iN5zrUb70XsGDpJhkPsNABK/YyWYsxEpIFnhGobfcdCv4Sq1iA0NKmfUdv9JDk3Zm+Ay6iMAFT8TUF+9Ga0VMkzKwEqNDn7KR/66ohzR/JR2QCoVGmwUmXVr67ZBipJJn1zImYBFXSQczG00ZZ9XlJMyx2GJhSTAZXOFJxpF9rji1ad46nx3AhHbA7rBV3fnllzXqMYm9n3h9gdXfkzgk5FAxXGNJizI/M0KqOKacs21P6aU5n6cRiVyQDmNKMGKoOCgApGTP3YgEClayLu7qiGO45fnmz5qGxUnlxa9aNocDAn9VNkVAakfixgEuZd57oAIM2S4ZxpvXu5K1eMCueOwdewE4kPVCj1k+Zcn3PW2g0AmGO9kTwrlm1GRfWhyhCBKXAwcr+XZBVNteheyI4i6a5jn2JYSlNxVaGbTDINBuIBjQk3FtO6PiojpaFU9FNuhLQAELV11c8ougn/85k58XX9fVjC0tHriwDFBTDAcOXJPS2m3SD1UzW+047zepdRkVU/scOoyNcP+9E7niekUXGAyqi6KXfcddPM6Z6sx0ueAh97NXDjhyqPRYB4oTU5o8I9FsM+/qhB94wYFS5KgOjAvzfXoYHKGJU/dP5BwDDTMIwKNTn0mZQNy5OJcVJArpRR8a6z6h66YtrxHKA3I2qgMihU1U9LyMVp9NRPCBZLYXDAE63wHpVREWCABVSqxLTDWujnItig6sdmVPyqHzv10y826MvSkap+Tos5AMBiLjUaWS60wVeSccfLYVD4De9o953mJvWTW4zKKDS7zez0E5UGRAgEIb350McCgGbvpP5+D1tD8/Q39f9DJkZmVDgCze5ELK8EYRtZ6BtGRaV+mBiZLUpyblxpoxYQBBDBGFU/3rO2f+Um/X1ZRYvehXoMig9cgNEYlTT3UrWF8uQKjYoS0dI1+0AlybjxHQKwAGnrPyyAtgFUn6p+mDm3UVM/BXt5r3uyHpMPfAW47j3A1X9QeSy6Xzr1M8HO3J7HKPUzNLPtBd0z0qgAo6V/6B41ogBMoYpxgAphgTBwGZW9s/JYBTHthoyKEvjGxDgVXz8so2L/fK1mVHZIKEaFhIFDK7t1U8JAT/rI+vpBGxrFW+JXAFZ5clo60JzUT6mY1uzAMSajYgOTKO8i9BokZmk2ko/KMbEHADCXndGgyV5IhtWpcG9n27BSPwRUuMWo8BEaCTpARaV+MoRgagEetTw57p1y/r/vxJed//NhgY+thQo2bkxoA5Uy0E0aEmp+Kd9itMmqn+ZoMaNPkQdWjMqYPioAcFHfAnMeoyKE8QKqEtPaOfqNFqc0d58JZ5IfOfUjnxdHTJvmlYzKsAC6l7rASzrTmuNFIxq++XNSxxfT0nn1luTXpLodAg2t+ZYcR+sTpH7s+9GYkph2phHqY3VGqPwxpclm2RwPqChGhTHMWFU/BxflsQqGbxsAM3qWqQ1JGQPjM4NVmyG7BUctpt0poZxpW5YQdqjgZqfLlEYFWV9Tl0MDFWJUFPtBGpWY5Rumfso1KgRUTNXPxoxKdXlylPcQexNinnuMygZNCY+LXeCCIQDHXqwgzblDFZ8ZsgGdz6g0rdRPpMCVaO/Svy8TZFaFs8j0DaPCAgUgR0z9NPsuUDn3zFec//tprMqwy80D20Z/491SWXmyTv2EFlAZ8dr6NqOinh9KS7ExfFQaYYA5dHARNw0NfUbFHr4GoBiGRQiBNBd4ZfgRfKTxOkT9pYHv7aeGnEl+6NSPanzIJft5xgK7Sc6LYlrNqAyrUTF/29PAZ3yNir+QSR8Vu0RcnpfoS3O6NOlWHosWQar6maQpoX0/mhOLaQ3QoJRLdwQQZczeTLpmHI0K3cvIq/qhbsyZZlIo9TOcRqUVVzNO/ppTdQszJ/VTA5WdEarXTxOU+hkyDWEbvqnUD3LDqAyf+lGMigYqhlEp027YA7q86sfydwmMmLboo1JtoW8zKjHvFDrs5lnqaVQG9/pJEOEU5gEA57AllfoZh1HxgApM6oeAStBc0OxUI9+4gy6FrVFJEmJUIs2ojJr6aXlA5RErNzj/H5qhcT5PA1QqxbTWj8uaFxJQIeYOAPJRgUpqiWkVo6KBygj3yQgyI3x7cA8CZs438oCKPe59RkX+XoCvHMGvRH+HJwd34yk9l8Hyw08N9SdhVPIUKz2XAe2nSkxrAQutURmDUemlJb1+RtSo+K0C1vtZqe/G4WPSQTntVTMq9HlMhVGx5qaJxbSpARptxT6Mop+xPVQoxmFU6PzDgGFWAab5ZqRBS+LpqobVqBCAKk39DFv1Y93vGqjslKDUjxit6kdYjErgMCqU+hlNTMvVx8RDo1Epw0zDMypMV/2U9vqxJ+MBYtqWtdjnQuZsc1+jskHVjwDDipBaIPKSsCeP5WErfzxAFavUT5JzTYOzuIUskuCzkQ/fybes6icTVupnxPSID1Rib/crhmUe7NRPOISY1taolFrou2JaYPRrS3KuDRJ16kdX/Qw/8dEkvdCK8WR2l/xzNcZiD6g4/jAlVT5JxjF/01/pMXFhevfA9+4l7vPgLOLD9vqxUj++x4b2UbGqfhZHZFR6TqfjvODLEk+oUTnjPXc0XLKuZFRiVD+XNJ0Qo0JAapywF11dnjxh6qcZB2g3xgAq1t9T7JmVc/KZMXxUggAanOydayAKVYsAT5uy0bqjNSoDNDwFMe0whm91efIOCUVdN/hojIqtUSExLbLe6IwKdxkV2jWXdU/m3DX0GVT1I8uTVeqHbaBR8UCMDVTa3ACVDlrqlH2NSlXqxyyyq5AL2hzrIuPc06gMB1R8RoWEhVku9M41jBvIlUA6zqupaz8cH5WenfohI7PRNCrt9DQA4A7+iNLfi2HHmQ08NaOSVY7TYat+MEHqJ8nKUj+j+6hooNKO8aRAApVbxQUA3FJ/wL2WMkYlTXrYfetf6/9fzO8Z+N5FRsUSlQ5joS8EkJjUTxGoFH1Udo2oUbHBU0JVRMxO/agxe/s/AW9/LnD81sHHU9dItvdl8wsAsISASlZZ7UaAmIAKMJ4LrH0eAQOiAVUtG0Vm6Y7c1M8oQKWY+iFdSG/YzScM0AoZw6zyUdk710QcGMaI0pXAxutOmUbFZ9yHLk+25vtao7JTQjMqo1X9CMtHhS2cK3948s4xNCoqL6wZFQNU/GoMn+4vpfa0OJfpipVyZ1pr8i2Iac3/Z4UBKj1l4y5TP9bfVFb9yPfkYFhTQGUenULqZ21lGUiH0JN41RhNWBoV9X0UN5ErRqXJh2dUbFanZ4lpgzE1Ku1EApWv8XIX5qG7MVvMHYGLmFU70zo+KiX0cOA50wKjX1s/K6Z+SEwbjOhMG4DjR7J/xPcGsjT5y/zx8rAeW2CzQ2XeE+yWjyLunkBfyPN4jLi30L3bjqJGxUqz9LyxWDa+89Q8N5WMim/4Jsfj0IyKd47r/UyPecBiPG78IHD4OuC2fxx4PN1ZuB2X/l4DhnTN/LCi4oleO9OIdKXjuI0J6X5EQQBFOBTnqxv+BrjmyoHHsVMfzSjETDx66XRZ6od0IcNWJwI2o8KwT2lczt3VRhzJC/TF3BuNCV+jAhQ1KP6aU93rx/x8tQYqOyRo960YlVEt9HMEEI94mvzZiW9iVyB38aNrVOQA1o6hTCD3GISqHZB7PCuVFAxZ9TNATDvL5aSVihCJckcdOvVjLbIdSPAwrxgVMoiaRRc/9pUXA3/xfQMXFqAopo10y4JcU+JRo4k8luXQjRGAiutMa3xUAmIKMNpiPqsYlWtFOVAZFhwI269HsTtSTLtxefKgpoTCSv3ko6Z+stykfiJK/aj7NAJQCXgPH2z8Fn7mzP9DmyW4Jr8U1/BLAQAN4WtUihU69sLUuv4dAIA/z/89MhFgN1tDtvQgqmIQo9Lrymc4FdS/qIQxTC39U546Ymw6x8QTvy4SozLkZsjfwa/2M+d4NP61n0tvZeDxaBF+SvMhzKDEUI+8PxIbqJRvQky3Y+heNhsBgiq/JNvFNQxKGBXOgY//MvDp/wmsHqs8vs1ANSI79TOKmLYMqChGZQTGiGvwxfCCJxzC6//Dpfi1H3gsInV9ac4doL1RtSmN/5bF9PgszLCpn7xmVHZgqB0h5cSHZlRyk/oJFw4Auy4EIHApvwNAUdhUfSACFmoAhman608Sw9gom9QP02ZlDMYnYqmT4L/+9bU4fmbZ/M0AMS0xKiki5EKxC0OnfgxoWlNAZQ5dh1H5zuBmLCbHgGM3AZ3T5cehw6kFlZgd2lFmWYYAamKIm+AKfA6rUeFcOBqVfl81qEQIFpL2YrTUz0x6BgBwLz+AE2Kh5E3LJz0hBP73x27GW69Wmg2HUTH6papx6ljoD9CoOONsDEalbfX5AaBB1Cipn4v5fXhqcAdS1sDr0pfhp9L/qZk3X9OTlwAVWlQWsI7m0WsBAO/OLsedQqbb0oe+UfnePlBxSoEVo7YOk9ItRGqlFXmGUxWpH1uIvsBG9FFJOS5gx/Cz4afQRIK1XuaIaWOhBPd0fr3liiOZc/o2dg/+ovPL+JPGWwu/1x2RbRBWwaiQRiIMAm0RP0iY+TufuAXf/YefLdWj5dairjI/7lzXXzHpt/UTle9B4yEOmbSup9TPSOXJKvUTF1M/vhh5UND5B4yh3Qjxc89+JC7YO4NYa1SE0yF8o3XH91GRP/NSP96GYxhGpRbT7pTQGhU58Qzto2JVY4SMAec9HQDw+Pw2ACOIabWvBVX9NK238PL03mAeJKYVFYzKF+44iX+88SgeOmlNar6Y1mIP5kBAJUSmwFReaEq4sUalwxRQYV2klo/Kdwc3mtcvFTvmOqHAUd8DKsJqIhhGTXCd+hmuPHm177Yr6GtGxaR+RgUqc5kEXaewiHvFQQCyTDsTVH5ZPj4ePNPFu754L970z7cDMOAsFwEYpX4wwPDNoZPLUj/qcwuNtiAfsbmd1KhQ6mdGHS92j79BCCG04/Fq8yDem38/OAL0BaU+PTdk67n0TbKa6rUCAU5gl9a58CPVQKWXVDMqifr8CajkaQmr4AEVX2jZT4vOtPMgZ9rhGZX/Hn0Q/zt+D34g+BrWPEalwVI5bmlD09+AUck4LmSSkbgwOF74ve74a6V+REVK1tVgqA7KAxa9z9x6DA+e6eKWI8Vz1BUyoWFUHDaAfF0AoFu9melZFT8AJhPT2owK6Q7z4QXD+l5SXkwFaXDSXDip/I3Aaxmj4q8H41no10BlZ4QqT4506mdIEZelUQkCA1QenUrTqpFTP5ADmoVmIHKvvbw/mAczKgGY0z3Z3YUyWyDoLZo2ozKvGJUEEXJ1PJ6NxqgIMKwzJaZFF7llof/dgVlMvnLDDXjNB26opFhJF9RjcgGhbtXCupa42YTQi2a1SPfa+07jFe+9Fg8tdQu7vCSR15MjGs+ZNu2ipdJOp9ku3KeAymGxV6ZwUJ36oTJp3RFYMypMA5WBPipC4ABOo4F0YOoHLJJmhRhB2Kuin3G0mMeojGj4lnGBhhKGCovdIRDaHIJRoa8EBsiD6BZ+oTyXYzehKvy0ir1bTlV5+pqQ15b0SkTZicU6WIxK0zJ8tLVTADA/atVPynWl0G62KoGKVUUUQ5rAadC0UeonyzXAnEHxmSVwYGtUsgovFbuqhZxXS0uUv/AnwHV/VdqPyT+Wzag4bEB3yfr+TOn5AEWQMTMOUNFgxyybbcsCf9j0j2anPKAS6/JrP/UzeEzQ721GxV8PhrXQr5sS7sRQE22Uj1r1Q9oSNYgVULm4fysAMYKY1k39BEGgtSDCT/0UGJXq8+KWmDYANz0l1PU5zp9eRYsNVMimPkEMoc6RD2v4xg0b0GUyHTPPukgyjn7GcT47hkcGJuf8tRu+jr+//iFcf/9S+fEUi9NTO10qSc4T8/5x3ART+otgAFPw11+6H5+86Sj+/toHCz4uGqiwUIO9kYDKmtyt9kUMHs/hbi6ByoNinwakVWW8KwqoCCEncFEiph1U9bM/O4ovNl+NK+M3l05+JKZFEBo35LGqfjwxrQLYwzIqmV1qawGVZlul7eCD9GoxLTX+4wos3SIkUIlOVAOVrl+enBWBCjEqSbJB6idPNaNyaFH9TcaRpBlCyxtmFj2EA0CmH/0s10CniRRrvUx7BwGWezWlZzZiVFKum6/SVzsIHEQ2UOlXABWbUVEalYId+4nbgat+C/jH/4FEtysojltaOMOASXYa3ibMTmkNBCouyCBH2NEM3wjsWKmfaHSgYjvT2hEHRkybZvIZeCK7a0MDSBr/cRho8OMD3oKYtmIJsv+un/HhswibHDVQGRSKupZi2hJjtKrwgcrBbwfCJub4Ci5kx0YoTzasAyAHdgq5ILG8elcJDOGjUlL1QyZgjqulz6iUCEdTEYEzC6jYjEo2OPXDwUzqB12N4r87cBeSud5hANVpM2JU+kw1gVSTNhm0JSJEHAV6hz7IEIse6vtOdwodnFNF9efMMCpilPLkddnn5wQW0Ywj/F3+Pfj7/Nl4e/YfNKNS1V9npWfOJc25nsByWKmfAVU/h/KHEDKBR7HD5akf9dmyMNLePaOLaYvlyVTGHQwJ6FLOtd5COzsDmJ2VQugWEkd86TIqQp8HAA14iFG5VTEqjeV7AeWy6scgMW2uxjMxKqWsQmrpn3iG02oMHVho6ePlWZHRm1cdlIeJXsoRMXmNLSQFcW4DqQQMmlHZSKNiqrVaJYwKrVdRZq4t7ZfrvGzGoDL1c/h6+TXraZfowYxKUC6mdVI/QzAqSlMyluFbiY9KEDBtRNcbcl7nQ6Z+Xhl9BB9r/n/4d/zqgcfLbTA3JFCpZFS8z2C7dFCugcqgoBw75MM7fNWPoq0JqEQN4NCTAABPYXeOzqhQA0HGkKk+LAWNylBiWgUORKD1FQFMnxQapE75Z0FMWwJUEIFr87NsSI2KfE+OAL1AVf2gYwEVmfZ5SOwDADwCJ9Q5VkzkXuqHGBXa8aaIEIdmQR+0u6cJ8/5TnYKPS2alftgY/iBYl4zKKbGAdiPAMezBa9L/im+IizdM/ax0zTlnXDjjw079VDEq5K3RZOW9ojSQYKEEswPOpSr6dtWP50w7LFDJcqFLbYPYAJX5OQVUWOpMqGXOtCQKpBJgYlROYwFHhez5hGO3lL7/oPJkroBqEshry/tljIoHVNbl3xCj0s+4BjwAtKfRAuuMZKFP10aduG2g0mTKa4mY16FSP/K1TauqyretjzLDqOQVqR8tFg0Y5khM66cRjtygv23ka+ocyhgVu+pHva99j+zUzwDBvV9aPJmPirtsNnWJ8rCMivxaTP0Yw7c057iIHQUAnI/DA4+XWemxKDDHAEw11bBVP75wd3WbdFCugcqgIOoaQBv94bsnWxS6DpX+eUpwxwhAhTQqykU2kAsuAIjUT/1UaFSufy/wpm+Xk7JdnlzS60fnOu0d1QAxLUWCSOsQhjZ8s0q4u4ER0670UoTI8V3BzQCA92XPAwCcz+QCXwkWNaOigIo6BwIWBFRIoxIO0KjQg3//6Q6WVcWPbsGeWakfXXY7AqOiUj8nxaL2ctCXQI9jFVCxGJUs50Z0y0KvPLl8nFK6q1FRGcRUFYrNqIhR0lqQE2LLZ1TUPR9ao5JzbdhnMyqL8/P6e7vXjMuoyPegZ8wHKoDRqeBouaDWX7xokRNCaMO3aEZWa+VlJboFMa28lkO72vrc8tR6Lmb2ApAVSsOKafup0bgQA9JwfFRUh/VMncsQqR9qJtlEoscCaUxyIQAhEGdGf5OVpb3glt/OtSj14zMqN+hvWwqolI1JW6MSlJnRDc2o+KmfSSz0Q+fno5Yo63SWn/qxGZVMYFY9R20x2Jwyt6qsIotRedvVd+FZV1yF+06tD2+hz2tGZedFEAKhnCjbVYzKIGM1a3LEedJP5SnBnSOIaS1gAYAxhpw623oGZ/5OTE94t30SWL4fuPdfdSopB9PCXFn1o3ah6mvDcrgcJKalSBFp91GRpxAjNCXkYOgFxkJ/rZ/hSewuLLAOlsQsPsUlwDuPnQQgqsEi9Q4KWuo8FVBJyUk2QhgwMEr98GqgQozE0ZUejq7IyZiaj5GImbPYAiqDH+ZemuPn3/1VvPdL92lG5aRYRKvhTngbMirWrjTNhb5mxizDN2SVYI68Naq6bxPjwYLQAJVpGL5pRmU4PUDKjUbFZlR2LZhSbrvXjD32fTdPEtPm1rNIJco4fU/p+1c1JVzupvoezsztAlDcMABwxLQ8T/UibWtUuJ36IaDCOkOnl3tpjghU2aQYFWanfjKV+lFgIllzmU4v+ra2CAb8UHkx5wJI1sFgpdyqxLTkuVJV9cO5AxIXVMVTqUZFL8KGLZhMTCuvh1JAQ1dgOsdwl81RTd+qUz9Go5LkXPvZzKI3sAeUw6hY7r3/dMsxHFvp4yv3nB7BR8X9+VrNqOyQUJU/bVbCqDzwVeCPHwvc+CH35wRUbEbl4BMBAJeww6OXJysaPgwYMkZi2gT9LMfdJ+RuxJ/g9ICj1A1PnfJkXfXDyhgVa3B6bEFUwagIi1FxJuENypM5AnQDI6YVAnhMIM24bmKPwQNiPwBghvWxB6tDMyqks8ms1A+AoVI/9sN640NyJ0q7YUp95SzU/ZI20qhcd98ZfObW43jnv92jNSonsYB27D5+G4GDFSsNlXGuXycCrylhFaOiPteGJbhNMq7HUEDXEUTGDXksjYoLVEijUpY2LIss55odCC1GZddcW/eUsvURg6p+iHWwgcqy6i1VxTJUNSU8stzTwKehGJVSC32LUSEtSmi5kPazHJn6OUcIqK7eCyNoVPqWBX8Zo9JAijznhlEBBrIq/Sw3TBigP0MSw+ZCSLBjBa8oT8458OzgRrSX78Rco6Tq5/RdzrHmWTVQcQzfNhTTLg28PsCkaRoWezFs0DEaHlBpj8io0GUGfurHstDPco5ZJu/vHLqVjUbl69VYDw2Ys7vQL3fTwppTNc78+1EQQW9R1EBlo1D0dRv9ogL6ns8Ba8eAOz/j/pxKY5kFVBpycmwiGZlREVqjAq1RQZ7gdR++Cc/746tx7X1niuXJwgMqeeKwGMyq+km9qh8HqHiLZpnOIEWsr1XkGZiT+hnclJAjQD80YloA2AMpclyLdiNBjOOQmoLz2InKHSdT15kqrxliTDJFsWcKqNjVMVVhv8eNDy4BAM5Vu+HYSiUEG6V+jn8T+OsfBTtyHQBFHa+RRmVRT3AUuZ/6yTPgxG2atXNTP8I0L2Sh15SwglHhRUblNz8mx9BX7jntiGlzNj6j0vbKk8kYb2gxbW46AQcNA1R2zza1oZ+ddrA/L9+Zlkp2c5h7Tb2lNhLTEjNPQOXoSk8zPY0ZmYYKSoGKBaIUINk909A7737GDTMXREBrEYA0fSsF4grc2iEZFVej0vCrfrLU3WgMBCpWM0lA61WIEcm5KNwvXsGonMNP4L2NK3D+p39e/71T6mqlfQBgHtWO3fYiPJGY1tOomDRLyf3urwG3fapgqlnNqIwGVLTY2MUpjoV+mgvMakalO5Bps9NjkZUeo4qm5W5a9FGpOJw/d2yXxoQ1UNko1GQrUz/ep2u1creDlTEqamcYMoE0rWAZ/LBYB0CJaanqJ0twz0lJMd97cr3aQl8veqb/SI4AQWiAilv1IwZqVMoW+IxFuqpC8MyxSvfLqM0JmnPpBVIk2WYJImTYzeSE2G1IgHI/PweAAipVO061CJPIMVBAhQy5iImibtbRAI2KvXuhLrKHFlWpulVFQumzytTPjR8E7vgn7L/r7wGoHZlyzzwpFh0PBqAk9fPZ3wWufAbwzU8AcMW0ac41kyNY6DAqVfcoVAtZxLh2T777hBlDoZX6EVpMO7z+RgghuycXypPVvSc2rnMauPKZwOf+oPQ4GTeMSkRNPQEszsTaSyXvlTMqqTLe0pN3SeqHKnaqFm5acBZa8p6Sf8bRZQNUWir1E5SlEC2gQuzintnY9PpKuayOg9LOEFApY1Ru/BDwxouBL7lusTZQIUbFNpCLWV4EEgMEtf3US/0o0EJAg5cBlbQcqCxyCRjilfsw15Bj2kn9WEJawDAqZY7dmlFhRkzLK1M/A8S0XurHTrMU4gt/DPzNjwPXvcc9BoEdb4NBJcrDpn4qDd88C/0ZYlRYb6DI2nYCtiuHbEZlaDGt9/PtYvpWA5WNQjEqM2WpH6I+/cmKJnybUbH8IHhZXrssPI2KrPpRE27e1w9fkvPCuenxVsKoCItRCb2qnwi54+9QqPpByWRipX5EljgMg1+dVLw2hjQ01VWz6GEPkxNq2twDQHqMAMSoDE79kEYlUJVLtHMlgIeIUj/Vu5+y3cu5u5RI1/LlYNrwrWISUQuWUJoFm1E5gUW9E9OXIDygckZpKE7dCQBY7Sb43egdeGX4EdkhldIyLDRMEau20HfSXer+0OLQz3IEJKYNjJh2lO7JNB59MW3gV/0cvg448U3gpg8VjgHI+09i2tACKrvaMRJGjIpVJmuBKTJTo6DFXDNqgLbir2JUaMHZNRM713Vkuad1IKRR8Ts5yxMyCzjptXbNNCzDt1yPSxFEQEsea5GtFxekuz8nvx6+zvlxP+N6LGqNil31gxQi84FKdYmyTP0UGRWq2slFGVApT/3EahPARI7dofycHFEmMSpqTiRXXts2nsKu+gl0RcvkYtqBqR8yA1x5aOAxKEav+ikHKo6Ffs41oyJbiwxK/VQxKhZQGVJM67fW2C6NCWugslGoybZVlvqhnZMnUqM0RBmjAgA5PeBZAjx0XbUFOzeLOUAaFSpPTvWD0U/zwk6M/t9PrRSIxWJobwvLmVZS7t7A5EMwKoFJ/ZAngvnlxr1+EMbgkVyQ5llXp354SzIqDwpiVE5WLsLE4qQeUPE1CiSmjTCAUSmZFIhRoV2rYJEu8a5kVGh8qAWjn3GXUfGBChm+WZ135XHk37c6R/BT0VV4dfRheY66usxoVOzUz53HV/GBr95vqjAs0BkqAEm7xF5igEoQRjrdOErqhyZDvzzZWOhb7B4gKfaSSC2NCosaukJj10wDCTEqdtWPNSZIiEhBi7eb+lHAuCr1oyZ46iRMQOWYpVGZXdgFQDJzhZSFV54MAPPNSO/mk8wwWk7qB+vFne7JO9RJLTk/dhgVJqt0bGfaBjIIvypnw9TPAI0KR0GjUiokhitUX+QSHOmqH86BI7IbNs57BoDhNCqRVdFSKabNem7FlX19mg0ZIvWz9ID86h1rw9TPkNrDKqCiGRUuiwa0mJZ1BzMqdI9CppmiLOfoqPVhqVOS+qmy0Lc8WYCaUdk5MSj1k1UxKmpnajMq1i5VP+D/+ibgz58LfP1vyt/bZ1QChjwgwzfDqPQzXhBbET16+LScXO49vuQcL7CrfnIOrJ9Cxrmb9gFKUj/FhzFnsfbKYF6jssrUj8WoRAEDj2XOfx4dnfrBjGRSDFA5MUBMK88rDd3UT8MDKkFEhm8DGJWSh/ig0qjoctcg1mCvsnuyAqRMfU3yHELt+pbErF6AKQqpH7pWtfDlPXlfWixFlnH9e1n1Y8qTv+2hDwBf+XP85sduxv/v727EV+49rX5nxilTQI52iYkNKK2qn1Fcd2ky9A3fAioJhw9UyoFCxi3AHDbw0ssuwvMetx+X7J9Dogz97LSG70xrT8qGUVFpOgasUuqnIhVCGpXFGTlW6B4dsTQqs3MSXDSR4tS6N8Yttoc2La1GqEWY/YxrplGw2NKolPionJR9nXj3DH7+3V/Fu/5Nsmy9lOv72URa2GA0ShmVwUDFYVQUaDkQLOE5wfXShND7vERFU8LIOg6lgbSY9sw9QLIKRC1dCUkalXJnWotRKRXTLrl/UMGq+KmfuCr1IwSwdL/83m6FUHIMCqNRGTL1U+VMq8ZHlnPkSQ8NBTzn0Bvoik4bzcjqMN1JzOZVimnla2gMVnWrpo0ggfTt0piwBiobhZP68XdOVRoV1w1T/pCBU/qHBHhn7pVf6cHwo6BRgS5PZrlRcvczXqDsaJCS4DLp9xygQt2TA3C8OPko8MZH4TGnr3aFtECB7aHJsacaxAEKqChQ5gOVAojTP7f0MgGDaEqgMocu9ipGJZgrApVKRkWLaZWAM08AmDJXYqKYVcZblac9mD6A/xF9QFPSgCktpeOJYXxUFMBgasFoItXlnV00SxgVT0xLIEEBncyaOLM8tap+jEblfHYCz7v7jcAnfx0rqxKkUo+gyEr90K6XJrA0NZ9TENpVP8NrVPoaqHhVPwSK6f1pTCRrpWkzyaio10RN/MYLHod3/uzTEQYMqfocueej8hvR+/APjdcizDoVqR95DvPNaIjUjwIqxKikNqOiyqZbsuqnyTKcXPGAisWoENPXikKn14+ujAsGaFTWT2ndRX/1ND5z63H8+RfuUcfINbvTROKkfQA1vn12YYOqn3ZJ1c8LH/xDvKvxRjyZ31S8X1VAxXrm53LFqJAok9iUA08AZmRqlzpHl/lLcZst8H1UhLDSWWrRrzB989M2UVXqp3sGoA7RBUbFrRyiaI+Y+qkqT7Yt9IXFXs2iKzcmFeFoVNQxbKO2FQuo0JxTbaEvf7E4UwOVnRVUnox+UbtAA9nWcXBuvAZsHxUAIpBARWtU6EHfwBSNFrDQ81EhBN/PigJKehh0WsKr+rHFtBdndwMADnZu1xUE5qTLGRVNn8MFKn7qx7f6N8c1epnIBiqsqxmVeJ6ACmlUTlY+sHSdlPphEIiQG+qfUj8RdVfOKvO0P558GK+KPopfjv5O/2zPbAPtONTXLwJbo1L11Mt7QffE3rH20Cj4qBgWQx3PSv1IHwtrcU4TVwulQPAzg1v1MQIFkIyw1AYqcgxqnVNisS1BpN2QxZDeJ4BkVELkxofHt9DXjAodUxR2rYDSqJT0+gGAlBgVa5HMOMcLw3/DtwX34RJ+j8OoxB5QWWjHWBVq7CarpWlXWnD81I9d9YPmnH79qRVvAU+LjEq7EegFrp/lWrsiLKBS0KicvE1/GyQSZBDo7KWmPLmUUWEZREFMO0Cj4otpFWjZnUh31EeKB4tApSL1YzN37UQyHHrBU6lPLJ4HNCXYWxiSUaGFXYtpk3XzjCyeJ79uyKj4GhXvPe0u7T5Q8SqHKEat+rEFwnYQeMpyoXVt8nUCeclz4h9P+qgooGJV6yxZYloNVCot9F1GpU797JRQu8JSC/2shFGxFnYWeAuRz6jQIr6h4NSIafWCm/cNo5LyYnky0Yu2LsABKsrbAlxbZjfytRJGxQVhgQJh6zZQCUzqJ8hKgEpp3yHFqAjVSEsBlX1sGXNK7d5YkB4qhxVQmWF9xEn5jokWhDwybsIxMi1+pJRZGBotR1Wedp7LCfmHwy8iRI5mFKAVh2g3bKASG7BXyajI8REqoEI71hQRMkQFRqWgC6GvaQdrSeb4XORpYhbZwJQn72aWjiBzu37bZn2k4aGKltTyvmEWozJK92RfkEnPTjH1Y70mKepUMs6NeZml7QJM+bnwGBXK58e87+zMSXCqgUorNowKIMGKF5T6MWLaHJwLrPQSTcejYYDK6RXvGqwFjp6/dhzqlEGaC9llHJCMimIWdmNV0/gAdNoHAKLEaD3SnLs+KqzIqDSQFsprNVD58tuAr3/A+ZXT9RpGZ9TIJejaL04VPiuWF/UgnAs0rIq6dnpGHz/LuTmH1iKgWKnBGhWT1iiIaSntEzaA+UPy+yqg4lXsmFJgbw4gfQpgmBU6xoapHzU2Pv9HwB9eDJy+u/RcKqt+KB3FOZh3ryntWxapBeaIUbE9l+yqnz1xCgZu2OQbPwS85TuBk1KwT3PFLpX2rMuTd0qQj8qwVT/2wh56C5FyuQWVJ2/EqFiN+wCpUclU1YNM/RiNSlFMK78GNqPipFsMo9JUk3wzKwMq1i7Bus4OM5M9D2LTjdnzlWAQBUGuvDYDwqKAAQ05aZFVPkeIuUXp2Cm9VORkPtd9qHgsWIxKaM6rgUzvNDmlfpTTaYysEqg0FCA4hy3ju4Nv6AWrHYdasCgCy0cFvDznqxYs6r5Nkz95gRSBCjE0fuqni5Vu6oCAPOub31vlyXYQk5NzeX6xw6i4qZ/MYlSCwIhpR9Wo2LtyKIE0i6htAQEwa4yVCGptHxWfUaHxb6c1spxjhuzG0Xd2gbSYp4IYlQh9xKYKqCT9Q2LaRYtRWe1lrq5J+SIBwPJqNaNClVYSqJjplppbIoyBWQnI97Flj1G5Q38b5n2tH1vppujbPipIdZUURYysKCztrwDLDwGf/HXg47/s/irL0bKZENDmRV7LAZzS92pdqHmsRH+WC+E4Wzf6p/T36/3cBSpNySTpqp+StG5WsghrRoWEtK1FDfaqGRUv9RNUMSpWGr4q9eMzKpHlTJtnwBf/L9A5aSq2vLCbNtrRsBgVn2kUA4BKbnnN0HXZjErOBc50EuzBCj64/jL8WfynhlG58YPA8ZuBO/9ZvbeqeKs1KjssSKNSWvVTwqjYi3LgAxUFMjilfjxmxQ81mHJLo8LVgsSzviYq+lmxv4tJ/VAaIXXSLYZREWgJMyk1fKBiT87WdVJ/HkCeE5UnU0ohE9bQKjPF4gaohEEAtCSjcoECKr3GLo3qAaAT7QIAREl5nt1UWjVA+eoGMkf8ChgxbTSgy3BLGFboxeEXsKst/2amEer0iQgiJ31Weig1PmJuFlEA6EIu4L6PigYqPqOSdbHSzRwNAbequFhgLPTtIHYry6WviANUhOxArFM/FqMShIFVnjyaRoX8NxC1tWMas9g7AG6VXIluwm5KWEj9BLRIms9IZH3dSbiNvjO5aqCigIkEH6ZjdxlQMeXJSkybcqz0Upe1iJpa97S86tHyiQ1UFOthiWkBGC+lIAZmJWO4yDpulZzFqACyKgiQO+Reljndk/3UTxNZUezaWzG6uKzrzFX9tFyjEufyPQ/ilAaVp4TcVJSZ3eVcOHNI2D2lr3stySygsmAYFWzsoxIFgRaf6ueWGJXWLqCtGk1WeKkMnfpZthkVtzu0Lr/3NCpNm1G5/4vmvNZOlJ6L3bTRDtvbhflApUJPBRiGKQoCfQzbHBIATqz28fjgPsyig+8I7tBgqbeurCDWTqv3lj+vNSo7LazyZN8MR6d+HNbB+mA9jQr1DWIEUDSjMlhwKqzyZEph2F4s/ayY+iGgot1GeaoNwnKnezJHU01QLb5W1KjYx7WurcvMjlIEsennonbxHViUfRkQ86p+ApWvJqDSb+zWTAYABA21O6+oIiJGRQSxThc0YBYXDVTUgt4YwKjY3WN/ILgWh1ry/zNe6sd40RTvPwA9PmJ1PGJEiFHxfVQ0i0HH4haj0ksd51CeWRqVINT33w76LDIukAvhGIJFInVSJBmVsauxMVZ5stOQ0DBbAaXdaDEdIvVji2ntyDUraS3C1oLSZonHqCiRtQLOZOK2TkCFKmE+8Rrg738RuVXebBiVHMtdD6iEDXClOVtZG5D6AQcDl/qmgIHWJmqWiTAC2rt1+XTUMwwEThiNCiA1LABwppPo8mZAMiq6bF7NFU2WFhmV3rK7EFufQ54mGvgAQItJ3omq5ySjIu/VKUgmpOxZ5MKzOFg/qRsbrvUyA0xbu7Q2Z54NcKa1ev2EvpiWGJX2LguoDFn1Y7nA4tRdwIrqUDyIUdmoKWHGgW/+g/nF2rHScyGQ0PBMJw3LIxB4aaeqUn7ALXfWqR/FqOhiAi50kcIMevpvTpyS4+3+hx5yjkWbs1qjslOCypNZUs2o2FS2rVfwF4/I1aikyucgqehCSsciRsVuSsitnVeS8QI74GtUgjzVfVtkebICFoxrRqXFO8XUjygHYb3QZlQa2jMmUtfWc4BKCRCzXHLDgIF5jEra3I1zd7XxqH2z+I4LdoFRGsH3aVFBFDsLIr0Lb7DMABXPmXZQ6ocWW84iNFmKn56/Xv48DnUjOFipH9vd1wk1Phrq/lLJZ1fdm6rUDyukfjpY6abOjjfPLI2KZfhmR6g+i4wLcO43rUudLsHUeyZHiDBgWqNS1cmZ4oYHlvD+r9wvXWmdPj9mfBhGZfjUT1zBqGRKLO2AAQvsSEbFnDMt4IkCAgQ+nMqf/hrwtXcA3/gA+ktH9N/ahm+SUbHZ0khrzrLEr/pxF5kIHK04BGPMLHJ0D8IYYAyrkVxoG72T5vpo0VQpkkXFqBxf6TvGixEzDezslBQj/Q0xdf0VV4NhAQ3mlTK3kWAW5meH2Gm9qz/pMSqfv/0EXvnX1+HUWr/AqGD9BGaVadxa32JUmgtaTCsZFbGBj0qJmFazM7uA9pCpH89HpZ2vQrzte4F3Xi7Hun1/LGZMso8VqR+q+kkyF6ioBqSFaxICvxB+Aq+78QeA+7+kf25SPxxB5jMq1RVbqXOP5DFWuin+R/QBfL35C7iEyd5pZKQ5x3rI1XMdZcqUUt03srnYPVszKjsrGib1wwXcktbS1I8lWPRSP3qxVULGJVUt8ODJCjW+p1EJGdPMgO1PIoVq5akfEnpKRsXsuhwxLeX3S8W0ZnKmSoVMBMgsLYgIGqbxHCfBaIi+UECtjAWx0lBhwHS55z71MOWtPYjDAP/0q9+Dv3vFd5q0WUWaTC/uoQEqMTKdL6e/N71+qsW0xHwkj/53AIDvO/oXwNIDXuonthZgUZ5GUuNDAgyhF/GuMKkk5xoCX0xrqn5We5mjUeGZaYnAwnKNCmka8pwrRsXehWfOJJSmZIwWyHHGhnOm/Y2/+wZ+4+9vxK1HVt0SV4tRCSNqSliS+iljVHJudA4eo0Ishp1OZBajMrOhRkXeJ13501+RegIVvXXzLGoL/YxjpWtALwIJLqiKr+BX4u3EI2QalNJCSedF5fJrBFT6KnVx6i4AQjIFex4JwDAqx+zqIxXESpAoHQBCAiqz56iLW5Gd1CmseSvIfaDS16J2QHr3EHA6TUBFPevv/Ld78A83HsHnbjuBnAs0mc+oWBUkxGBZYloJtErsH1Be9VMQ07Z36caOG4ppqdePetYuYMcloFu6Hzh8vceouB266RH3GRX6bA90bncZq4rUT86BZwW3yjYeD35V/9yIaQUCL+3EBjIq8trCkGl/mNVehu8KbsYM6+NpgUwhan8qABFZJgi1mVJibbq3i7VGZYeF1ZQQcO26jeGbXRlDVHNYEEvRpEuLLVOTbV5lqV+o+gFymhytBbusPFnTgWpCDLhhVHIECC3DN1pA26JTNHyzro2ASo4QeWAWEBGaqp+IKwGnCJCQbX0ZuLCEvVHAwNSkpX/dlkLaKAwkkxS6986PQKdBooGpH1g+KmXpGs6FZlT6T38FsP/bJIX71z+KvaFxJmVhjNBmVMr8XawFqwnDiBBQ8VM/8AWsOvXTU6kfM05EZsrNZdWPASo9ZirVAJX64W7qp4FU9wIBDKOSKV8bmhqY4MDKEeC6vyp1/Ty9Lt/jxFrfbWxnARXjBlxS9VOyU0x5tZg2J7BvpX5sNqDFXI0KiZ8T4TIqq3a/n3WTbknXl+Rx4kAvQP00l4wKc1kersaksHt3CVHQNhCjAlgLJY0jNS7XI8kItPoKNFFp8r7H6EWYGJVjq/1CKwvt+WNVIwWka5jbb67VZgwssBd4m4k2cxkVAFrfcgouo9JRDBaJ+h1GpXMKC+ojXLcZldYCEM+AK7ZnHp1SC31XKDpATEupn85oqZ+91uKNmz8M9K1NozXe7TSp76NCn+2T1v5V/mDuoPxalfoRQlc62SXjtkYlyvx0YjVQIXARB4Fec1Z6qdY07YN8j70wz1qotEctLs+jkRJQcfVZvZQPtO9/uKIGKhsFlSerCVijeXtCKhHTcgQFoMKoMSGXQkZiH5j992snjGkRLebCVP1Q9YqwUj/9lLtljbCqfgioCGMQZpcnBzC6gjbvDPRRoU6wKULkFYxKpBmVCCnZlg9I/XDFqBANrH89s9f9vwJGpd1q4TMqRocSW5oS+fuG/l2ZrCTlpoKEzR8AfupvZenjiVvx88d+xyy2YaQZkAC86EvAubMQtJDoMUT6HV9MC9+Xhb6mHSWmtRiV3FT9MGY0KuuiiXsbjwZgesDkXBSqfhrIjFsogJya5EGKFh1G5XO/B3zsVXIi94JKMtf7mXI3LWFURkz9ZJaFfgGoBARYDVAJrVRLG4knplWGh1bVDwAsc5VC6q86jEraWZLHiUPTwyXjWOlaXiVqfGmWLusBn/5fwLXvKgVzETL9WZOwlMqmiZVbj+VC2yRGhSp+9j3a6QUEyNSPk4aCKfFlcduI79UuGXMH5NcKjUqWczSEm1Ld3+K4dI+7PJA/1CkhWRuav8g6PlXMnSvsFdgfy3vipH5aiwBjSMI5ff79IZ1pS8W0I1b9UOpnLyxgQg7hNFfkfT0H9y2PFErRUFDq52m9a+QPvuOl8ut6FaMitBuv7RZMLI8QKGFUBlX9FDUqq70MC2pM7GPyGvdYoCzOO4AQunCgkcrzoHtLgB7w+jRtUdRAZaOIZc6XFi8NVOwdSEl5stmZmghUaWwTskkUOTgy+vssAd7yTOCtz5ajtcRHhWsLfZtRKWtK6KZ+Ap7qCg7BjJg2tFISLfR1IyxzoNz6lhiVANzyKxFhQy+UBFQyhLrSorTqxy5PDplDWQMAm3WBCukBaHL0w9WoyPvcCvKi1oHOk+WljEqe55oVCBsz0kjqP/0tELXwuPWv4MnBneo4xkI/LNOoFHL+fT2GiFHxNSooVP2Y1M9Kz9WoiCzVFV0sCIFdFwAAvsCfqBmVJvMZFQuosNRJkVDqJ0OoutRa7M66WsjXijn3ntpprvUzJBnXk6MNPAMqT9ZVP9bzUpr6EZViWvp/4LAB5l5XpX4S7oppl7ilUVk3QCXvyEm9ZZUTU3mnAakEeuW5PKp/C3DN/wM+9T8LbIo8B25SP9S9lxgVdW86sWJUEsXuUMXPvscWGJXjq71Czy3NqISSRwSAKPEYlaznpjZyU6Le9pjU77pwBn/0w48qXAsAnBJSMxOpFDaB1TTn4ByFysEDoTyPtV5qiWnlMfqRBCoL6CAtEdPaVT9aozKJmJZSbwExKhaj11H3fu8l5mfq89QW9GFxXm9FMiX8yPwe+YMn/rj8mqyVGhrm3GJULEYxtrQvvpg2GMbwLWTaNG61l2JBjYlz2FLhWuOsA2Q93d+rlblAZcaqUltL3LG2FVEDlY1CdW/VugVC/fZCZOfctQA2ROhlfgKdkpCTeiwoBaQe7N6SfFhWHio4yQJAGJgcPfNSPzRYG9bkClipH5EZ7QML9KLYRh+B1S3ZRt0AcHqti7/96gPgXEBoRiWCiExXW4QNzQbYQCUhm/0yRoUbobBt+KYPqezzKUSomg1WMCo69RNGWrQ8ExgfFZ9RqRLTpn3zuUYtJUw89ETg6T8PAJil9IvtHVOmUfE6y7ZYUkj9FICKZlTktWRkCpZ1sdIxjAxQUvVz3tPw2ed+GP8j/SX0ldeITv3kouhvgczZKdkg1GZUBOcGlHvlrpwLXalBjAotplozAMMaxCyXx7NTpSWMSmJrVEIXqHDq5WSdS2gJDwupHzX++55GRYtpe65GJe/KCds2aAOIxfBArxpnF2cKvKbrpnokbOrXRcj1rlv7eNBzGbpAZSbxGJW9lxQYlWMrPadCB5COznRuVDYdUin/rPUs2Wm3zLgT22lFQN7fsCLdQKkfzago/QdVl/ml0ueoOaXXXdfv3w3ks9UP5dd51h1ao6LZy9Ly5I00KkqwzqSewwEqFPseDW3Jn1oNRVEU0gKyPHnBareB3RfJ8nygFNxLRqUk9WMBoCBzAW8wIPVDcgSbURFpT7PjpPujZq+AAioW+GllKwA3ncejgLnVWlscNVDZKNSCTB+63oXbFG8Jo5KXpH6oxLaBFEmaI1Y7j4BaxTssTeboOABiVJQzrfWerfQMvuvOP8Ij2RE0FaI25clqEFupH8YCvSjOMnfx2WdToQC+cPtx/PrffQM3PLgEzs2uW1iMCsKGXowalpg20YzKoPJkKd70gUo0d477cittVjyWMK6rVtVP22JUjJh2sIV+3jMPb9w0FRT4zv+GzNLlIIq1pqRUo+LtrNtINFNDVT+NKIA9RPzeQUvr5rPpdTsuo5J7jAqA7p7HYw0zpvyZxLRc7nQjT6NiMw957o5bx9OFPr+KbrKABCpJxvViSosrAESWfobbxwNKnWEdC32qlKO/jwiwmntTxajMNaNKRmVNlDMqvGcYFdv35MRav5D6obnhkvxuc4KnFMCI25q9C1luMSoEVOSxyNen25BApZ2clmwq+Z3svdgwKhqo9EsYFXUPoobuhxSm6t425oCG+3wBsBgVz1EYkOO3QsBJPioFRkX1HPPN5wgMZB0llBcMv/1paVXfDVTqB52Nq36otFuLadVcZTMqWbcwToUQGrzaurA4DIxuw24gu+sCU7WWUB8it2rIjlYc6H5FaMzL9DOxWCXpn5xzzJWlfqyUUqzA9wl1r6tAIwA999gW+qRPAYBzsATAVP0AQJR3HA+hABxIVh1PFjJ9Ix3aVkYNVDaKiNI1apGmh8R+GEqqfrIyjUpoGJV+kmgqnLwKnAmcZ4XyZAlUGupvzGt/sP9PeOqR9+NN8ZVohK7gjBiVyGZUgkg/mL5gbp+3w1jtyN+vdFNdEi2BisuoUBqEPEMyRCb1U1r1Y2tUggJQiec9oBIWr9v80kxwQWilfsLcEkASo6LOE0WTPADIVUliTxiLfADA/AHccu6L9X9ZYIBKqY+Kxz60kGj9RlcBiTBgzuTkMyo289Dvrrn0fO4xKjA7sr7wGBXto+IyKh2L0iX2Jheh1AIoPYCwgYV3TXZvk7V+jn6WlzMqkQEqeZa6z0tJ7t3xUfE0Kjr1Y42DyNp9tpFopmi2aaq0+gqotOMQjTDACrWA6K8Yyh+AUAtHuxGqz0fehxOrfSv1o1hNdS6PgLVrJiakMau1DjFyvUA2fDGtGpcEVGbS0/J8+isAGLDrQg36bMM3X0yrU24WoxIRUIlausLGCcVO9lNeAlS6Oi1HGjlAbiyWhQTwkfCAimZUXKBCCyRXqZo1tHHfGTmWiFlZYJ1yZ1r1s+9+6C/wjI98Nw7iVLmYtrlgwIbHqhxd6WGtnyEMGM7fY7XYCAPDqFzyfeYPdl1gNFbEqFR4qAByTBXGPQGVEkFtlHUQMg9sQc4H1P4nVo7AJ4QEYIOASmalx8iLRY8HSI1KAI5dMMdo5OvFtFR3yUkj7V+Q4/v4aoV9xsMYNVDZKIhRUQ+yRv0+o0IPzwAxrQY9LHFSDKHWqNiMSm4Wc2EM34Sa2GxGZV8uUfuTg7vxPeE3ABRTP6Ewhm+MMb0oznmalL3MZVRI45JzYZUnh25VR2RpVIQBM4ZRKRPTKkZFkEbFnUibiy5Qoc8hKtOoWAs6C2O9C29bPiqshFHhZYxKXz68XTQLv7v9kp/TXaNF1NL3MGQlGhWPUZGpHzJ8k8eOAuYI85hmMRSAtRajpLfmVv2UMCq0m+opjQKlinIuZA8WX6NiVf3wzE/9WMJeGpfeNZGIEgDW+mkloxJaQIXn6Yapn3RAU0Ki1CNbTJvbhm99rKrd82wzKqR+4oihFQcWo7LiMCpMaQZMqkb+3YnVvgG92uW4OEY0UInb2lsoRK7FtL5GhVI//abUZM2kZ4DTSuuwcK5MPavFz158CmJaS6OSqc8/JqAStwvPFwANQKVGRX3G9DqLUXlA7Nd/0mWGsWsI2cdLp35yqvpx79MiXwIACLUor4hZ3U+po4DKPDql3ZOpSODxp69Cs3MUlwW3mGfNTv0wVpn++eZReR8euW/WARoOUHnCi03V3a4LtC3FMKmfVhyaz0Zpb6gtQlnqJ7YrevrufEsbl1iVix8TuwC4gnE/HI2KWnMWLUZlgXWxH2cMOKLjF4DKGZ1GikKG/fNyzj3udwffgqiBykZBuhKd+iExbYXo1EqPBF53TLvipNuzbbaJUfFSPwXDN2jvBruV+i6xpL//ufxDAKTBF4TQBmWSUbHKWdVDOeOlfogKJXBEi2XGTSO1HAGYBVQQGU8RalqYCltMO7g8uUyj0lzwgcqA1I8NVJzUj6VR8YEKy0vL7nhfMSolQAXzh/Df01fg3dn34+TuJ+l7yCCKaSRfo4KiRiUMmCOgY6Fr+MasiqvV1RV315sn+veBZlRUlYpmVMyY9cW0TWToWKkfp3Q9YNA5emGnftxrsg3j1vu5BColjEoY2oxKtrEzbc7NuRbEtHLytEXVsZX6afupH1Vd0+Om2mOmEbmGbx0bqMhFzU/VnFq3Gv/RZiEuGSNO6scwKv7xqGyajtVrKKCSLQGnlOZljxKzkkbFWnzCAlAxGhVqXGoYlaZZQO3ICKgYAbmunkm7Oi13Fx6h/6QbtNGH9XmmPa3bk14jFlBZOCTPLV+S/1dAZRUzeuysM9KoVKR+1HM1l8jN2HnsRLkzLVAJVG5XQOWxBz3W1tao7L0EeMJLpOfMec8wqZ/UTf00KoAKfTaC7vOcBVSyBPjQzwFfeqs8Rm6NeSv1AwCxAhpNLj/P44pRKZQrW+HoeCj1w9xNxWODB53/N/JOIe2ad87o/XYcBDigGJVH3v4O4J0vAL7+/spz2OyogcpGoRmVFI57ol+GSIulZVNfZFSMRmVl1Qw8ra/wU0heeXJop34s++W9FlD5dn6r3HVYVUOAZBCMRsUAFZ9RoVI2KqElijnnAlwtMCkiz3m0qYEKhSumHVT1o3YBUQN9tVNbFy0XCAEWo7IBUIliDUbsqh99fpZbsO3uq39GOWnWKPyuHYf4B/4s/Gb2MpliYsaLppBGKmhU+o5GJQoYGGOugM5L/QQWUOl21nXVEADAZlRCl1HpEqMCi1EppH5cRoUWdAlUjEuusBkVr5KJdtKArPrp24wKLRoAAmsXy/PES/0UJ+A8z62F3AUDBA5swOowKjAW+rMNw6hQE8I4DNBuhJbhm6tRCRJiVFxg4TAFVIEWW+lPilN3ya/xLLjFqOjjxcSoWJoqAGlzj34tDl8nf7f7InVRuwAYjQpQwqg4qR+1mSHWKWpXpH4Mo6LLyskWIO3qz+ZuG6iwGf2cAkDf2nAlmceoLJwHAJjL5ZwSKPZgBTOmrF21MhikUWmhj6Za3B/BTsq5Le2aeYXYu4oS5dsUUHncAQ+oBMxoVGb3AS96O/A/7gBm9xZSP4muGiqmfqRGRd6HXDVXNRqV48C9XwBu+jvgC38MAGg4jMoK7O7yVLXTEir1A3ltkSeutSOzBLBU4mxrVADgMewB5/+NEkYlt/yEwpDhwIIc37uXb5E9jCrKrR+OqIHKRkHaCAhX11AAKmrytcW0PqMSGUZlxeq4Gomy1E+JRiUw5cmxBVT2KbHUjfwiAMArwo/JXYdVWhwiM6mfwIhpfd+UWc/mPWBmt0THyxDqaihA5uqZZ+GeWT4qqW8xDrhiWrVYU6O4JVYyqRJQEdXsjLw2w6g0rdSPpumtVEI5UCFGpbgI2U6yUWDSZ+XlyS4AbHsaFQIVtkbFiGkVULFSPy0klakfAjh0LM2oMJOu5EJoMAKQ4ZsBLvReOVyNiium9TQqmc2oqPJkFFM/URhpsJ2nXuqnREzL7efAbw2gUj+xzahYrqptq+pn1hLTZjDAoxWHbtWPBVSIhWh7wAJAQaMSlAEVYojitm7U2Q6FHuN+1Q8BFRbFOC2UWdsDX5ZflSMtsSGDGBUtzgxjZL5LcdwanPpJrfJksqJPO/palrCovVO6rI0UoWZc+13bvVUBFZpTFiXAaVMlk2KrVsSMTv2sK61QZdVPLrBfldcCilHJhWFTmKVvozFHPlQqbjsm3/cxHqMyH/YtJmmfHPNaJDJr7gM2SP1EhlHJGpT6UYzw2nHgyNfl910plHaAiuAOqxhroCKftdOB/DziIRiVKDRzqc+oPC7wgAovalQE3VNIRmW/AipzPdVWYvH8ynPY7KiBykZhiUabSIxo0rfNzn2gUuJMG5o00tq6GSSRZlTKgQqVJweM6RSGvTsmFuQdmbR8vzg4LPUX1oIQiwyCk9dI6KrcS4LSE5Q6ynKuF3aO0GFUgsh4ilDYVT9Jv0SMZV0bAbqu8v9YCYqTKovIR6WaUeGCScddrQUyO3OjUbH0EllROyMSlZNmRVrfNmiLQ1PiHaDYa2mgRkU0dZrGppLJhI92WMxixNqs76R+WBmjQoBPMVm24VvO4WpUkDk9cfTnXFb1U1GebItpZXlybjEqu8x1MQMUeO6lfsqMrGyg4qV+WENpVCygEuVVqR8jpqX3j8MA7TjAqgIq+fpJpzdPpESLRlNiVWJoRkWlOa3UT7b3se41NGa1zmcmMmNDG74RCFXjMQyY9ifB0ZvkVy/1M8NMiXTMKhgVq6uzuShPTLugGBLNqOSm9J0YFZ5pZqLL2jgq5IIpGRCmdSqJxahQl24tpl04V56+Air9VfnVTv2swmZUhNuiBHLs7odhSDSj4hnH6e8Bx5skyznuOC4/08d5QIXKpvOw5fRIAmAYlYSAimsYZ0cQMOwO5Osyzagokz0bqPAM6K+gmXvaEKfyR15LWwGV5UiWlsd5NaNiV0bRHLARo9Lk3QKbKTpnECPDe+PfReMzr8X+eTm+92ZKELyrBirbN6yJsonUKNNTX6OiJjFfe1FyrCY8oEIToL3DzzMnjQTICd+2gAdkJ0xiQR4Q56jj5SpVY7VbZ0L7vdiMSlV0FKMQWhoVLaZlIQJHTFuR+lEpiFKgYt8n9XCSsG41KMmnK8AYlzIqptIqCphJ/dhiWipz3SD1I2gHVQJUbEYlDJhVnixKxLS+RqWvGZEOmnpslKV+mLo39q65bWlc5MmnBY0K7ca6nIDKYMM3W6NiGBUpptVARQgDoG3wdd81CMnmHWT4ZlX9WIwKY8wCKn7VT3GnKGzA7olpQzXu7HHQ4DZQSXRPFsmoqPErQgRMfm4y9SOPo9OuKmjn6qd+AFjeLm7VDwB0z/9e9yLitm6EORspUHLLx/D4juztYlI/qkInYDhJQIVSfrtdRgUwrErkMSoLlpg2LwUq1jNFAMgR03pABdBC0A5r44gCKl0F8Ein0reKAtLc81FRqZ9Yue22hTz3FTGj04YEVIgBSL3quYwLHLAYlXPZKfCcm/ROaxde95Eb8Ut/9TWjD7Eqae473ZHNMuMQ5++egR1U4Zg09xqwQ6FTP2o+GFD1AwC7Q/m6JC5J/RBQAYDOaZ3G0tFbls/EO38Q/yt7CwChm0yuxvLziPN1J0VEIYRwNCqUOvIZlUezh5z/N3mnoA/jndO4lN2LZ4c3I/jqX+DAbIgGUuzh6l7vurD02h+O2BZA5corr8RFF12EVquFZz7zmfjKV76y1adkgjHNhDSRWqkfD+GWMCq+g6Fd6tzpWPnmKjGtr1EJDKNCkya5DvZYEyuQCz2lIvLcncyY2hEzS0xbFaRRCSyNitCCy1DvbAHpBRGERUaFRH2l3aGtpoS0WPdU6mc9LAIVotljUWRBYPUgCjcCKowNFvkqOjQpY1QcDwYGaHffkvJkb3zMBcYCv4uG3jk5qR9dDk0aFYtRsTQugDT8Y6BUnhJPhi6jMlijknlW8+azDQIGYZcnE6Aj8NU5Dbz7P+CJn3u5/vv1fg6WrJudvsWo0HEBxag4vbHSYvk6VSCxuLCAsAaNg/LUzwzrA0rQLX1U5HulCE3H3DjEOsz4taNRACrmM58NiQUhwzczRlbOfbZ7oLitGZV2BLkYffBn8WN3/S8AVt8lm1GBxyRS6icIsaZEp4tMnp8PVIymp6H7gdnnolM/7d2W5wgZvlnNJFuLZm5QmoReMGMxKi5QSS3fIelMW2RUov4SImQaTK1gBkkue8gsK60Q/c4vUc65wH5mGJUmy7Cbn9ai5XzxArz3S/fj0zcfM27DFkNB+pTHHJgrzMd7NFDZjUIQw+JX/ZT4qADALgUMyGlXp35WDgNn7jEv7J4uMir9FeDEbcD91+AF+b9gFj39ea7FklEJRV4s4ACcDZLNqGhxr5obWiodR0CqwXulVT8Xqu71TOQ4wI/hEDuFgAnpm+W1NXk4Y8uBygc+8AG85jWvwW/+5m/iuuuuw5Oe9CRcfvnlOH68WNa1ZWGZvmnEX6j6UQ+n1pWwokZF+6ik6Fq53ZjlEi3bO/wNfFRo0SGDtjNst35djExuhP3UhgYqwYapn45wxbSSUVELHyIwO/UTl2hURKR1IWkpULGZJ6WtCOUxO9GuwstZPAyjEspjqfeNmen1E1jGYZkCUOWMihLPsaL+oO1oVNzUT8GN3xsfexqZVfVjGBWq+pEeCq7hW2AtRotsXVdUAbI8nYBMqFM/8lgd7mpUShkVrylhaDEqctxa5cnaR0UBgrVjAM/Q7h7RYGmtnyFW/UI4c8XW8rg2o+Ldd49V0c06/QUXQECpH+SaIWxyNw1LAG22GekJP4MxcGvFku3rC2vMKkO0llpE/G7HADBHL/cs9AFgdfelpiQVAOJZDdRnQiEXT5GjyTtoIi1oVKKA4YSwAPrMXocFWVWbkCpGRUcpo9I0qZ/F8w3AIsO3lJvUT2PGfHYKqHTRxtfFxQCAe5mk/+ne2TYLRqOixtn8IQ16dmNNp6dWFDjpZRzLClzQ73wb/Yxzh1EBgAPiOHDsZnmKux6nf06gx2ZUvllR8QMAe9Tc2W+ULMA+ozIg9QMAu1TKsxd6qR9/rHdOo13GqKzL9S4ExyUW+9FrWq7CZX2xFFBpo4eZq/4XLjr9BQDQBnTZ4kXO69dnJMvVshiVM0obxXpncAEzvi8zq/fhkoYEien8I4qs08MYWw5U/uRP/gS/8Au/gJe97GW49NJL8da3vhUzMzN45zvfudWnZiIahlGh1M8AjYolpu12XDSbpf0SjQot5kajYkqc5SRzjtKnnMIuLV4NVZO83PMvYWoHFQShZgOqoqtSP3EgrzfPOYS6xoyFCCzX1iBu6cZz+nawUFPjWX+DXj/qPq2rlE+nZOLQjIpvTAU4aSQ79VMqpoWpABElQEVPTEGZmNZcYxQaMa200PcZFXfxXIwznfrpoWE0KppZMccrE9Putuyv5TVnpoxZp34Uo8LVLkpb6MumlQ1HTOs2JdRARYQIAtkPClDGapSKIEYlMWOfekOtJxki1QQvbSwWJjUC0dw3fAOKglo1uXNfFAo4KUcCg7EHVAgQ+mLahsWoAMCKzaoo9qIhZB+dtmd5DwDzMZX3kzOtHGdLYhZr0R4tHpUn1dbgrBUKZ8FqIjHCZs2oBNrxFYBJ+6hYhVxM9sfymn0xrY6wgdy/b1EbOPAE+f35zzSMEBm+2T4qUcss0trufgYfzL8Xt//Y1fjb+IXybxSjkvmpH5tRiVtSpApgPzujWRNK93ST3AAVzai4z1HOBc6xGBUAOMQNUDk5+2j985MZMSoGqFBp8vfGtwI3vM85zm4hX9dtlDAqujx5uNQPAa2uarKI5lwBrAMAOqel2ZodvRXHb+UxqpS4KxpoNJtYV5tG/Zw8dB3wsVcDf/OTyNekEPxl4afQuPbtePqdfwrAMFRir7k/ANCZLQKVw0LOt6y7jAstoILTd+Ox7SX5d+1zS6/74YotBSpJkuDaa6/F85//fP2zIAjw/Oc/H9dcc03p3/T7faysrDj/Nj0s0zftvVHQqFDqx0yMRR8VI6a1c7sA0Ot1SwzfaPFQQCUwfiCUB6bUzwmxiFwYMynOBfLMncxop1ompk09+pPcUxebcojIqh+TYokaTVyZ/Ue8M/tBoL2rwKhwFmlH0iwtM2krGuP98+KL8N7s+3D97ssLLx+Y+rG9awKmJ4gZ0dX3KYjN7px2uqLEiI4pgJGWAhWfUSGNSpnhm/v5LkR26qep0zQEWOIwsIAKl20BLKDi92AK8lR3s6W0G+Wn13Xqx/io+NfaVE0Jnxdch7fFf4IDajHQTCCltWzwTIyKJT6lahMhoA24tKDQipxVpH6AgqCWADUvYVSiZhGo+IwKlXHPNkINVFJEJvWjPkdt+gaYNAsk+PIN2gBglkSxWpgtn+fbxXno58KIVAEgnrEYFe482y2kht2yNSoo0ZGoWFaMynlteRy/PFlHVAJU4hZwwbOA19wKvOAPsEyYybLQ1xqVeMYxcwSAfiAFtN35i/S7aqCSWIyK6p5MLt4Im7rE+pHBMb3LX1HOtr001+kaOY5EwfQt4wIHlJhWqPt9CMeBY1JwfH/DfG7HE7WgW0DltmOraCLB5Tf+d+AjrwCO3qh/t0vItYNcgd17NoThm6UZWVD6m45qCQDApH/s6J5Gm/upn2XHwfaxSvi6jhbaToXaMvBXPwL8+XOB694D3PaPiP/lt9BCHy+PPinfsnsEgNAaleCcxzhv1VNApSlMefJhIcEk653BBYGVyTh9Fy6OpL5oqXGgeC0PY2wpUDl58iTyPMeBA+5NOHDgAI4ePVr6N1dccQUWFxf1v/PPfxiUyFYzwVQbvm1U9RPoxcgcx3iyJD2vb0q/h4KFfomPii+mpYqfY3xRCxYj5JJR8RiDgFtAxRPT9pruQ9WckVTpLFmhWItdzmS+/43ZT+C3s5ciDgMEkcuoCKtMuBSoqIdcWujL6zvaugSvy16OtL2/8HICKo1SRsUAlShgupPwgfyIdhMNS4AKL9OoaKBS1Kg0o0ATBVHIXB+VCqBCn8l8kJryZNEopH4aYeCWJwt3wj4ncic3JhLNuJDVP5lFrecuo5JbDSX1tSBFp5/j58JP4vLwa/jZ8FPytQpgk5jW6VZN4MvKbTu9olR5Y96wFlwVxC4IX0wLFCltBYiF70oLoBFFJmWjzqcpig0gAZm2aVipnziS9+fR++ViErYtQDV/SJc+z7MOFvPTwD/+Os7PTbXEHIliCZRf8EyssVn8Q/4sWQFlA5XGjBbBtyLhsKUtZnViJlYuYC6jssdlVCitcaghjzOIUSkAPOrLtXAuVhKOj90k/TIEaVTs1E/cLjABPdUIMhdGNE5VP5kllC8wKlFD9ioC8Jj4uDalo/YF3TTHmVyJmpnALHqljAqlftIDTwIAPBm3SzEtC3E3N/f8cN8FKr00x72n1vGs4FZjmHaf2QAvKv+pTlTGqFRU/cQBsHIE+Mgrgd97BHDLRwEAcwqorDMLqMxZ6xoJUTslQKW37DAqBFQ6oinNCQlQP/BV4K5/kfPOY/89AKBx41/jd+N3Yq/ayMR5B/Po6hRheI7LqHTn5NzYsqp+HlKMStBfchmVU3fh/EAyNseD4pz8cMaWp35Gjde+9rVYXl7W/x544IGN/2jSsDQqWaXhmwdURFBkVCKTtrF3IkAFUCnxUdFmU0wgRK4bTh3JF/TrIsaR57wgpqXdcVAipu023XTLDzxJTpSuRoVYkNBtoBUG2gqcQgSxTrdwn30CPI2Klf6Ay1zoc6eGjhswKmHAdJv2/elDFakfQl8ljIoCoFkJo8IY02kDO1VT7qOiJmUmAd886+lFs4umNmZq2KJacroVvMA6/PuLXeAUWOceaMM3VfXj+ahIV2EXlFHqh7ruXhBIPYJmpdS52Fb1yHoSYFpAZd7qFRWq1E9e4oJqqn5yFPL2SblGpYxRicPAOKOqhbbJ5TlSGT+lMeIwsAzfzJj9yWdcgE//yvfgnH0WOJ/Zp3UcC+jg4vv/DvjK2/Cc5b83Lwk9RuURT8XLD3wQ784vl1UsXuonIzFt4OrPWrCASlhS9QMUUj9LioXY35D32y9P1hHGJUDFjJ37T3XQ5fK8aAPhGL6VMSpK5M650KlvAou5NQ9KMS23jPGaGqhcbDEqudIDdZMcq1mEVDHBVKJsh/RRUTqJQ08DAFzGVPn2vkfjoXXz+ge7alwooHLPyXUIAbygcYM5IHnUAFjk8nXr8capn6h7Ei8Jr8YP3fN7wP99KnDDeyWzePs/AUJgVkigsOYAFWtxv/i58mvnlAYqWn/ipX7I82QdLbTiEOvk6XTXVfLrI78b+Mn3AU/6SQDAi8MvOKd+kJ3W95qd45bN9+ZU6kd0IbzUT9g9hYN2mu30XVIPBOAhUcIOPYyxpUBl3759CMMQx44dc35+7NgxHDx4sPRvms0mFhYWnH+bHlqjklgaFW/xJY2KBS5C/+5aTQn9FEbS73ti2rSkPJlBWDv9GJnWqBwXi1qjAsgSV19MG2lGpSim9XUhrCkfOLvqR6d+WOQAlUYYFKp+EMRawJpnCW58cBm//fFbsNxxRcd21Q8BlnbDOxaMmJa8QZzQzJMCPXslbb4rO6lTE6ElpqWy0TKNSqAmprLUD2BAVBgEWofBmHAYlWvuOoUb75GM4DLkpLwgTIqyB4tRod4ekWFomMgdEzsAYFbjPACILRYh8Kp+aLfb1IwKL4CDBlJwAczCZbt0Ko6AipdWQdZz9FmzzPx+XpCNeHHidxgVAmG0GHipn0CdaxmjEofGwwNZF8hT3YV8VYFCSv00wkAv6KkwGpUoDPDYg/MQdtuG2b26MmYeXcx2paBxhptrnQldcAEAzYYq083yQuonE7ZGxU792IyKqfo5aVf9eKmfM1zeq72hGs9eU0IdYbMoprWAx5HlnvY36vd6+txN6qdtGBgAYAES9SxQ9RgA7U7L7dQPF+B5hoB6ykQNYI8EKheyIxrUxrNyfHTTHAkX2tNmocRGP8h7WFRpDP4ICVSoggUHvg1HV8xzcN+6C1SWOtJN/LnsOnPAB0xF6UIuF+V1Jd7/4p0nceVn75QeL3avnyzBK2/9afxR/DY84fjHJEBR2husPAQk6/rzWGUWG0Wpn/lDwDlK9Ns9jbYaU70ZpfvorzipH5rT19FGu2H1pbpHAZLzniG/Pv+3wBtynj4mdgNKj3IuO2XK1RfPc7q+J3MyA9EWNqMiz5Oa42YEC5bux75EPgf3ZFtX8QNsMVBpNBp46lOfiquuukr/jHOOq666CpdddtkWnpkXVsomrTJ8KzjThtXOtCzViwhF0u95YlqzWJGYNmTMlNlCLjZGo7JLLwYAwESqe/NQUMVMEBZTP1QGZ14sH7gyH5UcERqRubYoZE7jOQAQYaQNsUSa4A8//U2889/uwadvOWquD3BaDcSe2NGOSFV7bJT6CQOmSjBl3rlJqZ+GeVgp9VNWnhwQoxKWAxUqW40DN/VjG1W96TO344ETMrdLivpZripiBEMfsWaPiAWJndSPMAJWCs9tM7LGSqhTP64zLYG6LBeFNBfR836vp0xV/QjNqHhpu7TriGnnLEaFzN6E5aFCQaW6jpiWymR9jYpO/RTFtI0o0I0hkbolliuhfF8q444jm1GJCn1amO3WOrNPO5zOsw7aXTlO7fHWLgMq6pi9lBeACm0cmkE+FKNyQuwCpynZAiqcC5zhklEhYzG7gsuJsOGKkIPYedaPLneRCgVUlE5urW+VJ/uMSmNOV+XllmcHsVq5p1ERdrWbxahcyB/EvAK1eawYlVT2hyLNygLWCxqVhUymHvKwBUGCYIoD34Zjy+b97lpV15msAnmG1V6Kx7IHcECckHM4C4Dl+2XqBsban8bNb37sZrzx07fhJ95+DZYzNUek68DqEczlS0hFiK9f+LPAf/474MV/IX+/8pDWZiUixDq3mE9K/Rx6kint7ZzWfjL9mUPyZ73lUnt6Sv3oUnrShp3/TPl1/gCWnv16cMHwp+IndLrwYnYYkXIUR2sXgnnJ7IiojaxtvLbIi+aY2IVMmGfjnuBC6cwrOGb7klG5vb+rcH4PZ2x56uc1r3kN/vzP/xzvfve7ceutt+IVr3gF1tfX8bKXvWyrT81EZCb+agt91/AtQ1D0UbEYlaY30aRJr9JCPxO0cwcQxrq873x2QpsWnRRGoyL/nheqfiiCEjHtauQJyhRQMYyKSUdwFmoRKFCe+kEQ614oIuvj+EP34T8G/6Z3cW6vH3msi8+RE9ZjDszBDzpWg+W6gZ65VtP5V4NDNUHqc7RcRLXYkBfvT5ATUCn32XjsgXmEAcMFe2ec1I/NqHQSU4pMtuitdAkAiZRZId0VOyZ8eVFw2vWAilWmXdU9ucky7ZorfKCiANys1+spRyB1tGp8RNxjDrOeI6adtxgVyoszz0NFHlcxKtxypiW7dj/1w4lRKeqEGmFges1Y7E4mAvRUxQWlMZphYIlp3XSlfKEBKmJmr/7/HLpodhRQsZjPVuD5qMAA116ae6mfGaRq8m8GRY2KTt0oNiwMGHpo4i/mfgm4/ApgzlDtSc61mHZB+D4q/hzjpX4iF3AfXu5pI0ZqbXF63fLoiVslQEW+B+fGt0P7qFhFAUkuIFJrnEVNDbjmhfUZK0DYSyRQOaNYxz1sFWnO0UtzvOETt+Cau05hMZNMYtI6B9h1nrbuBwAceILDqBzuWdfdX8FKL8P3BYpNeeT3Avu/TX7/4FcAITCXyYV6TQGVlZ78rL/+4DLe8E/3ydemXd1i4Rh24xuPfw1wyfONnfzyQ1qbtYJZ9Gyg9W0vBM5/FvCMXzBjvXsaMyr1058loOIyKhRGTOttms57mv52+dL/jMf2342PB8/VQJk0LrInWxuBSkGx2X0QDYvxUe+5jrbWDQHA4eCQA5RTEeKOdc+592GOIsf+MMeP//iP48SJE3j961+Po0eP4slPfjI+9alPFQS2Wxq2j0qVRsUrT7bLbs1xTJmz32MnTfolGpWi4VsYBLiOPxrPCb+Opwe3Yb/SqJzwgAoTmaywKImy8uSV0KPrG8SoKODFhTFW81I/cRgUypNZGCFU4KDb6+EV6V/ihY0v4qqjFwJ4tL42u+rnlc+9BC98yiNwnucgCRiNCgBkSQ+NtvXg2CwWCZj3XgI8+FXz93EZo1ICVNSOsEyjAgBv+c/fgeVOKvtgHFMMCLhuRw9IBoMqbk7ms0AENJR+g3oomfJkk/ohH5VAcBSMWbzF3G7OSPdeG+dZTeNk2wfPowcWo1IAKtTrh1I/gxkVG+gQo1IKVFgICK/qh17niWlDeg5KUz8BVrVGpafPpYOWBpeU+omjABHLAEEaFfd5DCygkrb2okGpH9ZBsyN33Q0rNdYKqhmVfsaB+fMggYMA4rbWXrQKVT9FRoWegX9o/Qf84mWueVw/41hWrMOsWvC1mLYx55Z3R01w+755/YiOLvewR80TmfI3OrNuMbyx5aMCAM05BLk8N1tMqzUqSRcLWMO3BffhVPZ0y2spQBiEEpTMHQTWJPBLgyaiRgvAGjpJjiTnOKlsCfaxFaQ5x7/ecRJ/8a/34Kv3nsazcmW/P3MAjbiJY9iNQ5A/E/svxfGVm/SpZojAoxkEWQfoLWOlC3xfeL385WN/ULYmOHajTP888nv0PVxR709uubtnYhzuMKABBVQkq3BKLJiqH2Vmh3QdWLofALAsZp22Etj/eODln5bfP3St/No5jVliVOYUsO2ckv8gN27kl9RBC+1G6FannfM4x0wx5xwpIswFzACVQJ5Ph81ikTHD7MzsRRBG6IoG2izRzOUaWlgSc9ijzASPhoeAvefIewXgiNiDI6sphBBgW+SlsuWMCgC86lWvwn333Yd+v48vf/nLeOYzn7nVp+SG7aPCqxgVN/WjRYklx2kgLWgt0qRf3ZTQ0qgEDPgqlwKp5wXX653xSSxqMS0ABCKrZlTCoph2XTS1rTgA3ZRLMyq50L2COAud1E8jDBB4qR8WxogbcsJc73S0hXOcKLEWt7U8xBixUpACALFVluoLkW0WS4PDPS6j4gIVea5lGpVQMSo8KmdUmlGom3XRPfQZlTTn2jNlSe0WyfOEQITflDAuVP1UiCVV2IwKiWmpG7Pd3baFBDnnhWttQHrMkMD3dlU9oVmpKkYl7ToaFSf1Q5UGM9UaFXAr9UPdbj0flUAM0KhEgQFiaVcDuA6aGqgQO9DwxLQNzwPDASrNPVqj8gh2EqHqVms3P2wSULFSK62YUj+5BB27VXXH7D7NqDSYqxFqIS1Y6NMzUKgeg+zcS4xKM1PVHQRUmh77GDYgHEbFHcdHlrvamTlTjMqp9b6rUalkVIpVP3nSw2/G78HfNH4XT02v1aXlqa2TsdhN3lg0PjaKwTipqp32YhlpzrHclT+/++Q6duVyAU/b+xEwhgdVKa1oLuJ0eA4StXF81D55f1KVVkJvGenqSTyF3Sn//+jLTcrkgS9rlmRFtNFVoItAxrMetRdd7V2yrtMyJ8WiASqNGZO6PC49XVatrtCFIEZl7bhO2yWzCqicvkt+ZSFONs7Tf7ImWphpeC7K5z/DOSyJj8Mg0IzeY9Rc2yFPF9LKzO5DyJgR56roiBaWYcbR8chlVB4S56CT5I6T9cMd2wKobPso81GpKk+2uwJX+Kg0WVbQqBQZldxazI2PShAwfE0BlcuCWwDI0sW+SilwLcjMwLPyh6Ys9dMRTS1qA6AtpMn91GFUPBq9TKPCgkjtnKRp2COYnBh0mWyJ4dugiKKGZpaKQKVEF7TXFSPGlkaFutoyP70CIFSfa16hUXGiouonzYX+fEmjQkEToO71YwEWERiGxhfT+tGwLORDawGOQgaOQC9GLUpXkomaGksNpA6b8jf58wAAx8UuCbDJ38VvApn1HHZnnnV1yTYxKkEJUKFxKeymhFqj4jIquqKpKvUjCGia1M+6aGlwaVf9hML4qDR8RkWVJ2ciQNpY0Kmfx1oN3GzRe9OyqadoqXuvtRU/8nbgh94MnPNYJII0Ki6j0mSJZaFPbJjSgZQAlX6WY10oH6FMgUES0zaKQGUjRoVSP7k6p9X1rklF+eXJTWM9n3NjbEipH572cCmTO/i92TF9nRmzzsFa9Jpzu7VHDQES8o/Zy1aQZAKdJMMT2N3gvVW0e6oabWY/woDhIQVU8nMuxdFV+V775ho4f49yuw0VUOmvoLl0BwImcKb5CLmI0yJ/+AZgWZqqnRYLyHIBIYyHy2I7dsHwms2oWPMmaZKO0Tw8q1mZQuhmj2Y85Tr1o3xfZvfhVMMYq3Uo9SOsz/A8F6jYDQmJ5ZkhY0kCKppR2YcgYHosUayjpavKAOB4dK6z0TsWytTR8dUSm4mHKWqgMkxYjEqxKaGa/AqMSllTQvPw2jtRQO1uNtCoBEyacX1dPAqpCPXkYpc10iIc8LySUWFlYloRuxSjmuDcqh8FCMpSP56PCsIYsQIqu9matpjmxBSUpH4GRRwZbULeLwcqqe0GrEqU9d87GpVqMW2oynHzCkbFCaspYWaVVWa5afJ2Bh5QUddA969hfSVGJSgpT6YQarzZC2hoNVokQS3dqxZLnM+up3q1NFiu9SUJYrw7vxz/KfmfeDP/UefaShkVJ/XTxe4Z+V7UsTWeLRpocdsNmMYA7TI9MS2ltWzhOEUjDKzdvDGt6qIJHsnFioBKIwpM92RR1KgQo3IG80g504zKowNjYW6nvkxTQiv1YzMqAHDBM4Gn/gwAIOFVjEpSsNAPLTDgR5JxDQwCdW/IHwh25RJQwqhYAF0IHFnuaTEtT/vIuUCvawHFgph2HoTvciF0RtKUiHfxCCbBRFN0ITgBlXJGBa0FzagQUCH/mH1sGUnOMXfiBnyi+Tq8t3EFFjMFVGYPIGQMdyrmLz34FBxT+pQDCy2cu0vONetUddNbRqx0Rt2WKhPefZFsc8BT4F/eIN8bC0hz7oh4F9ux7nVma1ROYtHt9UNA5bgEKiuDGJXmvNMQdU20kPsp0rn9WG4e0v9dF7I8ec1hVNxsAzFwUch0E0iKfqQYw2//UeBRzwWe+jMIA6YbzgJSVtBDA0vWPHWyca7zmS03ZAXusRVvLngYowYqw4Tto0JPKqV+aKLQGhWq1ClxprWEbbYIUf55mY+KWcwBWfVDorubhPFZOIFd+nvalUNk2vfEj7CEUVnPY/NAhE39UAVW1Y8tpvXLkyOPUQmiBhpNeb2OiZBXxs2t8uRBwRgzlQZ+EzuLUdEme9YuLhGhNlaT518tpqWFWYwEVLgu2wSAlAvtYbLkMypwGRWT+mFDpX5ytYOmpny5MB1TgaKgVqZ+DKNCQAUAFiEXqH7QBkeAL/InIFPNGMnwLfY1Kl558hzrYt+cXBh3UcO82WpGxemBRIyKL6YV1YxKHJnyZJ50NFBZR0t/ZpR2a2wgpmXq/U+KRak9U8DlPMX+AS5Qi4nFKGVUip9XQqmfIK/WqJAzbTgAqORcsyAsT6RWjc6lJPXjMCrWOD7TSdHPuC5PFlmCpU6CphpLAsqnyWNU7NSPZlRUZdlcehoLai5r8a7WQrlAxdo0tBa1AJmAyhlmaVQyjoWlWwEATwnuxA8GUmeWzx5AEDC8h1+O16Yvx9ozXo2jy/K8Dy60cGhRXqfd7yfuSJCTtBWjwBhw4XfK7x/6GgDgPnFAAhWLCVmciU3qJ10v16gARqdy6k713p6Y1g7GDDCHTBOJpuc3NHcAK03DqPSDFuIwMKma1q7CBoy0cTajQpFEam065zHASz8CXPidCBhzxLny2ExroBIRYjna7zAqVEZ9fKVmVLZ3lPX6yTygUmL4VnCmtSYQ2n1S5D6jkqdOegRQGhU1aZBOBYDTzIwYlXAAoxI4FSYy1ngDq/SQRy3TcI8EvZzra+Qs0kwAICdZv+qHhbEGKruZtRBRSsPqzzMMowLAUNZVGhXbZK85j05D0sQZImcx5wqEsZL7QwZnVRoVJyqqfiSjQlU/7o6XJsCoJPXDCPgILrsWlwRXrq9UjeLfv4LpGxJZUq+utReY66LPJQ3NwkS3j87F7lIsX9x1SoLn0MPe2SYAMVCjwsnMzk6ZkkbFS/1E6trKGBXb8C3vW4yKaGomwPioWEC7rOrnomfjY+K78ebsR+Rz7bMTcJ15ya+ljFHpl1D+LqMynJi2SqNC4ILlCV7+7EfiMfvUYtPwzjnyGBUr9XNkmRg0YhT7ONNJNKhm8YwcADaj0pzXz1TGBej0qGHkoexB81LRtVI/1nxg68WaCzr1s6KAynKwCwCwF1JM2+waV3LSG/FZCTa6wSz+Jv8+5M09uuJn/0ILBxfldZ7RHZSX0e4bNkbH9/828L2/ATz3dfjCo38dv5f+FJJMoKeAZhgwzDUjzXyCZ7qc+aSf+qEqLzXnL2O2mlEBnO7Dq6Lt+vgAwOx+LLcM2OixNqLAsEh49A8UiiCMRoUBjRlkzV3md3HJeA4Y1i3mnNgV0qg8IPZLdnxuv04rZguywun4as2obO+wfVT81A95MWiNilWe7DMqjOnS2DmfUUlLqn50PxxLo6IO+TVuejicELv090bnkGnxqx9BGBWaxq3msdGoRE2r4Z6p+mHkTMsibUcOyMUjin1GJUazWdR58DJGxQd0FUFAhfvdmG1GxXqQV2ekXXRqNaQDYHwmfKAiBGJyOY3KRb1OWN2TfY0KVf1Q6SVFV4tpjYgWkKktRqJY8MqKLa7GG/l7+BofstHvWe60eV7OqFCjQ7sUmxZMGkfxEGLavXMNzKJnvBtKq37UQuswKuViWl3RFBUZlShgejfPU8PudNAEU7oqah1ge43kVvdkHXEb/1/w3/BJ/kwkOYewfVVU2L2OQkGpn5Ly5BJGpacYlZh5PirMakpIqR9Wzaj0M46EvGOyPv7nv3s8Ln+88j0qYVScaimLxT2qPEcSy5n51FriCmntr4AjprXN2Lhiu87jh8118Z5OTeWORsWwv2hZYtquvJ+rquJwH5Ni2plesVSXK52FAU1ce6gcXGjhXMWonEgNUJlLlDfJvGUeuvtC4LmvBb7313D7hf8JJ7GIjHOr6WCAVhTqpqwAdFXPSSx6jIpVjg7Zw2gwUHEZlTDy2Ku5/Vi3gUowgyhkuF48Gj+/+HbgP/7fwiGNRkWeV0a6FwB5Sc8tKaY1zxXpVWhDdZ84IOcTxoCn/zzwiKdh4ZJn4XmP249zdw2xeduk2PLy5B0RVrWOSf2oyVozKm7qp0p7IYIGwFPdLZSCZ0lRTOtb6CuNCgAtqAVcjQpRyYyX+I2oKEv9rOaxy6hQ6ofOwXKm5YFkVBpRgJwLzDRChCimfpqtEkEqTfZWWqsA6CoiYSTgKxcyy0or65rmLsKBpeuQIMKsBYYo9cP81E/W143+RFRy7n7Y3ZMdjUqGZqR2ixWpHwIXC61If2UWOMxz22fYBC2mTQuolDEq2ktFVapR1U8exMhZhFBkOlWTxeYcaXxRGWJsVRfJF3uGb6yDfXNNzaYkiNAo6RqrRd42o1JVnixSgEE7G9vBGEOinDa5U/XTAlMl9Tr1E5iFVYLV4jgjoJjmHLwxX7jngQIqc81IO3fajIpO/ZQwKn1OQMVnVFJLTOszKiXMjMWogKfK0ESdS0FMG3upHzOOD6uFvdlsAkL61ZzpJK7Zm/0VcFI/SWYDlRaQWy6xANowjIq2AAAk8Fk4D1h5sFSjshruAjLJ8CVJH3PKZOyq/Cm6vFjMHXLuE+fQjMrBxSYOKY3KsaQpZYO9Ze3BEiyYxdsOGg9pzjXQbMUhmnGAFKFkK8GlqRuAU2JRV3kBKAAVn1HpJjk+8Y3DeN7j9mPvXNOkOiEbYu5hDGgtmrVkbj/W++aYSdDW4/MBHCoIowFPowIgmzsEnJaps9xPLUFudm1GhdJKn8yfgRftvQ9vP/lszNOm7vt/CwDw0wB++nsKh3pYo2ZUhgnHR0VVv5CGQGtUiuXJhaofmJ1IUaOSlIhp5XuQgDIMTOrnNBZwN5cP4Amr66ogO3Xk0gW0JIIwKqR+VmyNStQwfWcqNCpRGOBNP/ZkvPElT8RsM0LkiWnDMEa7VcJKEHiymhJGwXDDMIW1k7bDbgRpHaszd6H6u8hZzEVQAVQspkDEQ+weSHDKXB8VW4DZQdMp1SSmg4DKf3zSI/Crz38Mful7LtZABUIU+jTp8yJGRRi/Cvuay2z0cy70teYs1hUZu5VGRVgLky6pJ42K31spdat+ZtHD3tmGrvhZxVyBrQOsSitiVILYPDuemDbUqZ8iowKYihKeGNDUEU2ECqhoHxVmPpMMUTH1A2O4l+UCaVQ0GgxEhhA5ds3E5hm3gIAW05YwKv1cARWUOdN63ZO1RqV4vRKoWBuBPDGp5gKj0nQZFWscH1Wpn3P3yvki5ClOrSeW2VsZo2JSP469fcln0xI9s2nw+w2ROLO1iJZX9dONFnV6O+qdwXwqmZB35C/An2U/hD9JX6K9ebToWAhXTKsYlZOZWsx7y9jNJVCJd5UDFQL1SSY0wGhFgUrvMPQZXaOcqyqrflSsiBmn6udvv/YAfu1D38Cbr7pD/sBnVAIj4AYAzB1A2tyNjkoPp+GMnifSEgALeBoVAPm8pVMpASph4JYnU+rnOHbj7Qd+E1/ilxb8hrZD1EBlmHA0KtxZ0LS7pdaoWExBGaNCQEUxKvSA8qws9VPNqADAn+OFOLbryfhc/iTzd+RSimqNShQGBUZlJQ09RsWqQIH0UaFyXlp0/v0TD+FF3yGV5iwoMiqtEkZFTKJRoQUq9Xb5voW+it7CRernkWNUZICKdxz1ufZFVBAHl4Z1DzMFLIQQjgC1hwZSZu6DZlTUZLA4E+OXn/9oXLRv1km3UZ8mx9sG0OONdrJ292nAqvoRRkzrmvXFOv24W3VcFbEpTdTHCsr4HOBDX74DiVUlMs+62DvXNECFlTtYcsVVkKEewtiwARbwEUJocMTicqBCna2FZaHfQQthi5xplY+K1WE4hSuopiDwkuS8NKcPAC97xkH82uWPNc+nNdZp4SorS+0po7TIY1TarNxCH4ADeCn6WW4YFUAeixjcjcqTLUbliGJUztu3S76Upzix2rcaEhJQKWdU7MqYMsZxFj05jwHFfkOP+/dS2Hv+swqMShxHut9O3DuJ3ZlkVI6IvfiD7Cfx5vxFhX5gOecWoyKN0XbNxFhRfjOit4RzhPRsau12q2EobDaNrq0Zh8Ybx1rQuWA4jXk3feiJV31G5a4Tclw/cEZtSi2Nyopoy2tp2UBlP+IoxJf449ERTTwYnafBVJYXU4L2z3XK1gYq7RJGxfNRsUuVO4lqNzLkxvHhjO13RtsxQgNU0py7pckqL25SP2bRLK1mUZMI9aBJIvVgZQkyiylIs7Qk9QNnUfpU9Dx89jv/CidgiRfJQAo5Mq/Xj36JV57cEU30Mm4xKk23QR6IUTHOtMWDeoxK3EBUstAwnfqR1yZQIjquiLQq9VMBepb3PQ0nxAK+ArdHCLFOBR8VddwumsOxPNZrCICludA5/4zF4AiQWdUrpFEpA2eBlW4jDxzfnMnfJeXe/fMZlRZLPUYl0hbrBFSYtSvXp8XKgcqDJ06DO2JaWfVDqZ/1oHyxL6R+bEYl7ejPMM2F7r4bVqTfdGVS1tV2/h3RRNg0qZ84ZAgElSYHAJijU6IwjApHUsKoAMDrLn8UfvjJj7AYlaLhW1nVT0+lfiJkDls6E1ipH12erBakKo2KDVSyxFTP+ZqUMAbbQKNy/jlKkM0y3HtyXeupqjQqxKgkFqMSlDzbM6wHQUDFZ1Se+UvAax8ELvouDVS6alFvhAHWIzmHza/fJ5kZAEeFmde075D62kly1XRQalQA4NBiW7cXEcuHtQ5wZq/LfFDoz55zDTCamlEBepaW4wzmkCN0NSq26RuURsUaB4eX5HWcWlOffdtnVCBTPxSz+xEFDL+Q/nc8s38l1qI9zvgsi8zTqAiL5SlziA4YQ8cCJw5oSeS5x0NuHB/OqIHKMGEZvqVcmIqfuG12VyXdk0sZFS/vnoUGqIjUTGb9xPhN2Kkfm1VvRqFb1w9ptAbIXZzflJBCimnN33XRQC/llpjWZlRM1Q9Ti4koW8R8oBLFpfSwBnS6PcDwjApR/qKiPDlF5IBDMbsPz+y/BW8IX+G+XH1mgc84KUali+Zw4Mm6h6QHSnPuVFH8+NPOR2vGLICm6qf46BmNCkeuxlMiIg2sgOLkU1X1o4EKEqQ51+yRZFTc1E/gABWlUakAam30HbO5NkuwdybUbeXXWfliT+LcICdGJXLZAJX+yThHgw1mVHJaiC1GZR1NxC35LM2gL3fLuhusfO+CmBb2rlogtQXUs/tNeTQB4xJr/ypGRQhhGBW4PiptlhZ8VAyjUl71IxAgs6p19HMUxm4/n6jp+DXZugYCKufskrv4GBnuOrFuaVSqGBV1GzJzbuWMSt8CKiWMpDK3azfcz6EZBeg05CK+d+02AMCSmEXPYiLpeaTxSSCgGQVYbMv3OrTY0owKTt4OQLm7zu8qnguszz4T+vNrWYxK13J4Jh1g03M3tr1LJKNixgFVWZ1cU5+9lfpZE215LU2PUQkD5AixihlZXq+ew7RkXAAGqOg5wGJ5yqrvwsArT7ZAS1cBlWE3jg9n1EBlmKDUD6PUj5q4opbZXRW6J5c40wIFb4gstoCKtQAn/X7BQp8xl+ZvxkHxwQmNRiWrqByRqR8bqDTRz3Jczy+Rk8OF32UYFUujQv4WIihjVNzziOKms/Ok0KmfEX1UACAloFLRENIHPXEUgCMoaBN0V15RwaiIxnB5WguwcSqRthiVoNHGH7zkiWi0zIKsLfRLrtk2fKOqn5yFsmyUXmNTxaiu+ulbQCW3Uj88iDRQITGtZgVhTXisfGpYxLruRUKxv5FoRqUTVjEqijnQqZ+GfK7o2lSvE5tRCeKimBYAVlU5a7z6gNaodNFCbKV+GlGgr5lcess+U5v+T9A2XWQXzjUAgM5Zi2ntqp9yRqWfcd09OfQZFZYaJ1g1FmlTU1qerHbTuuTX1qgEkQtUwobbzFGV2QshcFgtnOfskvepgRR3n1izNCokpvUM30hMq8B4FLBSj5sZ1tObLafqx4uW1x29EQXoxXIR378mhaBHxB5ctLc4Lunr4SV5LQcXWzqte2ChqRkV6oJ+iu2u7E9jp/3o82tGgT4/0ooAxpSu6YNdCxhIjYoZB5RqO7XehxDCLU8mjQo9z0EMtHc7YzQKTUUkMSr/fMsxfP72E/o1WqNCf2cBp3BmV+GaQ+Yavjnfq9RPVMI8bnVsvzPajmGVJ2e5MEAlnrEYFR+ohCj7vJm3E6GW58hTZ9eVpElpBZENflpRWHhwGOW8kYNX9vpxxbQ9IRmVO8V5+LVLPg4873/p3zPNqAhzPmWMCmPIrOEUxXFpUzlWUh01bNWPZlTSckbF16jYrq9OUHrMF9Oq3Xlv6NSPBVQUsEg5txq8WQyVCqNRKWNUjMke6Ys4AmfhCDxGpVj145UnK40KszQqOvWjypNZo8ioVKV+9jAjfO0rh9PFMNEald4GQIW6UyOIpeh2XgkdV2SZa5ZzXVZclfq5K5YVbzOnb4VQXaXXRROxalQpUz+BMy4AlIppI6vyI+ECq9RFdvE8w0YQUNGpHwPUqxiVbpLr/kahyJ1ne9YW0nuMCi9L/ahjZzTXZIlhVGygwmRKlzlARX6/3E31Oe5dpBL3DOtJXsKo2D4qVupH6TjCgEGUsKVz6GotDvdTP1a0PaAShwG6TbmIH1qXTMgxsQeXHjKgnJ5HGuvHlKfHvjlzHvvnW04XYAA4HexBVbipH5tRIaBiruEUFtCKS1hyq2P2Kmb0Z9VNcpxeV5YAKUcnyd3Uj5iR95VSP3P7AeaaN8ah2YRkXGC1l+IV770Wv/RX12rgQhoVel2w+AjdYTqeM8CIIgjgOJCvOUDFAqLbLGqgMkzYFvpcmIkrbplJy1uAc1G+APsmVjmVhuaJLoUEgDR1Dd+0xnEDRoUWuxB5ZeonDN3yZJn6UYZHxDZooGIxKtrwrVxomlvFnVHcKN11SddVAVLSj+KjoisJcheoCJvFsoGKAnE+5c8rq35Io9IYMvVjrpd2NlkudHksK5n4u2IQo6LSLsi1q3ARqJRoVAJ3cgNsjYpq8Jebz47ElsSoBBbjoxtE+mJaBWYIqPCopRf1GbGOXSqN1I3KgQqlC42YVj03tCNdlaZaGRe6YWeZDgIATjYO4ZSYl54dh2+Q74smmm353jPoS3Caj5j6ybkRLy88wgAA0o6VpH5avoW+im6a6/cNhMuo2B2nywzfhHDBCjEqmqXI+ybVHEQGUKnzErYQXI0d2t3vmW2gpfyNCBC2Cj4q1mLv+KiYNIPt3ExusDPoO2XwVUGGb/otogBJUy7is/mSPF+xB48/ZMaSz6icUH1n9syaz+LAQgsrVs8aAFiO9lWeR8NJ/VB5cqA3fzZQOSkWMdMoYZLV+BUNqWFJcumpRGkfilNriVf105ZzDKV+VONAvzVJbIlplzrSaqCb5uik1gYSRuMUtWbxB9lP4E+zH0FzcX/hdKWFvnmuHL2Kajo4bBXmwxnb74y2YziMilX1E7WNNqNQnlwuEvXz7oJ2szxxFs40SZz0CIEeJ/UTBQWNSmClfqpMwyKve3IXTaseX/2cFRkVXfVTlvqBD1TKUz+2P4z8mxE0KgRUbNMwmEXYFzA/8bxF/MClB/Bzz36keyCi2wultyb1M9TDat1DQYxKzksmfguoeBb6zuHUZxcKoYXQOQudhcOnc7lw04F0/baFvjyQ8l0JYu1cStbnQZmY1r/+lnxfYmHycEbvzKJ0HeeGssJiLT6ncF2AASphbqV+AANUFKOS5tzqqVO+K29EIb7OZbkriXPX0UKjLa+jTakfTqmfakaFFquMc2S5wBrtyJ3UD2lUylI/ZKHvMSoWUAF3GZVzGla1GZUnW5+hT6oQk5GXMSqhpQVT5+UyKvIaSJ9yaNGkq0MmECLXYFbb7XvOtMTi9i1GxWaGbxcy3RCzHHEmAesojEojDJA03d3/UbEHj3cYFZdRJqCy1wEqTcOIqViLq4FKZKX9dNVPZBiVdSv1c1IsFs4bgE61CPV8ABK0EjCkOLXeL6Z+GDPgRTGLduontlM/nDvdi0lPknKXUQkDhrflP4Q3ZT9aer4hYw6jYotpSdxclyfv1HA0KsLssGwxLYEMLaYt6fWDojcE2SiHeWKcL1Gs+qFj2etbKw4LaQ2mgYoRZPpRlvqh0IPUS/1IjQqJaauAip36casRMmXTLhkVyzhqBB+VnHwNvNSP1nMgdBmnKMTbX/o0/PSzLnQPpCbRoFD1Y/QOQzEq1j0UilFJrYaEZRN/TzclLKv6UTtwZj47gdBJHbFWGaNSIqYV5KOidEUWUPEXkdBiVIIqRkXl0veyFXmdYctMcskqzmNSY7LaPICyIHCrgQo9N5T6IUYlF2hQFUqFj0ocBriBuz1PulbVT5OlaAVCsw6Z6mJcVvVDn3OScSQ5N+0o9jzKSv2o8ZZ5IAtGs5Bk3Enb9GygkqeuRoVb9gYeowIUTd8IqGgmM+97GhXL/whw75saO7SwnzPfdH4fI7NSP+p6m/PAxd8HPOo5QHu3HhN0HlHAnHnsDm50Ea10WZ5rBcgESoBKFCBtuUDlCPbg0nMXEIcMzcgwCxsxKikivRkAgG6rGqjQM5jk3GFUtJjWS/34TBAA2UcHANt1vi50WOtnWkOj/34tAVqLujBiVbTlfX38DwPf8VLgu18DAAV2VItpc4HVnpmviP3IFdsWWq04aD6YbxXn6cBrSmjrcFKv1Hk7Re1MO0w4VT+WmNZO/RQ0KuVMQeAbiZGBlz15AcjSFAiNhT4dywY/ZYyKnviQa6ahcDmF1I8ZrPpBKen1Q4yPqPDY4BajEntApTt3PuaXb5PlyVYfm2G7JwPWjtJP/eQWizXEsYRmVKrKk4cV0zIIMDAICKowsRoSGo2KnfohRmWwRoUYFc4Cl4r3gApHgKa3CwMswzc6F0XJcxa5vWAAxC2LYtcaFZ9Rke9LXbD7rIU1qoror+IgJFBZax5EWVB/Jd07x0/9kEaFG41KNaMS4AZxsfOzdbQQNQ3tPxclFqNCYtqNUz+/m/0Ubp15Kv7LY18AXHOlfFHaVSXB6l5aDJQtDE1yjlZAmpVcAyTwzB2zumUA02DXfgb8yh8SeuqS36xvnqEgKjIqJVU/tBufa0bOfW0gxXygzo3YXcaAn/57/ZrQK08OAwZYzPCD7CB6aKCFBO1s2T3XkmiVpH7Stgsojok92D/fwttf+jT9Gv3eAI6XAJX9C0qPI2Z0+lU3JCwJO63S10Al1Ol0e16sZFQe8VTgP/0t2DmPw0XvuAf3nFzH7cdWyxmVIAT2PArpqXtxROyV93V2r2ONHznPcuDMQ9QbCTB6EmLCY4tR+c0fuhSdJMeumeJnEBaaEhaNLWsx7U4NbaGfSUaFqOCojbVUDSTPR6Wq6ifwdomBWiSauQdUMlejQocKPcbA1qhEAdOLXWzpHPwII5dRscvw9INil8RC0uK6PLkq9WOBn7jRkOkD9dr+vGxsBc49RmU4cAEAuTL6YhWpnyoWqxBhhZiWGBUxpJgWgFALOrcYFZP6UROCk/oZxKioyRhcuwpzhC4VXwJUHGdaMnzzUz+kLwojCA8ARO0yjYr3GXvv20XL6DlWj2FRpYTW2+VABcxjVNQ59Nsqj65TP6bqpwqoSEbFBSodNBE2zH2aC9KCRqW86sdQ62nOcbs4Hx+debGbUslcN167rNoWs7v26dxK/WSOM60O6x67jIqnUSFGhe5HnrieLjQ+aFyHkaleUiD5/9/eu4dZUpXn4u+qy967L9PX6Z6eO8wAw21AruNoQBAyM4REDcYoEJWIoAQTI4QDxAhKjgePePRJjD+i5xyFc/QY9YlKYkziKIIaRlBkgkKYMDgwwEzPMLe+977V+v1RtVatteqyq3ZVd+/drPd55oHevbv2ql1Va73r/d7v+6ZEomJYfGdfQB39VkQ5fjZMrqj4jfvEDdchc5j3xumqu4qbSoZFqAt+0TJQV4jKYWMpTIPg4g3DuHiD77Vg3xMzqg52+58z2FWEaRC/cCWAWmc0UWHkxy2h75tpTYPANmUvx2EaoagAwElbgf61OHWFu+l8at94wKPCUpQrV30Tb6nchcPoDS1fUZA8KrK59ui0fw9xRUXxqADAOzcfh/e9QX4+GAwjuo4K/9wWVFQ0UUkCqSmhX/BtdIbgMw/uAQDUWLVUofhY2I0IxUzLiEqJykSlXvPL9EcqKoLxC/BIBm9yVocT0ZTQ7fVDAG+ymhHkP77rFG5802u6xxQIGmGUkxUV75idgwAIZntdqd6gfmsAIJ1Hhe3SSF2e9KmTTlFhYYegR4WFfhIqKnAL1gHgpNBtSBid7pnEo2LA4anlrqIiewZEBOuoyIoKK+bF1TCipK8CsDt9EuJn/SjjU4jKFC34u7FXngHgVtsMa+znnodXMdnxQz87XzyG677thnwoz/pJEvohGEc3xjv9kF6ZlEAMg3+/3cRXVJKYaSs1h5eI5z2B2Pde8+u1uCXq/fvfEqR2MfNH9qjUAiqgeyzhOMLzpmb+MCWDSoqKGPphior7X4MQv+Q+U1S81NOuotuQlBnKC6ii12SKSnhVYTYl+KEfA4ZQn+WwtYzXPOlyXKIS51ERwxOAuzg7nTJRGYvwOqnPzUBXUfrdUHdRyvyhSyKIM3xfR6XucEWFzacly+TPEAAcQk+4oiLgNI+oPL1vnNd5YYrPYY+oOD2r8RQ9Xvp8aUyKoiK+hxW4A8DNtDXFo9IIBpHJiRj68cfQerSg9UbUivAmApt4BlVvQTtcNrhR79HdB3B0qgIxPTm8Mq1/YzjEhulNhh1UZuBOrRLqUQkqKspumvf6ie7AazMVhsgZIu4x2ELlP5SMqPhZP40VlULRO+bbvwy84/+husQrtR/wqCQnKqxPElEmfYd7Eaxkx/J2plGhn8TpyfBNon4dFceP+Vthigor+BbtUTEFokIhhH6sjoDKEKyjIntUeI0MpjoZdkBRMYvdnJjxyJ8S3qspFXHH60XflHfQrX2xjy4N1pngJ+cRFe/aHS1TXPU/f4pd0x7xmjwAOHVUnWRmWgA42LuRv1Y23LGwsufdhl+9lT2j4ZVpmZmWouIVNONkXcz6YYpKyGLuG2oFRSXgUQlTVHyiIt4OqqLCUl4lRYWnJwsF30y/6jGvZOv9ju3Au4ru6+wesElNCP2EExXRJwG490jBMrGPDmCW2jhQWIUZryv3Eo+oqPeYCnHRL1gGrGInV+imaBFOSOdfAAHFVDTTAm74Z1xQVAzmgQqBWENHTE8G3FL6M4qZtjNKUfHA0qmf2jfGFZXTV7rPzeEpr76MkNEVNlcFPSoCUZnx76Hpsl+3CfA9Ko1gGgRl2FxxmwwL/WhFpU0h7OyMepmb6qYcm1eLnJyZxYe+vpMvwjXF2Bl2LMcswCq4P3cqRKVe870cVDLTqh4VgVAYgqKCOlcaypBZs8nSF41gLJazaWGhMuCg5lDuVwkYLdn5iESFFetafT5w8m/BZGoBrSseFRJeGC8E9QiiAkF9iCruJILXmokM/SRMT4Yf+hFL6JdiCmjx9OSYOiomKA/9uFk/AuEhxF8AAdRBpEmKjZsVfGNEhalQNISooNDFQ4i8e7IS+qmYclhgrGb7sW5OVAZDVQv3c1lGk3te/75vCtOVOg6hF3VKXAI79UpiRQUARrtP46/VvLAgayTXZVQFRcULh4YqKu6xqoKiEiAqtRlfUVGbAMLfhYuKimum9Y4TqagI4VXiFz4MeFSYomIKigpPTxbM1tyYCz9s4ZGPKW9h6y569w4jKqihiygeFQVqHRXLcDunX1n5C1xR+Riqdh9XVJZQL+unAVERfSoFzyzLiqqN0gF0FsM3Q+oiKoZ+AFZLxT3nCdqBju5wwsM+F3AX+9marKgULYN/h1WjhBmUEigqLin59aEpvHjEnc83rnQ/nykq4rUNC1OrWT9mhKIyVWGhH7kpYSMYnpL+HF2BqlHCKA3WmdGVadsVggpC6mW+856o23y3ZqGOp/aN851O5AIsOfKLnKh0Edl34dTVrB9vKMIVc41fckwTkkfFK8NuKERFSUEW3e12iKJiMUXFUyCciNBPXfBmFwqKF8cjR4TKHhVKIkJkIWDStxFRRyVK6QmA7TwjFJXpFIoKFKJSc4SsH0YwrGShH0MI/fCsHzE92ftvVfieA1k/PD1ZDv0Y3AhtBbsSF7r4feRn/cjnP6MQlSNVy1dUyq6Bch8d5OXMQ05O+rFCTRw32Il1w714BX3ui+P7UKs7DT0qTBl5udvt4TROO7gaVWFEhZRDPCpxZlqfqPCJ2g5TVIKLOduFix4Vl6gINZYaKCqAXEtFBCMIfB6KKqFv+Ubtz9R+D98pXg4Mu2RuUlFUeM8x1NAJb5PUIPRTFsy0tmngBTqCp+lxKNkGyp6iwozQqRQV04RtEhzyusCP0oFI9UKdKwYURUWsTnuQ9qEn6n6ErKaxdF+28SvZBn+Gpr2quZEeFQ9DS4oYWlIEpX6q70ZPUTnk9fsRiUrYHKDWUSGEcPIihX6866n2+mkE9plvr3wE//fsb/gtBwTo0E+7wrR4Sq7p+ERlsm5zZ7+NmjuhsAWLmuFhCIH0mIUO2N6C3g1ZUaH1mkRUorJ+LIMIJEZVVNyxVIiqqHiTVSpFxYEhZhqEQFRUiiWFqJhC8SuBqFgR6kzo8VkMPpD1w0JSyY5FIrN+mEclYa8fhCkqTqxHJTY9maVgCmE7KhZ88/5bE4gKjer1wyrTMnWHkTkj6FFBoZsTFT/rR/4upw15gZ5wigHZ+IQTT8bvn7s6cF4AQJUigVWYGOgqYGl30W8+N7EfVSeZmRYAXu7YgCNn/wn+a+0POEErG+6i3Wn44REmc4emJwu9VHyPimxERW0WKEeHfth3J9ZScSvTNlJUwolKvR5OVHxFRSmhbyuKCiH4Rv0i/E3H+3ksTzLTwi+mZ6OGEvMNRRAVNT3ZJERSzkq2yUNvDHFmWiAY+imIigoGwourQVYOuotWoODlsh6/Ou0B2h+aosuPJTyDTKEoMY+KbXIiPmm5RKVR6AfwfSoA0FOysHrAHcvhqTBFJX5M7D5n96gU+qn68436d3Fgz/cxLMFhO1gQDtBm2rYGKxlt1is862esZvLdmoW6R1T8rJ/QDBTBTEusIu8wLFWrhOe74KGfiIJvtsu42cNqGQYg1FHhE7UhO7stRjS8xUj0qPAFNMSjwhf2COVCIiq2PAkbjBygLpC55P4UAHyBNRxl0ncE9SEBiKfuWCpR8frGzKYx03qfyVQdKfSjeFTqRsGtNIuI9GSWEg6/oaRjmAGiInavVivT+mZaOeuHKyqmJaWv1ogFWAWuCrBFyVDGN6HsvGYQJCqvfc2ZoSmRQDClvQYLBctAf5eNUerV0OCKSnzoh2drOBQHzrsFX69fzL/PqheC6IBAVDxiV7BCdrCWH/qp1BWPilhCn4V+QhSVYoiiMlOto8rSk5U6KhxqI0+uqMh1VJj3hSthoqIS4lFhl05cFLlHxSMArMNyAVW/NIJi1Obj8uaeqqKoMJRsExWVqIRUpRYRCP1YBiesL9GlkaRAnC9UNQVwFZXDXi2cfViKnlK0oiISV1ajhHtULAP/5pyO/asuw0PDfwAgmK0UBpGorOjrwKBn9j0yVYHjUDieR8UgCA1Tq4oK4D/TR6dERcW9Jya9/3ZFEDsVoiJVUYoUMug6Km0MahaB6pS7SHpZP8eqFpfhLVKXFJU6zHCWq1aN9CYMiyg3jSMoKtTgk49IfkqWn80wU61LWT8Wam4qMIC6WQIEO4bFdkMkmPXDdyyGATcriMKEg6pDYRAm60Zk/XgLbYWa3PDIT9sjUGLoJ01DQgBwvAXWVOrDUO5RSRf6MaAqKqwybTOhH7+EflRl2popdIMNO2/BTCsVfFNCPzUl9CMeiptpWR0V78IzbwgMubVB1eiABX/x9yvTytdPlYinaVGqcAnA7Y8TBWVRrsKCbRro7Sj4isr4PtRKVZjEW2AbKCqVmsMXY57B4d3rnULoJ1llWsr7p3AvCzfTzjQw04YoKlW/14/raaP+MXnhOPk54v1+1BL67Lg8XboS4VHxNlPecy0aN9XQDyM9BVKDXW8U+lE8KqaqqBhBRaVh6Mf/e6aofKm+DQ4MfLX2RpwX4VER578wojLcU8In6q/HIBnD39cvxP0JQj8AMOkRlaKgqIyjC4+d+z/wxLOHALyEjgRk4NTlvul8eW+Jj7HuUIzNVIX7NXx+kYkKkV47JqYnewrQxKx7j8cpRypMg6Du0EiiEvacLDRab0QtCtbW3HQqPERwrGJyeddGHXWH+l6FSEVFICpmITBZcTg1UDE9mZlpFUUF8B8uMfRjEYE0KbsbK2CmFeuoCLeE4e/w63XfoxJV8I2pCzVYgd0CCzcZtC6kXSf3pwAA9Rb6oKLCKuamC/1YMenJiQ1lataP4wSbvHkhBMf0J/NQoiIqKqwGDjGCygyRQz/id+2bad1zZA0SWSq2Y9iSolL1KgYzVSCq18+YIy9EYYpKKqJCXX9Vf6eNA8zQN7EfdVF5iFJUhEaC4i4f8NXDDvgpvLFNCb0Fo1IXzbTe98nNtGWfqISoDr6Z1ldUylW/ezJXYwA5zTugqPikSQRLT+bXTfWo8KwwP+sHUBUVZqa1/L+Dq+RypTQq9KOYaQ1CJDWiZJv8PuKwkod+il5Pm+fpcnys9m6MYhCdEeqF+NyoGT8AsGxJCUfRg3tq78Cv6YrYBdw0CM/CH1cUFZ7JVXW4f6VDLa4ZAlFRWd7XgYJloMcbw+GpMr8mUfsgKYOPh368cI1Q8I2NiRfyS0NUlAJ+aqaeNtO2M7xJ03IqfEc0XrcEM623iLMU3qi0W7W8dYRE6qZCi00JvdCP5FFhqXQeWTIMbtAzUfd9CaYc+rFNlp4c9KhIIQ9W+wJ1L+tHkJtDwBSNWghhYEZR0TvjwIjMEgmFeA0EcDNtQr8Lm/ADoR9embaYeFdBvRmHEYtKzeEGVk5UCu4k7gim2tDJwGCqBuUeFYdYwIqzXFK75rUAvHCNB0d5hG3Fo8KIiimECkQzLWttUOKKSriZ9ljNQoX63+8USpii4n1FpJb3wXOTJ9IaTBQsA32dtqSoSJ2xGygq1bqvqPDsHY+olOBnxsSaaYXQD0u/5Yswr6MiZP3EpCeLRGW6UvMVlYREhXfKjfCo8Osm1VGxgQ2XAcddALzGDVEYoURFWdC8eee/XCj4FOx4RYX7IQxFUbFMVE1FUTHiQz8dSuhHDctFGVeNBKEfEd0RygwDuycmy+73WRLMtAAwW6tzY2yUb0bEmoFO/pkret17kXV4PjRZ4WpZVKZjaOjHO2dWjRYAprz/ZyGrnhREhT3aTAHsKqr3YevRAh36SQrmUXHKwMwxAG6rbpbpYsFbfB1XY6nBDL8Z1RbsEZOxCcdfgEEE74D/nhJXVITdsOGTC04ILHkSseLMtOIHGCZQh9t7xnHcdvVApJmWKRr1kNuKpUS76oz7jjqMUINjJMRrIIJ7VJLdzoyomIHQj1iZNp2iwkI1NYeim3gxf+ZnWHUecOIWvNT7OuAn3qmETQascZ9opiUGsPJs4La9gqLiE0WqlLpXs34s1GGizjOcqFhxFUDNilJU5O9yvOJmQRQ80/c0VRrALRmJVgeB0NBPwTTQ11nAKARFxSMq7j0ffj3ZIlmpUa4+cEXFWzBLdDZQQj+04JugYjBC4Kcne99TdTaeqFisjoovpU/M1nxFhZEKYsh/H2WmDZTQ95QM7lFRQj8DxwPXfIe/n4eQvONQSnmooIunJ7ufvb5bqPljhn/fauhH9ah0FExUVKLSQFEpKWZalUTycapjEUM/3cHP6O90/WXVOkVXwWyYwVIwDVRqfh0VPz3ZJ5/TzGibwExrGASnr+zBT399hBtpB7sL+PWhKRyerLi9lhDMXmKwlPRk97XgObCsHz/0E/PsKTAVhUz13ug6Ku0Mi7VGr4JOHwIAHKI9KBaZe94LP7CdMIxweU98gK1S5ORuoc7LskvpyWGKiiWYrgyfOPFQjdDUzqHE96h4r0/QiJ0+zyDySRMQXULfJyrBB9qUmiX6JuHIAmFhYDF4RVFByvRkw4ww05YnALjpyUkVFeIRBXZOtbqDYXLM/WW3V77b7gCu/gYOn/JO/neNPCoslMRNzULmkHieAaLCFBUhnFdChXtUqFGQOnjXGVFRsn5URWWsQjArNntDUVZU4sI+CN4zVU9R6e8s+LUcxveDetkxNWIHq+N6CFNUGPGrWS4RKNFZPz05pimh2JguWEdFUFS8ewOFkNAP230LisrYTDX4HJhFKVU9bXqyITZJFEM/CgzFozJTrfOOzN1KejKmj3jnFa6miMcT05NF0le0Da7M+SfTQFERFkfbDCqrUeqFWDMoLPRjeNVpAcSmJvufLd9jqqJSrjqY8UhMVDhKxR2/fRpu+s2TsPW0EW+c7ngOT5U5eYwyrMaZaUUw4sm8NWk8KmooTzUut2LoRysqSSGU0ceUS1SOoAcrSlVgxg3VABAyDYzwXbNAGmDJjfsAj+DAkUIkcQXfxP9aBvFTFCF6VASiAsJ3kbj0o3j+yR/j6X/3S5FLC7S3CJpweLE3wC/1roItoPUQwsB8MSbqqNVqKMJTVFKFftzzsGg4UVENoFEgQrErjnoVmHEn7Vdob/KH1ftMXh23WsVSjLm/U6piiqQsdKISPCqM8Ib5gVSPighb8agAjKj4C5vIGeqe3M8maMLvM/lzj1UIZqnNui5gWvWoNCAqqkITGvqpTMDyrkGN2Ijak9tcUXECikr3kl7gMDBUELN+WOgn+J0zYlcTiQoLQ4jEIKWiMj5b9RUV/mEF/5hAajOtpKiI6ckKfGXG/Zn5GAwiEAR2rJmjkeflH8/9r5z1I5v6GUH0TyY5UQlTVKIybCRFpSv8M4Z7Stg3Nhub8cOHqXyuqlLP1uqY8UhBkvRkADh1RQ/v+wP4RekOTVY4eYwO/QQ9KnbIOjKjhH4ahbhE8HRz73qqYTZtpm1jsF1oD5kG8Yx1h+kSlFRFRfBfhCoqpqqoyNMxi7FbcEBDSuiLkqGfSiekJ0uKSjD0U4fhL8KnvQV7zr5VWuyknT4301Ie2nJfiHgovPeHERXT8glUre6bhNMQFaYMqR4ViMXREsCwWehHOKepVwC4Js9j6E6eosfO2Tsnu3wYJqGud6RL7l8iNZAMmwxERSXmnBzh+1drxzByTGGgRljRtwossPRkW2qMSb0Fyjdku68TZXxHy0RSaWZoOqISHvox0d9pYwZ+7YuOqZcAyOEtFcxPM1Ot+5U5vXv63JPcOi5ruilXVNYM9eLdm9eGfucFrs7QoEdFyvqJJipFvvtWFBXaSFGJSE+uR4R+CiGKSohfzCcq7t9NCSms3HjNSBInKuGpyYC/OWL8yTJkJbRkm6groR/SKOtH9KiYyUM/kpk2JPQD+D6VJCqDqrKpvr/ZqsM9KklCP2EY7GYpymWhiWBE6Cek1EC4olKH41DewylV6EcJ5amksBXTkzVRSQjiTVorvHb2DrEwji50dnghISKHfmo0wqNiqR4V+QZjngFTqDciNiWUe/147N8WQz++R4WEmGmpkhKshiBkRcU/lkhUotKTeegnjKgIZtpazTccp/GosCJVJup+jB5I7VFhC7WoOmHyAADgEHpBYYTuYsKghn4KMwcBABPWQEDhkfsyRSsqbqhNCf0IiPWoCJMaKytfIhU/zGXYMISqwdRWiUq4R+WIQlSmUYIDg3tC0Bte6M0/NTXrx4JtEfR2uMccdVxVpWv6RXfsMUSFhQVmKnW/1wkbNytxX57kqsNvbFiOj7359NBjcTNt3eE7zGAJfaEybUgJfW6mFRSVsemq1OrAPV4xVlGJ8qhwbwgL2VWF4pAhihsP/XjHUfv8uAdLo6iQwM9yHRUjoKjQBoqK6lFR54GoVGBxoxYW+gHcom9As6Efdxy+Slbn6kVSRUXF0m6/MSErkRMd+vFfL/DQT7hHZapS4+Qxz9BP0hpS8wlNVBKCOe6XE5eozNh9AAi6Sl7aMlvIhe7JjSrTup1YldCPt+My4dcbifSoxKUnC4qK6FGpq+msRvRCJ6Yni0TFiCAEzIcQWiFWaJZY59lM6RQVIobNxEqfDdKmA0MRv3NWk2XSJRiveMWikoZ+WBov61RdmnEJz4S9NPBeWVEJIyqeaiZ4gsLOSWxhEBX6Afy09BKq/vWzCjCE75EqoR9fuZM/9+gsVYiKe+y67S3cPSuD5yNC2fnXYKJouqEfAHiZut9X7/h/useNqWzKJlZXUVG6xzIDc2XSv7ZRCiD8+79ad1CtyeqM3D05poS+JSsqjkMxUa75vX4YzEKsR4V9rljwjVLKCZTJSA4bi/tiyDmxEJL7s19DRbimKTwqYURFfG47bBOOLXtUSAqPStEyAotjV1TBtwZ1VABgxMu26UtEVNTQj5yePFt1eLZNkoJvYeAeFSH0E1q6AnLPJz/0E66osLCPbabz+vFu2HVGVFo/66f1RtSi4IqKR1SmrD4AQGcnM9my0I9QmTZRerL8sFHvgbcERYVGZf1wMy0L/RA/PZk4MMC6roqKSgwxgZr145tp2UJXpRHNFiESlZAJgpEe4hczS+tRMUQjslBvgzQo7R88jjA+r1kfU1ReoX0AksdpOVGp10EpRcesG0KaLIQQFVtUVBqFfqIVlVgzrXDcuqeoFFHx/TiKmRbFKEVFOK5ZxPhsjac8A8C0Z6Sd7T3BHeOI38k4FIqiwjwqtmmgu2jhF86JAICVRx9zPz8ma4SFDaYrtYBHxScqU7GGUwZbCv2oJfTFXj9xoR9/UQNc3wClcmE+93iKoqKQQVNRQgB/MQEAq+B9J152mnuMuNCPrKhIPgb2/c4kN9PyPzUMRVEx4SipzcROEfqxDFimXLgwKj1ZNtOGk6ErzlqF3ztnFf7w9cfHjgEIqhXs2pcEgzQL/TTq9RMF36NS5uG4uPCKGvIR52h2KWYEorKkZCdqxsqgZv2U1KyfFlRUtJk2Kbii4j7Y44a78+7ucHdIfMcqGPhC5f0GoR9WvMkiviJSjzLTeg9TgWf9+B4Vt6+z1yNEzBhRiIr6wMh1VHwzLQttRXaFBviiGpoVJISkKjWhjkqK0I9pF1ClpjsWsTAYW5ASelRMO0xRYUTFU1QSxmmJQC6qdYqOimu0nioMBd6b3ExL/XBWiKJCRUVFOecwRaVIqj5RsWxYQnsD4i3sjOz6dVSE41pFTMzWQhWV57f8L5w5UAP6fUN2GIgyzopXQh8A+jptPHbsFADAkpr7fImqjwquqFTqXH3gBI0tuJKiEkdUmC/Erb7svqaGfmaAMjt+SAl93uvHva/HvZRRy1aeA7Mgm+kjQj9i1o9o0LWYR0WsyxLyrPE6Kt7uPdCQkI0FEEI/wfNSxyUev6CEfup281k/7Fi2afDzjcz68e7PDtuMJA4jvSV86m1nxn6+/9lCqMXyN5fseRibqfLwSrOKCmvUOT5b4wbnOKJiGwZm4fihH2HTMNhVxKHJMip1B0e8/kFpwj6AYKbldVTCfW6thNYbUavCm2BY6OcoXFd3dycjKt5C4ASLtEloYKY1vB2uS3zcJ6QOgz+glkHQXbRgm4QbqKSsH2HhZIqKKDc7gd2R8nNIZVrboDy0FVkfBv6i6oQSFV+dqbEUbpou9GMZxM9mYWXIAd+LE7MgSUMxLdSpdw6OEvrxOvkmNZSxBZ2Aolyro7PsKipTxTCiIqZkhhxfCLUhxqMifr9xigoLI3ZiVlBUbO71AQDD81ywXR+bVEWiQs0CJsoyUWHVjAudPUD/ccFzURGmqHj3Wn9nATvpeun62YXohY4tGDPVoEeFe0gqU/61jchSA4Ry/HXKQz/BXj9i1k9crx/378e8CqKdJYVsWUUpzTwQ+mHFA0VFRSQqPPQjKiohpQC855MdJ5yoeJ/NFMW40E/InCGnJ5ugikfFaKCoqB4VQDa2RoZ+vOscFfZJC0kZUtoCAHLH4maJSge/P+oNzbSAn9UWlp48vMR/Lg5OuHNgWqLCPpuRQpXwaUWlneEpId3EvTkOUdclv6RL9qiw2iU1RHRPlhSVQiCNz/QmWhOO7zGhhId8CCH4X+8+F7PVOpdyeejHNPgEJBpgRY+KGvpRxygRF2amJX7WT6yi4i2goaZWgaiwsEba0I9tGijDRjdm5dAPL0SXbCKxDIIqLJiohoR+emGbJLGUKioqlZqD7opLVGZDiEohoaIi1a0JVVT8SVpVVMRJplpwDaqDZBxF4odB+M4cgFFy77crzl4JyyB44ynD3sfKRAXwq91WjSK/j1TZOApENY3D7wfV12mjjAIO956OoaNPAADsYrSi4od+Yjwq5UmhKFqS0E9YCX3BoxKzoLMFbtZTVBhR6SrJPbaCikpE1o9DcXB8Fk++NMbTXAum4YfDqh5pMqzQWjNsrqjFhX5UxSPEJOwfL8SjIi3wJs8eA1h4OP6+UEM/gLdAl4O/Vz8biM74SQvxeSkK9zK7r496/XUKptGweFwUOgRPVaPKtIB/L/PQj7D5GOjyC9odGHfXojSpyeJnc/VKUf6SJhLMJ1pvRK0KRYp+pe4RFS/0Y4B6O2G/mmx4ZVpFUTFMKRxjewuHa4b1FRVRnXntukFctMEvfc2zfgQzrenVYgHcRYLFy9XQjyrz2SGKStFwBKISoRQBKLC037DdFF+E676iAiOVCcwyCSohioqfqpnsgTUNggrj6AEzbV8q6VMiKnUH3V7oZ6YUbKFuGgSDXQVYBglPJ+Q+HhqrqIihH5Do61ftcMnSCI76bzcLkqJier1rOgsW3nH+Ggwvce9zIhyXGVurnuelLhT3KiXof+KemhL6oRYnBKzj8jNF3+dSKCp9hASwsEC55mfq8AVHDP1wRSVh6IelJ/OCiMJi7hnb47J+yoqi0tNZlK9PI0XF9L0lf/6tX+G9/+fn+P5/uAS6aBn+eJi6E0HAxHnHcajfYTfMTMsQG/qRf7YM4jduhLsQG3aJt1iowGqoSKp1VABVUYmvkjsniopwL7N56agXXmnWnyL+bd2hvChgXI8zWwiFuf/139tVNPn9Pzrmsro0qcniZ1d5HZV432IrQCsqSaEQlX1V98Hu7fYnbRs1WHVWYrwUYaYVC765E49j2LzRnllyJ1qXvvhejrgHPyzrx0YNphc6IpaFOrFg0Rqo2iwwEPoJKiq2ISoqVmDiYli3rBd4CVg92BP8Jfeo+IpKWo+KZRCUWdGxUEUl2QNrGsRPHQ3xqKQqIe0tRARuCfaBqktUZktBRQUAvnjNeRifrfIQS9ixAIDEFPSK86iIY692umRpBTnkH9cqSIqKVQpfoAxht1/3Ps+xSoAD1IVQYslKNoHTQNaP4FHxvosflU/ABXyc0aEfMZ2SGQp9j4p3PrTuqipAQkWFBtOT7RCypHoxIDQlZB4Vj6j0dtju9WNqjFlM7FHZP+bOIzuec0PNBcvwVRBG0iOIuWSopjQ8PVk1K6cw04Z5VGyTYBolFDCFCuxYxQCI8KgI/X4aKSp5ERVVGeL/741vKmNqMiCfKwvDxU17V56/Gj969hBvcCgqOd1FG50FE2MzVRxoMvTDpgheRyWQ9dN6REUrKkmhTJwvld0Hu7fLn8w6UOYVQGeNiB2hmvUD2VtBCr5HhXhEw1FSilWcPOLuik8c7pYVFcLYu8lrmwQVFcVMq/b6AWATh2c11agZqajYnpIS6i8QxlWv+6pTOo+K4XtU6mLWT7r0ZBb6cY/DQj++RyXVjkII11TKZSypu+pFpWNZ6NvPXN2HC04MJzFimMfgRCVEUTGjFRVxUqt3up/DMtXcgRYkEtDdIzTJEyB6VFjhOHa/UltUVJKmhAc9KmyB7/dSlB84vNr3DsUUDCtaBo94+BO/oqgAwOwx9uGRx2LXuhpWQt+0ZUXL7gw9VpSi4hIV4VpZhVhFxc/6cTi52Pmiew4FywiSiwjvjfgI1x2fqHSLC1JAUUmenmyFVKa1DANTcO+PCqyGXdHFXXxBURAMEuzoy7DW659z6vKQzVATEBUVMStPVQqb9aewz2DzLL9fY+bzD7zxRHz9fZv5fSWmJy8pWZw0HfRCP0tShn54HRXvfi9Z0XNIq0ArKkmhKCoH6kFFpY/49Q0iiYphupMfrfPJQjKBCunJBicqBHFr57bTl+OxP7/EbXj19C/dvye+R8UwbV4krKFHJaSOikUgmGmjQz98Eo8109ZRr/mhn1RExRTNtKKi4h5PLVIWBcMgmPVufVqvgpQneW2KV2gfutI8qIafGVWfcMlOlZqol/qTH4NBWBRN1iYgbJGVFBU19ONfG9rlkqWVgqJimLbkTyh2hk/4oseAp9naHUDFJ9NA9IKiQi34Jmf9uM/BwUoRTxfWYiN5PpaoEELQYZuYrtR5UzZOuA3TfYaq07x5aFzopxDnUQHc5555QiLCI6qiwkM/TFFhUBUVNT1ZKH3PdvL7x2b9z1B9JRH3u/hMO5TGZ/0wxIV+QlRYQgiW9RRxdKqKgW7XNzFNSwABKtRuuCvvLrrXpGT7mTbsWkgVdBW8/bzVOPe4AaxbGk2s0sBSCBdDUVEKs4R+AJfoTJRrvDdPIyIXNcauosmv4ygjKilDP2r6Ouu1VFHrCLUQNFFJCkVROYIlbgZOhz/x9MKd0GZoAYirkmoV3YmU7VBFolJwiQrvHYSgRyUMw141RrHgG8v6MUzTle/r8ZVMAz97C2fBENOTY+LPbOKMS08mYuiHoGAmnwCYmdYdiO9RMZifIya7Q4RlEFSpCRCgXivD8sI+dasT0yihL1XoR8jUmdwPADiIPr9DdRoI18b0FBXSSFFRfi/K/rSbhX5cRaVCTRiGId/LEQuU+LnMF2R4JNoQaq8knXCNMDOt6ZtpGX7mnIyNxvNyvZEQdBYYUVEUFcBVB6rTgqKSsI5KTSmhD7jj4EQlfHGM9Kh02PI9qSoqaq8f7lFxeHdcfkphikrEeYlzRU1UVGKJSkzoRzXTesf/yntfi8lyDT0lG7ZpYMpLWU+iqIz0lvCnl57IPVGAfy3iSAEhBCcMR5OqtJBDWGLoJz9FBXDL70+Ua/xapAmvmMIzzUI/AHBgnHlUmsv6EX9mXaTTjm2+oIlKUiiKymHag74u2y2MZViAU0MfcSe0KZTizWQKUSkUSwBbd+3ghCEWfGsIQbmwOFGxeJGwRopKVOhHVlTiPzt0Byv2p/HCLWmzfrhHBQj1qJCEJfRNIfTj1Co87FPtGAImU0qfHrkw4IBMjAIADtL+5spQi6Efr9txaG0YKfQTXUeFeN2bO4j7fVcZyTRMYGA9MH0Y6A6afgHAFL6DCvXuHc9IWlrSjyvOWsnb2CdBVFNCwE1PZvg/9d/Eb6+cwvBr/iD2eGwxYztUiWAXutzeTaxGSIyiEhb6ka6/WEk2gtRxoqIoKr0NFRXVo+KnSjNFhX90mKISQcwlRcWhfq+fJolKQFHxvjORMFimwYsAJvGoAMCfXnqSPATvfuhKGcrIAin0I6Zc56yoMHLBjM2NNp4ixGe6u2RxMy0jFqnNtFHp5mX2sw79tC+E3UyNGhhDF9azCdawAaeGXrjhgylaCm9IyMAmHO+YprhTCpkw6nHkIHBsv1S9KYR+WHgpru4GEG2mtVOkJ8cpKgDg8F4/KT0qpoGpsDoqrIR+QkXFNdMyolIFyscAANXSUu9zUpAMlvVDHBiTLlE5QPube9gF0mHRaEVFWuAC6cmCKtMj+2SqsPz76PqHXCNxmGEUkK4hC5PtWXoxsPowyJlX4dOrXxN/LgqIJU+mVeoTlV5BUXmeLsf+3/4yhlf3xR6P7XDDFRWvwV4D0ykgh34qoaEfsYpvOFFhO9pj01XUHYpxb0xBj4qS9aPcr9zHMCurKXycqsE4KvQjLER1h4aX0A+YaZMXfAvbcdsm4R6VMqymduXse8+qXqT6TMHAWwpJT2bIOib295Nl97lO0/jPkhQVM2Ds7c6oqFimnNTQir1+NFFJCmEndBRLQGH4vSRMG6jNoJcrKh3xu/LiEmBy1P0vIO9uCsFdqtiUsCFCQj/ENCOJSrAybVBRsYjD26vVYEXvlta81p3wjrsg+DthQaWeGpLWo2JHeFQMyghZmvRkrzhdrQxMuYpKucNVF1LVERCqyVpTbgjpAO1Df4rz4hBIicmbCAbPSepMG1PAz+roQZUUYVP3u6qKknwp3oxoCiG5Wce7p7oHgMs+0/g8QkAU9aAKPz1ZVFQAJFJqWKYCrwIrXjOV7McqKu7fOdSvKyE9AyKxiFAdlvWUYBkENcetbSErKkpKcKyi4n4f7O9FFC0zqIJEhX4MAkLcbsd1SjFVSRL6SVFHJeT5twwD0/AVlUIKxYCBfe9ZMmzSQrxvRDNtUQn9ZB1TiROVEGLdAJKiUrQDqdupQz8xBfyY/6jVoIlKUgi7mcPUneT7uKLifo3MozKJUry0t/XjwEs/B0a8Ms/ipBES+mmU9SNBbEromXFN0+Y+mECvn7jdEg/9UB5GijXTrrsIuG1vhAFUqKZa97snF1OlJxtBouI4/DxjfUECTOKHfmitylOTZ4tNKCpC6MeaZkSlH8PNxHkJgQMCA9QlKiRCUYnxqMhZDBYm7UH0V/YB8OpbJLyPDGECn3Hcz+hJKTFLxwtk/Vhcahebx3UVTJ4FFIfOOEVFVT4SlNAHwLvkSuRZJBYRRMU0CFb0dWDvkWm8fGxGTk824xSV8KwfRr5EFKzkigo7Vo1SOE6D7skNzk0cF/85hMjbJsEY9Twq1GrKkMl29Z3zGPopRIR71LT7PMy0QHOhH0siKlZgLD2pS+jLP5tCFlcaAjWfmLNg1Mc//nG87nWvQ2dnJ/r6+kLfs3fvXlx++eXo7OzE8PAwbrnlFtRqQdmzJSBMWEe8qrTcBOhNOCzrZ5qWYvPkcdJW4I0f9u8YiagEpXhHKKHfEKwpIepuB2YAhmX5ht0GdVSkn4XKtH56cgOjXFQqqDipeiQjtUfFJCizxnhM1nf8SZ0kNOaaBkHN813Ua5UgUUnzsApZP4UZMcW5uUeLpY/bcaEfYYGLq0xbsAxMFQb5zzUaUS05BKKnZKzijmlphmqgKlGpCmbang6b35arBzoTkXK2ww1k/QAhikrjEvqA2+RQfU1WVJZEHmdln/u+l45OC2ZaS/GoNFBUvGvHzkk6JcsIqiAx5yX2+5kMNdMq5C1NenIICbFNWVFJsxCLxwB8EjofkNKsBRXFNoncJFHt25QS7H6dakJRkUM/VqA3D8ugSoqwUB6rEh3WqbkVMGdEpVKp4G1vextuuOGG0N/X63VcfvnlqFQqeOSRR3D//ffjvvvuwx133DFXQ8oGYTdzxOvzw3d+3mTEzLSTKCUnFkAIUZH/NpVHhSsqDiwvU8c0fKISVyAsUDre8ImKaKZtag0We8fUXHMnTV1HJST0M+Fm2pSpjZqVLBuAEIIqU18EM+1M0V3U05lp/ayfokdUDtD+plP8OFHxevOoab0AYAj3okpkxLBVwTIwLRAV16OSbFxi6OfAtKtYnb4yvOZKEhiqR0VITzYNwgvgrepPZtAtcXNimJlWIRQJsn4AN/zjvhbhUYlZzFf1u0TlxSMzMXVUknlU2N+vGejkPW+KluFuMsS5ooGiAriGS9aDSC74lkJRUSafsHvIEjwqFdhN7czZ/bBQoR/Rl0IIkX7OHPrJQFSizLQM6Qu+hWT9iI1tWxBzNqqPfexj+NCHPoSNG8Pbv3/ve9/D008/jS9/+ct4zWteg8suuwx/+Zd/ic997nOoVCpzNazmIeyExow+ANGhnynakSpPXtrdmIXABOSkyvph5EJWVDq8Uv8FZWcgPjABAygz0xKle3IzMUxC/GJzjpf1Q9NVprVNAxPwJvppr4jZkT0AgBfpUKBMexyYmbZe9xUVtqinU1T8gm+lWbfPzwHan+q8RDhEJiqhCpW4wCnEs7tkYVV/B44b7ESnbQaIStIJUlRAytRCh21iw7JoRaHh8QwTDvU/uypk/QB++Gf1QHTpfBFs183IhdmkR8U0SGATIF27BKEfwCdY/3lggtenaOxRCX8Wx2c8BaRk4WSvsBn/rsSQTQwBY/fwhBBGiiyhb4Z0cZfGFX5s+TUx6yd5iFEEV1SK80dUxHtQDfeIWUD5hX4aF3xTIZKHrqIZaNiYlahYJuFdpFvRSAvMIVFphB07dmDjxo1YtszPTNi6dSvGx8fx1FNPLdSwoiFMMPWOAQDB0E8vC/2gmG6xk/r/FOVUXkqAqL5BYRA8KoyomKaNvm53kh3ulXeshPhG3YAKIKUnM49K8l25Coctqk1n/RA8T0fcH4485/73qEtU9tLhVN953RsLFRQVtqjbqRQV971FVFGquumwB2lf07UIqGfyLXjd7MKauxFJUQmao7d/6A34lz+90C1sV1jKf1eJaX+gQvSoVGBj48reTLstNyVcKCJHFaLikf7VCRUVdYcbG/pp0FpBPa/I0E9M4z6mqDy9f9w7hluULtajEuieLCsqXQULpyx3ySFfNMVsnRhyYSikxzaJnHIr/m3MeQHhO3AVBYvgYedM7HZW4J/r58dnPUag4GXgqIrBXEJcmFUDraio5Jf100zox3/vkqItfT+ERPdFikIw3G9I6mYrYsGIyujoqERSAPCfR0dHI/+uXC5jfHxc+jcvEBaHoWVup9kzV/W5L3gTTp+XnjyJ/BSVuneJEpMDU/SoCNkw3uuEBC85uzkDC7SQest2+LUGfYfiwBUVr45K6qaEhoE9jktU6OHd7otHnwcAvECXpfrOa14IidYqPOtn0mKhnzRmWvc7GiATANzrdQzdTS/q1Av78YJ/IYuREeNRAdzdH5tkZ4o+UUkT+hFDSmVYeM2avkR/FwXTAOoCURGzfgDg3LX9sAyCTesGEh1P7U8Sa6ZtkA2mql+2ZKZtXBwP8InKnkOuqtrbYbthVLWOiliWP9Drx/1cZqbtKlr43bNWYf1QF7ac5hF0KfQTvXhydUY4lvyGZCEt8VhRPwPus/kMXYNLK5/CPzubmpojRnrc75B9l/MBqSmhFUNUsioqSt2fVJVpDd/oWrINSXHqLjQurqcitI6K9z20Yg0VICVRue2220AIif33zDPPzNVYAQB33303ent7+b/Vq1fP6edxCIrKtvNPx847t/gxe1P2qEzRDB4VqyhNrI63cKUt+GbBL6FvWkL2QQhR4W3F1c/goR+xKaGZ3C+jgCsqTnOKim0S7KHL3R+OvQhUZ3nop1lFxZg8yLsvT9n9AFI+rN5iMUjGAADj6AaF0bSEqoZ+whQVQ9hVh5ptBZRLPlFJFbYTCFCF2nhNg7omjWAaBmrCdOOaaf2fP3z5Kdh55xactiKZD0bd4cqKSvKsHyBITGWPSuP0ZABY5aVUew3P/Qwpkaiw68ZUlUDox/0v23V3Fkycs7YfP7j5IlzMuqVLRCU+pAUAh73uv90BoiJWw86uqKjfYTNE5X1vWIcvX7sJ7zhvTeq/bRbihkKtnSJuorJ6VNj9WvPCgmmmBzbGroIJQoikoKQN+wAhoTzTn4dbNfST6ixvvvlmXHPNNbHvWbduXaJjjYyM4LHHHpNeO3DgAP9dFG6//XbcdNNN/Ofx8fH5ISui3N61VH7wvQnDT0/uSPegqvFiMfTDFZWExxK6FDM1xhRrMITswBsrKqKZ1kSxydAP2/2TerNZPwYOowfjtBM9ZNpVU4TQz4kpCEaN2AAFrKPPui90LnXL6iPlw+p9F0vhKnvj6PaO0WzWjxz6CSMiIlGJ21UDQFno4lyhFrqT3khEJhVnZiUqhEiKimEWJOM2ISS4mMZAXTjMOKISEyIBgtdKqqMjlvKPWdCXLSnyWiqAVz4fCCoqgLvpqUxGKiqM7IR+H6LCE2OmPWGoG69MlPGj/3wl/FgJTcLuuII7cBXqd9iMR6Vkm/iNE5c2fmOOKMSEfooxBeDSQlVk0qggbD5iFWjFY6WtSguEX092/VrVTJuKqAwNDWFoaKjxGxNg8+bN+PjHP46DBw9ieNjdLWzfvh09PT049dRTI/+uWCyiWIxuAT9nEE1wncrD5E04ReIuLtO0mM7HIcWxCwpR8WW/RBDSk1l9EcssJFNU1AWaKyp1qXtys6Efn6i43xNNHfpx/Tq/piN4Dfk1cPhZ4MjzANzQz8kpnrEasQAKdL30Y/eFtZtRrbPvK33WzwBxicoxTlSa/Y7czy4wRSVkkSUpFJVKh/+8pgn9iASoUOzAit743jsND2dAUlTUSrVpoU788R6V5KEf01CM61YyomKZBkZ6S3jp6AwA8CymwLMNCIpKuEeFIdSrIYZsYkJaF20Ywo5fH8bDHlEJhn7iq2FLb1WzfpIQlRb1OqiQQz/yPVWaA0WFIY36yxReRjZFRSVtVVogTCHzN4yt2OcHmEOPyt69e7Fz507s3bsX9XodO3fuxM6dOzE56fo4tmzZglNPPRXvfOc78e///u/413/9V/zFX/wFbrzxxoUhIo1gWEDXkCsF96xQfidPOG5l2nwUldQeFe9vbaUpIf+MkIWN7eQCN6mkqLjHqjab9QM/9EO80E8dRuqmhAB8Q+2LjwEV1xvyIh0OLUQVPRb3ezJq0+4LJ1yKmuNVJm0i64d5VI5RdzFrNtbLFDQWagurDZNGUamWmsv6EQntsoGezNUqxbYFQDgBS4OAoiIulCkVFfFZDRDMhFk/gOyt6G2kqAABoqFem+6w7BcrWXryGza4BJX1g4knKulCP+FZP43JTCvCjgn95JmerBKVVGZa755kWVuiR6W50E/wehZ5enJrXrc5s1ffcccduP/++/nPZ511FgDghz/8IS666CKYponvfOc7uOGGG7B582Z0dXXh3e9+N+666665GlI2EAJc812gNhMsP65MOA0r06oQZVizIC0+zPyalqgYhKLo7cotyxZCP9GTTFTox4IDm7jHqsf1+mkApqgYLD05pUeFfeweZzlgAtj9fQDAmD2E8mwhldxcJ8ritf4SVJ9wQ1KpdoPeOQ16oZ8jjKg0raiw9HKBZCoQe0MZIQqZCMMq4ijtRj+ZRBVm8ho4QohwxWDz9VMY3NCP++E1asBupru0gNgdaorKtIB83weegYRZPwBLUT4CIIKosOf85N8Cfvn3fmVq9mtVUQkL/SRMT96wbAlGekoYHXcLIwZITwZFJez5yCP0sxCQsn6UuUj8OWvop6SGflJ8P2ev6cfKvg5cdrrrz5M9Kk2EfsLqqLS4mXbOiMp9992H++67L/Y9a9euxXe/+925GkL+GDop/HVlwnAr0zYR+jEsVyMXJjdW8CvxAhNaICzeTBuZnkz8rB/RTNvsJMQzVITQTxqiQgiRDbUHnwYAHLZXhI8/BnWx3P7QyUDfatTqz3rHSZ+eXPLCfkcdd9LPWkeFHz4s68dOrqiYBsErtNcjKilCP8L7Vi/tS/Y3DcZRoyZA5M7JzUIN/cgelXShH5EgBK5bCi+HqKj0dFjBz2bk4DfvAi79WMMq0Wq9DHc8ydKTCSG4aMMQ/u5nL3rHivOoxBOwsIUtMKwczLQLAbnlRJyikrEybQZFZfVAJ/7ttjfyn8V7P42vi0HdaEoelRa9bq1Jn9oNyoQxiY7msn7YbkmY3Iq2hY0re7H1tGiDsYSwSZkYsWZaNskE2DRXVMReP81n/VC2qNaZopKOqLAx/prK38Uhj6ikefhFovKYeTa++YuX/NBPE92TGXxFpdn0ZDXWH3K9BH9HI4+KbRp4hfYBAKo0TejHL9B3/PJkKcNxMA1fUakoqcnNQF04YrN+GqUnWzGKipT1k0RRcRHuURHIQcj8ECAqDRWV+Gt/0QbfnxQ4lmH6m5YGBEydFhKZaVt0wVMhh37U9GT/58x1VDIoKirEMFTaPj/uZ8s/y5VpW/O66aaEeUAhB1O0hME06xQjEWy3JBzPtiz84x//RtNj4a8ZjRWVwOIhhCFYuqzUgTclqEcOCK+jQlIrD5ZJ8HxVISoFj6ikePgdIfTz13vX4snRp3DVprXuZ6Tqniy/l5lpmy6hrxDJtCX0VZgGwStwQzdp/UWGYQKOA7uQva6FQQhqXtaPq6hkm/gDBd/iPCppQj+W8v0kzPoBknhU4nslJTLTSh6V+PN6/QlLeSZS6M7bLLg9sxopKiEFwlSoc0f7hH4ERSVQmTa/Oipq6CiLcmGb7gavUnNy8qgYQnpya2oXrTmqdoNCDiZRSrfYsV1XiKISRizSjIW/xsNLITt0I15RMeGgBJdczNJC87sldi5Cwbe0O2vbNDCJTkxY/i7/oOWGgppRVCpGCT9zNmB8toZj0xXvM5pXVJiZ1m421qtM8GozPwAwC8mJimUQHKT9AIAyCulIJrteDRbYJHAVFUZUrMyhn9iJP0UJffVvoxUVEtowVARrTAg08KhEQCUA4eQiWXoy4PoXzlnrXvvQ7BB2rEYelUDoJ/gede5oHzOtP845VVQyhH7CwMKCzXhUAlk/Qh0VHfpZzFAmwmmUUlamjVZUwkI1sTBMXt1UfM0P/YQpKhGyn1CZtkRco+kMChlCP56iwjoeEyN1Ngl7kF42/MwrRlTSqBizpjs5P9t5Fspwv5sXj06nPk6UotJ0wTcoEnFo6Cd5erJpEHy9/gZsr5+Dv69fkG6ny47dYIFNAksooV+BhWLGnVtsHRW7Q74ujdKTBdIU6VEpdIeGa0Qs7/W9abF1VCIQNNOGeVRE433jReqDl5yIizYMYVtY6Jj9fcPQTzpFpV3CPkCyrB/LSGf6D4N6v2Ylckxta8ajEto92fse0mROzid06CcPCBJsmdqowUpVeTDOo9JM0wyHmDBpTTiGFUtUIrN+WOgHDjo8RWUGKWvECGBExfSyflKTMGGMu+sjOBm/AgDsqQ8DqKYa1yPFC1E+dgD7uy8HDrmv7T3iEZVUoR/5HI56ikrztWaUWH+YoiKYacOIjAjLJNhNV+G66s3e+1MMhisq2YmKYYhZP9nNtLG9fghxiUV53L33G9wXsYoKU1EaZPwAbvjpxOFuPDM64fcsCqujEoGgmTYiXMPQ4NoDwOtOWIrXnRBRRE0kYXHjSpCeTAjhYaZ2JSpq1g8jKlnVFCDE/J0xNNbJFZXsdVQsg6Df67XF+9e1GDRRyQPCYjLptTpvKuvHyiH0A7dGiERUiAH0H+f+f1+wPDXP+omso+KHfsqwmzeCsVRrb2xqQ70kYGrHU+Uh/LYFTNAO/HqyCKCaSractZbgs/UrsGFmCQC3Bsq+Y24qZ9bQj22SpuuOqEQlLOvHtIXQT4M6NOoOKdUEyUhYgwU2CcyAR2UOs34Agag0nnjl9GTlOEMnAx39wJrNicb1P991LvaPzWK1V1I/jaISNNM2UFQSnFv8B3p/36gpoVojJeIeskyPqLSJPwVQQz+qR8W9L7L6U8KOnVVReePJwzg6XW2qYnRYuvlvbVyOqUoNl5yyLOKvFhaaqOQBYcKY8lqdp6tMW5D/Ky5+TagOVMhoqcGARQhw0lbghkeAwRMD72+kqJiiokKLze+YuKJSBQiaOjf22buclQCAX9PleMXrZ5KuI6l7rq9MlvlrddaHI6OZNkstArXJoBliOrULyUM/avG6VNeua9Bd7NVKzE3AMAjqXosCtc9PMyiYBgwCeJcs+J2zcEaC8IjYhDCQrdU5ANy8K7FPZ/VAp09SgFRm2vSKSsbpu+h2ZkZHf6pxRYVGbcPALJy2VFRMIUWXgaUrZy32BoR4VDKSudt/6xTcdtnJTW2IxOtjGu6mqqNg4l2bj8s0prmEJip5QJgMpzxFpanKtLkpKv5DUYfpXmRCgGWnhX98VB0VwUxrEs9Mi0LzigojKtQlKs0oKsyk+rBzJj5VfRv+zTkdRyrpiQr76CMeyZE+o4nuyQBQoSamUEJPhhQ/VVEJM9NaQiYKabBYJSl/Hol3/D9gYhToWZ78b2LGwUroV2HJHYqbACEEnQWLN/ALKioeUUmwmItkLpRAZfHosM9nNZJioCqCoenJkkcl4/S95ePA3h3AqvNj35akjgrgzx9txFMwtKSIroKJ5X1BozQroZ+12BvgzimmQfhmKI804GZVW3H+bhdSqYlKHhAmwym4N3yqxXzVeUDPKmDDbwWOlyQOrYIKf+Mk8EtH1lERFBUbgpm22YQWb1ws1bmZc2NjrcPE39R/V/pdM4pK+O/ShH7844yhG0BwZ5YGVDHThnlUxKquRqPFLy1A5zgAACi6SURBVEva6PAp7r8cYBlK6CeHNMiOgsmJSmDiZ2pBEkUlLvSTFWpGX9xbJa9MhIEzYWXaRFj3BvdfAySpowLI6kS7oKto4cE/uyiUjJRyVFQIIei0TUx492uWOipZIT56rZrlo0ITlTxgBkM/qR7W/rXATU/5P+fgUeH/j8YPGQt1BCZpj0gYanpyRkXFJl4fmybOLa6QWprvPO69zTQlBHwjbZbdElXTPEOICjEMlKmFIqklyPppjUJcYh2Vag7pyYC8gEQrKo0Xc0siKjlnPfDMqcahI/G+iayEmrDXT55Qn/eoRdZu8cyRKCzrCW+4uen4AZy6vAe/e/aqXD6nVPCJykKWKzG1ovIqhREM/WSKQYqLU0aPilqSPQyR3ZOF0E8HD/0UmzeCeccrwk1PbrTIhiGuYWCa3UHcA5ou9ON/v7zYW44eFStC3q/BRBG1UCIj/b1yngu1kRPrqFSpmaprdhTEuH/g2rNMlgThkYLYlDCHcUkw0igq/mdHpp2a6dKT80BSjwp7vUVrhqXGcE8J3/3gBbkdT7xfF1JREUNG7aKoLJJbaoEhTIbcTJvlBpAUlfTHEUM/9USKSuPQD1dUMmT9MD8FC/1kyfoJQ5qdXKyikmZcwnfNir1lUwsURcUKX4xYJ+JG6ckBh/8CTZAGAfeo5FHwDZCzMSLNtCmzfvIISUlgz3ICRUW8NpHhBpGcNEH0mwEhRJqGohY39no7Zf3MJ0SispBKhvjZzbb6mG+0xyhbHcJkOOl5VDIx1aweFWFXrpZkD4Of9ROlqNTlrJ+mQz+yR6WRETQM4qIy2CVP/mmeOfUcBoRjpSv4FiQqWa59sI5K+PWreqpZWHdlEYHS5gs0QRJCeBgyj6wfQF7MA9eMKyppQz+t4VEJ7ZwM5JuenALi89Io9NMuVWnnG6W4UOU8QiIqbXKtNFHJA5KZNm9FJf0losIElsRM62f9hCsqBq2j6HUHns1ipjVlRaWRETQM4oN12spe6XepFBVhQeopWVJKaSqfgnB9jvI+PxkeK4WYmlZU6IcRlUZZP/5YCGk+UyAPsLYFVVi5eEE6bP/cAxM/qw2SgAxLoZ8586g0Jioi2eoOq6ECIE0J/TxhSItb+HfUjmba+URniygq7Zj1o4lKHhB2bdM0B49K5joq6RQVNsEE/B/eOArODH9pJkN6MlNQCsxM20ANCIO48G5c2SP9Ls3uQHzvYHcRK3p9Q12qh1fM+qHZyucDId2TG4R+wrorixDPc6EleV6ZNoeCb4CiqESZaVMrKnPlUUkQ+hEVlSRm2nnyqACKAbORR0WHfkIhhioX8jtqx6wfTVTygLCzaaoybczxmlNURDNtCo+KOkmzUE19mr80i+abEqqhHqOpEvr+Z5++QlZU0hAocaIY6Cpgea9fR6HZOipHeZ+fHBWVCMVkl3kCpmgRlb51sYcTr9VCS/LsXqzmRFRiY/4s9JPWo5K7mZZ5VBIoKsI5JDLTzqOikoTwshpH7bJLn29IZlqtqKSCJip5QEpPbqKOiorMdVTSpSev9cIeawc75V94C0uhPgXA7WNEYTSvqCiLbiN/RRhEMnWaQlTSeEvEB7S/s4AVfb6i0qyZ9ihd4v19Fo+KkvUTEfq5f/lHsKlyL4ZXBFsiSH/fQooKJyp0Hsy0qeqokND/zwVsHMWe+PdBnjMizbQLkJ4MyAtr1OJmWyT29692iLVaFlZRaRzGazXo9OQ8EJKenKnyYFZFRUhPVhe+MNx48Qm4bONyrB9SuqgyRaXmKiozXpfhprOTFdKVJT25u2hhVX+HVO0xDYESr89gVwErhMqUzXZPHoP7/WUq+KZcrygPyuffdT4OTZaxqr8z9PcMkqKywOuHIxR8y9o9GWhQR2X9JcD6NwJnvbPhccTrlfvEfeJvAhfdDmy4rOFbxfsutCotsCDpyUAyAyb77hYy9baV0VHw761WMdO2C6nURCUPhJTQz01RaYKoiLv8JHVUDIPghOGQxmSse7KnqMx6RKXp0I8ysTZKrQ0Dm8yX95ZgGAT9nTYOTboZSWmUDPH6DHQXsFzwqKQz04YoKllIqtqUMGLX3FEw5Z4yERAVqIUP/VgAdc203XPtUekaBN75rUTHmdPQj90BXHRboreK5xDa5wdQsn7mUVERs34iK9NqRSUOou+oVUI/eZTynw+0h+7T6hCzfnhl2nyO11zoxycESRSV6HF4RIUpKtRTVJp8yFR1oFHGShjYwst6c4hpxelK6McoKqnMtGJ6cnZFJXC9s1w/KKGfBV5AjhE3/HGELsmFEEhSeoYJ15rL0E8KiEbx0M7JAHJtSpgCSQyYXFHRRCUUpbgChfOIdkxP1opKHjCDdVSyZf3kqahkuMSsjorjNyQEmleL1Cwfo4kFnYV+WJZOs0RFnEz7OwtY2l10+9E4NEN6squoZFvs/OM5lDSVwi1CknkXWJL/lnUZfj25BNudc/HpXEI//r2dZcItzGXWTwpIikqiOirzSFQSGDBZVd92WfzmG61SmVa8PO3iUWmPUbY6BAVjOvc6KtnMtGoBsVRQPnsW7iTZ7IKnKihRGS1xOHGZSwbOXtsPABjs8ifuZtOTB7rdTKaz1/SjwzaxMqSTaiS877eMAsoekcv08At/W89y7TyI57nQO91ZowvfdC7EBDrnID25+eNZc1lHJQXk9OQEiso8elQSmWl1ZdpYdNit4VFpx6wfrajkAWHBnfRCP9kq04p1VJpRVNKZaRONA25DQgBNF3wzcvCo/MFr12LLqcsw7DUS6+/yj5muKWGwwu3/fe/5mC7X0d/VuOYFh3cO42QJfylbU8J0na8boZUUFXEseXVPZsjyvM1pCf0UEL+fVvOoJLmP2H3fJpv0eYeoAC5oU0KphL4mKq8eSFk/XnryApbQl4lKhkuskJyZjKEflZhElYdvhGGh2+mAoKikIyr+/7PwUdEyUbRSjsn7jiYNn6jYWWZq4TtP0qep4eEI4ZlRC717EslEnnVUCMn2vEmhH6s1vAOJsn4WIPRjxHzXlq5MGwuxhP5Chn7aMetHc9884E0YNWKhyiqG5uZRaeI4eYV+VEWFZf003esnex0VFYNNelRERWUgjYKiYvgUwO7E04Uz+EuZFjuSr6IC+ARhoXe64gKXR/dkFh7J6ololdCP7FFJUEdlAUI/cc8YI3w6PTkccrfvhbvPpKwfTVReRfAmjIrhp4vmV5k2o6KSZddlRCgqTRdSUTwqOewIpWaCKR5+9oCWbCO6XHkSDK4H/sse/N/+P2pqHAHkHPoBBKKy0KEfkrOi4hGVrLtCu0XMtO2gqMR3HSfSfzVkyJVpF24cWlF5taJ3NWBYONJxHH8p06IgmkwzelSa+nv+t6pHpZitaFgg9JP99hMVlTQPP3tARTNu07BLKAgho0xZP8L1qmdMTWZg57rQHhWR4OZBCPo63WufiWhCvl4L6VERCW6kR0VUURagMm0cCdehn3hIBd8WNOtHVFTagwJoj0oeWLIM+OPH8cBPjwAP7weQY2XaZjwq5twoKln6/IQdL6ozcBr0N6mosPPIFPYRIC5weXVPzk1RYZL8Ai8g4teSh6Kysq8DH/ntU7FSaH/QDKTKtAtoLrRNgs6CiZpD0dsREdYhBLC7gOoUYGU77zRgX1HcLcQI30Ird62K2G7f8whtpn01o/84oFQD4BKVhaxMS/LK+gkx0+Z2XmjeTCtC8qg00ZQwVYZPDETPRSa1YA48Kq2iqIi+oLyUi2t/4/jMx2iV0I9lGvjiNeeh7lApoymArf8VGHsZ6F05b2Nj904cCbe1ohIL8Zou5KZBvITtcq00UckR4mLVKh6VTJVNQ9KTc8tmAmA1UUdFxUBXAYNdBdQaTe4KWCXak8JaBzQBUSGws3xHAjFN0vk6CXwz7UJ7VPz/z71UfQbYLWKmBYDXrhts/KZz3zP3A1GQxEzrpye3x+I33+hokaaE7Wim1UQlR4iTb25ZP83EEI2c4tghZtpMBIyoHpXsC7FlGnjgA68HpekWv8tOH8G3b3w9Th5Z0vjNCZBX6IfMSeiHLTK5HK5piPdOHlk/eaFV6qi0MriZNmZeYwtxK13bVoJEVFqm4Ft7XCtNVHKEOMllUx6yFXwjZkaPi38g6ccyCrmaaS0rn/TKRh2EQ4diELxmdV8unw8ARVsMH+Rz7TOllgtg3p2FDv2IE2QrEQKRWC5kHZVWRhJF5fIzluM/D0zg6k1r52tYbYVSC3ZP1orKqxDijj5bZdpsoRupp04WoqIqKrSYc+gnn9BGKyC3fjGSRyWfx9NsldCPkL660GMR0Uqhn1aF71GJvm7DS0q4+4ozIn//akfBNFqi+GI7ltDXT2WOsHNTVLKmJwvdk7OEfgK9fgoZQ1r5Z/20CiSSmkFRkUI/uSkqrZGNwSbFViMDBR36aYhWMWS3Mwgh6LTzKVKYBVpReZUjP4+K6DFpQlER/p7kaKadQQEkx6wfK225+haGbKbNJz05r9BPqywybBytZKQFlNCPJiqhSBL60WiM971hHXYdmMRxg10LNgYp60enJ7/6IBGVLPNdjh6V3BWVTOeVf9ZPq2BuFJW8s35yOVzTYESp1YiKHPppj4l7vsG+Fk1UsuEDbzxxoYcgKauZNlXziMWzUrQAimLoJ7c6Ks0UfBMUlSw+kJD05Ey7coV0Wfbiuf3y8qgQSVHJiai0SH0LtitvtfBKwTRw4nA3piv16EJrr3Jwf5Emcm2Pdiyhv3hWihZAYU7qqKQ/jiEoFSRL9+RA6KeYa+jHXkRmWrngWz4p3DTngm8L7lHxPr/V0lcJIfjOn/wGKM1YVXgRw0iQnqzRHtB1VF7lmBOikrGEfqY6KqGhnzw9Kotn9ypnfGVRVPy/pVlIpgCrRfwFLB7eaqEfACguIr/UXMBskXtIIzskRaVNFLLWmzHaGKLkn1tPnCY8KoZACEiu6cn59vox2iQ+mgRz4VFZdGZa0ppZPxqNkaQpoUZ7oB2zfvRdlyPmpDJtM3VURKUiS3glRFHJtNap6k4WEtViKAjfcyYPxlx4VFqsjkorKioa8WDzmeYp7Q9xGmiXyrTtMco2QX6VafNrSkhyLaFfzLWOSlM1YloUsqKSk5k2JyLHJqOF3jyx2HirmWk1GsPUisqiQTt6VPRdlyNya0poZqujYgh/b+RIVMqwc+31k6lhYouhlUM/ttka/gLGT7Si0n7QHpXFg3bM+tEzRo7Iz0wrelSaKaEvhn7yMdPO0AIAkmvWz6JSVMT05Exm2vxDPy2T9eN9L5qotB94U8I2Wdg0oqEVlVc55saj0kR6spV/6KeMAoCshewWsUdFTE/O0NhOul6LLetHKyptC12ZdvFAMtO2SRi2PUbZJijklvWTLT1ZyvrJyUw7S4oAshIwNfSzeCa9Ym7pyaJHJa+sn9bonszrqLTJ5Kjhg12ydtmBa0RDZ/0IeP7553Httdfi+OOPR0dHB9avX48777wTlUpFet+TTz6JCy64AKVSCatXr8YnP/nJuRrSnMM0CF9786tM20R6slXw/z9L6CdEUckW+nl1eFSyFHwjGcN+YWiVrB/2+To9uf3gZ/20x8KmEY127J48ZwXfnnnmGTiOg89//vM44YQT8Ktf/QrXXXcdpqam8KlPfQoAMD4+ji1btuDSSy/F3/7t3+KXv/wl3vOe96Cvrw/XX3/9XA1tzkAIQcE0UK45OVambcajklPoRyBJZXiKSo4F3xarRyVb1o9Q8C3LtRPAijq1iqKiQz/tB7+OSnssbBrRaEdFZc6IyrZt27Bt2zb+87p167Br1y7ce++9nKh85StfQaVSwRe/+EUUCgWcdtpp2LlzJz796U+3JVEBgCUlC+XJCjrsnAqtNbOYCwtcJkWFEJco0TrKeYR+VNK1WD0qGRQVI6OaFga7RRSVzoJ7vbuKuiB2u0GbaRcPTK2oxGNsbAwDAwP85x07duDCCy9EoeCHKrZu3Yr//t//O44ePYr+/v7AMcrlMsrlMv95fHx8bgedEne9+XTsOTSFNYOdzR8kawn9vIgK+/x6HWXCQj9ZjrWIFRWRqOTkUckr9NMqdVR+/7zVmCzXcfWmNQs7EI3UaJXqxhrZIU677dJkct5Wit27d+Ozn/0s3ve+9/HXRkdHsWzZMul97OfR0dHQ49x9993o7e3l/1avXj13g24Cv7VxOW68+IRsBzGE9OLMikrGxc5bLCskj9DPq8OjkqmOini9spJMD1aL1FFZ1d+JO37nVKweyEDiNRYEPPTTJgubRjRkRaU9NoupR3nbbbeBEBL775lnnpH+5uWXX8a2bdvwtre9Ddddd12mAd9+++0YGxvj/1588cVMx2tJZJX/JaKSsfGfMZdEpT0ekiToLlg4fWUPTlvRg65C8wRDIpY5ETkWitJVRTWahQ79LB68KjwqN998M6655prY96xbt47//759+3DxxRfjda97Hb7whS9I7xsZGcGBAwek19jPIyMjoccuFosoFotph91eMAwABADNTFQGl2TcvSpEJdeCb4to4TQMggdu/A3+/82CZA37heDyjSuw88VjeNNrVuRyPI1XH45b2uX+d7BrgUeikRXtWPAtNVEZGhrC0NBQove+/PLLuPjii3HOOefgS1/6UqBb7ubNm/HhD38Y1WoVtu3u/Ldv344NGzaE+lNeVTAswKk2t1iJJfSzhg+8XX2Vm2kzHGsRe1SAfHabkkclJ6Jy6ooefOW9r83lWBqvTrz17JU4d20/1mbx3mm0BOSCb+1BVOZspXj55Zdx0UUXYc2aNfjUpz6FV155BaOjo5L35KqrrkKhUMC1116Lp556Cl/72tfwV3/1V7jpppvmaljtA7aoN6WoiItdDmZaAFWjBCDjYryIe/3kBTH0Q/T3o9EiIITguKVd2RRVjZZAO3ZPnrOsn+3bt2P37t3YvXs3Vq1aJf2OUgoA6O3txfe+9z3ceOONOOecc7B06VLccccdbZuanCs4UcmW9ZN5V84UFWMOCr4tovTkvEDyJJkaGhoaCgghMAjg0EUc+kmKa665pqGXBQDOOOMM/PjHP56rYbQv2IKVMT05MxlQFRXdlHBOYUjF+jSR09DQyB+mQeDUaduYo/VK0apgPpOmQj9Cpk9OoZ+aodOT5wOGeL01UdHQ0JgDMENtuygqmqi0KvLyqGQlA4QRFVdR0QXf5hZEKyoaGhpzDF7ATxMVjUzIRFSs8P9vahxe6MfMwUy7iNOT84IxBwXfNDQ0NERctGEIJwx3Y2V/x0IPJRH0TNiqyOJREYu85WSmrefhUVFJl1ZUAjCE62VoRUVDQ2MO8P9dfQ4opW2TxaVXilZFbopKPmbamslCP1mICpFDUdqjEoCRpxqmoaGhEYF2ISmAJiqti9zSkzMudmteCxR7sL9jPQDAzHrHzEF34MUEMevH0ERFQ0NDQxOVlkUWRUVULrKqFpd/GrhlNyYLbrNIIysLn4PKq4sK+vvR0NDQkKCJSquib6333ya7QzOik3VXTghgFXkaW5Y+NoHxaEUlCOE7ydz5WkNDQ2MRQGvLrYorvgCMvQQMn9zc3xsWUC/ntivn6Wx5KiraoxKE8P0QHfrR0NDQ0IpKy6LY3TxJAYCTtgBLNwB9a3IZDldUsvqvJDNt+5i55g1aUdHQ0NCQoLdsixVvuw+gNDcyYOYd+iGGJiphEIgc0XVUNDQ0NLSisqiRIxGwcgv9ZDAJvxog1VHRREVDQ0NDrxYaicDagWdXVLxbTvtTwqEVFQ0NDQ0JmqhoJMKGkW4AwInD3dkOpBWVeAhtBfq7Sgs4EA0NDY3WgN6yaSTC289bgzeevAxDS4rZDsTTprWiEgpBUeksZfyuNTQ0NBYB9LZWIzEykxQgv0J0ixW64JuGhoaGBE1UNOYXPPSjM35CoXshaWhoaEjQREVjfpGlK/SrAZKioiOzGhoaGpqoaMwvtJk2HuL3YujvSENDQ0PPhBrzC0N7VGIhEhX9HWloaGhooqIxz9CKSjwI8b8bHfrR0NDQ0ERFY56hPSqNQfR3pKGhocGgiYrG/IKnJ+usn0jo8JiGhoYGhyYqGvMLHvrRi3AkuKKiQz8aGhoamqhozC+0R6UxeHhMf0caGhoaeibUmF9oj0pjEN24UUNDQ4NBExWN+QX3X+hbLxKW14zQ7ljYcWhoaGi0AHQQXGN+oT0qjfGbdwEHnwYGT1jokWhoaGgsODRR0ZhfEK2oNMSZb1/oEWhoaGi0DPRqoTG/YIqKNopqaGhoaCSAXi005hfao6KhoaGhkQJ6tdCYX+hiZhoaGhoaKaCJisb8QtdR0dDQ0NBIAb1aaMwvuEdFKyoaGhoaGo2hiYrG/ILo0I+GhoaGRnJooqIxvzB0U0INDQ0NjeTQREVjfqFDPxoaGhoaKaCJisb8Qqcna2hoaGikgF4tNOYXuoS+hoaGhkYKaKKiMb/QioqGhoaGRgro1UJjfsGUFO1R0dDQ0NBIAE1UNOYXuuCbhoaGhkYK6NVCY36hiYqGhoaGRgro1UJjftHR5/631Lugw9DQ0NDQaA9YCz0AjVcZTn0LUJ0GTtq20CPR0NDQ0GgDzKmi8qY3vQlr1qxBqVTC8uXL8c53vhP79u2T3vPkk0/iggsuQKlUwurVq/HJT35yLoeksdAodALnvRfoXbXQI9HQ0NDQaAPMKVG5+OKL8fWvfx27du3C3//93+O5557D7/3e7/Hfj4+PY8uWLVi7di0ef/xx3HPPPfjoRz+KL3zhC3M5LA0NDQ0NDY02AaGU0vn6sH/4h3/AW97yFpTLZdi2jXvvvRcf/vCHMTo6ikKhAAC47bbb8O1vfxvPPPNMomOOj4+jt7cXY2Nj6Onpmcvha2hoaGhoaOSEpOv3vJlpjxw5gq985St43eteB9u2AQA7duzAhRdeyEkKAGzduhW7du3C0aNHQ49TLpcxPj4u/dPQ0NDQ0NBYnJhzonLrrbeiq6sLg4OD2Lt3Lx544AH+u9HRUSxbtkx6P/t5dHQ09Hh33303ent7+b/Vq1fP3eA1NDQ0NDQ0FhSpicptt90GQkjsPzFsc8stt+CJJ57A9773PZimiXe9613IEm26/fbbMTY2xv+9+OKLTR9LQ0NDQ0NDo7WROj355ptvxjXXXBP7nnXr1vH/X7p0KZYuXYqTTjoJp5xyClavXo2f/vSn2Lx5M0ZGRnDgwAHpb9nPIyMjoccuFosoFotph62hoaGhoaHRhkhNVIaGhjA0NNTUhzmOA8D1mQDA5s2b8eEPfxjVapX7VrZv344NGzagv7+/qc/Q0NDQ0NDQWDyYM4/Ko48+ir/5m7/Bzp078cILL+DBBx/ElVdeifXr12Pz5s0AgKuuugqFQgHXXnstnnrqKXzta1/DX/3VX+Gmm26aq2FpaGhoaGhotBHmjKh0dnbim9/8Ji655BJs2LAB1157Lc444ww8/PDDPHTT29uL733ve9izZw/OOecc3Hzzzbjjjjtw/fXXz9WwNDQ0NDQ0NNoI81pHZS6g66hoaGhoaGi0H1qujoqGhoaGhoaGRlpooqKhoaGhoaHRstBERUNDQ0NDQ6NlkTo9udXALDa6lL6GhoaGhkb7gK3bjayybU9UJiYmAECX0tfQ0NDQ0GhDTExMoLe3N/L3bZ/14zgO9u3bhyVLloAQkuuxx8fHsXr1arz44ouLMqNosZ8fsPjPcbGfH6DPcTFgsZ8foM+xGVBKMTExgRUrVsAwop0oba+oGIaBVatWzeln9PT0LNobD1j85wcs/nNc7OcH6HNcDFjs5wfoc0yLOCWFQZtpNTQ0NDQ0NFoWmqhoaGhoaGhotCw0UYlBsVjEnXfeuWi7NS/28wMW/zku9vMD9DkuBiz28wP0Oc4l2t5Mq6GhoaGhobF4oRUVDQ0NDQ0NjZaFJioaGhoaGhoaLQtNVDQ0NDQ0NDRaFpqoaGhoaGhoaLQsNFGJwOc+9zkcd9xxKJVK2LRpEx577LGFHlJTuPvuu3HeeedhyZIlGB4exlve8hbs2rVLes9FF10EQoj07/3vf/8CjTg9PvrRjwbGf/LJJ/Pfz87O4sYbb8Tg4CC6u7vx1re+FQcOHFjAEafHcccdFzhHQghuvPFGAO13DX/0ox/hd37nd7BixQoQQvDtb39b+j2lFHfccQeWL1+Ojo4OXHrppXj22Wel9xw5cgRXX301enp60NfXh2uvvRaTk5PzeBbxiDvHarWKW2+9FRs3bkRXVxdWrFiBd73rXdi3b590jLDr/olPfGKezyQaja7jNddcExj/tm3bpPe08nVsdH5hzyQhBPfccw9/T6tfwyRrRJI5dO/evbj88svR2dmJ4eFh3HLLLajVarmMUROVEHzta1/DTTfdhDvvvBO/+MUvcOaZZ2Lr1q04ePDgQg8tNR5++GHceOON+OlPf4rt27ejWq1iy5YtmJqakt533XXXYf/+/fzfJz/5yQUacXM47bTTpPH/5Cc/4b/70Ic+hH/8x3/EN77xDTz88MPYt28frrjiigUcbXr87Gc/k85v+/btAIC3ve1t/D3tdA2npqZw5pln4nOf+1zo7z/5yU/ir//6r/G3f/u3ePTRR9HV1YWtW7didnaWv+fqq6/GU089he3bt+M73/kOfvSjH+H666+fr1NoiLhznJ6exi9+8Qt85CMfwS9+8Qt885vfxK5du/CmN70p8N677rpLuq5//Md/PB/DT4RG1xEAtm3bJo3/q1/9qvT7Vr6Ojc5PPK/9+/fji1/8IggheOtb3yq9r5WvYZI1otEcWq/Xcfnll6NSqeCRRx7B/fffj/vuuw933HFHPoOkGgGcf/759MYbb+Q/1+t1umLFCnr33Xcv4KjywcGDBykA+vDDD/PX3vCGN9APfvCDCzeojLjzzjvpmWeeGfq7Y8eOUdu26Te+8Q3+2n/8x39QAHTHjh3zNML88cEPfpCuX7+eOo5DKW3vawiAfutb3+I/O45DR0ZG6D333MNfO3bsGC0Wi/SrX/0qpZTSp59+mgKgP/vZz/h7/vmf/5kSQujLL788b2NPCvUcw/DYY49RAPSFF17gr61du5Z+5jOfmdvB5YSwc3z3u99N3/zmN0f+TTtdxyTX8M1vfjN94xvfKL3WTteQ0uAakWQO/e53v0sNw6Cjo6P8Pffeey/t6emh5XI585i0oqKgUqng8ccfx6WXXspfMwwDl156KXbs2LGAI8sHY2NjAICBgQHp9a985StYunQpTj/9dNx+++2Ynp5eiOE1jWeffRYrVqzAunXrcPXVV2Pv3r0AgMcffxzValW6nieffDLWrFnTttezUqngy1/+Mt7znvdIjTjb/Roy7NmzB6Ojo9I16+3txaZNm/g127FjB/r6+nDuuefy91x66aUwDAOPPvrovI85D4yNjYEQgr6+Pun1T3ziExgcHMRZZ52Fe+65Jzc5fb7w0EMPYXh4GBs2bMANN9yAw4cP898tput44MAB/NM//ROuvfbawO/a6Rqqa0SSOXTHjh3YuHEjli1bxt+zdetWjI+P46mnnso8prZvSpg3Dh06hHq9Ln3hALBs2TI888wzCzSqfOA4Dv70T/8Ur3/963H66afz16+66iqsXbsWK1aswJNPPolbb70Vu3btwje/+c0FHG1ybNq0Cffddx82bNiA/fv342Mf+xguuOAC/OpXv8Lo6CgKhUJg8l+2bBlGR0cXZsAZ8e1vfxvHjh3DNddcw19r92sogl2XsGeQ/W50dBTDw8PS7y3LwsDAQFte19nZWdx666248sorpWZvf/Inf4Kzzz4bAwMDeOSRR3D77bdj//79+PSnP72Ao02Obdu24YorrsDxxx+P5557Dn/+53+Oyy67DDt27IBpmovqOt5///1YsmRJIKzcTtcwbI1IMoeOjo6GPq/sd1mhicqrCDfeeCN+9atfSf4NAFI8eOPGjVi+fDkuueQSPPfcc1i/fv18DzM1LrvsMv7/Z5xxBjZt2oS1a9fi61//Ojo6OhZwZHOD//2//zcuu+wyrFixgr/W7tfw1YxqtYrf//3fB6UU9957r/S7m266if//GWecgUKhgPe97324++6726JU+zve8Q7+/xs3bsQZZ5yB9evX46GHHsIll1yygCPLH1/84hdx9dVXo1QqSa+30zWMWiMWGjr0o2Dp0qUwTTPgaD5w4ABGRkYWaFTZ8YEPfADf+c538MMf/hCrVq2Kfe+mTZsAALt3756PoeWOvr4+nHTSSdi9ezdGRkZQqVRw7Ngx6T3tej1feOEFfP/738d73/ve2Pe18zVk1yXuGRwZGQmY22u1Go4cOdJW15WRlBdeeAHbt2+X1JQwbNq0CbVaDc8///z8DDBnrFu3DkuXLuX35WK5jj/+8Y+xa9euhs8l0LrXMGqNSDKHjoyMhD6v7HdZoYmKgkKhgHPOOQc/+MEP+GuO4+AHP/gBNm/evIAjaw6UUnzgAx/At771LTz44IM4/vjjG/7Nzp07AQDLly+f49HNDSYnJ/Hcc89h+fLlOOecc2DbtnQ9d+3ahb1797bl9fzSl76E4eFhXH755bHva+drePzxx2NkZES6ZuPj43j00Uf5Ndu8eTOOHTuGxx9/nL/nwQcfhOM4nKS1OhhJefbZZ/H9738fg4ODDf9m586dMAwjEC5pF7z00ks4fPgwvy8Xw3UEXJXznHPOwZlnntnwva12DRutEUnm0M2bN+OXv/ylRDoZ8T711FNzGaSGgr/7u7+jxWKR3nffffTpp5+m119/Pe3r65Mcze2CG264gfb29tKHHnqI7t+/n/+bnp6mlFK6e/duetddd9Gf//zndM+ePfSBBx6g69atoxdeeOECjzw5br75ZvrQQw/RPXv20H/7t3+jl156KV26dCk9ePAgpZTS97///XTNmjX0wQcfpD//+c/p5s2b6ebNmxd41OlRr9fpmjVr6K233iq93o7XcGJigj7xxBP0iSeeoADopz/9afrEE0/wjJdPfOITtK+vjz7wwAP0ySefpG9+85vp8ccfT2dmZvgxtm3bRs866yz66KOP0p/85Cf0xBNPpFdeeeVCnVIAcedYqVTom970Jrpq1Sq6c+dO6dlkWRKPPPII/cxnPkN37txJn3vuOfrlL3+ZDg0N0Xe9610LfGY+4s5xYmKC/tmf/RndsWMH3bNnD/3+979Pzz77bHriiSfS2dlZfoxWvo6N7lNKKR0bG6OdnZ303nvvDfx9O1zDRmsEpY3n0FqtRk8//XS6ZcsWunPnTvov//IvdGhoiN5+++25jFETlQh89rOfpWvWrKGFQoGef/759Kc//elCD6kpAAj996UvfYlSSunevXvphRdeSAcGBmixWKQnnHACveWWW+jY2NjCDjwF3v72t9Ply5fTQqFAV65cSd/+9rfT3bt389/PzMzQP/qjP6L9/f20s7OT/u7v/i7dv3//Ao64Ofzrv/4rBUB37dolvd6O1/CHP/xh6H357ne/m1Lqpih/5CMfocuWLaPFYpFecsklgfM+fPgwvfLKK2l3dzft6emhf/iHf0gnJiYW4GzCEXeOe/bsiXw2f/jDH1JKKX388cfppk2baG9vLy2VSvSUU06h/+2//TdpkV9oxJ3j9PQ03bJlCx0aGqK2bdO1a9fS6667LrDha+Xr2Og+pZTSz3/+87Sjo4MeO3Ys8PftcA0brRGUJptDn3/+eXrZZZfRjo4OunTpUnrzzTfTarWayxiJN1ANDQ0NDQ0NjZaD9qhoaGhoaGhotCw0UdHQ0NDQ0NBoWWiioqGhoaGhodGy0ERFQ0NDQ0NDo2WhiYqGhoaGhoZGy0ITFQ0NDQ0NDY2WhSYqGhoaGhoaGi0LTVQ0NDQ0NDQ0WhaaqGhoaGhoaGi0LDRR0dDQ0NDQ0GhZaKKioaGhoaGh0bLQREVDQ0NDQ0OjZfH/A/YPC3fQew5IAAAAAElFTkSuQmCC" + }, + "metadata": {}, + "output_type": "display_data", + "jetTransient": { + "display_id": null + } + } + ], + "execution_count": 38 + }, + { + "metadata": {}, + "cell_type": "code", + "outputs": [], + "execution_count": null, + "source": "" } ], "metadata": { diff --git a/models.py b/models.py new file mode 100644 index 0000000..4e254d2 --- /dev/null +++ b/models.py @@ -0,0 +1,345 @@ +import math + +import numpy as np +import torch +from torch import nn +from torch.nn import init + +from utils import discreteLossPoly, mapToDiscreteValues + +def complex_xavier_init(tensor_real, tensor_imag, gain=1.0): + # Apply Xavier initialization (using uniform variant) to both real and imaginary parts + # If we do not do this the neural network initializes at a *very* bad initial point and we get terrible convergence + # Only applicable for the ComplexLinear layer + init.xavier_uniform_(tensor_real, gain=gain) + init.xavier_uniform_(tensor_imag, gain=gain) + + +class ComplexUnitModulus(nn.Module): + # This class serves as the encoder layer. We are restricted to values which are of the form e^jq where q are trainable parameters + # Notice that the input and output dimensions are half of what the actual vector size is! Because it is a complex value, our dimensions are twice as long + def __init__(self, input_dim, output_dim): + super(ComplexUnitModulus, self).__init__() + # Here we create the q-values of our unitary matrix. These are the parameters we are training such that each entry of our complex matrix to encode our data is |F_ij| = 1 + self.q_values = nn.Parameter(torch.randn(output_dim, input_dim)) + + def forward(self, x): + # Compute unitary weights dynamically in each forward pass + W_real = torch.cos(self.q_values) + W_imag = torch.sin(self.q_values) + W_top = torch.cat([W_real, -W_imag], dim=1) # [W_real, -W_imag] + W_bottom = torch.cat([W_imag, W_real], dim=1) # [W_imag, W_real] + W_total = torch.cat([W_top, W_bottom], dim=0) # Stack rows to form the full matrix + out = torch.matmul(x, W_total.T) + return out + + +class ComplexLinear(nn.Module): + # This custom layer was found to work less well than a regular linear layer, probably because we put restrictions on the network allowing it to be less expressive. + # Notice that the input and output dimensions are half of what the actual vector size is! Because it is a complex value, our dimensions are twice as long. This gets fixed because we make the matrix + # W_total which multiplies [x_real;x_imag] and returns [y_real;y_imag] + def __init__(self, input_dim, output_dim): + super(ComplexLinear, self).__init__() + # Here we create the complex matrix W + # self.W_real = nn.Parameter(torch.randn(output_dim,input_dim))# eye(input_dim)) + # self.W_imag = nn.Parameter(torch.randn(output_dim,input_dim)) #zeros((input_dim,output_dim))) + + self.W_real = nn.Parameter(torch.empty(output_dim, input_dim)) + self.W_imag = nn.Parameter(torch.empty(output_dim, input_dim)) + self.reset_parameters() + + def reset_parameters(self): + # Initialize both the real and imaginary parts using Xavier initialization. + complex_xavier_init(self.W_real, self.W_imag) + + def forward(self, x): + # Compute unitary weights dynamically in each forward pass + W_real = self.W_real + W_imag = self.W_imag + W_top = torch.cat([W_real, -W_imag], dim=1) # [W_real, -W_imag] + W_bottom = torch.cat([W_imag, W_real], dim=1) # [W_imag, W_real] + W_total = torch.cat([W_top, W_bottom], dim=0) # Stack rows to form the full matrix + out = torch.matmul(x, W_total.T) + return out + + +class LearnedAutoencoder(nn.Module): + def __init__(self, input_dim, encoding_dim, hidden_dims): + super(LearnedAutoencoder, self).__init__() + + self.encoder = ComplexUnitModulus(input_dim, encoding_dim) + layers = [] + prev_dim = encoding_dim * 2 + for dim in hidden_dims: + layers.append(nn.Linear(prev_dim, dim * 2)) + layers.append(nn.ReLU()) + prev_dim = dim * 2 + self.decoder = nn.Sequential( + *layers, + nn.Linear(prev_dim, input_dim * 2) + ) + + def forward(self, x): + encoder_out = self.encoder(x) + + return self.decoder(encoder_out) + + +class LearnedAutoencoderWithNoise(nn.Module): + def __init__(self, input_dim, encoding_dim, hidden_dims, variance): + super(LearnedAutoencoderWithNoise, self).__init__() + self.variance = variance + self.encoder = ComplexUnitModulus(input_dim, encoding_dim) + self.encoding_dim = encoding_dim + layers = [] + prev_dim = encoding_dim * 2 + for dim in hidden_dims: + layers.append(nn.Linear(prev_dim, dim * 2)) + layers.append(nn.ReLU()) + prev_dim = dim * 2 + self.decoder = nn.Sequential( + *layers, + nn.Linear(prev_dim, input_dim * 2) + ) + + def forward(self, x): + encoder_out = self.encoder(x) + noise_np = np.random.normal(0, self.variance, size=self.encoding_dim * 2) + noise = torch.tensor(noise_np, dtype=torch.float) + noisy_y = encoder_out + noise + return self.decoder(noisy_y) + + +# It should be noted that all previous autoencoders are less general versions of this neural network architecture. +# If we set the IQ imbalance to 0 and the SNR to inf(), then we get previous architectures +class LearnedAutoencoderWithIQImbalance(nn.Module): + def __init__(self, input_dim, encoding_dim, hidden_dims, b, d, variance): + super(LearnedAutoencoderWithIQImbalance, self).__init__() + self.encoder = ComplexUnitModulus(input_dim, encoding_dim) + self.encoding_dim = encoding_dim + self.variance = variance + self.r = torch.tensor(0.5 * (1 + b * np.exp(1j * d)), dtype=torch.complex64) + layers = [] + prev_dim = encoding_dim * 2 + for dim in hidden_dims: + layers.append(nn.Linear(prev_dim, dim * 2)) + layers.append(nn.ReLU()) + prev_dim = dim * 2 + self.decoder = nn.Sequential( + *layers, + nn.Linear(prev_dim, input_dim * 2) + ) + + def forward(self, x): + encoder_out = self.encoder(x) + y_real = encoder_out[:, :self.encoding_dim] + y_imag = encoder_out[:, self.encoding_dim:] + y = torch.complex(y_real, y_imag) + yiq = self.r * y + (1 - self.r.conj()) * (y.conj()) + yiqr = yiq.real + yiqi = yiq.imag + yiqstack = torch.cat((yiqr, yiqi), dim=1) + noise_np = np.random.normal(0, self.variance, size=self.encoding_dim * 2) + noise_tensor = torch.tensor(noise_np, dtype=torch.float) + y_iq_stack_noisy = yiqstack + noise_tensor + return self.decoder(y_iq_stack_noisy) + +def trainModels(dataloader,SNR_values,imb_percentages,encoding_dims,epochs,signal_variance = 133,hidden_dims=[60,80], input_dim=100): + # Function takes as inputs: + # dataloader: The dataloader object of the training data set + # SNR_values: Signal to noise ratios + # imb_percentages: imbalance percentages + # encoding_dims: Encoding dimensions + # epochs: Maximum amount of epochs we want the model to run for + # signal_variance: The variance of the original signal + # hidden_dims: Hidden dimensions for the neural network + # Returns the best model with corresponding MSELoss + models = [] + for model_num,(SNR,imb_percentage,encoding_dim) in enumerate(zip(SNR_values,imb_percentages,encoding_dims)): + abs_noise_ratio = 10**(SNR/10) + variance = signal_variance/abs_noise_ratio + b = 1 - (0.2 * imb_percentage) + d = imb_percentage * np.pi/8 + hidden_dims = np.array([60,80]) + current_training_model = LearnedAutoencoderWithIQImbalance(input_dim,encoding_dim,hidden_dims,b,d,variance) + optimizer = torch.optim.Adam(current_training_model.parameters(), lr=1E-3, betas=(0.9,0.999)) + MSEloss_fn = nn.MSELoss() + + # Training loop + losses = [] + lowest_loss = float("inf") + for epoch in range(epochs): + for batch in dataloader: + inputs, targets = batch # Unpack the tuple + optimizer.zero_grad() + output = current_training_model(inputs) + loss = MSEloss_fn(output, targets) + loss.backward() + optimizer.step() + losses.append(loss.item()) + if loss< lowest_loss: + lowest_loss = loss + early_stopping_counter = 0 + best_model = current_training_model + else: + early_stopping_counter += 1 + if early_stopping_counter > 100: + current_training_model = best_model + print(f"Stopped early after {epoch+1} epochs, with loss of {lowest_loss:.6f}") + break + print(f"SNR:{SNR}, Imbalance Percentage:{imb_percentage}, Encoding dimension:{encoding_dim}, Epoch {epoch+1}, Loss: {loss.item():.6f}") + models.append(best_model) + losses.append(lowest_loss) + return models, losses + +def trainModelsForDiscreteSet(dataloader,SNR_values,imb_percentages,encoding_dims,signal_variance = 133,hidden_dims=[60,80], input_dim=100, scale_factor=0.05): + # Function takes as inputs: + # dataloader: The dataloader object of the training data set + # SNR_values: Signal to noise ratios + # imb_percentages: imbalance percentages + # encoding_dims: Encoding dimensions + # signal_variance: The variance of the original signal + # hidden_dims: Hidden dimensions for the neural network + # scale_factor: Hyperparameter for the discretization step + models = [] + discrete_values = np.array([-np.pi, -0.5*np.pi,0,0.5*np.pi,np.pi]) + for model_num,(SNR,imb_percentage,encoding_dim) in enumerate(zip(SNR_values,imb_percentages,encoding_dims)): + abs_noise_ratio = 10**(SNR/10) + variance = signal_variance/abs_noise_ratio + b = 1 - (0.2 * imb_percentage) + d = imb_percentage * np.pi/8 + hidden_dims = np.array([60,80]) + current_training_model = LearnedAutoencoderWithIQImbalance(input_dim,encoding_dim,hidden_dims,b,d,variance) + optimizer = torch.optim.Adam(current_training_model.parameters(), lr=1E-3, betas=(0.9,0.999)) + MSEloss_fn = nn.MSELoss() + + # Training loop + losses = [] + lowest_loss = float("inf") + for epoch in range(10000): + for batch in dataloader: + inputs, targets = batch # Unpack the tuple + optimizer.zero_grad() + output = current_training_model(inputs) + qweights = current_training_model.encoder.q_values + loss = discreteLossPoly(qweights,scale_factor) + MSEloss_fn(output, targets) + loss.backward() + optimizer.step() + losses.append(loss.item()) + if loss< lowest_loss: + lowest_loss = loss + early_stopping_counter = 0 + best_model = current_training_model + else: + early_stopping_counter += 1 + if early_stopping_counter > 100: + current_training_model = best_model + print(f"Stopped early after {epoch+1} epochs, with loss of {lowest_loss:.6f}") + break + print(f"SNR:{SNR}, Imbalance Percentage:{imb_percentage}, Encoding dimension:{encoding_dim}, Epoch {epoch+1}, Loss: {loss.item():.6f}") + best_qvalues = best_model.encoder.q_values + mapped_best_qvalues = mapToDiscreteValues(best_qvalues,discrete_values) + best_model.encoder.q_values = mapped_best_qvalues + models.append(best_model) + losses.append(lowest_loss) + return models + +class LearnedAutoencoderWithVarIQImbalance(nn.Module): + def __init__(self, input_dim, encoding_dim,hidden_dims,variance,b=1, d=0): + super(LearnedAutoencoderWithVarIQImbalance, self).__init__() + self.encoder = ComplexUnitModulus(input_dim,encoding_dim) + self.encoding_dim = encoding_dim + self.variance = variance + self.b = b + self.d = d + layers = [] + prev_dim = encoding_dim*2 + for dim in hidden_dims: + layers.append(nn.Linear(prev_dim,dim*2)) + layers.append(nn.ReLU()) + prev_dim = dim*2 + self.decoder = nn.Sequential( + *layers, + nn.Linear(prev_dim,input_dim*2) + ) + + def forward(self,x): + encoder_out = self.encoder(x) + self.r = torch.tensor(0.5*(1+self.b*np.exp(1j*self.d)), dtype=torch.complex64) + y_real = encoder_out[:, :self.encoding_dim] + y_imag = encoder_out[:, self.encoding_dim:] + y = torch.complex(y_real,y_imag) + yiq = self.r * y + (1-self.r.conj()) * (y.conj()) + yiqr = yiq.real + yiqi = yiq.imag + yiqstack = torch.cat((yiqr,yiqi),dim=1) + noise_np = np.random.normal(0,self.variance,size=self.encoding_dim*2) + noise_tensor = torch.tensor(noise_np,dtype=torch.float) + y_iq_stack_noisy = yiqstack + noise_tensor + return self.decoder(y_iq_stack_noisy) + + class AdversarialNetwork(nn.Module): + def __init__(self, input_dim, encoding_dim, hidden_dec_dims, hidden_pred_dims, variance): + self.encoder = ComplexUnitModulus(input_dim, encoding_dim) + self.encoding_dim = encoding_dim + self.variance = variance + dec_layers = [] + prev_dim = encoding_dim * 2 + for dim in hidden_dec_dims: + dec_layers.append(nn.Linear(prev_dim, dim * 2)) + dec_layers.append(nn.ReLU()) + prev_dim = dim * 2 + self.decoder = nn.Sequential( + *dec_layers, + nn.Linear(prev_dim, input_dim * 2) + ) + pred_layers = [] + prev_dim = encoding_dim * 2 + for dim in hidden_pred_dims: + pred_layers.append(nn.Linear(prev_dim, dim * 2)) + pred_layers.append(nn.ReLU()) + prev_dim = dim * 2 + self.predictor = nn.Sequential( + *pred_layers, + nn.Linear(prev_dim, 2), + ) + + def forward(self, x): + # Encoder output + encoder_out = self.encoder(x) + + # Predictor output, we scale the output by our predefined ranges (softmax normalizes between [0,1]) and add bias + predictor_out = self.predictor(encoder_out) # Size: B x 2 where B is batch size + b_raw = predictor_out[:, 0] + d_raw = predictor_out[:, 1] + b_tensor = torch.tanh(d_raw) * 0.1 + 0.9 # Scale between 0.1 and -0.1 and add bias + d_tensor = torch.tanh( + b_raw) * math.pi / 16 + math.pi / 16 # We scale it between pi/16 and -pi/16 and then add pi/16 + + cos_d_tensor = torch.cos(d_tensor) + sin_d_tensor = torch.sin(d_tensor) + K1R_tensor = 0.5 * (1 + b_tensor * cos_d_tensor) + K1I_tensor = 0.5 * b_tensor * sin_d_tensor + K2R_tensor = 0.5 * (1 - b_tensor * cos_d_tensor) + K2I_tensor = 0.5 * b_tensor * sin_d_tensor + + # Some nice information about the mean b and d distortion + self.b_mean = torch.mean(b_tensor) + self.d_mean = torch.mean(d_tensor) + + # Here we add IQ imbalance + y_real = encoder_out[:, :self.encoding_dim] # Size: B x E where E is encoding dimension + y_imag = encoder_out[:, self.encoding_dim:] # Size: B x E where E is encoding dimension + y_IQ_real = (K1R_tensor + K2R_tensor).unsqueeze(1) * y_real + (-K1I_tensor + K2I_tensor).unsqueeze( + 1) * y_imag + y_IQ_imag = (K1R_tensor + K2I_tensor).unsqueeze(1) * y_real + (K1R_tensor - K2R_tensor).unsqueeze( + 1) * y_imag + y_IQ = torch.cat([y_IQ_real, y_IQ_imag], dim=1) + + # Finally we add noise + noise = torch.randn_like(y_IQ) * self.variance + y_IQ_noisy = y_IQ + noise + + # And run the decoder + return self.decoder(y_IQ_noisy) + diff --git a/plotting.py b/plotting.py new file mode 100644 index 0000000..c17554b --- /dev/null +++ b/plotting.py @@ -0,0 +1,107 @@ +import matplotlib.pyplot as plt +import numpy as np +import scipy as sp +import torch +from torch import nn + +from data import buildDataSet +def plot_several_models(all_imbalanced_losses, all_measurement_losses, SNR, IRR_ratios, measurement_sizes, all_noisy_losses): + plt.style.use('ggplot') + fig1, (ax1, ax2, ax3) = plt.subplots(ncols=3, nrows=1, figsize=(18, 6)) + + for i in range(4): + if i == 0: + noiseless_loss = all_imbalanced_losses[0][0] + ax1.plot(SNR.keys(), [noiseless_loss for i in SNR.keys()]) + ax2.plot(IRR_ratios.values(), [noiseless_loss for i in IRR_ratios.values()]) + ax3.plot(measurement_sizes, [noiseless_loss for i in measurement_sizes]) + + ax1.plot(SNR.keys(), all_noisy_losses[i], marker="o") + ax1.set_xlabel("SNR $(dB)$") + ax1.set_ylabel("NMSE") + ax1.set_title("Noisy Model Performance") + ax1.grid(True) + ax1.legend(["baseline model", "sparsity 3-5", "sparsity 5-7", "sparsity 7-9", "sparsity 10-30"]) + + ax2.plot(IRR_ratios.values(), all_imbalanced_losses[i], marker='s') + ax2.set_xlabel("IRR $(dB)$") + ax2.set_title("IQ Imbalanced Model Performance") + ax2.legend(["baseline model", "sparsity 3-5", "sparsity 5-7", "sparsity 7-9", "sparsity 10-30"]) + ax2.grid(True) + + ax3.plot(measurement_sizes, all_measurement_losses[i], marker='^') + ax3.set_xlabel("Measurement Dimension") + ax3.set_title("Measurement Model Performance") + ax3.legend(["baseline model", "sparsity 3-5", "sparsity 5-7", "sparsity 7-9", "sparsity 10-30"]) + ax3.grid(True) + + plt.show() + +def visualizeReconstruction(model, max_amplitude=100, min_sparsity=3, max_sparsity=5, vector_size=100): + h, x = buildDataSet(max_amplitude, min_sparsity, max_sparsity, vector_size, 1) + + H = np.concatenate((h.real, h.imag)).T + + H_tensor = torch.tensor(H, dtype=torch.float) + + H_hat = model(H_tensor) + + h_hat = np.array(H_hat.detach()) + + h_real, h_imag = np.split(h_hat, 2, 1) + h_hat = h_real + 1j * h_imag + h_hat = h_hat.reshape(-1, 1) + DFT = sp.linalg.dft(vector_size) / np.sqrt(vector_size) + iDFT = DFT.conj().T + + x_hat = iDFT @ h_hat + indices = range(len(x_hat)) + + plt.vlines(indices, 0, x, linewidth=3) + plt.vlines(indices, 0, x_hat, colors="orange") + + plt.legend(("x", "x_hat")) + +def plotting(imb_percentage_list, SNR_list, normalized_losses, encoding_dims_list): + # Quick calculation for the sake of plotting + imb_db_list = [] + + for perc in imb_percentage_list[13:19]: + b = 1 - 0.2 * perc + d = np.pi / 8 * perc + r = 0.5 * (1 + b * np.exp(1j * d)) + IRR_abs = np.abs(r) ** 2 / np.abs(1 - r) ** 2 + imb_db_list.append(10 * np.log10(IRR_abs)) + + plt.style.use('ggplot') + fig1, (ax1, ax2, ax3) = plt.subplots(ncols=3, nrows=1, figsize=(18, 6)) + + ax1.plot(SNR_list[6:13], normalized_losses[6:13], marker="o", color="g") + ax2.plot(imb_db_list, normalized_losses[13:20], marker='s', color='b') + ax3.plot(encoding_dims_list[0:6], normalized_losses[0:6], marker='^', color='r') + + ax1.set_xlabel("SNR $(dB)$") + ax1.set_ylabel("NMSE") + ax1.set_title("Noisy Model Performance") + ax1.grid(True) + ax1.legend(["Discrete Model"]) + + ax2.set_xlabel("IRR $(dB)$") + ax2.set_title("IQ Imbalanced Model Performance") + ax2.legend(["Discrete Model"]) + ax2.grid(True) + + ax3.set_xlabel("Measurement Dimension") + ax3.set_title("Measurement Model Performance") + ax3.legend(["Discrete Model"]) + ax3.grid(True) + plt.savefig("Images/discrete_model_performance.pdf", format="pdf", bbox_inches="tight") + +def plot_losses(IRR_ratios, normalized_losses): + fig, ax = plt.subplots() + ax.plot(IRR_ratios, normalized_losses, '-o') + ax.set_xlabel('IRR Ratios [-]') + ax.set_ylabel('NMSE [-]') + + # Turn off the offset notation + ax.ticklabel_format(useOffset=False, style='plain', axis='y') diff --git a/pretrained_models.py b/pretrained_models.py new file mode 100644 index 0000000..41267b6 --- /dev/null +++ b/pretrained_models.py @@ -0,0 +1,167 @@ +import matplotlib.pyplot as plt +import numpy as np +import torch +from torch import nn + +from data import Generate_Dataloader +from models import LearnedAutoencoderWithNoise, LearnedAutoencoderWithIQImbalance +from plotting import plot_several_models +from utils import calc_IRR_ratios + + +def load_pretrained_models(): + # Initialize pretrained models + vector_size = 100 + sparsity_ranges = [(3, 5), (5, 7), (7, 9), (10, 30)] + measurement_sizes = [5, 10, 20, 30, 40, 50] + # Define the SNR dictionary for use + db_list = [2, 5, 8, 11, 14, 17, 20] + signal_variance = 133 # Found by measuring empirically what the variance of the signal is once transformed from sparse signal + SNR = {} + + # Then define the absolute values of the SNR ratio + for db_ratio in db_list: + SNR[db_ratio] = 10 ** (db_ratio / 10) + + imb_percentage_list = [0, 0.04, 0.1, 0.3, 0.6, 1] + IRR_ratios = calc_IRR_ratios(imb_percentage_list) + + # empty dicts to store models in + noisy_pretrained_models = {} + imbalanced_pretrained_models = {} + measurement_pretrained_models = {} + + for i, (min_spars, max_spars) in enumerate(sparsity_ranges): + + # Initialize pretrained noisy models + for db, abs in SNR.items(): + encoding_dim = 50 + variance = signal_variance / abs + # Initialize model + hidden_dims = np.array([60, 80]) + noisy_pretrained_models[(i, db)] = LearnedAutoencoderWithNoise(vector_size, encoding_dim, hidden_dims, + variance) + noisy_pretrained_models[(i, db)].load_state_dict(torch.load( + f"Models/noisy_models/sparsity_{min_spars}-{max_spars}/noisy_model_{db}_{min_spars}-{max_spars}.pt", + weights_only=True)) + + # Initialize pretrained imbalanced_models + for level, db in IRR_ratios.items(): + encoding_dim = 50 + variance = 0 + b = 1 - (0.2 * level) + d = level * np.pi / 8 + # Initialize model + hidden_dims = np.array([60, 80]) + imbalanced_pretrained_models[(i, level)] = LearnedAutoencoderWithIQImbalance(vector_size, encoding_dim, + hidden_dims, b, d, variance) + imbalanced_pretrained_models[(i, level)].load_state_dict(torch.load( + f"Models/imbalanced_models/sparsity_{min_spars}-{max_spars}/imbalanced_model_{level:.3f}_{min_spars}-{max_spars}.pt", + weights_only=True)) + + # Initialize pretrained measurement models + for encoding_dim in measurement_sizes: + variance = signal_variance / SNR[17] + level = 0.6 + b = 1 - (0.2 * level) + d = level * np.pi / 8 + # Initialize model + hidden_dims = np.array([60, 80]) + measurement_pretrained_models[(i, encoding_dim)] = LearnedAutoencoderWithIQImbalance(vector_size, + encoding_dim, + hidden_dims, b, d, + variance) + measurement_pretrained_models[(i, encoding_dim)].load_state_dict(torch.load( + f"Models/measurement_models/sparsity_{min_spars}-{max_spars}/measurement_model_{encoding_dim}_{min_spars}-{max_spars}.pt", + weights_only=True)) + return noisy_pretrained_models, imbalanced_pretrained_models, measurement_pretrained_models + + +def evaluate_pretrained_models(noisy_pretrained_models, imbalanced_pretrained_models, measurement_pretrained_models): + # Initialize pretrained models + data_set_size = 10000 + max_amplitude = 100 + vector_size = 100 + sparsity_ranges = [(3, 5), (5, 7), (7, 9), (10, 30)] + measurement_sizes = [5, 10, 20, 30, 40, 50] + # Define the SNR dictionary for use + db_list = [2, 5, 8, 11, 14, 17, 20] + signal_variance = 133 # Found by measuring empirically what the variance of the signal is once transformed from sparse signal + SNR = {} + + # Then define the absolute values of the SNR ratio + for db_ratio in db_list: + SNR[db_ratio] = 10 ** (db_ratio / 10) + + imb_percentage_list = [0, 0.04, 0.1, 0.3, 0.6, 1] + IRR_ratios = calc_IRR_ratios(imb_percentage_list) + + all_noisy_losses = [] + all_imbalanced_losses = [] + all_measurement_losses = [] + + loss_fn = nn.MSELoss() + + for i, (min_spars, max_spars) in enumerate(sparsity_ranges): + dataloader_val, signal_variance = Generate_Dataloader(max_amplitude, min_spars, max_spars, vector_size, data_set_size) + # Evaluate noisy models + noisy_val_losses = [] + noisy_model_losses = [] + with torch.no_grad(): + for db, abs in SNR.items(): + noisy_model = noisy_pretrained_models[(i, db)] + noisy_model.eval() + for batch in dataloader_val: + inputs, targets = batch # Unpack the tuple + output = noisy_model(inputs) + loss = loss_fn(output, targets) + noisy_model_losses.append(loss.item()) + noisy_val_losses.append(np.average(noisy_model_losses)) + noisy_model_losses = [] + + noisy_val_losses = np.array(noisy_val_losses) + normalized_noisy_val_losses = noisy_val_losses/signal_variance + all_noisy_losses.append(normalized_noisy_val_losses) + + # Evaluate Imbalanced models + imbalance_model_losses = [] + imbalance_val_losses = [] + + with torch.no_grad(): + for level, db in IRR_ratios.items(): + imbalance_model = imbalanced_pretrained_models[(i, level)] + imbalance_model.eval() + for batch in dataloader_val: + inputs, targets = batch # Unpack the tuple + output = imbalance_model(inputs) + loss = loss_fn(output, targets) + imbalance_model_losses.append(loss.item()) + imbalance_val_losses.append(np.average(imbalance_model_losses)) + imbalance_model_losses = [] + + imbalance_val_losses = np.array(imbalance_val_losses) + normalized_imbalance_val_losses = imbalance_val_losses/signal_variance + all_imbalanced_losses.append(normalized_imbalance_val_losses) + + # Evaluate models with varying measurement sizes + measurement_model_losses = [] + measurement_val_losses = [] + + with (torch.no_grad()): + for encoding_dim in measurement_sizes: + measurement_model = measurement_pretrained_models[(i, encoding_dim)] + measurement_model.eval() + for batch in dataloader_val: + inputs, targets = batch # Unpack the tuple + output = measurement_model(inputs) + loss = loss_fn(output, targets) + measurement_model_losses.append(loss.item()) + measurement_val_losses.append(np.average(measurement_model_losses)) + measurement_model_losses = [] + + measurement_val_losses = np.array(measurement_val_losses) + normalized_measurement_val_losses = measurement_val_losses/signal_variance + all_measurement_losses.append(normalized_measurement_val_losses) + + plot_several_models(all_imbalanced_losses, all_measurement_losses, SNR, IRR_ratios, measurement_sizes, all_noisy_losses) + plt.show() \ No newline at end of file diff --git a/test.py b/test.py new file mode 100644 index 0000000..4a4d8c1 --- /dev/null +++ b/test.py @@ -0,0 +1,45 @@ +import numpy as np +import scipy.linalg +import scipy.signal +import matplotlib.pyplot as plt +from cosamp import cosamp + + +n = 100 # number of measurements +t = np.linspace(0.0, 1.0, num=n) + +x = np.sin(91*2*np.pi*t) + np.sin(412*2*np.pi*t) # original signal (to be reconstructed) + +# randomly sample signal +p = 103 # random sampling (Note that this is one eighth of the Shannon–Nyquist rate!) +aquis = np.round((n-1) * np.random.rand(p)).astype(int) +y = x[aquis] # our compressed measurement from the random sampling + +# Here {y} = [C]{x} = [C][Phi]{s}, where Phi is the inverse discrete cosine transform + +Phi = scipy.fft.dct(np.eye(n), axis=0, norm='ortho') +CPhi = Phi[aquis,:] +print(CPhi.shape, y.shape) +# l1 minimization (through linear programming) +s = cosamp.cosamp(CPhi, y, 10) # obtain the sparse vector through CoSaMP algorithm +xrec = scipy.fft.idct(s, axis=0, norm='ortho') # Reconstructed signal + + + +figw, figh = 7.0, 5.0 # figure width and height +plt.figure(figsize=(figw, figh)) +plt.plot(t, s) +plt.title('Sparse vector $s$') +plt.show() + + +# Visualize the compressed-sensing reconstruction signal +figw, figh = 7.0, 5.0 # figure width and height +plt.figure(figsize=(figw, figh)) +plt.plot(t, x, 'b', label='Original signal') +plt.plot(t, xrec, 'r', label='Reconstructed signal') +plt.xlim(0.4, 0.5) +legend = plt.legend(loc='upper center', shadow=True, fontsize='x-large') +# Put a nicer background color on the legend. +legend.get_frame().set_facecolor('C0') +plt.show() \ No newline at end of file diff --git a/utils.py b/utils.py new file mode 100644 index 0000000..e27837f --- /dev/null +++ b/utils.py @@ -0,0 +1,65 @@ +import math + +import matplotlib.pyplot as plt +import numpy as np +plt.rcParams.update(plt.rcParamsDefault) +import torch +from torch import nn + +def validateModels(dataloader,models,loss_fn,signal_variance=133): + models_losses = [] + with torch.no_grad(): + for model in models: + current_model_losses = [] + model.eval() + for batch in dataloader: + inputs, targets = batch # Unpack the tuple + output = model(inputs) + loss = loss_fn(output, targets) + current_model_losses.append(loss.item()) + models_losses.append(np.average(current_model_losses)) + + models_losses = np.array(models_losses) + normalized_models_losses = models_losses/signal_variance + return normalized_models_losses,models_losses + +def discreteLossPoly(qweights,scaleFactor): + loss = 0 + pi = torch.tensor(math.pi) + # Note that we need to flatten the weights so that our iteration does not result in us iterating over the rows instead of the weights + qVec = qweights.flatten() + # Efficient implementation of the loss function, by doing vector operations, saves a lot of time in training + loss += torch.linalg.vector_norm(qVec*(qVec-1/2*pi)*(qVec-1*pi)*(qVec+pi)*(qVec+1/2*pi),1) + loss = loss*scaleFactor # Scale the resulting loss + return loss + + +def mapToDiscreteValues(weights, discrete_values): + # Input is a tensor (possibly a matrix) of weights, and a np array of discrete values + discrete_values = discrete_values.flatten() + weights_np = weights.detach().cpu().numpy() # Convert to numpy array + shape = weights_np.shape + weights_vector = np.reshape(weights_np, (-1, + 1)) # flatten the matrix to a vector such that subtracting from the discrete values results in a matrix! + + # Create a matrix of distances, then make a vector of indices from this matrix. Each value of the vector is the index of the closest discrete value + distances = np.abs(weights_vector - discrete_values) + indices = np.argmin(distances, 1) + + # Map the weights to the closest discrete values and reshape into original matrix, and turn into a nn.Parameter object + mappedWeights = discrete_values[indices] + mappedWeights = np.reshape(mappedWeights, shape) + mappedWeights = np.float32(mappedWeights) # Notice we map it to a float because that is what is used for our model + mappedWeights = nn.Parameter(torch.from_numpy(mappedWeights)) + return mappedWeights + +def calc_IRR_ratios(imb_percentage_list): + IRR_ratios = {} + for level in imb_percentage_list: + b = 1 - (0.2 * level) + d = level * np.pi / 8 + r = 0.5 * (1 + b * np.exp(1j * d)) + IRR_ratio = (np.abs(r) ** 2) / (np.abs(1 - r) ** 2) + IRR_ratios[level] = 10 * np.log10(IRR_ratio) + + return IRR_ratios \ No newline at end of file From 5414aeccca01d0a3a1438d51d7b04bf3fd492677 Mon Sep 17 00:00:00 2001 From: tomlijding Date: Fri, 21 Nov 2025 14:33:10 +0100 Subject: [PATCH 04/16] Refactored a bit, and added PSOMP and OMP algorithms --- .python-version | 1 + pyproject.toml | 13 + src/__pycache__/algorithms.cpython-312.pyc | Bin 0 -> 5293 bytes .../data_generation.cpython-312.pyc | Bin 0 -> 2797 bytes src/__pycache__/utils.cpython-312.pyc | Bin 0 -> 5073 bytes src/__pycache__/visualization.cpython-312.pyc | Bin 0 -> 3416 bytes src/algorithms.py | 123 ++ src/data_generation.py | 59 + src/init.py | 0 src/utils.py | 113 ++ src/visualization.py | 63 + testing_omp.ipynb | 328 +++++ uv.lock | 1286 +++++++++++++++++ 13 files changed, 1986 insertions(+) create mode 100644 .python-version create mode 100644 pyproject.toml create mode 100644 src/__pycache__/algorithms.cpython-312.pyc create mode 100644 src/__pycache__/data_generation.cpython-312.pyc create mode 100644 src/__pycache__/utils.cpython-312.pyc create mode 100644 src/__pycache__/visualization.cpython-312.pyc create mode 100644 src/algorithms.py create mode 100644 src/data_generation.py create mode 100644 src/init.py create mode 100644 src/utils.py create mode 100644 src/visualization.py create mode 100644 testing_omp.ipynb create mode 100644 uv.lock diff --git a/.python-version b/.python-version new file mode 100644 index 0000000..e4fba21 --- /dev/null +++ b/.python-version @@ -0,0 +1 @@ +3.12 diff --git a/pyproject.toml b/pyproject.toml new file mode 100644 index 0000000..dfd6358 --- /dev/null +++ b/pyproject.toml @@ -0,0 +1,13 @@ +[project] +name = "compression" +version = "0.1.0" +description = "Add your description here" +readme = "README.md" +requires-python = ">=3.12" +dependencies = [ + "ipykernel>=7.1.0", + "matplotlib>=3.10.7", + "numpy>=2.3.5", + "scipy>=1.16.3", + "torch>=2.9.1", +] diff --git a/src/__pycache__/algorithms.cpython-312.pyc b/src/__pycache__/algorithms.cpython-312.pyc new file mode 100644 index 0000000000000000000000000000000000000000..53e11c130ff4782c5b138dd63d1f0646e9d25d77 GIT binary patch literal 5293 zcmbtYU2Gdw7M|;WJN}9D*R+Io`lArHP)NcGS_-Q)2{f=t8cGW-F44p@PR7_X&Yf{^ ztTAgORUiq zkTm)*;!W?PD`wuto1wSx7NFB*H)!Z6Y~ro&TdvqvQNVtWPRxXwrCDLd41f1iu=^UL zF%e3$rv+gxZAn{IN~yPY8fjJ@g-y3nl_G7^P{dv%Z|ZK>#%cQ^lXj?1V@We>*4s4? zq|K_~3#Oe-X{YAYOm9yx4E~GisY`Gedu!&mfgj%mYrw~Qn`Tde2huLyq`5T58CY(z zt8*`P%WBt;S2dThtI?-BG)JVj4P}QxfxyqanK%E&q&dQ-{Xm*_H(A{GW8MfQ+S4?* zhIsQAmfN*c2~w*(X)pb02v$AR&J^5?zFyu{;z#1mUogtJ~G)~KQ?%fupqJ;W)1 z#ndN4z)#Q^L94`G^EdIfdW@hLK@zd*b`l2`6p>GGQQ{OOUP#U>f=bMA9>g7zF&3g# zHxt)_ps4dY32}_gD+xGnl{kRDIzsaViJ(27RQzBtb!|)gUJ0EJUW7ZM1XVc}6@wFU z2sD;dC3sh0gmMDTBg5<-W89wnGr4Epo5+l1mUrCV{JGq@0$1`EE>+wE znaOQmXMQEOay^+jx82#5ncC^?FCEKD&AD4tG~A%~l2`%8vb6 zN8xZ`u7q^@LULoMyzh9q`#5lTJM&^r%u6|`^hU)ym^JS{!gP3>Rjdp=_kd-(2TD_w zuEFmZWIdd-Wl?r?yZ6x&S9~*T&4#YIcFiyk(%t^dukM4-m=?fv)I53r4EXc^1k7gO zvC*Aco5tL(f$3r^tkyxZLB9u9YmmUSg-;%7))WB0>NfblFx8>g39BZ$nszmTMjIGS zcc}E1>#Y&)H5Y~60>WO+{GLtg04Sc&-)&7G+XhCPR)5kHksf2uMqdSV!&d;M4eQ(N z1WCcq%kVVGXamPhtNjff!o&JIL-%_h^2tTZe3?)>DUU1k(IX z>BU2D0(NQU47%}yaTBnqfNt0{rw;k=!1Z>~5P6;xvA{oZArX(uSpDe?;QR%e1L$mL zIR!9Cme{d+LNE+a2x)^NCt@Ny$WE_9v}K1zo*Eei1lF0Rq;y z4KOxS-G~yb(g&rB37nF^5Tzxxj`Y)yHwa%b2z782)m1hstO!vG#7SKPx(?Y&j2od4 zD~pi4tZ-P=QGZB|Q%r|MMo(=F{Ktu?5UA=un^0Q~Na^gDSD4WasUvSS6Ac045oEJz>jIdj%kP^wk1X7LT?i%Aa*3N2x2j%)<6%mksAA>87OZ?=V?4h6RBo!UeDlby$JZaY@AqdOIGC=UwZ3BCP17y+x_e{pW8XLZfpULfbFAF|M8$tH zYuoX6Q-Tt@WnMRzxOMx7hqAW1iXSbkMT(J)zD?7nf8)UBr8{Tu%xzw&^gUZ~pUP4I z^>-D93vxB%Ym`W5w747u6#uRD;!Oj}2ovrt>tfL(QTWiq-OGZ)r&5LW)M^AD4%8shuFB z%o}Mgdnhq&x+!$fQeM%CK*Mwta8^OUs>GwBT8-T_Y0?8cu_((})dN1Q+N21vLw!Q)xqt(Y0~Il+ z=7;HHgjl&~e2F8L1wrMAb&-q3IATkRG@@ggwWpt{mljl#|_R9N%L`J{;FU~!33 z{Tm(`=D`8R=g%+YmI}+I!`G$vUdoJT%{0J5G|tcDW=f+K_n{4c*?lB4xzpjvpUR!e zzmR*ObhOfOa08V)4reB|-M;)}Zn7|*dj*OdZ+C&uMN4y~#QN)H@3BwuXYYLS&Yj-7 zJ--|H5|y7C`*Q5h3x5s&G5oiSe~N8gyi|ViQhDN1`Ke2l$AJ9xtt)SCU0v7`#PU_~ z>!|ciR4GT5Ep@dLO_i^vb{XbfG;aD2!@O1P-b54h%{ytzya;L(Y`K>~g^ter^SS3s zU8OOqq;0EXaLY2N$G-rY3D}7hYTEd!ei~J<9RgSA5Jl{@e_-ft`kc|3bQgZ_I1`h3 z$QWM07lE37?g~9*2*n8flj-_)aOkt}C*k|d3FN;YM881(T?uug#|lT*ju($VU|^^V F`!APOxz_*y literal 0 HcmV?d00001 diff --git a/src/__pycache__/data_generation.cpython-312.pyc b/src/__pycache__/data_generation.cpython-312.pyc new file mode 100644 index 0000000000000000000000000000000000000000..18fb49856365357153d52897fc1ec9a16377a29d GIT binary patch literal 2797 zcmb7GPi)&%7`GkUapR<=Nj7bx+q`aS8;ur?9bnxbX==BXjiEuufhr@ou@f9(J9~Cm z(>YR*c4!4syHk7MP^3w8+73N(;J^`yOG75LdMgqVT*d)aw5Of;o*g@B$%J@H-uJ!t zz4!fj@B4nwKgVJb3fgK;(*6=C>UT2m8{cGhCV*L@6iT6s)D-PfW-0`fDY7~@#nGOO zpW>B}%H z5d3$d46*G{1v0y@RcV+9`TkaAV4mGSOHtJj%==NbiK{HkL-hMwm9s^Et`POP7IkQc z$uV}fKl7A+()6av+r9p*!#rt5Hcs976ub!A313!7`do`TtiuI*gtoN@TWfr-%?j;X zafD!Zm+jszSzUZ&*gMYss80s99Tr#kQ;&nvs{lNK=oLGf`kauNtbi$20e#YL}7GwB@>! zA+CZwqcmbDGD31CuzCA4b&tz|)*(xqRY#>Szy}j$$UvHLg&Bz19j82VUhMy2qIp2x zvHX7*)cBQ1Ida>B%5{@=6!F347ba^Ht>!qS*mlYL9b2Z>gxUw`|D z^0WAr+KpYF>P{?PY{X9dO|jhI9KDq|ymaZ|rIk0@+ z+C(FMaW1^o)4NcauWa;4^&V+uc;(pI(I16I&%1N%X8*vPxOi>(gT?E=2*wgXim!^R=f@SqEl`vV*6m({tj`3Jow%63J~(nE+rzcG#co^nkR$ zt_5rk73^khe{;uYsX!8IUvn6MXL#NMc;*}q;F?uJ9y~iCfJj#UsuM&uGX)S4kkH5% z0T4Ze^lG;=Ec#UdKm~QT2ce9zJ`L#$NNbqJFezI}EkaU5p2J$n1`z9DpbaQG=yV|s zG`?c<9w_Os9psu`)};V$Tudg){^g<7AQDw;}e`#lB^I`IFT<-%m8eE4A^>{z&3{0ZD+cd}GvuCR7JWqoWYSSAio0Byc0GHr|P|!Csr$HN-x{ zSrwJyUfTrqB!UhJPOWrQoT{KwQC0neld7JotJFlPbkVkzsQOp_sFYq#J@x)+-w_GWk+`h4)N$NjQ7Dyw%Pc;7sjnyXS_5eq@oV9mzGyfrM4A?{Uxc>GpUwI{%C+n0VV~bK@x&d zLQJZQ)-kD`Ne$6@rWtmn1|~H!sVN#JjnJ=|NiESPCbgoJT@zVr*Yu~15k0Oq?&LVT z4i{$wY9 zsVe?f>rapUC3o|n9Wqk7Nt6V+N)qw!|Ly1Zzxd6}8+Is_Oe-X9>WP%G*p1zru?C0G zEkadGPZ_4&ViLpDjX2a>R3BGp>Y8bbplFL~BA%0zDUBq|y=+pVP!daBB{ZwB>OE;| z)DALMNvqcAnMkwkR}@1{5=F6t3TkB%$k!>#m5iEjT4)U#BkG1_hZRLNjFjaVqbSr5 zO%&HkLrCh8Gyt)EBZ(AP7{-bwB+W=#u}L&7O4k7Q6K)wO_oWf*9lBr=Y7SYcWI`W0 zl8R-L#IVevL8X7_5>ct#H8e<)#Dsm2_YEC^!;$-8&6JoX?8?wtni_-CF^5j8x*@yL zkXOT`v7wBmC(J$REcL;pj38rDAm8DhwQVe%n%X)qZCqH_QTXOm%e>UF(7vH?dTQUi zv|*vG-Dz$2aP1pGZw>Z%&UMPO(%NZpUXm9!ZJw3ZO~W{w7s9QD{t4h(7uFsqoSYK> zARVBcB_m?)g$9}9aI5hKEx!xoHfI5K%9vNHREPFglsuQ`OD^KNkQc6tdC@Zpj$cv6 zN{+}=pBFV=6Fw9ly0w<2f!ULpho;Vu(uFO386zAV!I-%2YM9R8n?< zDmy^k!+J1sR;7SAI7+jZ$w|3a25>PRhdq-?4#PR8Mq~uHyemmmGehC{0TB^r9Anik zu~Z_HG@zHM#|t z;T$>AD<|b~ximb*V>%xZY)Kv0P1}E&kTjTJMtrtlr0p7KZ)_ia4Z9|xgN<=pGEy`d zk!(I`^M=hIvPCe+lwc?{mu>>aURT;-Wu*t8UxC&Z_?ZWR6u8ejxj<+#Pz+3li{WX0 zx@+FQv2bW17%KEH1na*?C$q)uDU8)=E%g2`Ebu%um>7L4TX~ol`8;=MleAB z5}4Znt~{3m*j*Pi-U1vrr5ZQ^hHiTfV&E%uxw0;fEqb(Z{)&T^=xwBl4KDEQ5}9^;!c##knz#71)lY++hWlu_e2@O@q$8 zP)E?0;@YziO;#@6#kJScMLf&Je?f^zbSv<-6iXRnb_i$;uDt<2yB7TMsG24Kc7EIz z#&uiFDP2gqZ9ZqBw?gAwKsU3=75$1*-gbHbR3QFx=4l`WZmEL{)lUo*w;??10K31;)_s_UhciqqmcjnufE%L)~mU9*H=FWHM464 zn9o)R@=CYt1{|-+rQ7E9&Hr4vIZFp2ixLg4SuqF zuH}5;)U(h!NHrYaUB)g`6UZna0phjb#Opkt1Fcua>~d7Ch}qs5 z+?n!aAB6dU#}8H0eVz+IYYs+$s4Z&33X{?IB`vE*F|9@lQ zy3kgZ@A&dk-j{>-4dxpx4gM7v{Q|&K!xlb4yt#xXdlOhht-2zoU}ID!7DuaMbTlzh=WaJDR8 zr@g?rL4bZ0csqc}O(qUW4T}eKJ68IfKJL>uHRR1yupTBpmY~=b(iGwn-oP^wq(op#ugA0u4uS%Q`EIBsIpbnsRg@s0#qeHthhsQ+5Mnr zhq6R00XZlT5y+=&bXs4l*_a89|jZIqSF@@@6dRElp!g>(Gq249=CzCxfMfH>L|7pxYa`Rv%=xUL5Uedyf6kT6 zc{%|w;D?U|^m@a`f^mc*qaGMl58*+B#JbpKXFyNYTlEoG*&aov?Z8mQ-<}hMRS};c zAp;)biBprehQlbHU3>{-ot$;Ccew9N@Rdji$^%tgN{U!d{#Wlu^!y;tamb0 z^*iEngbZ_@>f?4l6g`3?I(|N{2KGdEoXhv16DXeS%{aE+LAqLkd$gS5Qa$JdRY~=) zclN@~f2bOELTbPXS0q8GfM_-71dDI=)^LoKR5z|5Im7A2QI7Rs@$DYYF{hjJJwC$D z9vnTnN(8)#IFaJ{gEE4^BR_QiqE6HaR-me?G4sneR9A>q7hWb~+y+!|n&UlqcwKk% z5&u8tBkp+J*!svt?w=EPB8=wrfuBF*)E)%trQVEV>z#84Svt9=M#JBqu}=gw@<%VP zxDQ40W3G?KmSIel%^cAzQzn+YpxI?b*D6RR1tenxJ*xovRbomNy=&|? zMq>nnW~9pPRZQotUyjYet)L!^`kadLN?9keX3H~{iBj#z3}rE^7$sdJWfg&0%_Lm| zx0FTAC>wH*52<4b-Iu(M9?i_UWQ{BxR0FXyHC?uj79hm$(FHzrg%5YB%YKut1=s-# zXKhvs`&Hd#q{Ez$+iTi!QIDa+bt5m~ns6{+c$?523hF2p5X zrfv9Y{N;aOVCc$1B|O24O0Fc_<*Y8}O>jd^V^;<1>0m6R!=66SR8pXR3oGV40wUbo zx`pkOhl-0-TFe#{l9Fj;Pkfjy$E+VvFH{xvm?av4;>*D+z=V(bFj92t(+p*viub7G zmKgN|*S0W~@(>Q8;SUtOjBa4eND9Wv67{QyD7gZaY*r^UfRSBLN{D*w67_?x%$Qfr z6Y8_?WB7y3B4)1uIn+sy`zz%wO_O17q3CQY<3(Zsn0t0?D!GAEuZ~RW zE$M{%7g$Y>hitnaXzXC`8{aPEE@$4ip&Mj~W$0Swx|J&%&^PSN z-RxxM*GR$g#mrq~ARFS5-^pBuhZ^(-qXe0=;SgtTV~e#0J97(;uiTks_Da||m*HK^ z%}BbmM29#9K@gDTZcoFkQ?mDz{Z}Z%W#QEsVPJSWIl7e`U4CyjGSoQQipUSIFHbDr z-wnh*sywW$-fIPhccSr?nfgp);>pzGspiGc-u?95#&|1wemgq06&N zzP}c(OS_@ImE-l}tL49kMs}iSn^W7P*S1El{bgZ${La?+omTW$HStZlzmCRM#rh2p zObo0}tmf8kG~Q}VZI7h4M$(@zY+sn(x-i{J{Gu*>;}`md8<+o-|E&0Fv6ikdtUXx0-{^1NdFFe2FJ-VsX+mWe0 z^PPMRy9iBSCY6BGgL7&2$j^2j^H4hOA*YgAHcCsFy<71K_|Xs(EfY<*+YLana~cSo zWxRfP`ImHy=-M0<5yPmz4KaH#(KuV%yN2BJ=^kIVs-6mXoSC@_zi)$A;IzSQbPZ3# wlyy8i1;1BbQ50VYV_yl$uY~9eVFZvD!s!>nDIosa_apIC^Mh{$0IsV40tF5^&j0`b literal 0 HcmV?d00001 diff --git a/src/algorithms.py b/src/algorithms.py new file mode 100644 index 0000000..0b6e176 --- /dev/null +++ b/src/algorithms.py @@ -0,0 +1,123 @@ +import numpy as np + +def omp(A, y, epsilon, max_iterations=np.inf): + """ + Orthogonal Matching Pursuit (OMP) algorithm for sparse signal recovery. + + Parameters: + D : np.ndarray + The sensing matrix (size: m x n). + y : np.ndarray + The observed vector (size: m x 1). + epsilon: float + The error tolerance for stopping criterion. + max_iterations : int + Maximum number of iterations to perform. + + Returns: + x_hat : np.ndarray + The recovered sparse signal (size: n x 1). + """ + m, n = A.shape + x_hat = np.zeros((n, 1)) + residual = y.copy() + index_set = [] + max_iterations = min(max_iterations, n) + err = np.inf + while err > epsilon and len(index_set) < max_iterations: + # Step 1: Find the index of the atom that best correlates with the residual + correlations = A.T @ residual + correlations[index_set] = 0 + best_index = np.argmax(np.abs(correlations)) + index_set.append(best_index) + + # Step 2: Solve the least squares problem to update the coefficients + A_subset = A[:, index_set] + x_subset, _, _, _ = np.linalg.lstsq(A_subset, y, rcond=None) + + # Step 3: Update the residual + residual = y - A_subset @ x_subset + err = np.linalg.norm(residual) + + # Step 4: Construct the full solution vector + for i, idx in enumerate(index_set): + x_hat[idx] = x_subset[i] + + return x_hat + + +def psomp(A, y, K, sigma2=None): + """ + Paired-Support Orthogonal Matching Pursuit (PSOMP) + Based on Algorithm 1 in Masoumi & Myers (2023). + + Inputs: + A : sensing matrix (M x N) + y : measurement vector (M,) + K : sparsity level of x + sigma2 : noise variance (optional for stopping rule) + + Outputs: + z_hat : estimated augmented sparse vector (2N,) + """ + + M, N = A.shape + + # Build augmented matrix + A_aug = np.hstack([A, np.conjugate(A)]) + + # Initialize + r = y.copy() + Q = [] # support set + z_hat = np.zeros(2*N, dtype=complex) + + max_iter = 2*K + err = np.inf + while len(Q) < max_iter and (sigma2 is None or err > sigma2): + + # --- Step 1: support detection (paired) --- + # Compute both matching terms + match1 = np.abs(np.conjugate(A).T @ r) # |a_j^* r| + match2 = np.abs(A.T @ r) # |a_j^T r| + + # Choose best index from first N entries + j = np.argmax(np.maximum(match1[:N], match2[:N])) + + # Paired support structure + pair = [j, j+N] + Q.extend(pair) + + # --- Step 2: least squares on selected support --- + A_sub = A_aug[:, Q] + z_sub, *_ = np.linalg.lstsq(A_sub, y, rcond=None) + + # assign + for ii, idx in enumerate(Q): + z_hat[idx] = z_sub[ii] + + # --- Step 3: update residual --- + r = y - A_sub @ z_sub + + + return z_hat + +def find_x_xi(z : np.ndarray): + """ + Function to recover the original signal and IQ imbalance parameter from the IQ imbalanced signal. + Parameters: + z : np.ndarray + IQ imbalanced signal (size: 2n x 1). + + Returns: + x : np.ndarray + Recovered original signal (size: n x 1). + xi : float + Estimated IQ imbalance parameter. + """ + z_1,z_2 = np.split(z, 2) + alpha = np.linalg.norm(z_1)**2 + beta = np.linalg.norm(z_2)**2 + gamma = z_1.T @ z_2 + xi_hat = (alpha - beta - 2*gamma + np.sqrt( (alpha - beta)**2 + 4*np.abs(gamma)**2))/(2*(alpha - beta + np.conj(gamma) - gamma)) + x_hat = z_1/xi_hat + return x_hat.reshape(-1,1), xi_hat \ No newline at end of file diff --git a/src/data_generation.py b/src/data_generation.py new file mode 100644 index 0000000..045e80d --- /dev/null +++ b/src/data_generation.py @@ -0,0 +1,59 @@ +import numpy as np +import scipy as sp +from src.utils import Config +import random + +def build_dataset(config: Config): + """ + Function to build a dataset of sparse and dense signals. + Parameters: + config : Config + Configuration object containing parameters for dataset generation. + Returns: + dense_data : np.ndarray + The dense signal dataset (size: vector_size x data_set_size). + sparse_data : np.ndarray + The sparse signal dataset (size: vector_size x data_set_size). + """ + # Fetch configuration parameters + vector_size = config.vector_size + data_set_size = config.dataset_size + max_amplitude = config.max_amplitude + min_sparsity = config.min_sparsity + max_sparsity = config.max_sparsity + + sparse_data = np.zeros((vector_size, data_set_size), dtype=float) # Ensure float type + + # Iterate over the columns of the sparse_data matrix to define the data samples + for i in range(data_set_size): + sparsity = random.randint(min_sparsity, max_sparsity) + indices = random.sample(range(vector_size), sparsity) + amps = np.random.uniform(-max_amplitude, max_amplitude, sparsity) # Use negative and positive values + sparse_data[indices, i] = amps + + # Define the DFT matrix and multiply our sparse_data vectors with it to find dense data + DFT = sp.linalg.dft(vector_size) / np.sqrt(vector_size) + dense_data = DFT @ sparse_data + + return dense_data, sparse_data + +def generate_sparse_vector(sparsity: int, vector_size: int, max_amplitude: int): + """ + Function to generate a single sparse vector. + Parameters: + sparsity : int + The number of non-zero elements in the sparse vector. + vector_size : int + The size of the sparse vector. + max_amplitude : int + The maximum amplitude for the non-zero elements. + + Returns: + x : np.ndarray + The generated sparse vector (size: vector_size x 1). + """ + x = np.zeros((vector_size, 1), dtype=float) # Ensure float type + indices = random.sample(range(vector_size), sparsity) + amps = np.random.uniform(-max_amplitude, max_amplitude, sparsity) # Use negative and positive values + x[indices, 0] = amps + return x \ No newline at end of file diff --git a/src/init.py b/src/init.py new file mode 100644 index 0000000..e69de29 diff --git a/src/utils.py b/src/utils.py new file mode 100644 index 0000000..ae982c0 --- /dev/null +++ b/src/utils.py @@ -0,0 +1,113 @@ +from dataclasses import dataclass +import numpy as np +import scipy as sp + +@dataclass +class Config: + dataset_size: int = 10000 + vector_size: int = 100 + max_amplitude: int = 100 + min_sparsity: int = 7 + max_sparsity: int = 9 + noise_level: float = 0.01 + omp_epsilon: float = 1e-6 + omp_max_iterations: int = 50 + sensing_matrix_rows: int = 50 + alg: str = "omp" # Options: "omp", "psomp", "ml" + model_path: str = "models/sparse_recovery_model.pth" + +def generate_sensing_matrix(m, n): + """ + Function to generate a random sensing matrix. + + Parameters: + m : int + Number of rows (measurements). + n : int + Number of columns (signal dimension). + + Returns: + Phi : np.ndarray + The generated sensing matrix (size: m x n). + """ + #DFT = sp.linalg.dft(n)/np.sqrt(n) + A = np.random.randn(m, n) + Phi = A# @ DFT + Phi = Phi/ np.linalg.norm(Phi, axis=0, keepdims=True) + return Phi + +def apply_iq_imbalance(x,xi): + """ + Function which applies IQ imbalance to a given signal. + Parameters: + x : np.ndarray + Input signal (size: n x 1). + xi : float + IQ imbalance parameter. + + Returns: + y : np.ndarray + Signal after applying IQ imbalance (size: n x 1). + """ + z_1 = xi*x + z_2 = (1 - np.conj(xi))*np.conj(x) + z = np.concatenate([z_1,z_2]) + return z.reshape(-1,1) + +def generate_random_phase_matrix(m :int ,n : int): + """ + Function to generate a random phase matrix. + + Parameters: + m : int + Number of rows. + n: int + Number of columns. + + Returns: + P : np.ndarray + The generated random phase matrix (size: m x n). + """ + + phase_matrix = np.exp(1j *np.random.uniform(-np.pi,np.pi,size=(m,n)))/np.sqrt(n) + + return phase_matrix + +def unitary_dft(n : int): + """ + Function to generate a unitary DFT matrix. + + Parameters: + n : int + Size of the DFT matrix. + + Returns: + DFT : np.ndarray + The generated unitary DFT matrix (size: n x n). + """ + DFT = sp.linalg.dft(n)/np.sqrt(n) + return DFT + +def iq_imbalanced_measurement(A : np.ndarray, x : np.ndarray, xi : complex, noise_level : float = 0.0): + """ + Function to obtain IQ imbalanced measurements of a signal. + + Parameters: + F: np.ndarray + Sensing matrix (random phases)(size: m x n). + x : np.ndarray + Original signal (size: n x 1). + xi : complex + IQ imbalance parameter. + noise_level : float + Standard deviation of the Gaussian noise to be added. + + Returns: + y : np.ndarray + IQ imbalanced measurements (size: m x 1). + """ + y = xi*A@x + (1 - np.conj(xi))*np.conjugate(A)@np.conjugate(x) # IQ imbalanced measurements + if noise_level > 0: + noise = noise_level * (np.random.randn(*y.shape) + 1j * np.random.randn(*y.shape)) + y += noise # Add noise + return y \ No newline at end of file diff --git a/src/visualization.py b/src/visualization.py new file mode 100644 index 0000000..35750e5 --- /dev/null +++ b/src/visualization.py @@ -0,0 +1,63 @@ +from src.data_generation import build_dataset +import numpy as np +import torch +from src.utils import Config +import scipy as sp +import matplotlib.pyplot as plt +from src.algorithms import omp +from src.utils import generate_sensing_matrix + +def visualize_reconstruction(config: Config, model = None): + """ + Function to visualize the reconstruction of a sparse signal using different algorithms. + Parameters: + config : Config + Configuration object containing parameters for the algorithms. + model : torch.nn.Module, optional + Pre-trained model for ML-based reconstruction (default is None). + max_amplitude : int + Maximum amplitude of the sparse signal. + min_sparsity : int + Minimum sparsity level of the sparse signal. + max_sparsity : int + Maximum sparsity level of the sparse signal. + vector_size : int + Size of the sparse signal vector. + """ + vector_size = config.vector_size + # h is the dense signal, x is the sparse signal + h, x = build_dataset(config) + + if Config.alg == "ml": + H = np.concatenate((h.real,h.imag)).T + + H_tensor = torch.tensor(H,dtype=torch.float) + if model is None: + raise ValueError("Model is not loaded.") + H_hat = model(H_tensor) + + h_hat = np.array(H_hat.detach()) + + h_real,h_imag = np.split(h_hat,2,1) + h_hat = h_real + 1j*h_imag + h_hat = h_hat.reshape(-1,1) + DFT = sp.linalg.dft(vector_size)/np.sqrt(vector_size) + iDFT = DFT.conj().T + + x_hat = iDFT@h_hat + + elif Config.alg == "omp": + A = generate_sensing_matrix(config.sensing_matrix_rows,config.vector_size) + DFT = sp.linalg.dft(vector_size)/np.sqrt(vector_size) + # First generate the output + y = A @ h + x_hat = omp(A@DFT,y,config.omp_epsilon,config.omp_max_iterations) + + else: + raise ValueError(f"Algorithm {Config.alg} not recognized.") + + indices = range(len(x_hat)) + plt.vlines(indices,0,x,linewidth=3) + plt.vlines(indices,0,x_hat,colors="orange") + + plt.legend(("x","x_hat")) \ No newline at end of file diff --git a/testing_omp.ipynb b/testing_omp.ipynb new file mode 100644 index 0000000..566a1d6 --- /dev/null +++ b/testing_omp.ipynb @@ -0,0 +1,328 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 52, + "id": "f3283bb6", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAioAAAGdCAYAAAA8F1jjAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjcsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvTLEjVAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAJc1JREFUeJzt3Q9U1FX+//E3yF9B/ogKGoh/cv1vGZZh1rrJkUrbTH9WG7r+C7MwUzupZJqWimlrpsc0PWl/FrP8tlq5abmYpkfS1CytJEtNjgSSKfgnAeHzO/e2M8uQGggDd2aej3Nu8/nHcL1MM6+5n3s/Hy/LsiwBAAAwkHddVwAAAOByCCoAAMBYBBUAAGAsggoAADAWQQUAABiLoAIAAIxFUAEAAMYiqAAAAGP5iIsrKyuTnJwcadCggXh5edV1dQAAQCWo682eOXNGmjVrJt7e3u4bVFRIiYmJqetqAACAq5CdnS3R0dHuG1RUT4rtHxoSElLX1QEAAJVQWFioOxpsn+NuG1Rsp3tUSCGoAADgWv5o2AaDaQEAgLEIKgAAwFgEFQAAYCyXH6MCAEBNTJW9ePGilJaW0pg1pF69euLj41PtS4cQVAAAHq24uFh++uknOX/+fF1Xxe3Ur19fmjZtKn5+flf9HAQVAIDHUhcNPXLkiP72ry48pj5QuXhozfRQqQCYn5+v27dNmzZXvKjblRBUAAAeS32YqrCiruehvv2j5gQGBoqvr6/8+OOPup0DAgKu6nkYTAsA8HhX+20fzm9X/jIAAMBYBBUAAGAsggoAADAWQQUAABiLWT8AAFRw8mxRrbZJRLA/f4PLIKgAqPYbetzM/zhs2/N0Am+8cGkVX9POdnRO3yodn5+fL507d5axY8fKU089pbft2LFDevXqJRs2bJDevXuLu+DUD4BqC/S6IEe79NNFLQNwrsaNG8uKFStk+vTpsnv3bjlz5owMGTJExowZ41YhRaFHBQAAF3TXXXdJcnKyJCUlSbdu3SQoKEjS0tLE3dCjAgCAi3rhhRf0zRTXrFkj6enp4u/vfmNd6FEBAKACNc6qMi6Wlcn3eWekXcBRvX7wQgu5NrKB+NTSlW5/+OEHycnJ0bcBOHr0qB634m4IKgAAXOUsnIulZZIfeEEiAn8LJqFevhIR5C8+9ZwfVIqLi2Xw4MFy//33S9u2beWhhx6S/fv3S5MmTcSdcOoHAAAXNGXKFCkoKJCFCxfKpEmT5E9/+pOMGDFC3A1BBXXv4jmRVV6/FbUMALiiLVu2yIIFC+TNN9+UkJAQffM/tbxt2zZZsmSJW7Uep34AAHAxvXr1kpKSEodtLVq00D0s7oYeFQAAYCyCCur8qqbtp260r6vl2r50NQDAXAQVAABgLIIKAAAwFkEFAAAYi6ACAACMRVABAADGIqgAAABjEVQAAICxCCoAAHiQ6dOny/XXXy+ugqACAACq5OjRo+Ll5SX79u0TZyOoAAAAYxFUAACoSN3JvZLFq1Q9/qrLb8tXUaooPz9foqKiZPbs2fZtO3bsED8/P8nIyKjUc6i7LasbGYaGhsoDDzwgZ86cse/buHGj9OzZU8LCwiQiIkL69esnP/zwg31/y5Yt9WPXrl11z4q6SaKzcPdkAAAqeie40h+iHcutl1+ukgetKh3euHFjWbFihfTv31/69Okjbdu2lSFDhsiYMWOkd+/ef/jzKnSsW7dO1q9fL6dOnZL77rtP5syZI7NmzdL7z507JxMmTJAuXbrI2bNnZdq0aXLvvffqUz3e3t6ya9cuuemmm+Q///mPdOzYUQckl+xRKS0tlalTp+rkFRgYKK1bt5bnnntOLOt/fxC1rBqgadOm+piEhAQ5dOiQM6sFAIDLu+uuuyQ5OVmSkpJk9OjREhQUJGlpaZX62bKyMnnttdekU6dOcuutt+qQU74nZuDAgTJgwAC59tpr9cBbFYr2798v33zzjT0oKaq3RfXsNGzY0DV7VJ5//nlZsmSJvP766zpx7d69W4YPH667mcaOHauPmTt3rixcuFAfowKNCjaJiYm6MQICApxZPQAALu2+s5VqmYulZZKVWyAdA47o9a8vtJS2UaHiU692Rla88MILOmysWbNG9uzZI/7+/pX6OXXKp0GDBvZ11Vlw4sQJ+7rqMFCdCDt37pSff/5ZBxvl2LFj+vfVJqcGFXW+7J577pG+ffvaG+att97SXUa23pQFCxbI008/rY9T3njjDYmMjNRdUuqcGQAAtc4nqHLHeZWJVe+iiE+gXrXqBf32s7UUVH744QfJycnRQULNxOncuXOlfs7X19dhXY0zsYUR5e6775bY2FhZvny5NGvWTO9TAaW4uFhqm1NbskePHror6bvvvtPrX375pWzfvl3uvPNOvX7kyBHJzc3Vp3tsVG9L9+7dJTMz85LPWVRUJIWFhQ4FAABPU1xcLIMHD5b7779fD6t46KGHHHpFrtbJkyclKytLdyKo8S7t27fX41jKs41JUUM8XLpHZfLkyTpItGvXTurVq6f/QWqgjjqfpqiQoqgelPLUum1fRer824wZM5xZbQAAjDdlyhQpKCjQwyeCg4Plww8/lBEjRugBstURHh6ux54sW7ZMnxJSp3vU53l5TZo00eNK1eyg6OhoPVRDdTS4XI/KO++8I+np6bJq1SrZu3evHoeizqepx6uVmpqq/zC2kp2dXaN1hqHU9L1VXr+Vq5jKBwDuZMuWLXrohJpiHBISomfiqOVt27bpsaHVoZ5r9erVesyLOt0zfvx4mTdvnsMxPj4+OiC98sor+tSQbfiGy/WoPPnkkzqF2caaqHNnP/74o+4VGTp0qB4prOTl5enUZqPWL3d5XzVQqLKDheAeTp4tkp6zNsq3/z312n7qRtk+pZ9EBPM6AOCZevXqJSUlJQ7b1DhQ9QW+MpfQV6W8cePG6WKjhmTYZvjYlJ+xq6hTTao4m1N7VM6fP6+TWXnqFJBtwI6a5aPCSvkpUepUkRplHB8f78yqAQAAF+DUHhU1aliNSWnevLmenvzFF1/I/Pnz9Tk02yhjleBmzpwpbdq0sU9PVt1I6iI2AACgatTnrTp7cSnqVI1tnKircGpQWbRokQ4ejz76qB6JrALIww8/rOdm20ycOFFfAW/UqFFy+vRpfcleNTiHa6gAAFB1alBtxdNCNhUnr4inBxV1MRk12EeVy1G9Ks8++6wuAACgemJjY92qCbkpIQDA41UcKApz2pWgAgDwWLYrtKrJH6h5tnateCXcquDuyQAAj6VmooaFhdmv6Fq/fn09JKGy1L1+yi4Wy4X/XlleL1+4UGv3+jG5J0WFFNWuqn1VO18tggoAwKPZrul1NZefLy2zJL/gV/H1+1mv5xd7ife5QKnnXfmw487CwsLs7Xu1CCoAAI+melDURUfVZeEvN1vmck6dK5ax722RD/80Vq+nfLdQ0h/uJeFBv90Lx5P5+vpWqyfFhqACAMB/TwNV9YPV76KX/HSmRAKKf7tuiVr28/eXgACunF1TPPskGgAAMBpBBQAAGIugAgAAjEVQAQAAxiKoAAAAYxFUAACAsQgqAADAWAQVAABgLIIKAAAwFkEFAAAYi6ACAACMRVABAADGIqgAAABjEVQAAICxCCoAAMBYBBUAAGAsggoAADAWQQUAABiLoAIAAIxFUAEAAMYiqAAAAGMRVAAAgLEIKgAAwFgEFQAAYCyCCgAAMBZBBQAAGIugAgAAjEVQAQAAnhtUjh8/LoMHD5aIiAgJDAyUzp07y+7du+37LcuSadOmSdOmTfX+hIQEOXTokLOrBQAAPD2onDp1Sm655Rbx9fWVDRs2yDfffCP/+Mc/JDw83H7M3LlzZeHChbJ06VLZuXOnBAUFSWJioly4cMGZVQMAAC7Ax5lP/vzzz0tMTIysXLnSvq1ly5YOvSkLFiyQp59+Wu655x697Y033pDIyEhZt26dPPDAA86sHgAA8OQelffff1+6desmgwYNkiZNmkjXrl1l+fLl9v1HjhyR3NxcfbrHJjQ0VLp37y6ZmZmXfM6ioiIpLCx0KAAAwD05NagcPnxYlixZIm3atJGPPvpIHnnkERk7dqy8/vrrer8KKYrqQSlPrdv2VZSWlqbDjK2oHhsAAOCenBpUysrK5IYbbpDZs2fr3pRRo0ZJcnKyHo9ytVJTU6WgoMBesrOza7TOAADAQ4KKmsnToUMHh23t27eXY8eO6eWoqCj9mJeX53CMWrftq8jf319CQkIcCgAAcE9ODSpqxk9WVpbDtu+++05iY2PtA2tVIMnIyLDvV2NO1Oyf+Ph4Z1YNAAB4+qyf8ePHS48ePfSpn/vuu0927doly5Yt00Xx8vKScePGycyZM/U4FhVcpk6dKs2aNZP+/fs7s2oAAMDTg8qNN94oa9eu1eNKnn32WR1E1HTkpKQk+zETJ06Uc+fO6fErp0+flp49e8rGjRslICDAmVUDAACeHlSUfv366XI5qldFhRhVAAAAyuNePwAAwFgEFQAAYCyCCgAAMBZBBQAAGIugAgAAjEVQAQAAxiKoAAAAYxFUAACAsQgqAADAWAQVAABgLIIKAAAwFkEFAAAYi6ACAACMRVABAADGIqgAAABjEVQAAICxCCoAAMBYBBUAAGAsggoAADAWQQUAABiLoAIAAIxFUAEAAMYiqAAAAGMRVAAAgLEIKgAAwFgEFQAAYCyCCgAAMBZBBQAAGIugAgAAjEVQAQAAxiKoAAAAYxFUAACAsQgqAADAWAQVAABgrFoLKnPmzBEvLy8ZN26cfduFCxckJSVFIiIiJDg4WAYOHCh5eXm1VSUAAGC4Wgkqn3/+ubzyyivSpUsXh+3jx4+XDz74QNasWSNbt26VnJwcGTBgQG1UCQAAuACnB5WzZ89KUlKSLF++XMLDw+3bCwoK5NVXX5X58+fL7bffLnFxcbJy5UrZsWOHfPbZZ86uFgAAcAFODyrq1E7fvn0lISHBYfuePXukpKTEYXu7du2kefPmkpmZednnKyoqksLCQocCAADck48zn3z16tWyd+9efeqnotzcXPHz85OwsDCH7ZGRkXrf5aSlpcmMGTOcUl8AAOAhPSrZ2dny+OOPS3p6ugQEBNTY86ampurTRraifg8AAHBPTgsq6tTOiRMn5IYbbhAfHx9d1IDZhQsX6mXVc1JcXCynT592+Dk16ycqKuqyz+vv7y8hISEOBQAAuCennfrp3bu37N+/32Hb8OHD9TiUSZMmSUxMjPj6+kpGRoaelqxkZWXJsWPHJD4+3lnVAgAALsRpQaVBgwbSqVMnh21BQUH6mim27SNHjpQJEyZIw4YNdc/IY489pkPKzTff7KxqAQAAF+LUwbR/5MUXXxRvb2/do6Jm8yQmJsrLL79cl1UCAACeGlS2bNnisK4G2S5evFgXAACAirjXDwAAMBZBBQAAGIugAgAAjEVQAQAAxiKoAAAAYxFUAACAsQgqAADAWAQVAABgLIIKAAAwFkEFAAAYi6ACAACMRVABAADGIqgAAABjEVQAAICxCCoAAMBYBBUAAGrRybNF0j71XZFVXrqoZbUNl0ZQAQAAxiKoAAAAYxFUAACAsQgqAADAWAQVAABgLIIKAAAwFkEFAAAYi6ACAACMRVABAADGIqgAAABjEVQAAICxCCoAAMBYBBUAAGAsggoAADAWQQUAasPFcyKrvH4rahlApRBUAACAsQgqAADAWAQVAHCyk2eLpP3UjfZ1tay2AajjoJKWliY33nijNGjQQJo0aSL9+/eXrKwsh2MuXLggKSkpEhERIcHBwTJw4EDJy8tzZrUAAICLcGpQ2bp1qw4hn332mWzatElKSkqkT58+cu7c/waSjR8/Xj744ANZs2aNPj4nJ0cGDBjgzGoBAAAX4ePMJ9+48X9dncprr72me1b27Nkjt912mxQUFMirr74qq1atkttvv10fs3LlSmnfvr0ONzfffLMzqwcAAAxXq2NUVDBRGjZsqB9VYFG9LAkJCfZj2rVrJ82bN5fMzMxLPkdRUZEUFhY6FAAA4J5qLaiUlZXJuHHj5JZbbpFOnTrpbbm5ueLn5ydhYWEOx0ZGRup9lxv3Ehoaai8xMTG1Un8AAODGQUWNVTlw4ICsXr26Ws+Tmpqqe2ZsJTs7u8bqCAAAPGiMis2YMWNk/fr18umnn0p0dLR9e1RUlBQXF8vp06cdelXUrB+171L8/f11AQAA7s+pPSqWZemQsnbtWtm8ebO0bNnSYX9cXJz4+vpKRkaGfZuavnzs2DGJj493ZtUAAICn96io0z1qRs97772nr6ViG3eixpYEBgbqx5EjR8qECRP0ANuQkBB57LHHdEhhxg8AAHBqUFmyZIl+7NWrl8N2NQV52LBhevnFF18Ub29vfaE3NaMnMTFRXn75Zf4yAADAuUFFnfr5IwEBAbJ48WJdAAAAyuNePwAAwFgEFQAAYCyCCgAAMBZBBQAAGIugAgAAjEVQAQAAxiKoAAAAYxFUAACAsQgqAADAWAQVAABgLIIKAAAwFkEFAAAYi6ACAACMRVABAADGIqgAAABjEVQAAICxCCoAAMBYBBUAAGAsggoAADAWQQUAABiLoAIAAIxFUAEAAMYiqAAAAGMRVAAAgLEIKgAAwFgEFQAAYCyCCgAAMBZBBQAAGIugAgAAjEVQAQAAxiKoAAAAYxFUAACAsQgqADzXxXMiq7x+K2oZgHEIKgAAwFhGBJXFixdLixYtJCAgQLp37y67du2q6yoBAAAD1HlQefvtt2XChAnyzDPPyN69e+W6666TxMREOXHiRF1XDQAAeHpQmT9/viQnJ8vw4cOlQ4cOsnTpUqlfv76sWLGirqsGAAA8OagUFxfLnj17JCEh4X8V8vbW65mZmXVZNQAAYACfuvzlP//8s5SWlkpkZKTDdrV+8ODBS/5MUVGRLjaFhYVOrycAAKgbXpZlWXX0uyUnJ0euueYa2bFjh8THx9u3T5w4UbZu3So7d+783c9Mnz5dZsyY8bvtBQUFEhISIm5LTZ18J/i35fvOivgE1XWN4OJOni2SnrPWy7ed/59eb7///2T7lH4SEexf11UDKo3XsetSHQ2hoaF/+Pldp6d+GjVqJPXq1ZO8vDyH7Wo9Kirqkj+Tmpqq/1G2kp2dXUu1BQAAta1Og4qfn5/ExcVJRkaGfVtZWZleL9/DUp6/v79OXuULAABwT3U6RkVRU5OHDh0q3bp1k5tuukkWLFgg586d07OAAACAZ6vzoHL//fdLfn6+TJs2TXJzc+X666+XjRs3/m6ALQAA8Dx1HlSUMWPG6AIAAGBcUEElqFk+D9bZBC0AADzzyrQAAACXQ1ABAADGIqgAAABjEVQAAICxCCoAAMBYBBUAAGAsggoAADAWQQUAABiLoAIAAIxFUAEAAMYiqAAAAGMRVAAAgLEIKgAAwFgEFQAAYCyCCgAAMBZBBQAAGIugAgAAjEVQAQAAxiKoAAAAYxFUAACAsQgqAADAWD51XQEAAKrjVytAWny1nkZ0U/SoAAAAYxFUAACAsQgqAADAWIxRAQC4rIhgfzk6p29dVwNORI8KAAAwFkEFAAAYi6ACAACMRVABAADGIqgAAABjEVQAAICxCCoAAMBYBBUAAOB5QeXo0aMycuRIadmypQQGBkrr1q3lmWeekeLiYofjvvrqK7n11lslICBAYmJiZO7cuc6qEgAAcDFOuzLtwYMHpaysTF555RW59tpr5cCBA5KcnCznzp2TF154QR9TWFgoffr0kYSEBFm6dKns379fRowYIWFhYTJq1ChnVQ0AAHh6ULnjjjt0sWnVqpVkZWXJkiVL7EElPT1d97CsWLFC/Pz8pGPHjrJv3z6ZP38+QQUAANTuGJWCggJp2LChfT0zM1Nuu+02HVJsEhMTdaA5derUJZ+jqKhI98SULwAAwD3VWlD5/vvvZdGiRfLwww/bt+Xm5kpkZKTDcbZ1te9S0tLSJDQ01F7UuBYAAOCeqhxUJk+eLF5eXlcsanxKecePH9engQYNGqTHqVRHamqq7pmxlezs7Go9HwAAcKMxKk888YQMGzbsiseo8Sg2OTk58pe//EV69Oghy5YtczguKipK8vLyHLbZ1tW+S/H399cFAAC4vyoHlcaNG+tSGaonRYWUuLg4WblypXh7O3bgxMfHy5QpU6SkpER8fX31tk2bNknbtm0lPDy8qlUDAABuxmljVFRI6dWrlzRv3lzP8snPz9fjTsqPPXnwwQf1QFp1vZWvv/5a3n77bXnppZdkwoQJzqoWAABwIU6bnqx6RtQAWlWio6Md9lmWpR/VYNiPP/5YUlJSdK9Lo0aNZNq0aUxNBgAAzg0qahzLH41lUbp06SLbtm1zVjUAAIAL414/AADAWAQVAABgLIIKAAAwFkEFAAAYi6ACAACMRVABAADGIqgAAABjEVQAAICxCCoAAMBYBBUAAGAsggoAADAWQQUAABiLoAIAAIxFUAEAAMYiqAAAAGMRVAAAgLEIKgAAwFgEFQAAYCyCCgAAMBZBBQAAGIugAgAAjEVQAQAAxiKoAAAAYxFUAACAsQgqAADAWAQVAABgLIIKAAAwFkEFAAAYi6ACAACMRVABAADGIqgAAABjEVQAAICxCCoAAMBYBBUAAODZQaWoqEiuv/568fLykn379jns++qrr+TWW2+VgIAAiYmJkblz59ZGlQAAgAuolaAyceJEadas2e+2FxYWSp8+fSQ2Nlb27Nkj8+bNk+nTp8uyZctqo1oAAMBwPs7+BRs2bJCPP/5Y3n33Xb1cXnp6uhQXF8uKFSvEz89POnbsqHtc5s+fL6NGjXJ21QAAgCf3qOTl5UlycrK8+eabUr9+/d/tz8zMlNtuu02HFJvExETJysqSU6dOXfY0kuqJKV8AAIB7clpQsSxLhg0bJqNHj5Zu3bpd8pjc3FyJjIx02GZbV/suJS0tTUJDQ+1FjWsBAADuqcpBZfLkyXpQ7JXKwYMHZdGiRXLmzBlJTU2t0Qqr5ysoKLCX7OzsGn1+AADgwmNUnnjiCd1TciWtWrWSzZs361M7/v7+DvtU70pSUpK8/vrrEhUVpU8PlWdbV/suRT1fxecEAADuqcpBpXHjxrr8kYULF8rMmTPt6zk5OXr8ydtvvy3du3fX2+Lj42XKlClSUlIivr6+etumTZukbdu2Eh4eXtWqAQAAN+O0WT/Nmzd3WA8ODtaPrVu3lujoaL384IMPyowZM2TkyJEyadIkOXDggLz00kvy4osvOqtaAADAhTh9evKVqMGwaupySkqKxMXFSaNGjWTatGlMTQYAALUbVFq0aKFnAlXUpUsX2bZtW21VAwAAuBDu9QMAAIxFUAEAAMYiqAAAAGMRVAAAgLEIKgAAwFgEFQAAYCyCCgAAMBZBBQAAGIugAgAAjEVQAQAAxiKoAAAAYxFUAACAsQgqAADAWAQVAABgLIIKAAAwFkEFAAAYi6ACAACMRVABAADGIqgAAABjEVQAAICxCCoAAMBYBBUAAGAsggoAADAWQQUAABiLoAIAAIxFUAEAAMYiqAAAAGMRVAAAgLEIKgAAwFgEFQAAYCyCCuChIoL95dvn7rCvq2W1DQBM4lPXFQBQh3yCRB60+BMAMBY9KgAAwFgEFQAA4JlB5d///rd0795dAgMDJTw8XPr37++w/9ixY9K3b1+pX7++NGnSRJ588km5ePGiM6sEAABciNPGqLz77ruSnJwss2fPlttvv10HkAMHDtj3l5aW6pASFRUlO3bskJ9++kn+/ve/i6+vr/4ZAAAAL8uyanwknQolLVq0kBkzZsjIkSMvecyGDRukX79+kpOTI5GRkXrb0qVLZdKkSZKfny9+fn6V+l2FhYUSGhoqBQUFEhISUqP/DgAA4ByV/fx2yqmfvXv3yvHjx8Xb21u6du0qTZs2lTvvvNOhRyUzM1M6d+5sDylKYmKirvjXX3992ecuKirSx5QvAADAPTklqBw+fFg/Tp8+XZ5++mlZv369HqPSq1cv+eWXX/S+3Nxch5Ci2NbVvstJS0vTCcxWYmJinPFPAAAArhZUJk+eLF5eXlcsBw8elLKyMn38lClTZODAgRIXFycrV67U+9esWVOtCqempupuIlvJzs6u1vMBAAA3GUz7xBNPyLBhw654TKtWrfTAWKVDhw727f7+/nqfmumjqEG0u3btcvjZvLw8+77LUc+jCgAAcH9VCiqNGzfW5Y+oHhQVJrKysqRnz556W0lJiRw9elRiY2P1enx8vMyaNUtOnDihpyYrmzZt0gNqygccAADguZwyPVmFjdGjR8szzzyjx5CocDJv3jy9b9CgQfqxT58+OpAMGTJE5s6dq8elqPEsKSkp9JgAAADnXkdFBRMfHx8dRH799Vd94bfNmzfrQbVKvXr19CDbRx55RPeuBAUFydChQ+XZZ591VpUAAICLccp1VGoT11EBAMD11Ol1VAAAAGoCQQUAAHjeGJXaYjtzxRVqAQBwHbbP7T8ageLyQeXMmTP6kSvUAgDgmp/jaqyK2w6mVVfBVTc2bNCggb7ybU2nPRWA1NVvueGhc9HWtYe2pq3dEa9r12trFT9USGnWrJm+N6Db9qiof1x0dLRTf4f6QxBUagdtXXtoa9raHfG6dq22vlJPig2DaQEAgLEIKgAAwFgElStQ9ytStwHgJojOR1vXHtqatnZHvK7dt61dfjAtAABwX/SoAAAAYxFUAACAsQgqAADAWAQVAABgLILKZSxevFhatGghAQEB0r17d9m1a1ft/mXcUFpamtx44436KsJNmjSR/v37S1ZWlsMxFy5ckJSUFImIiJDg4GAZOHCg5OXl1Vmd3cWcOXP0lZvHjRtn30Zb15zjx4/L4MGD9es2MDBQOnfuLLt377bvV3MWpk2bJk2bNtX7ExIS5NChQzVYA89QWloqU6dOlZYtW+p2bN26tTz33HMO94qhra/Op59+Knfffbe+Sqx6r1i3bp3D/sq06y+//CJJSUn6InBhYWEycuRIOXv27FXWyPGXo4LVq1dbfn5+1ooVK6yvv/7aSk5OtsLCwqy8vDzaqhoSExOtlStXWgcOHLD27dtn3XXXXVbz5s2ts2fP2o8ZPXq0FRMTY2VkZFi7d++2br75ZqtHjx60ezXs2rXLatGihdWlSxfr8ccfp61r2C+//GLFxsZaw4YNs3bu3GkdPnzY+uijj6zvv//efsycOXOs0NBQa926ddaXX35p/fWvf7Vatmxp/frrrzVdHbc2a9YsKyIiwlq/fr115MgRa82aNVZwcLD10ksv2Y+hra/Ohx9+aE2ZMsX617/+pVKftXbtWof9lWnXO+64w7ruuuuszz77zNq2bZt17bXXWn/729+s6iKoXMJNN91kpaSk2NdLS0utZs2aWWlpadVucPzPiRMn9P8QW7du1eunT5+2fH199ZuPzbfffquPyczMpOmuwpkzZ6w2bdpYmzZtsv785z/bgwptXXMmTZpk9ezZ87L7y8rKrKioKGvevHn2bar9/f39rbfeeqsGa+L++vbta40YMcJh24ABA6ykpCS9TFvXjIpBpTLt+s033+if+/zzz+3HbNiwwfLy8rKOHz9erfpw6qeC4uJi2bNnj+7WKn8/IbWemZlZ/S4s2BUUFOjHhg0b6kfV7iUlJQ5t365dO2nevDltf5XUabS+ffs6tCltXbPef/996datmwwaNEif0uzatassX77cvv/IkSOSm5vr8DdQ9zdRp5R5T6maHj16SEZGhnz33Xd6/csvv5Tt27fLnXfeSVs7UWVew+pRne5R/y/YqOPV5+fOnTur9ftd/qaENe3nn3/W50EjIyMdtqv1gwcP1lm93I2667UaL3HLLbdIp06d9Db1P4Kfn59+sVdse7UPVbN69WrZu3evfP7557/bR1vXnMOHD8uSJUtkwoQJ8tRTT+n2Hjt2rH4tDx061P7avdR7Cq/rqpk8ebK+c6/6AlOvXj39Xj1r1iw9LkKhrZ2jMu2qHlVQL8/Hx0d/Ea3u65yggjr7pn/gwAH9bQg1T91+/fHHH5dNmzbpAeFwbuhW3yJnz56t11WPinptL126VAcV1Jx33nlH0tPTZdWqVdKxY0fZt2+f/sKjBoDS1u6LUz8VNGrUSCf1ijNN1HpUVFRt/m3c1pgxY2T9+vXyySefSHR0tH27al916u306dMOx9P2VadOo504cUJuuOEG/a1Gla1bt8rChQv1svomRFvXDDULokOHDg7b2rdvL8eOHdPLtvcN3lOq78knn9S9Kg888ICeWTVkyBAZP368nlFIWztPZV7D6lG955R38eJFPROoup+dBJUKVHdtXFycPg9a/huTWo+Pj69WY3s6NUZLhZS1a9fK5s2b9RTD8lS7+/r6OrS9mr6s3vBp+6rp3bu37N+/X3/jtBX1rV91kduWaeuaoU5fVpxmr8ZQxMbG6mX1Oldv1OVf1+r0hTpvz+u6as6fP6/HPJSnvliq92ja2nkq8xpWj+pLpvqSZKPe59XfRo1lqZZqDcV14+nJajTza6+9pkcyjxo1Sk9Pzs3NreuqubRHHnlET2/bsmWL9dNPP9nL+fPnHaYnqynLmzdv1tOT4+PjdUH1lZ/1Q1vX7PRvHx8fPXX20KFDVnp6ulW/fn3rn//8p8PUTvUe8t5771lfffWVdc899zA9+SoMHTrUuuaaa+zTk9VU2kaNGlkTJ06krWtghuAXX3yhi4oG8+fP18s//vhjpV/Danpy165d9TT97du36xmHTE92okWLFukPTHU9FTVdWc0LR/WoF/+lirq2io160T/66KNWeHi4frO/9957dZhBzQcV2rrmfPDBB1anTp30F5x27dpZy5Ytc9ivpndOnTrVioyM1Mf07t3bysrKqsEaeIbCwkL9GlbvzQEBAVarVq30tT+Kiorsx9DWV+eTTz655PuzCoeVbdeTJ0/qYKKubRMSEmINHz5cB6Dq8lL/qV6fDAAAgHMwRgUAABiLoAIAAIxFUAEAAMYiqAAAAGMRVAAAgLEIKgAAwFgEFQAAYCyCCgAAMBZBBQAAGIugAgAAjEVQAQAAxiKoAAAAMdX/B3Dkb4AAJ40dAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAioAAAGdCAYAAAA8F1jjAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjcsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvTLEjVAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAJWhJREFUeJzt3Qt4FNXdx/F/IDeSkAQCJFASBKFyEdQGL0GkIJRo8YJSb1i5yANesBWwXFLkooih0KJIKdRWLn2EIr4VVB5FYkCUGkDQiCAgKkIeMEFBEhIkATLvcw7NmoUEctnJnpn9fp5nzM7OZDmencz+9sw5Z4Isy7IEAADAQPX8XQAAAIDKEFQAAICxCCoAAMBYBBUAAGAsggoAADAWQQUAABiLoAIAAIxFUAEAAMYKFocrLS2VQ4cOScOGDSUoKMjfxQEAAFWg5ps9fvy4tGjRQurVq+feoKJCSmJior+LAQAAaiAnJ0datmzp3qCiWlLK/kejo6P9XRwAAFAFBQUFuqGh7HPctUGl7HKPCikEFQAAnOVi3TboTAsAAIxFUAEAAMYiqAAAAGM5vo8KAAC1HSZ7+vRpOXPmDBXpQ/Xr15fg4OBaTx1CUAEABKySkhL59ttv5cSJE/4uiitFRERI8+bNJTQ0tMavQVABAAQkNWHovn379Dd/NemY+jBl4lDftVKpEPjdd9/pOm7Xrt0FJ3W7EIIKACAgqQ9SFVbUXB7qmz98q0GDBhISEiL79+/XdR0eHl6j16EzLQAgoNX0mz7qpm55dwAAgLEIKgAAwFgEFQAAHKZnz54yatQoCQQEFQAAYCxG/QAAcI4jhcV1WidxUWG8B5UgqFTmdJHIiqizj+8uFAmOrHRXAIC7JD/zbp3+e9/M6Fft3yktLZVx48bJP//5Tz0HzMMPPyxTp04Vt+HSDwAADrRkyRKJjIyUzZs3y8yZM+Xpp5+WjIwMcRuCSiVNfh0mrfGsq8d13QwIAMCFdOnSRaZMmaJnfR00aJB07dpVMjMzxW0IKgAAODSolKfuqXP48GFxG/qoAABwjm1P9jG+TkJCQrzW1X2KVL8VtyGoAABwDkbhmINLPwAAwFgEFQAAYCwu/QAA4DDvvffeec+tWrVK3IgWFQAAYCyCCgAAMBZBBQAAGIugAgAAjEVQAQAAgRlU5s+fr6f4jY6O1ktKSoq8/fbbnu0nT56UkSNHSlxcnERFRcmAAQMkLy/PziIBAAAHsTWotGzZUmbMmCHbtm2TrVu3yo033ii333677Ny5U28fPXq0vPnmm/Lqq6/Khg0b5NChQ3LnnXfaWSQAAOAgts6jcuutt3qtT58+XbeybNq0SYeYl156SZYtW6YDjLJo0SLp0KGD3n7dddfZWTQAAOAAddZH5cyZM7J8+XIpKirSl4BUK8upU6ekT5+fbvzUvn17SUpKkqysrEpfp7i4WAoKCrwWAADgTrYHlc8++0z3PwkLC5OHH35YVq5cKR07dpTc3FwJDQ2V2NhYr/3j4+P1tsqkp6dLTEyMZ0lMTLT7fwEAAKP07NlTRo0aVaPfVXdZdtIstrYHlcsuu0yys7Nl8+bN8sgjj8jgwYPl888/r/HrpaWlSX5+vmfJycnxaXmBGjtdJLIs6OyiHgOm45hFDQ0ZMkT69+8vrrjXj2o1adu2rX6cnJwsH330kcyZM0fuueceKSkpkWPHjnm1qqhRPwkJCZW+nmqZUQsAAHC/Op9HpbS0VPczUaElJCREMjMzPdv27NkjBw4c0H1YAADwa2tTXS41/DwdN26cNG7cWH/Bnzp1apV/9/vvv5c77rhDIiIipF27dvLGG2949SkdNmyYtG7dWho0aKCvjKgGhjLq31myZIm8/vrr+jKSWiq6SaIjWlTUZZqbb75Zd5A9fvy4HuGj/mfeeecd3b9EVcSYMWN0Jat5Vn73u9/pkMKIHwCAX62Iqtt/b6BV7V9ZsmSJ/gxVXSvUIBR1Oeb666+XX/3qVxf93aeeekpmzpwps2bNkrlz58r9998v+/fv15/HKgCpkblq6hA1z9mHH34oI0aMkObNm8vdd98tf/jDH2TXrl16MIsarauo33Nki8rhw4dl0KBBOo317t1bX/ZRIaWsEp977jm55ZZb9ERvPXr00Inwtddes7NIgC2OFBZLh0lrPOvqsXoOMBXHrPN16dJFpkyZoltE1Gdt165dva5SXIgKNffdd5/umvHss89KYWGhbNmyRW9TVztUkFGvp1pVVIgZOnSorFixQm9XA2RUS4vqhqE+t9Wiunk4skVFzZNyIeHh4TJv3jy9AABgjLsLxQlBpTzV4qEaCKr7u5GRkfqqRvnfVZ/LCxcu1N0xfvzxR92n9MorrxR/sL0zLQAAjhMcKaYLCQnxWld9RdRlm9r+rprzTF3e+ctf/qK7YzRs2FBfIlKXmPyBoAIAADz++9//Srdu3eTRRx/1PPfVV1+dN6JXdbqtC9w9GQAAeKg+L+r+fKpP6RdffCGTJk3SfUzLu+SSS2T79u16tK4aQaRmmrcLQQUAAHg89NBD+gbBar6za6+9Vo4cOeLVuqIMHz5cD5RRHW6bNm2qW2HswqUfIJCo+RrKhl2qzoIOuA7vWNQ1bPReBfOWVHVafMs6fyi0mny1jBrNo4Ydlw09Ln8LmzIqnKxdu1bqAi0qAADAWAQVIEAwbwZ1DfdbunSpnuekoqVTp07iRFz6AQDAJW677Tbdr6QqQ5KdgqACAIBLNGzYUC9uwqUfAEBAq6hzKcypW4IKACAglV0KOXHihL+L4lon/le3tbnsxKUfAEBAql+/vsTGxnrucRMREaGnkodvWlJUSFF1q+pY1XVNEVQAAAFL3flXqerN/FA9KqSU1XFNEVQAAAFLtaCouw43a9bM1mngA1FISEitWlLKEFQAAAFPfaD64kMVvkdnWqdP0b0s6OyiHgMAnItzeoUIKg7FLKMA4B6c0ytHUAEAAMYiqAAAAGMRVAAAgLEIKgAAwFgEFQAAYCyCCgAAMBZBBQAAGIugAgAAjEVQAQAAxiKoAAAAYxFUAACAsQgqAADAWAQVAABgLIIKAAAwFkEFAAAYi6ACAACMRVABAADGIqgAAABjEVQAAICxCCoAAMBYBBUAAGAsggoAADAWQQUAAARmUElPT5err75aGjZsKM2aNZP+/fvLnj17vPY5efKkjBw5UuLi4iQqKkoGDBggeXl5dhYLAAA4hK1BZcOGDTqEbNq0STIyMuTUqVPSt29fKSoq8uwzevRoefPNN+XVV1/V+x86dEjuvPNOO4sFAAAcItjOF1+zZo3X+uLFi3XLyrZt26RHjx6Sn58vL730kixbtkxuvPFGvc+iRYukQ4cOOtxcd911dhYPAAAYrk77qKhgojRu3Fj/VIFFtbL06dPHs0/79u0lKSlJsrKyKnyN4uJiKSgo8FoAAIA71VlQKS0tlVGjRsn1118vl19+uX4uNzdXQkNDJTY21mvf+Ph4va2yfi8xMTGeJTExsU7KDwAAXBxUVF+VHTt2yPLly2v1OmlpabplpmzJycnxWRkB1NDpIpFlQWcX9dgpnFpuIIDY2kelzGOPPSarV6+W999/X1q2bOl5PiEhQUpKSuTYsWNerSpq1I/aVpGwsDC9AAAA97O1RcWyLB1SVq5cKevWrZPWrVt7bU9OTpaQkBDJzMz0PKeGLx84cEBSUlLsLBoAAAj0oKIu97z88st6VI+aS0X1O1HLjz/+qLerPibDhg2TMWPGyPr163Xn2qFDh+qQwogfwBmOFBZLh0k/jfBTj9VzpnNquYFAY+uln/nz5+ufPXv29HpeDUEeMmSIfvzcc89JvXr19ERvakRPamqq/O1vf7OzWAAAwCGC7b70czHh4eEyb948vQAAAJTHvX4AAICxCCoAAMBYBBUAAGAsggoAADAWQQUAABiLoAIAAIxFUAEAAMYiqAAAAGMRVAAAgLEIKgAAwFgEFQAAYCyCCgAAMBZBBQAAGIugAgAAjEVQAQAAxiKoAAAAYxFUAACAsQgqAADAWAQVAABgLIIKAAAwFkEFAAAYi6ACAACMRVABAADGIqgAAABjEVQAAICxCCoAAMBYBBUAAGAsggoAADAWQQUAABiLoAIAAIxFUAEAAMYiqAAAAGMRVAAAgLEIKrDX6SKRZUFnF/UYAPyBc5FjEVQAAICxgv1dAAC1d6SwWJKfedfruW1P9pG4qDCq11C8Z0DV0KICW0/EHSat8ayrx+o52KNB0En5psstelGPYT7es7rBucjZaFGB4/BNFHAf/q5RGVpU4Eh8EwXch79rVISgAgAAAjOovP/++3LrrbdKixYtJCgoSFatWuW13bIsmTx5sjRv3lwaNGggffr0kb1799pZJAAA4CC2BpWioiK54oorZN68eRVunzlzprzwwguyYMEC2bx5s0RGRkpqaqqcPElHQAAAYHNn2ptvvlkvFVGtKc8//7w8+eSTcvvtt+vn/vWvf0l8fLxuebn33nt5fwCnT7C1Iurs47sLRYIjzSoPYwkAR/BbH5V9+/ZJbm6uvtxTJiYmRq699lrJysqq9PeKi4uloKDAawFglh+KSowaml7R8FRVRgDm81tQUSFFUS0o5an1sm0VSU9P14GmbElMTLS9rAAAwD8cN+onLS1N8vPzPUtOTo6/iwQAANwWVBISEvTPvLw8r+fVetm2ioSFhUl0dLTXAgAA3MlvQaV169Y6kGRmZnqeU/1N1OiflJQUfxULAAAEyqifwsJC+fLLL7060GZnZ0vjxo0lKSlJRo0aJc8884y0a9dOB5dJkybpOVf69+9vZ7EAAIBD2BpUtm7dKr169fKsjxkzRv8cPHiwLF68WMaNG6fnWhkxYoQcO3ZMunfvLmvWrJHw8HA7iwUAABzC1qDSs2dPPV9KZdRstU8//bReYDjT5sQAgLrAuc/vHDfqBwAABA6CCmo0WdaRY0dFlgWdXdQ3DgBwOnUuK3deq/Dc58eJCwMVQQUAABiLoIIa6f6n9Z7HfMsA4HTcZsFcBBUAAGAsggpg+re8tP94rpurx1wjDxy8/wBBBQAAGIwWFQAAYCyCCgAACMyZad0k+Zl3vda3PdlH4qLC/FYeAADs7B9lyuceLSoAAMBYBBUAAGAsgkoVNQg6Kd90uUUv6jEAAG7WwJDPPfqo4KLXJd8d3YNaAgD6K/oFLSoAjL4xXI33AeAKBBX4v7mPDx38T1XuVssdbeHPc4gpl0MCCUEFAAAYi6ACAACMRWfaAFdR59kGQX4rDgA4yg9FJcZMjOZWBBXo66y7Ov9G10SHz/6vzoNS9+lrZFfnn/okbJx4i9cfOWEKCExVCQFVOYe4+RwaCLj0A0egAxsQmPjbB0EFAAAYi6ACAACMRVABqoK5XhCoOPbhZwQVAABgLIIKcBHMhIpAxbEPEzA82cXODttb7TVsrq6H7bm7OTz87OO7C/lTshE3yaxDHNe24FxcOwQVuAKTLgHOwvxIqCou/cA16nK+he5/Wu95rCaYUkGpSuiYWG3Mo1FDNTjWanxc1xDvLaqCoFLX+KAKWFzvB8ca6sTpurubdF0gqAAAAGMRVAAAgLEIKgAAwFgElTpEHwUAAJ8z1UNQAQAAxiKoAAAAYxFUAACAsQgqAADAWAQVu7ls4h0AgAOddu5nkRH3+pk3b57MmjVLcnNz5YorrpC5c+fKNddcI+64EdUa2dX5/OmpgUBTl/dj4j4ygPffXvfpaz2fRer2CE66Qa3fW1ReeeUVGTNmjEyZMkU+/vhjHVRSU1Pl8OHD/i4aAAff24X7yADu4PegMnv2bBk+fLgMHTpUOnbsKAsWLJCIiAhZuHChv4sGAAACOaiUlJTItm3bpE+fPj8VqF49vZ6VleXPogEAgEDvo/L999/LmTNnJD4+3ut5tb579+4Kf6e4uFgvZQoKCmwvJwAA8BPLjw4ePGipInz44Ydez48dO9a65pprKvydKVOm6N85d8nPz7fq0vfHT1rtJ/yfZS0VvajH566rfaryOq3Gr/Zazn2dvbkFF33tispTk318WR/+LGNFr1NRPdakru2sj7p8r51QR3X5OpW9Vk3qyM5jvybnnrr+u6pJHdX03/dlPfrifFjX7/Xe3ILzPkMu9v9R03OPr6nP7ap8fvu1RaVJkyZSv359ycvL83perSckJFT4O2lpabrzbfkWlcTERNvLCriN6vG/K33A/7K+yK7/jZZB9akRFBL1Uz0C8B2/BpXQ0FBJTk6WzMxM6d+/v36utLRUrz/22GMV/k5YWJhe3PRh8c2MfucMaV7ttU+jyFDZNe0mkRVn1/XjYPfUAQCgki8T0346928c3+u8aS7U50P5zxA38vs8Kqp1ZPDgwdK1a1c9d8rzzz8vRUVFehQQygmOFBl49hsbACAAz/2Fgdni6fegcs8998h3330nkydP1hO+XXnllbJmzZrzOtgCAIDA4/egoqjLPJVd6gEAAIHL7xO+AQAAVIagAgAAjEVQAQAAxjKijwrsmRMDAGAeztfVQ4sKAAAwFkEFAAAYi6ACAACMRVABAADGIqgAAABjEVQAAICxCCoAAMBYBBUAAGAsJnxDwEyodCRAb5EOmGDjxFtEopiQEtVHiwoAADAWQQUAABiLoAIAAIxFUAEAAMaiMy1gmB+tcLlk+2p/FwMOOkYaBJ30a3kAOxFUAIM0igyVb2b083cxYPiItvLHiBrN1n06wRbuxaUfAABgLIIKAAAwFkEFAAAYiz4qDphRNdDQmRQA54fzxQXo5wNBBUZ3FAQAzg+BjUs/AADAWLSoAHY10U67SWTF2XX9ODjMNXXt5stzbpyjxO3HI9yNFhXgnHlM9En8f9RjdZIHUC7wlPv7UH8zgJ1oUQHO+6uIFBlomfM6gNHHdXHtXxO4AIIKArbH/EZm9KwRN8+ey6yvPmyZDMDRKbAHl34AAICxCCoAAMBYBBUAAGAsgoqPer9vHN/LV+8JAAB1qpHBIx7pTOur3u+F9HyHOZg3wyy8H3CEYDNHKtKiAgAAjEWLCuBWhn47Cli8H0CN0KICAACMRYsK4DB29ndgUjz/TWZGPxagYrSoAAAAYxFUAABA4AWV6dOnS7du3SQiIkJiY2Mr3OfAgQPSr18/vU+zZs1k7Nixcvr0abuKBAAAHMa2PiolJSVy1113SUpKirz00kvnbT9z5owOKQkJCfLhhx/Kt99+K4MGDZKQkBB59tln7SoWAABwENuCylNPPaV/Ll68uMLta9eulc8//1zeffddiY+PlyuvvFKmTZsm48ePl6lTp0poaKhdRQOcj6Gu7sT7CpjTRyUrK0s6d+6sQ0qZ1NRUKSgokJ07d1b6e8XFxXqf8gsAAHAnvwWV3Nxcr5CilK2rbZVJT0+XmJgYz5KYmGh7WQEAgAOCyoQJEyQoKOiCy+7du+0rrYikpaVJfn6+Z8nJybH13wMAAA7po/LEE0/IkCFDLrhPmzZtqvRaqhPtli1bvJ7Ly8vzbKtMWFiYXgAAgPtVK6g0bdpUL76gRgOpIcyHDx/WQ5OVjIwMiY6Olo4dO/rk3wAuhJlAgdrj7wiOHfWj5kg5evSo/qmGImdnZ+vn27ZtK1FRUdK3b18dSB544AGZOXOm7pfy5JNPysiRI2kxAQAA9gaVyZMny5IlSzzrV111lf65fv166dmzp9SvX19Wr14tjzzyiG5diYyMlMGDB8vTTz9tV5GA8zEcFKg9/o7gxKCi5k+pbA6VMq1atZK33nrLriIAAACH414/AADAWAQVAABgLIIKAAAwFkEFAAAYi6ACAACMRVABAADGIqgAAABjEVQAAEDgTfgGVHhPkPQBImLp9V1UEQAf4zzjPrSoAAAAYxFUAACAsQgqAADAWAQVAABgLIIKAAAwFkEFAAAYi6ACAACMRVABAADGIqgAAABjEVQAAICxCCoAAMBYBBUAAGAsggoAADAWQQUAABiLoAIAAIxFUAEAAMYiqAAAAGMRVAAAgLEIKgAAwFgEFQAAYCyCCgAAMBZBBYBfxEWFya5pN3nW1WP1nL9eB4CZCCoAAMBYBBX4BN9qATgJ5yznCPZ3AQAEsOBIkYGWOa8DwDgEFfjwaOLDAoCDcM5yBC79AAAAYxFUAACAsQgqAADAWAQVAABgLIIKAAAIvKDyzTffyLBhw6R169bSoEEDufTSS2XKlClSUlLitd/27dvlhhtukPDwcElMTJSZM2faVSQAAOAwtg1P3r17t5SWlsrf//53adu2rezYsUOGDx8uRUVF8uc//1nvU1BQIH379pU+ffrIggUL5LPPPpMHH3xQYmNjZcSIEXYVDQAABHpQuemmm/RSpk2bNrJnzx6ZP3++J6gsXbpUt7AsXLhQQkNDpVOnTpKdnS2zZ88mqAAAgLrto5Kfny+NGzf2rGdlZUmPHj10SCmTmpqqA80PP/xQ4WsUFxfrlpjyCwAAcKc6CypffvmlzJ07Vx566CHPc7m5uRIfH++1X9m62laR9PR0iYmJ8SyqXwsAAHCnageVCRMmSFBQ0AUX1T+lvIMHD+rLQHfddZfup1IbaWlpumWmbMnJyanV6wEAABf1UXniiSdkyJAhF9xH9Ucpc+jQIenVq5d069ZNXnzxRa/9EhISJC8vz+u5snW1rSJhYWF6AQAA7lftoNK0aVO9VIVqSVEhJTk5WRYtWiT16nk34KSkpMjEiRPl1KlTEhISop/LyMiQyy67TBo1alTdogEAAJexrY+KCik9e/aUpKQkPcrnu+++0/1Oyvc9GThwoO5Iq+Zb2blzp7zyyisyZ84cGTNmjF3FAgAADmLb8GTVMqI60KqlZcuWXtssy9I/VWfYtWvXysiRI3WrS5MmTWTy5MkMTQYAAPYGFdWP5WJ9WZQuXbrIBx98YFcxAACAg3GvHwAAYCyCCgAAMBZBBQAAGIugAgAAjEVQAQAAxiKoAAAAYxFUAACAsQgqAADAWAQVAABgLIKKj8RFhcmuaTd51tVj9RwAACaJc9jnFUEFAAAE3r1+AlJwpMjAszdcBFzzzSt9gLqVqF7fJYEl0P//4WLBzvm8okUFAAAYi6ACAACMRVABAADGoo8K4Cf0fwDHEXBxtKgAAABjEVQAAICxCCoAAMBYBBUAAGAsggoAADAWQQUAABiLoAIAAIxFUAEAAMYiqAAAAGMRVAAAgLEIKgAAwFgEFQAAYCyCCgAAMBZBBQAAGIugAgAAjEVQAQAAxiKoAAAAYxFUAACAsQgqAADAWAQVAABgLIIKAAAwFkEFAAAYi6ACAACMRVABAACBGVRuu+02SUpKkvDwcGnevLk88MADcujQIa99tm/fLjfccIPeJzExUWbOnGlnkQAAgIPYGlR69eolK1askD179sh//vMf+eqrr+Q3v/mNZ3tBQYH07dtXWrVqJdu2bZNZs2bJ1KlT5cUXX7SzWAAAwCGC7Xzx0aNHex6rMDJhwgTp37+/nDp1SkJCQmTp0qVSUlIiCxculNDQUOnUqZNkZ2fL7NmzZcSIEXYWDQAAOECd9VE5evSoDibdunXTIUXJysqSHj166JBSJjU1VbfA/PDDDxW+TnFxsW6JKb8AAAB3sj2ojB8/XiIjIyUuLk4OHDggr7/+umdbbm6uxMfHe+1ftq62VSQ9PV1iYmI8i+rXAgAA3KnaQUVdvgkKCrrgsnv3bs/+Y8eOlU8++UTWrl0r9evXl0GDBollWTUucFpamuTn53uWnJycGr8WAABwWR+VJ554QoYMGXLBfdq0aeN53KRJE738/Oc/lw4dOugWkE2bNklKSookJCRIXl6e1++WrattFQkLC9MLAABwv2oHlaZNm+qlJkpLSz39TBQVViZOnOjpXKtkZGTIZZddJo0aNarRvwEAANzDtj4qmzdvlr/+9a96FM/+/ftl3bp1ct9998mll16qA4oycOBA3ZF22LBhsnPnTnnllVdkzpw5MmbMGLuKBQAAHMS2oBIRESGvvfaa9O7dW7eQqDDSpUsX2bBhg+fSjeoMq/qu7Nu3T5KTk/VlpcmTJzM0GQAA2DuPSufOnXUrysWo8PLBBx/YVQwAAOBg3OsHAAAYi6ACAACMFWTVZlITA6iZaVVfFzWnSnR0tL+LY77TRSIros4+vrtQJDjS3yUCAHfhPOvTz29aVAAAgLEIKgAAwFgEFQAAEHjDk2Eo1SdloKO7JQGA2TjP+hQtKgAAwFgEFQAAYCyCCgAAMBZBBQAAGIugAgAAjEVQAQAAxiKoAAAAYxFUAACAsQgqAADAWAQVAABgLIIKAAAwFkEFAAAYi6ACAACMRVABAADGIqgAAABjBYvDWZalfxYUFPi7KAAAoIrKPrfLPsddG1SOHz+ufyYmJvq7KAAAoAaf4zExMZVuD7IuFmUMV1paKocOHZKGDRtKUFCQz9OeCkA5OTkSHR3t09cGde0vHNfUtRtxXDuvrlX8UCGlRYsWUq9ePfe2qKj/uZYtW9r6b6g3gqBSN6jrukNdU9duxHHtrLq+UEtKGTrTAgAAYxFUAACAsQgqFxAWFiZTpkzRP2Ev6rruUNfUtRtxXLu3rh3fmRYAALgXLSoAAMBYBBUAAGAsggoAADAWQQUAABiLoFKJefPmySWXXCLh4eFy7bXXypYtW+r2nXGh9PR0ufrqq/Usws2aNZP+/fvLnj17vPY5efKkjBw5UuLi4iQqKkoGDBggeXl5fiuzW8yYMUPP3Dxq1CjPc9S17xw8eFB++9vf6uO2QYMG0rlzZ9m6datnuxqzMHnyZGnevLne3qdPH9m7d68PSxAYzpw5I5MmTZLWrVvrerz00ktl2rRpXveKoa5r5v3335dbb71VzxKrzhWrVq3y2l6Vej169Kjcf//9ehK42NhYGTZsmBQWFtawRN7/OM6xfPlyKzQ01Fq4cKG1c+dOa/jw4VZsbKyVl5dHXdVCamqqtWjRImvHjh1Wdna29etf/9pKSkqyCgsLPfs8/PDDVmJiopWZmWlt3brVuu6666xu3bpR77WwZcsW65JLLrG6dOliPf7449S1jx09etRq1aqVNWTIEGvz5s3W119/bb3zzjvWl19+6dlnxowZVkxMjLVq1Srr008/tW677TardevW1o8//ujr4rja9OnTrbi4OGv16tXWvn37rFdffdWKioqy5syZ49mHuq6Zt956y5o4caL12muvqdRnrVy50mt7Ver1pptusq644gpr06ZN1gcffGC1bdvWuu+++6zaIqhU4JprrrFGjhzpWT9z5ozVokULKz09vdYVjp8cPnxY/0Fs2LBBrx87dswKCQnRJ58yu3bt0vtkZWVRdTVw/Phxq127dlZGRob1y1/+0hNUqGvfGT9+vNW9e/dKt5eWlloJCQnWrFmzPM+p+g8LC7P+/e9/+7Ak7tevXz/rwQcf9HruzjvvtO6//379mLr2jXODSlXq9fPPP9e/99FHH3n2efvtt62goCDr4MGDtSoPl37OUVJSItu2bdPNWuXvJ6TWs7Kyat+EBY/8/Hz9s3HjxvqnqvdTp0551X379u0lKSmJuq8hdRmtX79+XnVKXfvWG2+8IV27dpW77rpLX9K86qqr5B//+Idn+759+yQ3N9frPVD3N1GXlDmnVE+3bt0kMzNTvvjiC73+6aefysaNG+Xmm2+mrm1UlWNY/VSXe9TfQhm1v/r83Lx5c63+fcfflNDXvv/+e30dND4+3ut5tb57926/lctt1F2vVX+J66+/Xi6//HL9nPpDCA0N1Qf7uXWvtqF6li9fLh9//LF89NFH522jrn3n66+/lvnz58uYMWPkj3/8o67v3//+9/pYHjx4sOfYreicwnFdPRMmTNB37lVfYOrXr6/P1dOnT9f9IhTq2h5VqVf1UwX18oKDg/UX0doe5wQV+O2b/o4dO/S3Ifieuv36448/LhkZGbpDOOwN3epb5LPPPqvXVYuKOrYXLFiggwp8Z8WKFbJ06VJZtmyZdOrUSbKzs/UXHtUBlLp2Ly79nKNJkyY6qZ870kStJyQk1OV741qPPfaYrF69WtavXy8tW7b0PK/qV116O3bsmNf+1H31qctohw8fll/84hf6W41aNmzYIC+88IJ+rL4JUde+oUZBdOzY0eu5Dh06yIEDB/TjsvMG55TaGzt2rG5Vuffee/XIqgceeEBGjx6tRxRS1/apyjGsfqpzTnmnT5/WI4Fq+9lJUDmHaq5NTk7W10HLf2NS6ykpKbWq7ECn+mipkLJy5UpZt26dHmJYnqr3kJAQr7pXw5fVCZ+6r57evXvLZ599pr9xli3qW79qIi97TF37hrp8ee4we9WHolWrVvqxOs7Vibr8ca0uX6jr9hzX1XPixAnd56E89cVSnaOpa/tU5RhWP9WXTPUlqYw6z6v3RvVlqZVadcV18fBk1Zt58eLFuifziBEj9PDk3NxcfxfN0R555BE9vO29996zvv32W89y4sQJr+HJasjyunXr9PDklJQUvaD2yo/6oa59O/w7ODhYD53du3evtXTpUisiIsJ6+eWXvYZ2qnPI66+/bm3fvt26/fbbGZ5cA4MHD7Z+9rOfeYYnq6G0TZo0scaNG0dd+2CE4CeffKIXFQ1mz56tH+/fv7/Kx7AannzVVVfpYfobN27UIw4ZnmyjuXPn6g9MNZ+KGq6sxoWjdtTBX9Gi5lYpow76Rx991GrUqJE+2d9xxx06zMD3QYW69p0333zTuvzyy/UXnPbt21svvvii13Y1vHPSpElWfHy83qd3797Wnj17fFiCwFBQUKCPYXVuDg8Pt9q0aaPn/iguLvbsQ13XzPr16ys8P6twWNV6PXLkiA4mam6b6Ohoa+jQoToA1VaQ+k/t2mQAAADsQR8VAABgLIIKAAAwFkEFAAAYi6ACAACMRVABAADGIqgAAABjEVQAAICxCCoAAMBYBBUAAGAsggoAADAWQQUAABiLoAIAAMRU/w9eY+4nIPdarQAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "from src.data_generation import build_dataset\n", + "from src.utils import Config, generate_sensing_matrix\n", + "import numpy as np\n", + "import scipy as sp\n", + "from src.algorithms import omp\n", + "from src.visualization import visualize_reconstruction\n", + "import matplotlib.pyplot as plt\n", + "\n", + "max_amplitude = 100\n", + "min_sparsity = 7\n", + "max_sparsity = 9\n", + "vector_size = 100\n", + "data_set_size = 10000\n", + "\n", + "config = Config(dataset_size = 1,\n", + " vector_size= 100, \n", + " max_amplitude= 100,\n", + " min_sparsity= 5,\n", + " max_sparsity= 10,\n", + " noise_level= 1,\n", + " omp_epsilon= 1,\n", + " omp_max_iterations= 10,\n", + " sensing_matrix_rows= 50,\n", + " alg= \"omp\", # Options: \"omp\", \"psomp\", \"ml\"\n", + " model_path= \"models/sparse_recovery_model.pth\"\n", + ")\n", + "\n", + "#visualize_reconstruction(config)\n", + "\n", + "\n", + "h, x = build_dataset(config)\n", + "Phi = generate_sensing_matrix(config.sensing_matrix_rows,config.vector_size)\n", + "# First generate the output\n", + "y = Phi @ x\n", + "y = y + config.noise_level * np.random.randn(*y.shape)\n", + "x_hat = omp(Phi,y,config.omp_epsilon,config.omp_max_iterations)\n", + "DFT = sp.linalg.dft(config.vector_size)/np.sqrt(config.vector_size)\n", + "h_hat = DFT @ x_hat\n", + "indices = range(len(x_hat))\n", + "plt.vlines(indices,0,x,linewidth=3)\n", + "plt.vlines(indices,0,x_hat,colors=\"orange\")\n", + "\n", + "plt.legend((\"x\",\"x_hat\"))\n", + "plt.show()\n", + "\n", + "plt.vlines(indices,0,h,linewidth=3)\n", + "plt.vlines(indices,0,h_hat,colors=\"orange\")\n", + "\n", + "plt.legend((\"h\",\"h_hat\"))\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "29236568", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(50,)\n", + "(50,)\n" + ] + } + ], + "source": [ + "-" + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "id": "9c9e7364", + "metadata": {}, + "outputs": [ + { + "ename": "NameError", + "evalue": "name 'A' is not defined", + "output_type": "error", + "traceback": [ + "\u001b[31m---------------------------------------------------------------------------\u001b[39m", + "\u001b[31mNameError\u001b[39m Traceback (most recent call last)", + "\u001b[36mCell\u001b[39m\u001b[36m \u001b[39m\u001b[32mIn[33]\u001b[39m\u001b[32m, line 3\u001b[39m\n\u001b[32m 1\u001b[39m h, x = build_dataset(config)\n\u001b[32m----> \u001b[39m\u001b[32m3\u001b[39m y = \u001b[43mA\u001b[49m @ h\n\u001b[32m 5\u001b[39m x_hat = omp(A\u001b[38;5;129m@DFT\u001b[39m,y,config.omp_epsilon,config.omp_max_iterations)\n\u001b[32m 6\u001b[39m indices = \u001b[38;5;28mrange\u001b[39m(\u001b[38;5;28mlen\u001b[39m(x_hat))\n", + "\u001b[31mNameError\u001b[39m: name 'A' is not defined" + ] + } + ], + "source": [ + "h, x = build_dataset(config)\n", + "\n", + "y = A @ h\n", + "\n", + "x_hat = omp(A@DFT,y,config.omp_epsilon,config.omp_max_iterations)\n", + "indices = range(len(x_hat))\n", + "plt.vlines(indices,0,x,linewidth=3)\n", + "plt.vlines(indices,0,x_hat,colors=\"orange\")\n", + "\n", + "plt.legend((\"x\",\"x_hat\"))" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "1e87febe", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(100,)\n" + ] + } + ], + "source": [ + "from src.utils import apply_iq_imbalance\n", + "from src.algorithms import psomp, find_x_xi\n", + "import numpy as np\n", + "xi = 0.71 + 0.1j\n", + "x = np.random.randn(100)\n", + "print(np.shape(x))\n", + "z = apply_iq_imbalance(x,xi)\n", + "z_1 = z[0:50]\n", + "z_1_hat = xi*x\n", + "x_hat, xi_hat = find_x_xi(z)" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "b2722ecc", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "True xi: (0.71+0.1j), Estimated xi: [[0.71+0.1j]]\n", + "Reconstruction error: 1.53043456469481e-15\n", + "[-1.38777878e-17-4.79149453e-18j -8.67361738e-19-1.49734204e-19j\n", + " 5.55111512e-17+9.58298905e-18j -5.55111512e-17-1.43744836e-17j\n", + " -1.11022302e-16-3.83319562e-17j -1.73472348e-18-2.99468408e-19j\n", + " 4.44089210e-16+3.83319562e-17j 5.55111512e-17+2.87489672e-17j\n", + " 2.22044605e-16+5.74979343e-17j 5.55111512e-17+1.91659781e-17j\n", + " 0.00000000e+00+1.14995869e-16j 5.55111512e-17+1.91659781e-17j\n", + " -1.11022302e-16-2.87489672e-17j 2.22044605e-16+3.83319562e-17j\n", + " 0.00000000e+00-2.87489672e-17j -2.22044605e-16-3.83319562e-17j\n", + " -5.55111512e-17-9.58298905e-18j -2.22044605e-16-7.66639124e-17j\n", + " 2.77555756e-17+9.58298905e-18j 0.00000000e+00+4.79149453e-18j\n", + " -2.22044605e-16-7.66639124e-17j 1.73472348e-18+4.49202612e-19j\n", + " 1.11022302e-16+2.87489672e-17j 0.00000000e+00-3.83319562e-17j\n", + " 0.00000000e+00-1.43744836e-17j 1.11022302e-16+3.83319562e-17j\n", + " 6.93889390e-18+2.39574726e-18j 5.55111512e-17+1.91659781e-17j\n", + " -2.22044605e-16-3.83319562e-17j -1.38777878e-17-2.39574726e-18j\n", + " 1.11022302e-16+3.83319562e-17j 2.22044605e-16+5.74979343e-17j\n", + " -1.11022302e-16-3.83319562e-17j 5.55111512e-17+1.91659781e-17j\n", + " -5.55111512e-17-1.91659781e-17j -2.22044605e-16-3.83319562e-17j\n", + " 0.00000000e+00+7.66639124e-17j 1.11022302e-16+3.83319562e-17j\n", + " 0.00000000e+00-2.87489672e-17j 4.44089210e-16+7.66639124e-17j\n", + " -2.22044605e-16-3.83319562e-17j -2.77555756e-17-1.43744836e-17j\n", + " -2.22044605e-16-3.83319562e-17j 0.00000000e+00-5.74979343e-17j\n", + " 0.00000000e+00-1.91659781e-17j 5.55111512e-17+1.43744836e-17j\n", + " -1.11022302e-16-3.83319562e-17j 2.77555756e-17+9.58298905e-18j\n", + " 2.22044605e-16+3.83319562e-17j 2.22044605e-16+5.74979343e-17j\n", + " -2.22044605e-16-7.66639124e-17j 1.11022302e-16+1.91659781e-17j\n", + " 0.00000000e+00+1.43744836e-17j 1.11022302e-16+3.83319562e-17j\n", + " -1.11022302e-16-2.87489672e-17j -2.77555756e-17-4.79149453e-18j\n", + " 6.93889390e-18+2.39574726e-18j 5.55111512e-17+1.91659781e-17j\n", + " -5.55111512e-17-1.43744836e-17j 1.11022302e-16+2.87489672e-17j\n", + " 4.44089210e-16+7.66639124e-17j -2.22044605e-16-7.66639124e-17j\n", + " 1.11022302e-16+2.87489672e-17j 2.22044605e-16+7.66639124e-17j\n", + " -2.22044605e-16-5.74979343e-17j -2.22044605e-16-7.66639124e-17j\n", + " -2.22044605e-16-1.14995869e-16j 1.11022302e-16+1.91659781e-17j\n", + " -1.11022302e-16-1.91659781e-17j -5.55111512e-17-9.58298905e-18j\n", + " -1.11022302e-16-1.91659781e-17j 2.22044605e-16+3.83319562e-17j\n", + " -1.11022302e-16-3.83319562e-17j 1.11022302e-16+3.83319562e-17j\n", + " 5.55111512e-17+1.91659781e-17j 1.38777878e-17+4.79149453e-18j\n", + " 1.11022302e-16+1.91659781e-17j -1.11022302e-16-2.87489672e-17j\n", + " 1.11022302e-16+1.91659781e-17j -1.11022302e-16-3.83319562e-17j\n", + " 2.22044605e-16+5.74979343e-17j 0.00000000e+00+3.83319562e-17j\n", + " -1.73472348e-18-8.98405224e-19j -5.55111512e-17-9.58298905e-18j\n", + " 1.11022302e-16+1.91659781e-17j 1.11022302e-16+2.87489672e-17j\n", + " 2.22044605e-16+3.83319562e-17j 0.00000000e+00-5.74979343e-17j\n", + " -1.11022302e-16-1.91659781e-17j 2.22044605e-16+3.83319562e-17j\n", + " -1.11022302e-16-2.87489672e-17j 2.22044605e-16+5.74979343e-17j\n", + " 0.00000000e+00-1.91659781e-17j -3.46944695e-18-5.98936816e-19j\n", + " 5.55111512e-17+9.58298905e-18j 2.22044605e-16+7.66639124e-17j\n", + " 1.11022302e-16+2.87489672e-17j 1.11022302e-16+3.83319562e-17j\n", + " 2.77555756e-17+7.18724179e-18j 5.55111512e-17+9.58298905e-18j]\n" + ] + } + ], + "source": [ + "\n", + "print(f\"True xi: {xi}, Estimated xi: {xi_hat}\")\n", + "print(f\"Reconstruction error: {np.linalg.norm(x - x_hat)}\")\n", + "print(x - x_hat)" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "id": "0e04931a", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "True xi: (0.71+0.1j), Estimated xi: (0.7131396726543044+0.0976769944537351j)\n", + "Reconstruction error: 21.65740789525703\n", + "(100, 1)\n", + "(100, 1)\n" + ] + }, + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 15, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAioAAAGdCAYAAAA8F1jjAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjcsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvTLEjVAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAJLxJREFUeJzt3QtY1FX+x/EvyE1FIUEuLohoFw21TI28VLa6atrFsqvaYhpupVZim5J5yzV4slqrx8VuaM+mq/lftXLLFjFNn7xFS2opq6ZmKWqWIJqA8vs/5/TMLIOg3H5wZni/nuc487vMcDiMM585v3N+Py/LsiwBAAAwkHd9VwAAAKAiBBUAAGAsggoAADAWQQUAABiLoAIAAIxFUAEAAMYiqAAAAGMRVAAAgLF8xM2VlJTI4cOHpVmzZuLl5VXf1QEAAJWgzjd76tQpadWqlXh7e3tuUFEhJTo6ur6rAQAAquHQoUMSFRXluUFF9aQ4ftHmzZvXd3UAAEAl5Ofn644Gx+d4rQeVzz//XObMmSNZWVly5MgRWbFihQwZMsSlS2f69Ony1ltvycmTJ6VXr16SlpYmV1xxhXOfn3/+WcaPHy8fffSR7vYZOnSovPrqqxIYGFjpejgO96iQQlABAMC9XGrYRrUH054+fVquueYamTdvXrnbX3zxRXnttddk/vz5smXLFmnatKkMGDBAzp4969xn+PDh8s0330hGRoasWrVKh58xY8ZUt0oAAMDDeNXG1ZNVGirdo6KeUg2OmThxojz99NN6XV5enoSHh8vChQvlgQcekF27dsnVV18t27Ztk27duul9Vq9eLYMGDZIffvhBP76yXUdBQUH6+elRAQDAPVT289uW6cn79++X3Nxc6devn3Odqkx8fLxs2rRJL6vb4OBgZ0hR1P7qEJDqgalIYWGh/uVKFwAA4JlsGUyrQoqielBKU8uObeo2LCzMtTI+PtKiRQvnPuVJSUmRmTNn2lFtAEADpY4EnDt3Ts6fP1/fVfEYjRo10p/rNT11iNvN+klOTpakpKQLRg0DAFAdRUVFelLImTNnaMBa1qRJE4mMjBQ/Pz+zgkpERIS+PXr0qK6gg1q+9tprnfscO3bM5XEqzaqZQI7Hl8ff318XAABq46ShariC+vavxkaqD1ROHlo7PVQqAB4/fly3r5rxe7GTutV5UImNjdVhIzMz0xlMVM+HGnvy2GOP6eUePXroactqenPXrl31urVr1+oXjRrLAgCA3dSHqfrcUT3z6ts/ak/jxo3F19dXDh48qNs5ICCgboNKQUGB7N2717msElN2drYeY9K6dWt56qmn5C9/+YtOUSq4TJ06VadVx8ygDh06yMCBAyUxMVFPYS4uLpZx48bpGUGVnfEDAEBtqO63fdjfrtUOKl9++aXccsstzmXHuJGEhAQ9BfmZZ57R51pR50VRPSe9e/fW049LJ6pFixbpcNK3b1/nCd/UuVcAAABq7Twq9YnzqAAAqkudhFQdEVA9/9U9NIHqtW+9nkcFAACgNhBUAACAsdzuPCoAANjtREFhnTZySCCn3agIQQVAnbzpd/3LGpd1Wc/1480Zxir7erXbgdTBVdr/+PHj0qlTJ3niiSfk2Wef1eu++OIL6dOnj3zyySd6koqn4NAPgDrR2OusHOh8my7qPoDqa9mypaSnp8uMGTP0LNxTp07JQw895JxJ60noUQEAwA0NGjRIn4ts+PDh+gK/TZs21dfD8zT0qAAA4KZeeuklffmZZcuW6XOTeeIlZuhRAQCgDDWGyh3s27dPDh8+rC8DcODAAT1uxdMQVAAAcMNZOEVFRTJixAi5//775aqrrpJHHnlEduzYIWFhYeJJOPQDAIAbmjJlij6rq7r0zKRJk+TKK6+UUaNGiachqAAA4GbWrVsnc+fOlb///e/69PPqennq/oYNGyQtLU08CYd+AABwM3369JHi4mKXdW3atNE9LJ6GHhUAAGAsggoAADAWQQUAABiLoAIAAIxFUAEAAMYiqAAAAGMRVAAAgLEIKgAAwFgEFQAAYCyCCgAADciMGTPk2muvFXdBUAEAAFVy4MAB8fLykuzsbLEbQQUAABiLoAIAQFnnTtdtqaLjx49LRESEvPDCC851X3zxhfj5+UlmZmalnkNdbVldyDAoKEgeeOABOXXqlHPb6tWrpXfv3hIcHCwhISFy2223yb59+5zbY2Nj9W2XLl10z4q6SKJduHoyAABlvR9Yt20yzKrS7i1btpT09HQZMmSI9O/fX6666ip56KGHZNy4cdK3b99LPl6FjpUrV8qqVavkl19+kfvuu09SU1Nl9uzZevvp06clKSlJOnfuLAUFBTJt2jS566679KEeb29v2bp1q1x//fWyZs0aiYuL0wHJLgQVAADc0KBBgyQxMVGGDx8u3bp1k6ZNm0pKSkqlHltSUiILFy6UZs2a6WUVclRPjCOoDB061GV/FYpUOPr222+lY8eO+r6ieltUz46dCCoAAJR1X4FbtMlLL72kg8OyZcskKytL/P39K/U4dcjHEVKUyMhIOXbsmHN5z549uhdly5Yt8tNPP+lgo3z//ff659UlggoAABd8OjZ1izbZt2+fHD58WAcJNROnU6dOlXqcr6+vy7IaZ+III8rtt98uMTEx8tZbb0mrVq30NhVQioqKpK4RVAAAcENFRUUyYsQIuf/++/UYlUceeUR27NghYWFhNXreEydOSE5Ojg4pN954o163ceNGl30cY1LOnz8vdiOoAADghqZMmSJ5eXny2muvSWBgoHz88ccyatQoPUC2Ji677DI99uTNN9/Uh4TU4Z7Jkye77KPCUOPGjfXsoKioKAkICNCzh+zA9GQAANzMunXrZO7cuXqKcfPmzfVMHHV/w4YNkpaWVqPnVs+1ZMkSPeZFHe6ZMGGCzJkzx2UfHx8fHZDeeOMNfWjozjvvFLt4WZZVtTlRhsnPz9cpTqVK9ccCYJ4TBYXSe/Yq2dXpHr3cYcf/ycYpt0lIYOUG/gF2OXv2rOzfv1+fF0T1CqDu2reyn9/0qAAAAGMRVAAA8CBxcXF6zEp5ZdGiReJubB1Mq+ZpHzx48IL1jz/+uMybN0+fcnf9+vUu2/70pz/J/Pnz7awWAAAe6+OPP5bi4uJyt4WHh4u7sTWobNu2zWXq0s6dO+UPf/iD3Hvvvc516qx6zz//vHO5SZMmdlYJAACPFhMTI57E1qDiOMWug7qOQLt27eTmm292CSZ2n34XAICLcfN5JR7drt51eWKa9957T8/xVmfAc1DHy0JDQ/UUqOTkZDlz5sxFn6ewsFCPFC5dAACoDscZWi/12YPqcbRr2TPhGnnCN3WVxpMnT8rIkSOd64YNG6a7qNQc7O3bt8ukSZP02fCWL19e4fOoCy7NnDmzjmoNAPBkjRo1kuDgYOd1blQvf+kv06h+T4oKKapdVfuqdjY+qLzzzjty66236lDiMGbMGOd9dX0CdQY8dXlqde0CdYioPKrXRV162kH1qERHR9tcewCAp3IMPyh9UT7UDhVSajq8o06Cipr5s2bNmov2lCjx8fH6du/evRUGFXVlyMpeHRIAgEtRPSjqi7I6LXxFs2VQdepwT016Uuo0qCxYsEC/AAYPHnzR/bKzs/WtesEAAFCX1IdqbXywonbZHlTUpaFVUElISNDXBnBQh3cWL14sgwYN0hc/UmNU1PUEbrrpJuncubPd1QIAAG7A9qCiDvmoKy+q2T5lLxGttqmLKp0+fVqPMxk6dKg899xzdlcJAAC4CduDSv/+/cudR62CSdmz0gIAAJTGtX4AAICxCCoAAMBYBBUAAGAsggoAADAWQQUAABiLoAIAAIxFUAEAAMYiqAAAAGMRVAAAgLEIKgAAwFgEFQAAYCyCCgAAMBZBBQAAGIugAgAAjEVQAQAAxiKoAAAAYxFUAACAsQgqAADAWAQVAABgLIIKAAAwFkEFAAAYy6e+KwAAAMxyoqBQuv5ljcu6rOf6SUigf53XhR4VAABgLIIKAAAwFkEFAAAYi6ACAACMRVABAADGIqgAAABjEVQAAMAFGnudlQOdb9NF3a8vBBUAAGAsggoAADAWQQUAABiLoAIAAIxFUAEAAMYiqAAAgIYZVGbMmCFeXl4upX379s7tZ8+elbFjx0pISIgEBgbK0KFD5ejRo3ZWCQAAuBHbe1Ti4uLkyJEjzrJx40bntgkTJshHH30ky5Ytk/Xr18vhw4fl7rvvtrtKAADATfjY/gN8fCQiIuKC9Xl5efLOO+/I4sWL5fe//71et2DBAunQoYNs3rxZbrjhBrurBgAAGnqPyp49e6RVq1bStm1bGT58uHz//fd6fVZWlhQXF0u/fv2c+6rDQq1bt5ZNmzZV+HyFhYWSn5/vUgAAgGeyNajEx8fLwoULZfXq1ZKWlib79++XG2+8UU6dOiW5ubni5+cnwcHBLo8JDw/X2yqSkpIiQUFBzhIdHW3nrwAAADz10M+tt97qvN+5c2cdXGJiYuT999+Xxo0bV+s5k5OTJSkpybmselQIKwAAeKY6nZ6sek+uvPJK2bt3rx63UlRUJCdPnnTZR836KW9Mi4O/v780b97cpQAAAM9Up0GloKBA9u3bJ5GRkdK1a1fx9fWVzMxM5/acnBw9hqVHjx51WS0AANAQD/08/fTTcvvtt+vDPWrq8fTp06VRo0by4IMP6vElo0eP1odxWrRooXtGxo8fr0MKM34AAIDtQeWHH37QoeTEiRPSsmVL6d27t556rO4rf/3rX8Xb21uf6E3N5hkwYID87W9/4y8DAADsDypLliy56PaAgACZN2+eLgAAAGVxrR8AAGAsggoAADAWQQUAABiLoAIAAIxFUAEAAMYiqAAAAGMRVAAAgLEIKgAAwFgEFQAAYCyCCgAAMBZBBQAAGIugAgAAjEVQAQAAxiKoAAAAYxFUAACAsQgqAADAWAQVAABgLIIKAAAwFkEFAAAYi6ACAACMRVABAADGIqgAAABjEVQAAICxCCoAAMBYBBUAAGAsggoAADAWQQWAZzp3WmSx129F3QfglggqAADAWAQVAABgLIIKAI9zoqBQOkxd7VxW99U6AO6HoAIAAIxFUAEAAMYiqAAAAGMRVAAAgLEIKgAAoGEGlZSUFOnevbs0a9ZMwsLCZMiQIZKTk+OyT58+fcTLy8ulPProo3ZWCwAAuAlbg8r69etl7NixsnnzZsnIyJDi4mLp37+/nD7tepbIxMREOXLkiLO8+OKLdlYLAAC4CR87n3z16v+dx0BZuHCh7lnJysqSm266ybm+SZMmEhERYWdVAACAG6rTMSp5eXn6tkWLFi7rFy1aJKGhodKxY0dJTk6WM2fOVPgchYWFkp+f71IAAIBnsrVHpbSSkhJ56qmnpFevXjqQOAwbNkxiYmKkVatWsn37dpk0aZIex7J8+fIKx73MnDmzrqoNAAAaQlBRY1V27twpGzdudFk/ZswY5/1OnTpJZGSk9O3bV/bt2yft2rW74HlUj0tSUpJzWfWoREdH21x7AADgsUFl3LhxsmrVKvn8888lKirqovvGx8fr271795YbVPz9/XUBAACez9agYlmWjB8/XlasWCHr1q2T2NjYSz4mOztb36qeFQAA0LD52H24Z/HixfLBBx/oc6nk5ubq9UFBQdK4cWN9eEdtHzRokISEhOgxKhMmTNAzgjp37mxn1QAAQEMPKmlpac6TupW2YMECGTlypPj5+cmaNWtk7ty5+twqaqzJ0KFD5bnnnrOzWgAAwE3YfujnYlQwUSeFAwAAKA/X+gEAAMYiqAAAAGMRVAAAgLEIKgAAwFgEFQAAYCyCCgAAMBZBBQAAGIugAgAAjEVQAQAAxiKoAAAAYxFUAACAsQgqAADAWAQVAABgLIIKAAAwFkEFAAAYi6ACAACMRVABAADGIqgAAABjEVQAAICxCCoAAMBYBBUAAGAsggoAADAWQQUAABiLoAIAAIxFUAEAAMYiqAAAAGMRVAAAgLEIKgAAwFgEFaCsc6dFFnv9VtR9AEC9IagAAABjEVQAAICxCCoAAMBYBBUAAGAsggoAADAWQQUAABjLiKAyb948adOmjQQEBEh8fLxs3bq1vqsEAAAMUO9BZenSpZKUlCTTp0+Xr776Sq655hoZMGCAHDt2rL6rBgAAGnpQeeWVVyQxMVEefvhhufrqq2X+/PnSpEkTSU9Pr++qAQCAhhxUioqKJCsrS/r16/e/Cnl76+VNmzaV+5jCwkLJz893KUC5OMMsALg9n/r84T/99JOcP39ewsPDXdar5d27d5f7mJSUFJk5c6b9H3DvB/52/74CEZ+mtfK0JwoKpffsVbKr0z16ucOO/5ONU26TkEB/qTM2/W71/rPKo37eMKvuHldHynsdKfX6urrE3z/kvgLZlTJURH5r1102/2j1u9flz7NLrb5n1Pf/x+r+blWstxHvs7Wlsr/7udr/25r0f6jeD/1UVXJysuTl5TnLoUOH6rtKAADUPseXpmFWvQfLBtujEhoaKo0aNZKjR4+6rFfLERER5T7G399fFwAA4PnqtUfFz89PunbtKpmZmc51JSUlerlHjx71WTUAANDQe1QUNTU5ISFBunXrJtdff73MnTtXTp8+rWcBwc0ZPtYDAGC+eg8q999/vxw/flymTZsmubm5cu2118rq1asvGGALAAAannoPKsq4ceN0QR2glwMA4EaMCCoAPBChGEBDnJ4MAAAaDnpUym0VBoECgBF4P27wCCoAALgzH8/+cs2hHwAAYCyCCgAAMBaHfgCgIfDwwwPwXPSoAAAAYxFUAACAsQgqAADAWAQVAABgLIIKAAAwFkEFAAAYi6ACAACMRVABAADGIqgAAABjEVQAAICxCCoAAMBYBBUAAGAsggoAADAWQQUAABiLoAIAAIxFUAEAAMYiqAAAAGMRVAAAgLEIKgAAwFgEFQAAYCyCCgAAMBZBBQAAGIugAgAAjEVQAQAAxiKoAAAAYxFUAACAsQgqAADAWAQVAADQsILKgQMHZPTo0RIbGyuNGzeWdu3ayfTp06WoqMhlHy8vrwvK5s2b7agSAABwQz52POnu3bulpKRE3njjDbn88stl586dkpiYKKdPn5aXXnrJZd81a9ZIXFycczkkJMSOKgEAADdkS1AZOHCgLg5t27aVnJwcSUtLuyCoqGASERFhRzUAAICbq7MxKnl5edKiRYsL1t9xxx0SFhYmvXv3lg8//LCuqgMAABpqj0pZe/fulddff92lNyUwMFBefvll6dWrl3h7e8s///lPGTJkiKxcuVKHl4oUFhbq4pCfn297/QEAgBv0qEyePLncAbClixqfUtqPP/6oDwPde++9epyKQ2hoqCQlJUl8fLx0795dUlNTZcSIETJnzpyL1iElJUWCgoKcJTo6uqq/MwAA8MQelYkTJ8rIkSMvuo8aj+Jw+PBhueWWW6Rnz57y5ptvXvL5VWjJyMi46D7Jyck64JTuUSGsAADgmaoUVFq2bKlLZaieFBVSunbtKgsWLNCHdy4lOztbIiMjL7qPv7+/LgAAwPPZMkZFhZQ+ffpITEyMHpdy/Phx5zbHDJ93331X/Pz8pEuXLnp5+fLlkp6eLm+//bYdVQIAAG7IlqCiDt+oAbSqREVFuWyzLMt5f9asWXLw4EHx8fGR9u3by9KlS+Wee+6xo0oAAMAN2RJU1DiWS41lSUhI0AUAAKAiXOsHAAAYi6ACAACMRVABAADGIqgAAABjEVQAAICxCCoAAMBYBBUAAGAsggoAADAWQQUAABiLoAIAAIxFUAEAAMYiqAAAAGMRVAAAgLEIKgAAwFgEFQBAnQsJ9JddswY6l9V9tQ4oi6ACAACM5VPfFWhofrUCpM32VfVdDQCofz5NRYZZ9V0LGI4eFQAAYCyCCgAAMBZBBQAAGIugAgAAjMVg2jqkpt4dSB1clz8SAAC3Ro8KAAAwFkEFAAAYi6ACAACMRVABAADGIqgAAABjEVQAAICxCCoAAMBYBBUAAGAsggoAADAWQQUAABiLoAIAAIxFUAEAAMYiqAAAgIYXVNq0aSNeXl4uJTU11WWf7du3y4033igBAQESHR0tL774ol3VATzar1aAtNm+Shd1HwA8hY+dT/78889LYmKic7lZs2bO+/n5+dK/f3/p16+fzJ8/X3bs2CGjRo2S4OBgGTNmjJ3VAgAAbsLWoKKCSURERLnbFi1aJEVFRZKeni5+fn4SFxcn2dnZ8sorrxBUAACA/WNU1KGekJAQ6dKli8yZM0fOnTvn3LZp0ya56aabdEhxGDBggOTk5Mgvv/xiZ7UAj5P1XD85kDrYWUIC/eu7SgBgdo/KE088Idddd520aNFCvvjiC0lOTpYjR47oHhMlNzdXYmNjXR4THh7u3HbZZZeV+7yFhYW6lD6EBAAAPFOVelQmT558wQDZsmX37t1636SkJOnTp4907txZHn30UXn55Zfl9ddfdwkZ1ZGSkiJBQUHOogbhAgAAz1SlHpWJEyfKyJEjL7pP27Zty10fHx+vD/0cOHBArrrqKj125ejRoy77OJYrGteiqJ4ZFYJK96gQVgB4InUIb9esgSLv/7as7/twWA8NS5WCSsuWLXWpDjVQ1tvbW8LCwvRyjx49ZMqUKVJcXCy+vr56XUZGhg4xFR32Ufz9/XUBgAbBp6nIMKu+awF41mBaNVB27ty58vXXX8t3332nZ/hMmDBBRowY4Qwhw4YN0wNpR48eLd98840sXbpUXn31VZfeEgAA0LDZMphW9XgsWbJEZsyYocekqEGzKqiUDiFqfMm///1vGTt2rHTt2lVCQ0Nl2rRpTE0GAAD2BhU122fz5s2X3E8NtN2wYYMdVQAAAB6Aa/0AAABjEVQAAICxCCoAAMBYBBUAAGAsggoAADAWQQUAABiLoAIAAIxFUAEAAMYiqAAAAGMRVAAAgLEIKgAAwFgEFQAAYCyCCgAAMBZBBQAAGIugAgAAjEVQAQAAxiKoAAAAYxFUAACAsQgqAADAWAQVAABgLIIKAAAwFkEFAAAYi6ACAACMRVABAADGIqgAAABjEVQAAICxCCoAAMBYBBUAAGAsggoAADAWQQUAABiLoAIAAIxFUAEAAMYiqAAAAGMRVAAAgLEIKgAAwFgEFQAA0LCCyrp168TLy6vcsm3bNr3PgQMHyt2+efNmO6oEAADckI8dT9qzZ085cuSIy7qpU6dKZmamdOvWzWX9mjVrJC4uzrkcEhJiR5UAAIAbsiWo+Pn5SUREhHO5uLhYPvjgAxk/frzuNSlNBZPS+wIAANTpGJUPP/xQTpw4IQ8//PAF2+644w4JCwuT3r176/0upbCwUPLz810KAADwTHUSVN555x0ZMGCAREVFOdcFBgbKyy+/LMuWLZN//etfOqgMGTLkkmElJSVFgoKCnCU6OroOfgMAAGB8UJk8eXKFg2QdZffu3S6P+eGHH+TTTz+V0aNHu6wPDQ2VpKQkiY+Pl+7du0tqaqqMGDFC5syZc9E6JCcnS15enrMcOnSoKr8CAADw1DEqEydOlJEjR150n7Zt27osL1iwQI9DUYd4LkWFloyMjIvu4+/vrwsAAPB8VQoqLVu21KWyLMvSQeWPf/yj+Pr6XnL/7OxsiYyMrEqVAACAB7Nl1o/D2rVrZf/+/fLII49csO3dd9/Vs4O6dOmil5cvXy7p6eny9ttv21klAADgRnzsHkSrzqnSvn37crfPmjVLDh48KD4+PnqfpUuXyj333GNnlQAAgBuxNagsXry4wm0JCQm6AAAAVIRr/QAAAGMRVAAAgLEIKgAAoGGOUQFgj1+tAGmzfRXNC8Dj0aMCAACMRVABAADGIqgAAABjEVQAAICxCCoAAMBYBBUAAGAsggoAADAW51EB3ExIoL8cSB1c39UAjMV5hjwLPSoAAMBYBBUAAGAsggoAADAWQQUAABiLwbQAAI/BYHPPQ48KAAAwFkEFAAAYi6ACAACMRVABAADGIqgAAABjEVQAAICxCCoAAMBYBBUAAGAsggoAADAWQQUAABiLoAIAAIxFUAEAAMYiqAAAAGMRVAAAgLEIKgAAwFg+4uYsy9K3+fn59V0VAABQSY7PbcfnuMcGlVOnTunb6Ojo+q4KAACoxud4UFBQhdu9rEtFGcOVlJTI4cOHpVmzZuLl5VWrSU+Fn0OHDknz5s1r7XlBW9c3Xtu0tSfide1+ba3ihwoprVq1Em9vb8/tUVG/XFRUlG3Pr/4IBJW6QVvXLdqbtvZEvK7dq60v1pPiwGBaAABgLIIKAAAwFkGlAv7+/jJ9+nR9C3vR1nWL9qatPRGva89ta7cfTAsAADwXPSoAAMBYBBUAAGAsggoAADAWQQUAABiLoFKBefPmSZs2bSQgIEDi4+Nl69atdfuX8UApKSnSvXt3fRbhsLAwGTJkiOTk5Ljsc/bsWRk7dqyEhIRIYGCgDB06VI4ePVpvdfYUqamp+szNTz31lHMdbV17fvzxRxkxYoR+3TZu3Fg6deokX375pXO7mrMwbdo0iYyM1Nv79esne/bsqcUaNAznz5+XqVOnSmxsrG7Hdu3ayaxZs1yuFUNbV8/nn38ut99+uz5LrHqvWLlypcv2yrTrzz//LMOHD9cngQsODpbRo0dLQUFBNWvk+sNRxpIlSyw/Pz8rPT3d+uabb6zExEQrODjYOnr0KG1VAwMGDLAWLFhg7dy508rOzrYGDRpktW7d2iooKHDu8+ijj1rR0dFWZmam9eWXX1o33HCD1bNnT9q9BrZu3Wq1adPG6ty5s/Xkk0/S1rXs559/tmJiYqyRI0daW7Zssb777jvr008/tfbu3evcJzU11QoKCrJWrlxpff3119Ydd9xhxcbGWr/++mttV8ejzZ492woJCbFWrVpl7d+/31q2bJkVGBhovfrqq859aOvq+fjjj60pU6ZYy5cvV6nPWrFihcv2yrTrwIEDrWuuucbavHmztWHDBuvyyy+3HnzwQaumCCrluP76662xY8c6l8+fP2+1atXKSklJqXGD43+OHTum/0OsX79eL588edLy9fXVbz4Ou3bt0vts2rSJpquGU6dOWVdccYWVkZFh3Xzzzc6gQlvXnkmTJlm9e/eucHtJSYkVERFhzZkzx7lOtb+/v7/1j3/8oxZr4vkGDx5sjRo1ymXd3XffbQ0fPlzfp61rR9mgUpl2/fbbb/Xjtm3b5tznk08+sby8vKwff/yxRvXh0E8ZRUVFkpWVpbu1Sl9PSC1v2rSp5l1YcMrLy9O3LVq00Leq3YuLi13avn379tK6dWvavprUYbTBgwe7tCltXbs+/PBD6datm9x77736kGaXLl3krbfecm7fv3+/5ObmuvwN1PVN1CFl3lOqpmfPnpKZmSn//e9/9fLXX38tGzdulFtvvZW2tlFlXsPqVh3uUf8XHNT+6vNzy5YtNfr5bn9Rwtr2008/6eOg4eHhLuvV8u7du+utXp5GXfVajZfo1auXdOzYUa9T/xH8/Pz0i71s26ttqJolS5bIV199Jdu2bbtgG21de7777jtJS0uTpKQkefbZZ3V7P/HEE/q1nJCQ4Hztlveewuu6aiZPnqyv3Ku+wDRq1Ei/V8+ePVuPi1Boa3tUpl3VrQrqpfn4+OgvojV9nRNUUG/f9Hfu3Km/DaH2qcuvP/nkk5KRkaEHhMPe0K2+Rb7wwgt6WfWoqNf2/PnzdVBB7Xn//fdl0aJFsnjxYomLi5Ps7Gz9hUcNAKWtPReHfsoIDQ3VSb3sTBO1HBERUZd/G481btw4WbVqlXz22WcSFRXlXK/aVx16O3nypMv+tH3VqcNox44dk+uuu05/q1Fl/fr18tprr+n76psQbV071CyIq6++2mVdhw4d5Pvvv9f3He8bvKfU3J///Gfdq/LAAw/omVUPPfSQTJgwQc8opK3tU5nXsLpV7zmlnTt3Ts8EqulnJ0GlDNVd27VrV30ctPQ3JrXco0ePGjV2Q6fGaKmQsmLFClm7dq2eYliaandfX1+XtlfTl9UbPm1fNX379pUdO3bob5yOor71qy5yx33aunaow5dlp9mrMRQxMTH6vnqdqzfq0q9rdfhCHbfndV01Z86c0WMeSlNfLNV7NG1tn8q8htWt+pKpviQ5qPd59bdRY1lqpEZDcT14erIazbxw4UI9knnMmDF6enJubm59V82tPfbYY3p627p166wjR444y5kzZ1ymJ6spy2vXrtXTk3v06KELaq70rB/aunanf/v4+Oips3v27LEWLVpkNWnSxHrvvfdcpnaq95APPvjA2r59u3XnnXcyPbkaEhISrN/97nfO6clqKm1oaKj1zDPP0Na1MEPwP//5jy4qGrzyyiv6/sGDByv9GlbTk7t06aKn6W/cuFHPOGR6so1ef/11/YGpzqeipiureeGoGfXiL6+oc6s4qBf9448/bl122WX6zf6uu+7SYQa1H1Ro69rz0UcfWR07dtRfcNq3b2+9+eabLtvV9M6pU6da4eHhep++fftaOTk5tViDhiE/P1+/htV7c0BAgNW2bVt97o/CwkLnPrR19Xz22Wflvj+rcFjZdj1x4oQOJurcNs2bN7cefvhhHYBqykv9U7M+GQAAAHswRgUAABiLoAIAAIxFUAEAAMYiqAAAAGMRVAAAgLEIKgAAwFgEFQAAYCyCCgAAMBZBBQAAGIugAgAAjEVQAQAAxiKoAAAAMdX/A+uK82pEzfN9AAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "from src.algorithms import psomp, find_x_xi\n", + "from src.utils import apply_iq_imbalance, iq_imbalanced_measurement, generate_random_phase_matrix, unitary_dft\n", + "from src.data_generation import generate_sparse_vector\n", + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "\n", + "xi = 0.71 + 0.1j\n", + "n = 100\n", + "m = 50\n", + "s = 10\n", + "amp = 100\n", + "x = generate_sparse_vector(s,n,amp)\n", + "F = generate_random_phase_matrix(m,n)\n", + "U = unitary_dft(n)\n", + "A = F @ U\n", + "y = iq_imbalanced_measurement(A,x, xi,1)\n", + "z_hat = psomp(A,y,2*s)\n", + "x_hat, xi_hat = find_x_xi(z_hat)\n", + "print(f\"True xi: {xi}, Estimated xi: {xi_hat}\")\n", + "print(f\"Reconstruction error: {np.linalg.norm(x - x_hat)}\")\n", + "print(x.shape)\n", + "print(x_hat.shape)\n", + "\n", + "indices = range(len(x_hat))\n", + "plt.vlines(indices,0,x,linewidth=3)\n", + "plt.vlines(indices,0,x_hat,colors=\"orange\")\n", + "\n", + "plt.legend((\"x\",\"x_hat\"))" + ] + }, + { + "cell_type": "markdown", + "id": "e2e17fd1", + "metadata": {}, + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "compression", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.12.3" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/uv.lock b/uv.lock new file mode 100644 index 0000000..95d9991 --- /dev/null +++ b/uv.lock @@ -0,0 +1,1286 @@ +version = 1 +revision = 3 +requires-python = ">=3.12" + +[[package]] +name = "appnope" +version = "0.1.4" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/35/5d/752690df9ef5b76e169e68d6a129fa6d08a7100ca7f754c89495db3c6019/appnope-0.1.4.tar.gz", hash = "sha256:1de3860566df9caf38f01f86f65e0e13e379af54f9e4bee1e66b48f2efffd1ee", size = 4170, upload-time = "2024-02-06T09:43:11.258Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/81/29/5ecc3a15d5a33e31b26c11426c45c501e439cb865d0bff96315d86443b78/appnope-0.1.4-py2.py3-none-any.whl", hash = "sha256:502575ee11cd7a28c0205f379b525beefebab9d161b7c964670864014ed7213c", size = 4321, upload-time = "2024-02-06T09:43:09.663Z" }, +] + +[[package]] +name = "asttokens" +version = "3.0.1" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/be/a5/8e3f9b6771b0b408517c82d97aed8f2036509bc247d46114925e32fe33f0/asttokens-3.0.1.tar.gz", hash = "sha256:71a4ee5de0bde6a31d64f6b13f2293ac190344478f081c3d1bccfcf5eacb0cb7", size = 62308, upload-time = "2025-11-15T16:43:48.578Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/d2/39/e7eaf1799466a4aef85b6a4fe7bd175ad2b1c6345066aa33f1f58d4b18d0/asttokens-3.0.1-py3-none-any.whl", hash = "sha256:15a3ebc0f43c2d0a50eeafea25e19046c68398e487b9f1f5b517f7c0f40f976a", size = 27047, upload-time = "2025-11-15T16:43:16.109Z" }, +] + +[[package]] +name = "cffi" +version = "2.0.0" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "pycparser", marker = "implementation_name != 'PyPy'" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/eb/56/b1ba7935a17738ae8453301356628e8147c79dbb825bcbc73dc7401f9846/cffi-2.0.0.tar.gz", hash = "sha256:44d1b5909021139fe36001ae048dbdde8214afa20200eda0f64c068cac5d5529", size = 523588, upload-time = "2025-09-08T23:24:04.541Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/ea/47/4f61023ea636104d4f16ab488e268b93008c3d0bb76893b1b31db1f96802/cffi-2.0.0-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:6d02d6655b0e54f54c4ef0b94eb6be0607b70853c45ce98bd278dc7de718be5d", size = 185271, upload-time = "2025-09-08T23:22:44.795Z" }, + { url = "https://files.pythonhosted.org/packages/df/a2/781b623f57358e360d62cdd7a8c681f074a71d445418a776eef0aadb4ab4/cffi-2.0.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:8eca2a813c1cb7ad4fb74d368c2ffbbb4789d377ee5bb8df98373c2cc0dee76c", size = 181048, upload-time = "2025-09-08T23:22:45.938Z" }, + { url = "https://files.pythonhosted.org/packages/ff/df/a4f0fbd47331ceeba3d37c2e51e9dfc9722498becbeec2bd8bc856c9538a/cffi-2.0.0-cp312-cp312-manylinux1_i686.manylinux2014_i686.manylinux_2_17_i686.manylinux_2_5_i686.whl", hash = "sha256:21d1152871b019407d8ac3985f6775c079416c282e431a4da6afe7aefd2bccbe", size = 212529, upload-time = "2025-09-08T23:22:47.349Z" }, + { url = "https://files.pythonhosted.org/packages/d5/72/12b5f8d3865bf0f87cf1404d8c374e7487dcf097a1c91c436e72e6badd83/cffi-2.0.0-cp312-cp312-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:b21e08af67b8a103c71a250401c78d5e0893beff75e28c53c98f4de42f774062", size = 220097, upload-time = "2025-09-08T23:22:48.677Z" }, + { url = "https://files.pythonhosted.org/packages/c2/95/7a135d52a50dfa7c882ab0ac17e8dc11cec9d55d2c18dda414c051c5e69e/cffi-2.0.0-cp312-cp312-manylinux2014_ppc64le.manylinux_2_17_ppc64le.whl", hash = "sha256:1e3a615586f05fc4065a8b22b8152f0c1b00cdbc60596d187c2a74f9e3036e4e", size = 207983, upload-time = "2025-09-08T23:22:50.06Z" }, + { url = "https://files.pythonhosted.org/packages/3a/c8/15cb9ada8895957ea171c62dc78ff3e99159ee7adb13c0123c001a2546c1/cffi-2.0.0-cp312-cp312-manylinux2014_s390x.manylinux_2_17_s390x.whl", hash = "sha256:81afed14892743bbe14dacb9e36d9e0e504cd204e0b165062c488942b9718037", size = 206519, upload-time = "2025-09-08T23:22:51.364Z" }, + { url = "https://files.pythonhosted.org/packages/78/2d/7fa73dfa841b5ac06c7b8855cfc18622132e365f5b81d02230333ff26e9e/cffi-2.0.0-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:3e17ed538242334bf70832644a32a7aae3d83b57567f9fd60a26257e992b79ba", size = 219572, upload-time = "2025-09-08T23:22:52.902Z" }, + { url = "https://files.pythonhosted.org/packages/07/e0/267e57e387b4ca276b90f0434ff88b2c2241ad72b16d31836adddfd6031b/cffi-2.0.0-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:3925dd22fa2b7699ed2617149842d2e6adde22b262fcbfada50e3d195e4b3a94", size = 222963, upload-time = "2025-09-08T23:22:54.518Z" }, + { url = "https://files.pythonhosted.org/packages/b6/75/1f2747525e06f53efbd878f4d03bac5b859cbc11c633d0fb81432d98a795/cffi-2.0.0-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:2c8f814d84194c9ea681642fd164267891702542f028a15fc97d4674b6206187", size = 221361, upload-time = "2025-09-08T23:22:55.867Z" }, + { url = "https://files.pythonhosted.org/packages/7b/2b/2b6435f76bfeb6bbf055596976da087377ede68df465419d192acf00c437/cffi-2.0.0-cp312-cp312-win32.whl", hash = "sha256:da902562c3e9c550df360bfa53c035b2f241fed6d9aef119048073680ace4a18", size = 172932, upload-time = "2025-09-08T23:22:57.188Z" }, + { url = "https://files.pythonhosted.org/packages/f8/ed/13bd4418627013bec4ed6e54283b1959cf6db888048c7cf4b4c3b5b36002/cffi-2.0.0-cp312-cp312-win_amd64.whl", hash = "sha256:da68248800ad6320861f129cd9c1bf96ca849a2771a59e0344e88681905916f5", size = 183557, upload-time = "2025-09-08T23:22:58.351Z" }, + { url = "https://files.pythonhosted.org/packages/95/31/9f7f93ad2f8eff1dbc1c3656d7ca5bfd8fb52c9d786b4dcf19b2d02217fa/cffi-2.0.0-cp312-cp312-win_arm64.whl", hash = "sha256:4671d9dd5ec934cb9a73e7ee9676f9362aba54f7f34910956b84d727b0d73fb6", size = 177762, upload-time = "2025-09-08T23:22:59.668Z" }, + { url = "https://files.pythonhosted.org/packages/4b/8d/a0a47a0c9e413a658623d014e91e74a50cdd2c423f7ccfd44086ef767f90/cffi-2.0.0-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:00bdf7acc5f795150faa6957054fbbca2439db2f775ce831222b66f192f03beb", size = 185230, upload-time = "2025-09-08T23:23:00.879Z" }, + { url = "https://files.pythonhosted.org/packages/4a/d2/a6c0296814556c68ee32009d9c2ad4f85f2707cdecfd7727951ec228005d/cffi-2.0.0-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:45d5e886156860dc35862657e1494b9bae8dfa63bf56796f2fb56e1679fc0bca", size = 181043, upload-time = "2025-09-08T23:23:02.231Z" }, + { url = "https://files.pythonhosted.org/packages/b0/1e/d22cc63332bd59b06481ceaac49d6c507598642e2230f201649058a7e704/cffi-2.0.0-cp313-cp313-manylinux1_i686.manylinux2014_i686.manylinux_2_17_i686.manylinux_2_5_i686.whl", hash = "sha256:07b271772c100085dd28b74fa0cd81c8fb1a3ba18b21e03d7c27f3436a10606b", size = 212446, upload-time = "2025-09-08T23:23:03.472Z" }, + { url = "https://files.pythonhosted.org/packages/a9/f5/a2c23eb03b61a0b8747f211eb716446c826ad66818ddc7810cc2cc19b3f2/cffi-2.0.0-cp313-cp313-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:d48a880098c96020b02d5a1f7d9251308510ce8858940e6fa99ece33f610838b", size = 220101, upload-time = "2025-09-08T23:23:04.792Z" }, + { url = "https://files.pythonhosted.org/packages/f2/7f/e6647792fc5850d634695bc0e6ab4111ae88e89981d35ac269956605feba/cffi-2.0.0-cp313-cp313-manylinux2014_ppc64le.manylinux_2_17_ppc64le.whl", hash = "sha256:f93fd8e5c8c0a4aa1f424d6173f14a892044054871c771f8566e4008eaa359d2", size = 207948, upload-time = "2025-09-08T23:23:06.127Z" }, + { url = "https://files.pythonhosted.org/packages/cb/1e/a5a1bd6f1fb30f22573f76533de12a00bf274abcdc55c8edab639078abb6/cffi-2.0.0-cp313-cp313-manylinux2014_s390x.manylinux_2_17_s390x.whl", hash = "sha256:dd4f05f54a52fb558f1ba9f528228066954fee3ebe629fc1660d874d040ae5a3", size = 206422, upload-time = "2025-09-08T23:23:07.753Z" }, + { url = "https://files.pythonhosted.org/packages/98/df/0a1755e750013a2081e863e7cd37e0cdd02664372c754e5560099eb7aa44/cffi-2.0.0-cp313-cp313-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:c8d3b5532fc71b7a77c09192b4a5a200ea992702734a2e9279a37f2478236f26", size = 219499, upload-time = "2025-09-08T23:23:09.648Z" }, + { url = "https://files.pythonhosted.org/packages/50/e1/a969e687fcf9ea58e6e2a928ad5e2dd88cc12f6f0ab477e9971f2309b57c/cffi-2.0.0-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:d9b29c1f0ae438d5ee9acb31cadee00a58c46cc9c0b2f9038c6b0b3470877a8c", size = 222928, upload-time = "2025-09-08T23:23:10.928Z" }, + { url = "https://files.pythonhosted.org/packages/36/54/0362578dd2c9e557a28ac77698ed67323ed5b9775ca9d3fe73fe191bb5d8/cffi-2.0.0-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:6d50360be4546678fc1b79ffe7a66265e28667840010348dd69a314145807a1b", size = 221302, upload-time = "2025-09-08T23:23:12.42Z" }, + { url = "https://files.pythonhosted.org/packages/eb/6d/bf9bda840d5f1dfdbf0feca87fbdb64a918a69bca42cfa0ba7b137c48cb8/cffi-2.0.0-cp313-cp313-win32.whl", hash = "sha256:74a03b9698e198d47562765773b4a8309919089150a0bb17d829ad7b44b60d27", size = 172909, upload-time = "2025-09-08T23:23:14.32Z" }, + { url = "https://files.pythonhosted.org/packages/37/18/6519e1ee6f5a1e579e04b9ddb6f1676c17368a7aba48299c3759bbc3c8b3/cffi-2.0.0-cp313-cp313-win_amd64.whl", hash = "sha256:19f705ada2530c1167abacb171925dd886168931e0a7b78f5bffcae5c6b5be75", size = 183402, upload-time = "2025-09-08T23:23:15.535Z" }, + { url = "https://files.pythonhosted.org/packages/cb/0e/02ceeec9a7d6ee63bb596121c2c8e9b3a9e150936f4fbef6ca1943e6137c/cffi-2.0.0-cp313-cp313-win_arm64.whl", hash = "sha256:256f80b80ca3853f90c21b23ee78cd008713787b1b1e93eae9f3d6a7134abd91", size = 177780, upload-time = "2025-09-08T23:23:16.761Z" }, + { url = "https://files.pythonhosted.org/packages/92/c4/3ce07396253a83250ee98564f8d7e9789fab8e58858f35d07a9a2c78de9f/cffi-2.0.0-cp314-cp314-macosx_10_13_x86_64.whl", hash = "sha256:fc33c5141b55ed366cfaad382df24fe7dcbc686de5be719b207bb248e3053dc5", size = 185320, upload-time = "2025-09-08T23:23:18.087Z" }, + { url = "https://files.pythonhosted.org/packages/59/dd/27e9fa567a23931c838c6b02d0764611c62290062a6d4e8ff7863daf9730/cffi-2.0.0-cp314-cp314-macosx_11_0_arm64.whl", hash = "sha256:c654de545946e0db659b3400168c9ad31b5d29593291482c43e3564effbcee13", size = 181487, upload-time = "2025-09-08T23:23:19.622Z" }, + { url = "https://files.pythonhosted.org/packages/d6/43/0e822876f87ea8a4ef95442c3d766a06a51fc5298823f884ef87aaad168c/cffi-2.0.0-cp314-cp314-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:24b6f81f1983e6df8db3adc38562c83f7d4a0c36162885ec7f7b77c7dcbec97b", size = 220049, upload-time = "2025-09-08T23:23:20.853Z" }, + { url = "https://files.pythonhosted.org/packages/b4/89/76799151d9c2d2d1ead63c2429da9ea9d7aac304603de0c6e8764e6e8e70/cffi-2.0.0-cp314-cp314-manylinux2014_ppc64le.manylinux_2_17_ppc64le.whl", hash = "sha256:12873ca6cb9b0f0d3a0da705d6086fe911591737a59f28b7936bdfed27c0d47c", size = 207793, upload-time = "2025-09-08T23:23:22.08Z" }, + { url = "https://files.pythonhosted.org/packages/bb/dd/3465b14bb9e24ee24cb88c9e3730f6de63111fffe513492bf8c808a3547e/cffi-2.0.0-cp314-cp314-manylinux2014_s390x.manylinux_2_17_s390x.whl", hash = "sha256:d9b97165e8aed9272a6bb17c01e3cc5871a594a446ebedc996e2397a1c1ea8ef", size = 206300, upload-time = "2025-09-08T23:23:23.314Z" }, + { url = "https://files.pythonhosted.org/packages/47/d9/d83e293854571c877a92da46fdec39158f8d7e68da75bf73581225d28e90/cffi-2.0.0-cp314-cp314-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:afb8db5439b81cf9c9d0c80404b60c3cc9c3add93e114dcae767f1477cb53775", size = 219244, upload-time = "2025-09-08T23:23:24.541Z" }, + { url = "https://files.pythonhosted.org/packages/2b/0f/1f177e3683aead2bb00f7679a16451d302c436b5cbf2505f0ea8146ef59e/cffi-2.0.0-cp314-cp314-musllinux_1_2_aarch64.whl", hash = "sha256:737fe7d37e1a1bffe70bd5754ea763a62a066dc5913ca57e957824b72a85e205", size = 222828, upload-time = "2025-09-08T23:23:26.143Z" }, + { url = "https://files.pythonhosted.org/packages/c6/0f/cafacebd4b040e3119dcb32fed8bdef8dfe94da653155f9d0b9dc660166e/cffi-2.0.0-cp314-cp314-musllinux_1_2_x86_64.whl", hash = "sha256:38100abb9d1b1435bc4cc340bb4489635dc2f0da7456590877030c9b3d40b0c1", size = 220926, upload-time = "2025-09-08T23:23:27.873Z" }, + { url = "https://files.pythonhosted.org/packages/3e/aa/df335faa45b395396fcbc03de2dfcab242cd61a9900e914fe682a59170b1/cffi-2.0.0-cp314-cp314-win32.whl", hash = "sha256:087067fa8953339c723661eda6b54bc98c5625757ea62e95eb4898ad5e776e9f", size = 175328, upload-time = "2025-09-08T23:23:44.61Z" }, + { url = "https://files.pythonhosted.org/packages/bb/92/882c2d30831744296ce713f0feb4c1cd30f346ef747b530b5318715cc367/cffi-2.0.0-cp314-cp314-win_amd64.whl", hash = "sha256:203a48d1fb583fc7d78a4c6655692963b860a417c0528492a6bc21f1aaefab25", size = 185650, upload-time = "2025-09-08T23:23:45.848Z" }, + { url = "https://files.pythonhosted.org/packages/9f/2c/98ece204b9d35a7366b5b2c6539c350313ca13932143e79dc133ba757104/cffi-2.0.0-cp314-cp314-win_arm64.whl", hash = "sha256:dbd5c7a25a7cb98f5ca55d258b103a2054f859a46ae11aaf23134f9cc0d356ad", size = 180687, upload-time = "2025-09-08T23:23:47.105Z" }, + { url = "https://files.pythonhosted.org/packages/3e/61/c768e4d548bfa607abcda77423448df8c471f25dbe64fb2ef6d555eae006/cffi-2.0.0-cp314-cp314t-macosx_10_13_x86_64.whl", hash = "sha256:9a67fc9e8eb39039280526379fb3a70023d77caec1852002b4da7e8b270c4dd9", size = 188773, upload-time = "2025-09-08T23:23:29.347Z" }, + { url = "https://files.pythonhosted.org/packages/2c/ea/5f76bce7cf6fcd0ab1a1058b5af899bfbef198bea4d5686da88471ea0336/cffi-2.0.0-cp314-cp314t-macosx_11_0_arm64.whl", hash = "sha256:7a66c7204d8869299919db4d5069a82f1561581af12b11b3c9f48c584eb8743d", size = 185013, upload-time = "2025-09-08T23:23:30.63Z" }, + { url = "https://files.pythonhosted.org/packages/be/b4/c56878d0d1755cf9caa54ba71e5d049479c52f9e4afc230f06822162ab2f/cffi-2.0.0-cp314-cp314t-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:7cc09976e8b56f8cebd752f7113ad07752461f48a58cbba644139015ac24954c", size = 221593, upload-time = "2025-09-08T23:23:31.91Z" }, + { url = "https://files.pythonhosted.org/packages/e0/0d/eb704606dfe8033e7128df5e90fee946bbcb64a04fcdaa97321309004000/cffi-2.0.0-cp314-cp314t-manylinux2014_ppc64le.manylinux_2_17_ppc64le.whl", hash = "sha256:92b68146a71df78564e4ef48af17551a5ddd142e5190cdf2c5624d0c3ff5b2e8", size = 209354, upload-time = "2025-09-08T23:23:33.214Z" }, + { url = "https://files.pythonhosted.org/packages/d8/19/3c435d727b368ca475fb8742ab97c9cb13a0de600ce86f62eab7fa3eea60/cffi-2.0.0-cp314-cp314t-manylinux2014_s390x.manylinux_2_17_s390x.whl", hash = "sha256:b1e74d11748e7e98e2f426ab176d4ed720a64412b6a15054378afdb71e0f37dc", size = 208480, upload-time = "2025-09-08T23:23:34.495Z" }, + { url = "https://files.pythonhosted.org/packages/d0/44/681604464ed9541673e486521497406fadcc15b5217c3e326b061696899a/cffi-2.0.0-cp314-cp314t-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:28a3a209b96630bca57cce802da70c266eb08c6e97e5afd61a75611ee6c64592", size = 221584, upload-time = "2025-09-08T23:23:36.096Z" }, + { url = "https://files.pythonhosted.org/packages/25/8e/342a504ff018a2825d395d44d63a767dd8ebc927ebda557fecdaca3ac33a/cffi-2.0.0-cp314-cp314t-musllinux_1_2_aarch64.whl", hash = "sha256:7553fb2090d71822f02c629afe6042c299edf91ba1bf94951165613553984512", size = 224443, upload-time = "2025-09-08T23:23:37.328Z" }, + { url = "https://files.pythonhosted.org/packages/e1/5e/b666bacbbc60fbf415ba9988324a132c9a7a0448a9a8f125074671c0f2c3/cffi-2.0.0-cp314-cp314t-musllinux_1_2_x86_64.whl", hash = "sha256:6c6c373cfc5c83a975506110d17457138c8c63016b563cc9ed6e056a82f13ce4", size = 223437, upload-time = "2025-09-08T23:23:38.945Z" }, + { url = "https://files.pythonhosted.org/packages/a0/1d/ec1a60bd1a10daa292d3cd6bb0b359a81607154fb8165f3ec95fe003b85c/cffi-2.0.0-cp314-cp314t-win32.whl", hash = "sha256:1fc9ea04857caf665289b7a75923f2c6ed559b8298a1b8c49e59f7dd95c8481e", size = 180487, upload-time = "2025-09-08T23:23:40.423Z" }, + { url = "https://files.pythonhosted.org/packages/bf/41/4c1168c74fac325c0c8156f04b6749c8b6a8f405bbf91413ba088359f60d/cffi-2.0.0-cp314-cp314t-win_amd64.whl", hash = "sha256:d68b6cef7827e8641e8ef16f4494edda8b36104d79773a334beaa1e3521430f6", size = 191726, upload-time = "2025-09-08T23:23:41.742Z" }, + { url = "https://files.pythonhosted.org/packages/ae/3a/dbeec9d1ee0844c679f6bb5d6ad4e9f198b1224f4e7a32825f47f6192b0c/cffi-2.0.0-cp314-cp314t-win_arm64.whl", hash = "sha256:0a1527a803f0a659de1af2e1fd700213caba79377e27e4693648c2923da066f9", size = 184195, upload-time = "2025-09-08T23:23:43.004Z" }, +] + +[[package]] +name = "colorama" +version = "0.4.6" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/d8/53/6f443c9a4a8358a93a6792e2acffb9d9d5cb0a5cfd8802644b7b1c9a02e4/colorama-0.4.6.tar.gz", hash = "sha256:08695f5cb7ed6e0531a20572697297273c47b8cae5a63ffc6d6ed5c201be6e44", size = 27697, upload-time = "2022-10-25T02:36:22.414Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/d1/d6/3965ed04c63042e047cb6a3e6ed1a63a35087b6a609aa3a15ed8ac56c221/colorama-0.4.6-py2.py3-none-any.whl", hash = "sha256:4f1d9991f5acc0ca119f9d443620b77f9d6b33703e51011c16baf57afb285fc6", size = 25335, upload-time = "2022-10-25T02:36:20.889Z" }, +] + +[[package]] +name = "comm" +version = "0.2.3" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/4c/13/7d740c5849255756bc17888787313b61fd38a0a8304fc4f073dfc46122aa/comm-0.2.3.tar.gz", hash = "sha256:2dc8048c10962d55d7ad693be1e7045d891b7ce8d999c97963a5e3e99c055971", size = 6319, upload-time = "2025-07-25T14:02:04.452Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/60/97/891a0971e1e4a8c5d2b20bbe0e524dc04548d2307fee33cdeba148fd4fc7/comm-0.2.3-py3-none-any.whl", hash = "sha256:c615d91d75f7f04f095b30d1c1711babd43bdc6419c1be9886a85f2f4e489417", size = 7294, upload-time = "2025-07-25T14:02:02.896Z" }, +] + +[[package]] +name = "compression" +version = "0.1.0" +source = { virtual = "." } +dependencies = [ + { name = "ipykernel" }, + { name = "matplotlib" }, + { name = "numpy" }, + { name = "scipy" }, + { name = "torch" }, +] + +[package.metadata] +requires-dist = [ + { name = "ipykernel", specifier = ">=7.1.0" }, + { name = "matplotlib", specifier = ">=3.10.7" }, + { name = "numpy", specifier = ">=2.3.5" }, + { name = "scipy", specifier = ">=1.16.3" }, + { name = "torch", specifier = ">=2.9.1" }, +] + +[[package]] +name = "contourpy" +version = "1.3.3" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "numpy" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/58/01/1253e6698a07380cd31a736d248a3f2a50a7c88779a1813da27503cadc2a/contourpy-1.3.3.tar.gz", hash = "sha256:083e12155b210502d0bca491432bb04d56dc3432f95a979b429f2848c3dbe880", size = 13466174, upload-time = "2025-07-26T12:03:12.549Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/be/45/adfee365d9ea3d853550b2e735f9d66366701c65db7855cd07621732ccfc/contourpy-1.3.3-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:b08a32ea2f8e42cf1d4be3169a98dd4be32bafe4f22b6c4cb4ba810fa9e5d2cb", size = 293419, upload-time = "2025-07-26T12:01:21.16Z" }, + { url = "https://files.pythonhosted.org/packages/53/3e/405b59cfa13021a56bba395a6b3aca8cec012b45bf177b0eaf7a202cde2c/contourpy-1.3.3-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:556dba8fb6f5d8742f2923fe9457dbdd51e1049c4a43fd3986a0b14a1d815fc6", size = 273979, upload-time = "2025-07-26T12:01:22.448Z" }, + { url = "https://files.pythonhosted.org/packages/d4/1c/a12359b9b2ca3a845e8f7f9ac08bdf776114eb931392fcad91743e2ea17b/contourpy-1.3.3-cp312-cp312-manylinux_2_26_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:92d9abc807cf7d0e047b95ca5d957cf4792fcd04e920ca70d48add15c1a90ea7", size = 332653, upload-time = "2025-07-26T12:01:24.155Z" }, + { url = "https://files.pythonhosted.org/packages/63/12/897aeebfb475b7748ea67b61e045accdfcf0d971f8a588b67108ed7f5512/contourpy-1.3.3-cp312-cp312-manylinux_2_26_ppc64le.manylinux_2_28_ppc64le.whl", hash = "sha256:b2e8faa0ed68cb29af51edd8e24798bb661eac3bd9f65420c1887b6ca89987c8", size = 379536, upload-time = "2025-07-26T12:01:25.91Z" }, + { url = "https://files.pythonhosted.org/packages/43/8a/a8c584b82deb248930ce069e71576fc09bd7174bbd35183b7943fb1064fd/contourpy-1.3.3-cp312-cp312-manylinux_2_26_s390x.manylinux_2_28_s390x.whl", hash = "sha256:626d60935cf668e70a5ce6ff184fd713e9683fb458898e4249b63be9e28286ea", size = 384397, upload-time = "2025-07-26T12:01:27.152Z" }, + { url = "https://files.pythonhosted.org/packages/cc/8f/ec6289987824b29529d0dfda0d74a07cec60e54b9c92f3c9da4c0ac732de/contourpy-1.3.3-cp312-cp312-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:4d00e655fcef08aba35ec9610536bfe90267d7ab5ba944f7032549c55a146da1", size = 362601, upload-time = "2025-07-26T12:01:28.808Z" }, + { url = "https://files.pythonhosted.org/packages/05/0a/a3fe3be3ee2dceb3e615ebb4df97ae6f3828aa915d3e10549ce016302bd1/contourpy-1.3.3-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:451e71b5a7d597379ef572de31eeb909a87246974d960049a9848c3bc6c41bf7", size = 1331288, upload-time = "2025-07-26T12:01:31.198Z" }, + { url = "https://files.pythonhosted.org/packages/33/1d/acad9bd4e97f13f3e2b18a3977fe1b4a37ecf3d38d815333980c6c72e963/contourpy-1.3.3-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:459c1f020cd59fcfe6650180678a9993932d80d44ccde1fa1868977438f0b411", size = 1403386, upload-time = "2025-07-26T12:01:33.947Z" }, + { url = "https://files.pythonhosted.org/packages/cf/8f/5847f44a7fddf859704217a99a23a4f6417b10e5ab1256a179264561540e/contourpy-1.3.3-cp312-cp312-win32.whl", hash = "sha256:023b44101dfe49d7d53932be418477dba359649246075c996866106da069af69", size = 185018, upload-time = "2025-07-26T12:01:35.64Z" }, + { url = "https://files.pythonhosted.org/packages/19/e8/6026ed58a64563186a9ee3f29f41261fd1828f527dd93d33b60feca63352/contourpy-1.3.3-cp312-cp312-win_amd64.whl", hash = "sha256:8153b8bfc11e1e4d75bcb0bff1db232f9e10b274e0929de9d608027e0d34ff8b", size = 226567, upload-time = "2025-07-26T12:01:36.804Z" }, + { url = "https://files.pythonhosted.org/packages/d1/e2/f05240d2c39a1ed228d8328a78b6f44cd695f7ef47beb3e684cf93604f86/contourpy-1.3.3-cp312-cp312-win_arm64.whl", hash = "sha256:07ce5ed73ecdc4a03ffe3e1b3e3c1166db35ae7584be76f65dbbe28a7791b0cc", size = 193655, upload-time = "2025-07-26T12:01:37.999Z" }, + { url = "https://files.pythonhosted.org/packages/68/35/0167aad910bbdb9599272bd96d01a9ec6852f36b9455cf2ca67bd4cc2d23/contourpy-1.3.3-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:177fb367556747a686509d6fef71d221a4b198a3905fe824430e5ea0fda54eb5", size = 293257, upload-time = "2025-07-26T12:01:39.367Z" }, + { url = "https://files.pythonhosted.org/packages/96/e4/7adcd9c8362745b2210728f209bfbcf7d91ba868a2c5f40d8b58f54c509b/contourpy-1.3.3-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:d002b6f00d73d69333dac9d0b8d5e84d9724ff9ef044fd63c5986e62b7c9e1b1", size = 274034, upload-time = "2025-07-26T12:01:40.645Z" }, + { url = "https://files.pythonhosted.org/packages/73/23/90e31ceeed1de63058a02cb04b12f2de4b40e3bef5e082a7c18d9c8ae281/contourpy-1.3.3-cp313-cp313-manylinux_2_26_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:348ac1f5d4f1d66d3322420f01d42e43122f43616e0f194fc1c9f5d830c5b286", size = 334672, upload-time = "2025-07-26T12:01:41.942Z" }, + { url = "https://files.pythonhosted.org/packages/ed/93/b43d8acbe67392e659e1d984700e79eb67e2acb2bd7f62012b583a7f1b55/contourpy-1.3.3-cp313-cp313-manylinux_2_26_ppc64le.manylinux_2_28_ppc64le.whl", hash = "sha256:655456777ff65c2c548b7c454af9c6f33f16c8884f11083244b5819cc214f1b5", size = 381234, upload-time = "2025-07-26T12:01:43.499Z" }, + { url = "https://files.pythonhosted.org/packages/46/3b/bec82a3ea06f66711520f75a40c8fc0b113b2a75edb36aa633eb11c4f50f/contourpy-1.3.3-cp313-cp313-manylinux_2_26_s390x.manylinux_2_28_s390x.whl", hash = "sha256:644a6853d15b2512d67881586bd03f462c7ab755db95f16f14d7e238f2852c67", size = 385169, upload-time = "2025-07-26T12:01:45.219Z" }, + { url = "https://files.pythonhosted.org/packages/4b/32/e0f13a1c5b0f8572d0ec6ae2f6c677b7991fafd95da523159c19eff0696a/contourpy-1.3.3-cp313-cp313-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:4debd64f124ca62069f313a9cb86656ff087786016d76927ae2cf37846b006c9", size = 362859, upload-time = "2025-07-26T12:01:46.519Z" }, + { url = "https://files.pythonhosted.org/packages/33/71/e2a7945b7de4e58af42d708a219f3b2f4cff7386e6b6ab0a0fa0033c49a9/contourpy-1.3.3-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:a15459b0f4615b00bbd1e91f1b9e19b7e63aea7483d03d804186f278c0af2659", size = 1332062, upload-time = "2025-07-26T12:01:48.964Z" }, + { url = "https://files.pythonhosted.org/packages/12/fc/4e87ac754220ccc0e807284f88e943d6d43b43843614f0a8afa469801db0/contourpy-1.3.3-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:ca0fdcd73925568ca027e0b17ab07aad764be4706d0a925b89227e447d9737b7", size = 1403932, upload-time = "2025-07-26T12:01:51.979Z" }, + { url = "https://files.pythonhosted.org/packages/a6/2e/adc197a37443f934594112222ac1aa7dc9a98faf9c3842884df9a9d8751d/contourpy-1.3.3-cp313-cp313-win32.whl", hash = "sha256:b20c7c9a3bf701366556e1b1984ed2d0cedf999903c51311417cf5f591d8c78d", size = 185024, upload-time = "2025-07-26T12:01:53.245Z" }, + { url = "https://files.pythonhosted.org/packages/18/0b/0098c214843213759692cc638fce7de5c289200a830e5035d1791d7a2338/contourpy-1.3.3-cp313-cp313-win_amd64.whl", hash = "sha256:1cadd8b8969f060ba45ed7c1b714fe69185812ab43bd6b86a9123fe8f99c3263", size = 226578, upload-time = "2025-07-26T12:01:54.422Z" }, + { url = "https://files.pythonhosted.org/packages/8a/9a/2f6024a0c5995243cd63afdeb3651c984f0d2bc727fd98066d40e141ad73/contourpy-1.3.3-cp313-cp313-win_arm64.whl", hash = "sha256:fd914713266421b7536de2bfa8181aa8c699432b6763a0ea64195ebe28bff6a9", size = 193524, upload-time = "2025-07-26T12:01:55.73Z" }, + { url = "https://files.pythonhosted.org/packages/c0/b3/f8a1a86bd3298513f500e5b1f5fd92b69896449f6cab6a146a5d52715479/contourpy-1.3.3-cp313-cp313t-macosx_10_13_x86_64.whl", hash = "sha256:88df9880d507169449d434c293467418b9f6cbe82edd19284aa0409e7fdb933d", size = 306730, upload-time = "2025-07-26T12:01:57.051Z" }, + { url = "https://files.pythonhosted.org/packages/3f/11/4780db94ae62fc0c2053909b65dc3246bd7cecfc4f8a20d957ad43aa4ad8/contourpy-1.3.3-cp313-cp313t-macosx_11_0_arm64.whl", hash = "sha256:d06bb1f751ba5d417047db62bca3c8fde202b8c11fb50742ab3ab962c81e8216", size = 287897, upload-time = "2025-07-26T12:01:58.663Z" }, + { url = "https://files.pythonhosted.org/packages/ae/15/e59f5f3ffdd6f3d4daa3e47114c53daabcb18574a26c21f03dc9e4e42ff0/contourpy-1.3.3-cp313-cp313t-manylinux_2_26_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:e4e6b05a45525357e382909a4c1600444e2a45b4795163d3b22669285591c1ae", size = 326751, upload-time = "2025-07-26T12:02:00.343Z" }, + { url = "https://files.pythonhosted.org/packages/0f/81/03b45cfad088e4770b1dcf72ea78d3802d04200009fb364d18a493857210/contourpy-1.3.3-cp313-cp313t-manylinux_2_26_ppc64le.manylinux_2_28_ppc64le.whl", hash = "sha256:ab3074b48c4e2cf1a960e6bbeb7f04566bf36b1861d5c9d4d8ac04b82e38ba20", size = 375486, upload-time = "2025-07-26T12:02:02.128Z" }, + { url = "https://files.pythonhosted.org/packages/0c/ba/49923366492ffbdd4486e970d421b289a670ae8cf539c1ea9a09822b371a/contourpy-1.3.3-cp313-cp313t-manylinux_2_26_s390x.manylinux_2_28_s390x.whl", hash = "sha256:6c3d53c796f8647d6deb1abe867daeb66dcc8a97e8455efa729516b997b8ed99", size = 388106, upload-time = "2025-07-26T12:02:03.615Z" }, + { url = "https://files.pythonhosted.org/packages/9f/52/5b00ea89525f8f143651f9f03a0df371d3cbd2fccd21ca9b768c7a6500c2/contourpy-1.3.3-cp313-cp313t-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:50ed930df7289ff2a8d7afeb9603f8289e5704755c7e5c3bbd929c90c817164b", size = 352548, upload-time = "2025-07-26T12:02:05.165Z" }, + { url = "https://files.pythonhosted.org/packages/32/1d/a209ec1a3a3452d490f6b14dd92e72280c99ae3d1e73da74f8277d4ee08f/contourpy-1.3.3-cp313-cp313t-musllinux_1_2_aarch64.whl", hash = "sha256:4feffb6537d64b84877da813a5c30f1422ea5739566abf0bd18065ac040e120a", size = 1322297, upload-time = "2025-07-26T12:02:07.379Z" }, + { url = "https://files.pythonhosted.org/packages/bc/9e/46f0e8ebdd884ca0e8877e46a3f4e633f6c9c8c4f3f6e72be3fe075994aa/contourpy-1.3.3-cp313-cp313t-musllinux_1_2_x86_64.whl", hash = "sha256:2b7e9480ffe2b0cd2e787e4df64270e3a0440d9db8dc823312e2c940c167df7e", size = 1391023, upload-time = "2025-07-26T12:02:10.171Z" }, + { url = "https://files.pythonhosted.org/packages/b9/70/f308384a3ae9cd2209e0849f33c913f658d3326900d0ff5d378d6a1422d2/contourpy-1.3.3-cp313-cp313t-win32.whl", hash = "sha256:283edd842a01e3dcd435b1c5116798d661378d83d36d337b8dde1d16a5fc9ba3", size = 196157, upload-time = "2025-07-26T12:02:11.488Z" }, + { url = "https://files.pythonhosted.org/packages/b2/dd/880f890a6663b84d9e34a6f88cded89d78f0091e0045a284427cb6b18521/contourpy-1.3.3-cp313-cp313t-win_amd64.whl", hash = "sha256:87acf5963fc2b34825e5b6b048f40e3635dd547f590b04d2ab317c2619ef7ae8", size = 240570, upload-time = "2025-07-26T12:02:12.754Z" }, + { url = "https://files.pythonhosted.org/packages/80/99/2adc7d8ffead633234817ef8e9a87115c8a11927a94478f6bb3d3f4d4f7d/contourpy-1.3.3-cp313-cp313t-win_arm64.whl", hash = "sha256:3c30273eb2a55024ff31ba7d052dde990d7d8e5450f4bbb6e913558b3d6c2301", size = 199713, upload-time = "2025-07-26T12:02:14.4Z" }, + { url = "https://files.pythonhosted.org/packages/72/8b/4546f3ab60f78c514ffb7d01a0bd743f90de36f0019d1be84d0a708a580a/contourpy-1.3.3-cp314-cp314-macosx_10_13_x86_64.whl", hash = "sha256:fde6c716d51c04b1c25d0b90364d0be954624a0ee9d60e23e850e8d48353d07a", size = 292189, upload-time = "2025-07-26T12:02:16.095Z" }, + { url = "https://files.pythonhosted.org/packages/fd/e1/3542a9cb596cadd76fcef413f19c79216e002623158befe6daa03dbfa88c/contourpy-1.3.3-cp314-cp314-macosx_11_0_arm64.whl", hash = "sha256:cbedb772ed74ff5be440fa8eee9bd49f64f6e3fc09436d9c7d8f1c287b121d77", size = 273251, upload-time = "2025-07-26T12:02:17.524Z" }, + { url = "https://files.pythonhosted.org/packages/b1/71/f93e1e9471d189f79d0ce2497007731c1e6bf9ef6d1d61b911430c3db4e5/contourpy-1.3.3-cp314-cp314-manylinux_2_26_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:22e9b1bd7a9b1d652cd77388465dc358dafcd2e217d35552424aa4f996f524f5", size = 335810, upload-time = "2025-07-26T12:02:18.9Z" }, + { url = "https://files.pythonhosted.org/packages/91/f9/e35f4c1c93f9275d4e38681a80506b5510e9327350c51f8d4a5a724d178c/contourpy-1.3.3-cp314-cp314-manylinux_2_26_ppc64le.manylinux_2_28_ppc64le.whl", hash = "sha256:a22738912262aa3e254e4f3cb079a95a67132fc5a063890e224393596902f5a4", size = 382871, upload-time = "2025-07-26T12:02:20.418Z" }, + { url = "https://files.pythonhosted.org/packages/b5/71/47b512f936f66a0a900d81c396a7e60d73419868fba959c61efed7a8ab46/contourpy-1.3.3-cp314-cp314-manylinux_2_26_s390x.manylinux_2_28_s390x.whl", hash = "sha256:afe5a512f31ee6bd7d0dda52ec9864c984ca3d66664444f2d72e0dc4eb832e36", size = 386264, upload-time = "2025-07-26T12:02:21.916Z" }, + { url = "https://files.pythonhosted.org/packages/04/5f/9ff93450ba96b09c7c2b3f81c94de31c89f92292f1380261bd7195bea4ea/contourpy-1.3.3-cp314-cp314-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:f64836de09927cba6f79dcd00fdd7d5329f3fccc633468507079c829ca4db4e3", size = 363819, upload-time = "2025-07-26T12:02:23.759Z" }, + { url = "https://files.pythonhosted.org/packages/3e/a6/0b185d4cc480ee494945cde102cb0149ae830b5fa17bf855b95f2e70ad13/contourpy-1.3.3-cp314-cp314-musllinux_1_2_aarch64.whl", hash = "sha256:1fd43c3be4c8e5fd6e4f2baeae35ae18176cf2e5cced681cca908addf1cdd53b", size = 1333650, upload-time = "2025-07-26T12:02:26.181Z" }, + { url = "https://files.pythonhosted.org/packages/43/d7/afdc95580ca56f30fbcd3060250f66cedbde69b4547028863abd8aa3b47e/contourpy-1.3.3-cp314-cp314-musllinux_1_2_x86_64.whl", hash = "sha256:6afc576f7b33cf00996e5c1102dc2a8f7cc89e39c0b55df93a0b78c1bd992b36", size = 1404833, upload-time = "2025-07-26T12:02:28.782Z" }, + { url = "https://files.pythonhosted.org/packages/e2/e2/366af18a6d386f41132a48f033cbd2102e9b0cf6345d35ff0826cd984566/contourpy-1.3.3-cp314-cp314-win32.whl", hash = "sha256:66c8a43a4f7b8df8b71ee1840e4211a3c8d93b214b213f590e18a1beca458f7d", size = 189692, upload-time = "2025-07-26T12:02:30.128Z" }, + { url = "https://files.pythonhosted.org/packages/7d/c2/57f54b03d0f22d4044b8afb9ca0e184f8b1afd57b4f735c2fa70883dc601/contourpy-1.3.3-cp314-cp314-win_amd64.whl", hash = "sha256:cf9022ef053f2694e31d630feaacb21ea24224be1c3ad0520b13d844274614fd", size = 232424, upload-time = "2025-07-26T12:02:31.395Z" }, + { url = "https://files.pythonhosted.org/packages/18/79/a9416650df9b525737ab521aa181ccc42d56016d2123ddcb7b58e926a42c/contourpy-1.3.3-cp314-cp314-win_arm64.whl", hash = "sha256:95b181891b4c71de4bb404c6621e7e2390745f887f2a026b2d99e92c17892339", size = 198300, upload-time = "2025-07-26T12:02:32.956Z" }, + { url = "https://files.pythonhosted.org/packages/1f/42/38c159a7d0f2b7b9c04c64ab317042bb6952b713ba875c1681529a2932fe/contourpy-1.3.3-cp314-cp314t-macosx_10_13_x86_64.whl", hash = "sha256:33c82d0138c0a062380332c861387650c82e4cf1747aaa6938b9b6516762e772", size = 306769, upload-time = "2025-07-26T12:02:34.2Z" }, + { url = "https://files.pythonhosted.org/packages/c3/6c/26a8205f24bca10974e77460de68d3d7c63e282e23782f1239f226fcae6f/contourpy-1.3.3-cp314-cp314t-macosx_11_0_arm64.whl", hash = "sha256:ea37e7b45949df430fe649e5de8351c423430046a2af20b1c1961cae3afcda77", size = 287892, upload-time = "2025-07-26T12:02:35.807Z" }, + { url = "https://files.pythonhosted.org/packages/66/06/8a475c8ab718ebfd7925661747dbb3c3ee9c82ac834ccb3570be49d129f4/contourpy-1.3.3-cp314-cp314t-manylinux_2_26_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:d304906ecc71672e9c89e87c4675dc5c2645e1f4269a5063b99b0bb29f232d13", size = 326748, upload-time = "2025-07-26T12:02:37.193Z" }, + { url = "https://files.pythonhosted.org/packages/b4/a3/c5ca9f010a44c223f098fccd8b158bb1cb287378a31ac141f04730dc49be/contourpy-1.3.3-cp314-cp314t-manylinux_2_26_ppc64le.manylinux_2_28_ppc64le.whl", hash = "sha256:ca658cd1a680a5c9ea96dc61cdbae1e85c8f25849843aa799dfd3cb370ad4fbe", size = 375554, upload-time = "2025-07-26T12:02:38.894Z" }, + { url = "https://files.pythonhosted.org/packages/80/5b/68bd33ae63fac658a4145088c1e894405e07584a316738710b636c6d0333/contourpy-1.3.3-cp314-cp314t-manylinux_2_26_s390x.manylinux_2_28_s390x.whl", hash = "sha256:ab2fd90904c503739a75b7c8c5c01160130ba67944a7b77bbf36ef8054576e7f", size = 388118, upload-time = "2025-07-26T12:02:40.642Z" }, + { url = "https://files.pythonhosted.org/packages/40/52/4c285a6435940ae25d7410a6c36bda5145839bc3f0beb20c707cda18b9d2/contourpy-1.3.3-cp314-cp314t-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:b7301b89040075c30e5768810bc96a8e8d78085b47d8be6e4c3f5a0b4ed478a0", size = 352555, upload-time = "2025-07-26T12:02:42.25Z" }, + { url = "https://files.pythonhosted.org/packages/24/ee/3e81e1dd174f5c7fefe50e85d0892de05ca4e26ef1c9a59c2a57e43b865a/contourpy-1.3.3-cp314-cp314t-musllinux_1_2_aarch64.whl", hash = "sha256:2a2a8b627d5cc6b7c41a4beff6c5ad5eb848c88255fda4a8745f7e901b32d8e4", size = 1322295, upload-time = "2025-07-26T12:02:44.668Z" }, + { url = "https://files.pythonhosted.org/packages/3c/b2/6d913d4d04e14379de429057cd169e5e00f6c2af3bb13e1710bcbdb5da12/contourpy-1.3.3-cp314-cp314t-musllinux_1_2_x86_64.whl", hash = "sha256:fd6ec6be509c787f1caf6b247f0b1ca598bef13f4ddeaa126b7658215529ba0f", size = 1391027, upload-time = "2025-07-26T12:02:47.09Z" }, + { url = "https://files.pythonhosted.org/packages/93/8a/68a4ec5c55a2971213d29a9374913f7e9f18581945a7a31d1a39b5d2dfe5/contourpy-1.3.3-cp314-cp314t-win32.whl", hash = "sha256:e74a9a0f5e3fff48fb5a7f2fd2b9b70a3fe014a67522f79b7cca4c0c7e43c9ae", size = 202428, upload-time = "2025-07-26T12:02:48.691Z" }, + { url = "https://files.pythonhosted.org/packages/fa/96/fd9f641ffedc4fa3ace923af73b9d07e869496c9cc7a459103e6e978992f/contourpy-1.3.3-cp314-cp314t-win_amd64.whl", hash = "sha256:13b68d6a62db8eafaebb8039218921399baf6e47bf85006fd8529f2a08ef33fc", size = 250331, upload-time = "2025-07-26T12:02:50.137Z" }, + { url = "https://files.pythonhosted.org/packages/ae/8c/469afb6465b853afff216f9528ffda78a915ff880ed58813ba4faf4ba0b6/contourpy-1.3.3-cp314-cp314t-win_arm64.whl", hash = "sha256:b7448cb5a725bb1e35ce88771b86fba35ef418952474492cf7c764059933ff8b", size = 203831, upload-time = "2025-07-26T12:02:51.449Z" }, +] + +[[package]] +name = "cycler" +version = "0.12.1" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/a9/95/a3dbbb5028f35eafb79008e7522a75244477d2838f38cbb722248dabc2a8/cycler-0.12.1.tar.gz", hash = "sha256:88bb128f02ba341da8ef447245a9e138fae777f6a23943da4540077d3601eb1c", size = 7615, upload-time = "2023-10-07T05:32:18.335Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/e7/05/c19819d5e3d95294a6f5947fb9b9629efb316b96de511b418c53d245aae6/cycler-0.12.1-py3-none-any.whl", hash = "sha256:85cef7cff222d8644161529808465972e51340599459b8ac3ccbac5a854e0d30", size = 8321, upload-time = "2023-10-07T05:32:16.783Z" }, +] + +[[package]] +name = "debugpy" +version = "1.8.17" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/15/ad/71e708ff4ca377c4230530d6a7aa7992592648c122a2cd2b321cf8b35a76/debugpy-1.8.17.tar.gz", hash = "sha256:fd723b47a8c08892b1a16b2c6239a8b96637c62a59b94bb5dab4bac592a58a8e", size = 1644129, upload-time = "2025-09-17T16:33:20.633Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/08/2b/9d8e65beb2751876c82e1aceb32f328c43ec872711fa80257c7674f45650/debugpy-1.8.17-cp312-cp312-macosx_15_0_universal2.whl", hash = "sha256:f14467edef672195c6f6b8e27ce5005313cb5d03c9239059bc7182b60c176e2d", size = 2549522, upload-time = "2025-09-17T16:33:38.466Z" }, + { url = "https://files.pythonhosted.org/packages/b4/78/eb0d77f02971c05fca0eb7465b18058ba84bd957062f5eec82f941ac792a/debugpy-1.8.17-cp312-cp312-manylinux_2_34_x86_64.whl", hash = "sha256:24693179ef9dfa20dca8605905a42b392be56d410c333af82f1c5dff807a64cc", size = 4309417, upload-time = "2025-09-17T16:33:41.299Z" }, + { url = "https://files.pythonhosted.org/packages/37/42/c40f1d8cc1fed1e75ea54298a382395b8b937d923fcf41ab0797a554f555/debugpy-1.8.17-cp312-cp312-win32.whl", hash = "sha256:6a4e9dacf2cbb60d2514ff7b04b4534b0139facbf2abdffe0639ddb6088e59cf", size = 5277130, upload-time = "2025-09-17T16:33:43.554Z" }, + { url = "https://files.pythonhosted.org/packages/72/22/84263b205baad32b81b36eac076de0cdbe09fe2d0637f5b32243dc7c925b/debugpy-1.8.17-cp312-cp312-win_amd64.whl", hash = "sha256:e8f8f61c518952fb15f74a302e068b48d9c4691768ade433e4adeea961993464", size = 5319053, upload-time = "2025-09-17T16:33:53.033Z" }, + { url = "https://files.pythonhosted.org/packages/50/76/597e5cb97d026274ba297af8d89138dfd9e695767ba0e0895edb20963f40/debugpy-1.8.17-cp313-cp313-macosx_15_0_universal2.whl", hash = "sha256:857c1dd5d70042502aef1c6d1c2801211f3ea7e56f75e9c335f434afb403e464", size = 2538386, upload-time = "2025-09-17T16:33:54.594Z" }, + { url = "https://files.pythonhosted.org/packages/5f/60/ce5c34fcdfec493701f9d1532dba95b21b2f6394147234dce21160bd923f/debugpy-1.8.17-cp313-cp313-manylinux_2_34_x86_64.whl", hash = "sha256:3bea3b0b12f3946e098cce9b43c3c46e317b567f79570c3f43f0b96d00788088", size = 4292100, upload-time = "2025-09-17T16:33:56.353Z" }, + { url = "https://files.pythonhosted.org/packages/e8/95/7873cf2146577ef71d2a20bf553f12df865922a6f87b9e8ee1df04f01785/debugpy-1.8.17-cp313-cp313-win32.whl", hash = "sha256:e34ee844c2f17b18556b5bbe59e1e2ff4e86a00282d2a46edab73fd7f18f4a83", size = 5277002, upload-time = "2025-09-17T16:33:58.231Z" }, + { url = "https://files.pythonhosted.org/packages/46/11/18c79a1cee5ff539a94ec4aa290c1c069a5580fd5cfd2fb2e282f8e905da/debugpy-1.8.17-cp313-cp313-win_amd64.whl", hash = "sha256:6c5cd6f009ad4fca8e33e5238210dc1e5f42db07d4b6ab21ac7ffa904a196420", size = 5319047, upload-time = "2025-09-17T16:34:00.586Z" }, + { url = "https://files.pythonhosted.org/packages/de/45/115d55b2a9da6de812696064ceb505c31e952c5d89c4ed1d9bb983deec34/debugpy-1.8.17-cp314-cp314-macosx_15_0_universal2.whl", hash = "sha256:045290c010bcd2d82bc97aa2daf6837443cd52f6328592698809b4549babcee1", size = 2536899, upload-time = "2025-09-17T16:34:02.657Z" }, + { url = "https://files.pythonhosted.org/packages/5a/73/2aa00c7f1f06e997ef57dc9b23d61a92120bec1437a012afb6d176585197/debugpy-1.8.17-cp314-cp314-manylinux_2_34_x86_64.whl", hash = "sha256:b69b6bd9dba6a03632534cdf67c760625760a215ae289f7489a452af1031fe1f", size = 4268254, upload-time = "2025-09-17T16:34:04.486Z" }, + { url = "https://files.pythonhosted.org/packages/86/b5/ed3e65c63c68a6634e3ba04bd10255c8e46ec16ebed7d1c79e4816d8a760/debugpy-1.8.17-cp314-cp314-win32.whl", hash = "sha256:5c59b74aa5630f3a5194467100c3b3d1c77898f9ab27e3f7dc5d40fc2f122670", size = 5277203, upload-time = "2025-09-17T16:34:06.65Z" }, + { url = "https://files.pythonhosted.org/packages/b0/26/394276b71c7538445f29e792f589ab7379ae70fd26ff5577dfde71158e96/debugpy-1.8.17-cp314-cp314-win_amd64.whl", hash = "sha256:893cba7bb0f55161de4365584b025f7064e1f88913551bcd23be3260b231429c", size = 5318493, upload-time = "2025-09-17T16:34:08.483Z" }, + { url = "https://files.pythonhosted.org/packages/b0/d0/89247ec250369fc76db477720a26b2fce7ba079ff1380e4ab4529d2fe233/debugpy-1.8.17-py2.py3-none-any.whl", hash = "sha256:60c7dca6571efe660ccb7a9508d73ca14b8796c4ed484c2002abba714226cfef", size = 5283210, upload-time = "2025-09-17T16:34:25.835Z" }, +] + +[[package]] +name = "decorator" +version = "5.2.1" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/43/fa/6d96a0978d19e17b68d634497769987b16c8f4cd0a7a05048bec693caa6b/decorator-5.2.1.tar.gz", hash = "sha256:65f266143752f734b0a7cc83c46f4618af75b8c5911b00ccb61d0ac9b6da0360", size = 56711, upload-time = "2025-02-24T04:41:34.073Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/4e/8c/f3147f5c4b73e7550fe5f9352eaa956ae838d5c51eb58e7a25b9f3e2643b/decorator-5.2.1-py3-none-any.whl", hash = "sha256:d316bb415a2d9e2d2b3abcc4084c6502fc09240e292cd76a76afc106a1c8e04a", size = 9190, upload-time = "2025-02-24T04:41:32.565Z" }, +] + +[[package]] +name = "executing" +version = "2.2.1" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/cc/28/c14e053b6762b1044f34a13aab6859bbf40456d37d23aa286ac24cfd9a5d/executing-2.2.1.tar.gz", hash = "sha256:3632cc370565f6648cc328b32435bd120a1e4ebb20c77e3fdde9a13cd1e533c4", size = 1129488, upload-time = "2025-09-01T09:48:10.866Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/c1/ea/53f2148663b321f21b5a606bd5f191517cf40b7072c0497d3c92c4a13b1e/executing-2.2.1-py2.py3-none-any.whl", hash = "sha256:760643d3452b4d777d295bb167ccc74c64a81df23fb5e08eff250c425a4b2017", size = 28317, upload-time = "2025-09-01T09:48:08.5Z" }, +] + +[[package]] +name = "filelock" +version = "3.20.0" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/58/46/0028a82567109b5ef6e4d2a1f04a583fb513e6cf9527fcdd09afd817deeb/filelock-3.20.0.tar.gz", hash = "sha256:711e943b4ec6be42e1d4e6690b48dc175c822967466bb31c0c293f34334c13f4", size = 18922, upload-time = "2025-10-08T18:03:50.056Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/76/91/7216b27286936c16f5b4d0c530087e4a54eead683e6b0b73dd0c64844af6/filelock-3.20.0-py3-none-any.whl", hash = "sha256:339b4732ffda5cd79b13f4e2711a31b0365ce445d95d243bb996273d072546a2", size = 16054, upload-time = "2025-10-08T18:03:48.35Z" }, +] + +[[package]] +name = "fonttools" +version = "4.60.1" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/4b/42/97a13e47a1e51a5a7142475bbcf5107fe3a68fc34aef331c897d5fb98ad0/fonttools-4.60.1.tar.gz", hash = "sha256:ef00af0439ebfee806b25f24c8f92109157ff3fac5731dc7867957812e87b8d9", size = 3559823, upload-time = "2025-09-29T21:13:27.129Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/e3/f7/a10b101b7a6f8836a5adb47f2791f2075d044a6ca123f35985c42edc82d8/fonttools-4.60.1-cp312-cp312-macosx_10_13_universal2.whl", hash = "sha256:7b0c6d57ab00dae9529f3faf187f2254ea0aa1e04215cf2f1a8ec277c96661bc", size = 2832953, upload-time = "2025-09-29T21:11:39.616Z" }, + { url = "https://files.pythonhosted.org/packages/ed/fe/7bd094b59c926acf2304d2151354ddbeb74b94812f3dc943c231db09cb41/fonttools-4.60.1-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:839565cbf14645952d933853e8ade66a463684ed6ed6c9345d0faf1f0e868877", size = 2352706, upload-time = "2025-09-29T21:11:41.826Z" }, + { url = "https://files.pythonhosted.org/packages/c0/ca/4bb48a26ed95a1e7eba175535fe5805887682140ee0a0d10a88e1de84208/fonttools-4.60.1-cp312-cp312-manylinux1_x86_64.manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_5_x86_64.whl", hash = "sha256:8177ec9676ea6e1793c8a084a90b65a9f778771998eb919d05db6d4b1c0b114c", size = 4923716, upload-time = "2025-09-29T21:11:43.893Z" }, + { url = "https://files.pythonhosted.org/packages/b8/9f/2cb82999f686c1d1ddf06f6ae1a9117a880adbec113611cc9d22b2fdd465/fonttools-4.60.1-cp312-cp312-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:996a4d1834524adbb423385d5a629b868ef9d774670856c63c9a0408a3063401", size = 4968175, upload-time = "2025-09-29T21:11:46.439Z" }, + { url = "https://files.pythonhosted.org/packages/18/79/be569699e37d166b78e6218f2cde8c550204f2505038cdd83b42edc469b9/fonttools-4.60.1-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:a46b2f450bc79e06ef3b6394f0c68660529ed51692606ad7f953fc2e448bc903", size = 4911031, upload-time = "2025-09-29T21:11:48.977Z" }, + { url = "https://files.pythonhosted.org/packages/cc/9f/89411cc116effaec5260ad519162f64f9c150e5522a27cbb05eb62d0c05b/fonttools-4.60.1-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:6ec722ee589e89a89f5b7574f5c45604030aa6ae24cb2c751e2707193b466fed", size = 5062966, upload-time = "2025-09-29T21:11:54.344Z" }, + { url = "https://files.pythonhosted.org/packages/62/a1/f888221934b5731d46cb9991c7a71f30cb1f97c0ef5fcf37f8da8fce6c8e/fonttools-4.60.1-cp312-cp312-win32.whl", hash = "sha256:b2cf105cee600d2de04ca3cfa1f74f1127f8455b71dbad02b9da6ec266e116d6", size = 2218750, upload-time = "2025-09-29T21:11:56.601Z" }, + { url = "https://files.pythonhosted.org/packages/88/8f/a55b5550cd33cd1028601df41acd057d4be20efa5c958f417b0c0613924d/fonttools-4.60.1-cp312-cp312-win_amd64.whl", hash = "sha256:992775c9fbe2cf794786fa0ffca7f09f564ba3499b8fe9f2f80bd7197db60383", size = 2267026, upload-time = "2025-09-29T21:11:58.852Z" }, + { url = "https://files.pythonhosted.org/packages/7c/5b/cdd2c612277b7ac7ec8c0c9bc41812c43dc7b2d5f2b0897e15fdf5a1f915/fonttools-4.60.1-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:6f68576bb4bbf6060c7ab047b1574a1ebe5c50a17de62830079967b211059ebb", size = 2825777, upload-time = "2025-09-29T21:12:01.22Z" }, + { url = "https://files.pythonhosted.org/packages/d6/8a/de9cc0540f542963ba5e8f3a1f6ad48fa211badc3177783b9d5cadf79b5d/fonttools-4.60.1-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:eedacb5c5d22b7097482fa834bda0dafa3d914a4e829ec83cdea2a01f8c813c4", size = 2348080, upload-time = "2025-09-29T21:12:03.785Z" }, + { url = "https://files.pythonhosted.org/packages/2d/8b/371ab3cec97ee3fe1126b3406b7abd60c8fec8975fd79a3c75cdea0c3d83/fonttools-4.60.1-cp313-cp313-manylinux1_x86_64.manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_5_x86_64.whl", hash = "sha256:b33a7884fabd72bdf5f910d0cf46be50dce86a0362a65cfc746a4168c67eb96c", size = 4903082, upload-time = "2025-09-29T21:12:06.382Z" }, + { url = "https://files.pythonhosted.org/packages/04/05/06b1455e4bc653fcb2117ac3ef5fa3a8a14919b93c60742d04440605d058/fonttools-4.60.1-cp313-cp313-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:2409d5fb7b55fd70f715e6d34e7a6e4f7511b8ad29a49d6df225ee76da76dd77", size = 4960125, upload-time = "2025-09-29T21:12:09.314Z" }, + { url = "https://files.pythonhosted.org/packages/8e/37/f3b840fcb2666f6cb97038793606bdd83488dca2d0b0fc542ccc20afa668/fonttools-4.60.1-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:c8651e0d4b3bdeda6602b85fdc2abbefc1b41e573ecb37b6779c4ca50753a199", size = 4901454, upload-time = "2025-09-29T21:12:11.931Z" }, + { url = "https://files.pythonhosted.org/packages/fd/9e/eb76f77e82f8d4a46420aadff12cec6237751b0fb9ef1de373186dcffb5f/fonttools-4.60.1-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:145daa14bf24824b677b9357c5e44fd8895c2a8f53596e1b9ea3496081dc692c", size = 5044495, upload-time = "2025-09-29T21:12:15.241Z" }, + { url = "https://files.pythonhosted.org/packages/f8/b3/cede8f8235d42ff7ae891bae8d619d02c8ac9fd0cfc450c5927a6200c70d/fonttools-4.60.1-cp313-cp313-win32.whl", hash = "sha256:2299df884c11162617a66b7c316957d74a18e3758c0274762d2cc87df7bc0272", size = 2217028, upload-time = "2025-09-29T21:12:17.96Z" }, + { url = "https://files.pythonhosted.org/packages/75/4d/b022c1577807ce8b31ffe055306ec13a866f2337ecee96e75b24b9b753ea/fonttools-4.60.1-cp313-cp313-win_amd64.whl", hash = "sha256:a3db56f153bd4c5c2b619ab02c5db5192e222150ce5a1bc10f16164714bc39ac", size = 2266200, upload-time = "2025-09-29T21:12:20.14Z" }, + { url = "https://files.pythonhosted.org/packages/9a/83/752ca11c1aa9a899b793a130f2e466b79ea0cf7279c8d79c178fc954a07b/fonttools-4.60.1-cp314-cp314-macosx_10_13_universal2.whl", hash = "sha256:a884aef09d45ba1206712c7dbda5829562d3fea7726935d3289d343232ecb0d3", size = 2822830, upload-time = "2025-09-29T21:12:24.406Z" }, + { url = "https://files.pythonhosted.org/packages/57/17/bbeab391100331950a96ce55cfbbff27d781c1b85ebafb4167eae50d9fe3/fonttools-4.60.1-cp314-cp314-macosx_10_13_x86_64.whl", hash = "sha256:8a44788d9d91df72d1a5eac49b31aeb887a5f4aab761b4cffc4196c74907ea85", size = 2345524, upload-time = "2025-09-29T21:12:26.819Z" }, + { url = "https://files.pythonhosted.org/packages/3d/2e/d4831caa96d85a84dd0da1d9f90d81cec081f551e0ea216df684092c6c97/fonttools-4.60.1-cp314-cp314-manylinux1_x86_64.manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_5_x86_64.whl", hash = "sha256:e852d9dda9f93ad3651ae1e3bb770eac544ec93c3807888798eccddf84596537", size = 4843490, upload-time = "2025-09-29T21:12:29.123Z" }, + { url = "https://files.pythonhosted.org/packages/49/13/5e2ea7c7a101b6fc3941be65307ef8df92cbbfa6ec4804032baf1893b434/fonttools-4.60.1-cp314-cp314-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:154cb6ee417e417bf5f7c42fe25858c9140c26f647c7347c06f0cc2d47eff003", size = 4944184, upload-time = "2025-09-29T21:12:31.414Z" }, + { url = "https://files.pythonhosted.org/packages/0c/2b/cf9603551c525b73fc47c52ee0b82a891579a93d9651ed694e4e2cd08bb8/fonttools-4.60.1-cp314-cp314-musllinux_1_2_aarch64.whl", hash = "sha256:5664fd1a9ea7f244487ac8f10340c4e37664675e8667d6fee420766e0fb3cf08", size = 4890218, upload-time = "2025-09-29T21:12:33.936Z" }, + { url = "https://files.pythonhosted.org/packages/fd/2f/933d2352422e25f2376aae74f79eaa882a50fb3bfef3c0d4f50501267101/fonttools-4.60.1-cp314-cp314-musllinux_1_2_x86_64.whl", hash = "sha256:583b7f8e3c49486e4d489ad1deacfb8d5be54a8ef34d6df824f6a171f8511d99", size = 4999324, upload-time = "2025-09-29T21:12:36.637Z" }, + { url = "https://files.pythonhosted.org/packages/38/99/234594c0391221f66216bc2c886923513b3399a148defaccf81dc3be6560/fonttools-4.60.1-cp314-cp314-win32.whl", hash = "sha256:66929e2ea2810c6533a5184f938502cfdaea4bc3efb7130d8cc02e1c1b4108d6", size = 2220861, upload-time = "2025-09-29T21:12:39.108Z" }, + { url = "https://files.pythonhosted.org/packages/3e/1d/edb5b23726dde50fc4068e1493e4fc7658eeefcaf75d4c5ffce067d07ae5/fonttools-4.60.1-cp314-cp314-win_amd64.whl", hash = "sha256:f3d5be054c461d6a2268831f04091dc82753176f6ea06dc6047a5e168265a987", size = 2270934, upload-time = "2025-09-29T21:12:41.339Z" }, + { url = "https://files.pythonhosted.org/packages/fb/da/1392aaa2170adc7071fe7f9cfd181a5684a7afcde605aebddf1fb4d76df5/fonttools-4.60.1-cp314-cp314t-macosx_10_13_universal2.whl", hash = "sha256:b6379e7546ba4ae4b18f8ae2b9bc5960936007a1c0e30b342f662577e8bc3299", size = 2894340, upload-time = "2025-09-29T21:12:43.774Z" }, + { url = "https://files.pythonhosted.org/packages/bf/a7/3b9f16e010d536ce567058b931a20b590d8f3177b2eda09edd92e392375d/fonttools-4.60.1-cp314-cp314t-macosx_10_13_x86_64.whl", hash = "sha256:9d0ced62b59e0430b3690dbc5373df1c2aa7585e9a8ce38eff87f0fd993c5b01", size = 2375073, upload-time = "2025-09-29T21:12:46.437Z" }, + { url = "https://files.pythonhosted.org/packages/9b/b5/e9bcf51980f98e59bb5bb7c382a63c6f6cac0eec5f67de6d8f2322382065/fonttools-4.60.1-cp314-cp314t-manylinux1_x86_64.manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_5_x86_64.whl", hash = "sha256:875cb7764708b3132637f6c5fb385b16eeba0f7ac9fa45a69d35e09b47045801", size = 4849758, upload-time = "2025-09-29T21:12:48.694Z" }, + { url = "https://files.pythonhosted.org/packages/e3/dc/1d2cf7d1cba82264b2f8385db3f5960e3d8ce756b4dc65b700d2c496f7e9/fonttools-4.60.1-cp314-cp314t-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:a184b2ea57b13680ab6d5fbde99ccef152c95c06746cb7718c583abd8f945ccc", size = 5085598, upload-time = "2025-09-29T21:12:51.081Z" }, + { url = "https://files.pythonhosted.org/packages/5d/4d/279e28ba87fb20e0c69baf72b60bbf1c4d873af1476806a7b5f2b7fac1ff/fonttools-4.60.1-cp314-cp314t-musllinux_1_2_aarch64.whl", hash = "sha256:026290e4ec76583881763fac284aca67365e0be9f13a7fb137257096114cb3bc", size = 4957603, upload-time = "2025-09-29T21:12:53.423Z" }, + { url = "https://files.pythonhosted.org/packages/78/d4/ff19976305e0c05aa3340c805475abb00224c954d3c65e82c0a69633d55d/fonttools-4.60.1-cp314-cp314t-musllinux_1_2_x86_64.whl", hash = "sha256:f0e8817c7d1a0c2eedebf57ef9a9896f3ea23324769a9a2061a80fe8852705ed", size = 4974184, upload-time = "2025-09-29T21:12:55.962Z" }, + { url = "https://files.pythonhosted.org/packages/63/22/8553ff6166f5cd21cfaa115aaacaa0dc73b91c079a8cfd54a482cbc0f4f5/fonttools-4.60.1-cp314-cp314t-win32.whl", hash = "sha256:1410155d0e764a4615774e5c2c6fc516259fe3eca5882f034eb9bfdbee056259", size = 2282241, upload-time = "2025-09-29T21:12:58.179Z" }, + { url = "https://files.pythonhosted.org/packages/8a/cb/fa7b4d148e11d5a72761a22e595344133e83a9507a4c231df972e657579b/fonttools-4.60.1-cp314-cp314t-win_amd64.whl", hash = "sha256:022beaea4b73a70295b688f817ddc24ed3e3418b5036ffcd5658141184ef0d0c", size = 2345760, upload-time = "2025-09-29T21:13:00.375Z" }, + { url = "https://files.pythonhosted.org/packages/c7/93/0dd45cd283c32dea1545151d8c3637b4b8c53cdb3a625aeb2885b184d74d/fonttools-4.60.1-py3-none-any.whl", hash = "sha256:906306ac7afe2156fcf0042173d6ebbb05416af70f6b370967b47f8f00103bbb", size = 1143175, upload-time = "2025-09-29T21:13:24.134Z" }, +] + +[[package]] +name = "fsspec" +version = "2025.10.0" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/24/7f/2747c0d332b9acfa75dc84447a066fdf812b5a6b8d30472b74d309bfe8cb/fsspec-2025.10.0.tar.gz", hash = "sha256:b6789427626f068f9a83ca4e8a3cc050850b6c0f71f99ddb4f542b8266a26a59", size = 309285, upload-time = "2025-10-30T14:58:44.036Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/eb/02/a6b21098b1d5d6249b7c5ab69dde30108a71e4e819d4a9778f1de1d5b70d/fsspec-2025.10.0-py3-none-any.whl", hash = "sha256:7c7712353ae7d875407f97715f0e1ffcc21e33d5b24556cb1e090ae9409ec61d", size = 200966, upload-time = "2025-10-30T14:58:42.53Z" }, +] + +[[package]] +name = "ipykernel" +version = "7.1.0" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "appnope", marker = "sys_platform == 'darwin'" }, + { name = "comm" }, + { name = "debugpy" }, + { name = "ipython" }, + { name = "jupyter-client" }, + { name = "jupyter-core" }, + { name = "matplotlib-inline" }, + { name = "nest-asyncio" }, + { name = "packaging" }, + { name = "psutil" }, + { name = "pyzmq" }, + { name = "tornado" }, + { name = "traitlets" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/b9/a4/4948be6eb88628505b83a1f2f40d90254cab66abf2043b3c40fa07dfce0f/ipykernel-7.1.0.tar.gz", hash = "sha256:58a3fc88533d5930c3546dc7eac66c6d288acde4f801e2001e65edc5dc9cf0db", size = 174579, upload-time = "2025-10-27T09:46:39.471Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/a3/17/20c2552266728ceba271967b87919664ecc0e33efca29c3efc6baf88c5f9/ipykernel-7.1.0-py3-none-any.whl", hash = "sha256:763b5ec6c5b7776f6a8d7ce09b267693b4e5ce75cb50ae696aaefb3c85e1ea4c", size = 117968, upload-time = "2025-10-27T09:46:37.805Z" }, +] + +[[package]] +name = "ipython" +version = "9.7.0" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "colorama", marker = "sys_platform == 'win32'" }, + { name = "decorator" }, + { name = "ipython-pygments-lexers" }, + { name = "jedi" }, + { name = "matplotlib-inline" }, + { name = "pexpect", marker = "sys_platform != 'emscripten' and sys_platform != 'win32'" }, + { name = "prompt-toolkit" }, + { name = "pygments" }, + { name = "stack-data" }, + { name = "traitlets" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/29/e6/48c74d54039241a456add616464ea28c6ebf782e4110d419411b83dae06f/ipython-9.7.0.tar.gz", hash = "sha256:5f6de88c905a566c6a9d6c400a8fed54a638e1f7543d17aae2551133216b1e4e", size = 4422115, upload-time = "2025-11-05T12:18:54.646Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/05/aa/62893d6a591d337aa59dcc4c6f6c842f1fe20cd72c8c5c1f980255243252/ipython-9.7.0-py3-none-any.whl", hash = "sha256:bce8ac85eb9521adc94e1845b4c03d88365fd6ac2f4908ec4ed1eb1b0a065f9f", size = 618911, upload-time = "2025-11-05T12:18:52.484Z" }, +] + +[[package]] +name = "ipython-pygments-lexers" +version = "1.1.1" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "pygments" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/ef/4c/5dd1d8af08107f88c7f741ead7a40854b8ac24ddf9ae850afbcf698aa552/ipython_pygments_lexers-1.1.1.tar.gz", hash = "sha256:09c0138009e56b6854f9535736f4171d855c8c08a563a0dcd8022f78355c7e81", size = 8393, upload-time = "2025-01-17T11:24:34.505Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/d9/33/1f075bf72b0b747cb3288d011319aaf64083cf2efef8354174e3ed4540e2/ipython_pygments_lexers-1.1.1-py3-none-any.whl", hash = "sha256:a9462224a505ade19a605f71f8fa63c2048833ce50abc86768a0d81d876dc81c", size = 8074, upload-time = "2025-01-17T11:24:33.271Z" }, +] + +[[package]] +name = "jedi" +version = "0.19.2" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "parso" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/72/3a/79a912fbd4d8dd6fbb02bf69afd3bb72cf0c729bb3063c6f4498603db17a/jedi-0.19.2.tar.gz", hash = "sha256:4770dc3de41bde3966b02eb84fbcf557fb33cce26ad23da12c742fb50ecb11f0", size = 1231287, upload-time = "2024-11-11T01:41:42.873Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/c0/5a/9cac0c82afec3d09ccd97c8b6502d48f165f9124db81b4bcb90b4af974ee/jedi-0.19.2-py2.py3-none-any.whl", hash = "sha256:a8ef22bde8490f57fe5c7681a3c83cb58874daf72b4784de3cce5b6ef6edb5b9", size = 1572278, upload-time = "2024-11-11T01:41:40.175Z" }, +] + +[[package]] +name = "jinja2" +version = "3.1.6" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "markupsafe" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/df/bf/f7da0350254c0ed7c72f3e33cef02e048281fec7ecec5f032d4aac52226b/jinja2-3.1.6.tar.gz", hash = "sha256:0137fb05990d35f1275a587e9aee6d56da821fc83491a0fb838183be43f66d6d", size = 245115, upload-time = "2025-03-05T20:05:02.478Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/62/a1/3d680cbfd5f4b8f15abc1d571870c5fc3e594bb582bc3b64ea099db13e56/jinja2-3.1.6-py3-none-any.whl", hash = "sha256:85ece4451f492d0c13c5dd7c13a64681a86afae63a5f347908daf103ce6d2f67", size = 134899, upload-time = "2025-03-05T20:05:00.369Z" }, +] + +[[package]] +name = "jupyter-client" +version = "8.6.3" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "jupyter-core" }, + { name = "python-dateutil" }, + { name = "pyzmq" }, + { name = "tornado" }, + { name = "traitlets" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/71/22/bf9f12fdaeae18019a468b68952a60fe6dbab5d67cd2a103cac7659b41ca/jupyter_client-8.6.3.tar.gz", hash = "sha256:35b3a0947c4a6e9d589eb97d7d4cd5e90f910ee73101611f01283732bd6d9419", size = 342019, upload-time = "2024-09-17T10:44:17.613Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/11/85/b0394e0b6fcccd2c1eeefc230978a6f8cb0c5df1e4cd3e7625735a0d7d1e/jupyter_client-8.6.3-py3-none-any.whl", hash = "sha256:e8a19cc986cc45905ac3362915f410f3af85424b4c0905e94fa5f2cb08e8f23f", size = 106105, upload-time = "2024-09-17T10:44:15.218Z" }, +] + +[[package]] +name = "jupyter-core" +version = "5.9.1" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "platformdirs" }, + { name = "traitlets" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/02/49/9d1284d0dc65e2c757b74c6687b6d319b02f822ad039e5c512df9194d9dd/jupyter_core-5.9.1.tar.gz", hash = "sha256:4d09aaff303b9566c3ce657f580bd089ff5c91f5f89cf7d8846c3cdf465b5508", size = 89814, upload-time = "2025-10-16T19:19:18.444Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/e7/e7/80988e32bf6f73919a113473a604f5a8f09094de312b9d52b79c2df7612b/jupyter_core-5.9.1-py3-none-any.whl", hash = "sha256:ebf87fdc6073d142e114c72c9e29a9d7ca03fad818c5d300ce2adc1fb0743407", size = 29032, upload-time = "2025-10-16T19:19:16.783Z" }, +] + +[[package]] +name = "kiwisolver" +version = "1.4.9" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/5c/3c/85844f1b0feb11ee581ac23fe5fce65cd049a200c1446708cc1b7f922875/kiwisolver-1.4.9.tar.gz", hash = "sha256:c3b22c26c6fd6811b0ae8363b95ca8ce4ea3c202d3d0975b2914310ceb1bcc4d", size = 97564, upload-time = "2025-08-10T21:27:49.279Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/86/c9/13573a747838aeb1c76e3267620daa054f4152444d1f3d1a2324b78255b5/kiwisolver-1.4.9-cp312-cp312-macosx_10_13_universal2.whl", hash = "sha256:ac5a486ac389dddcc5bef4f365b6ae3ffff2c433324fb38dd35e3fab7c957999", size = 123686, upload-time = "2025-08-10T21:26:10.034Z" }, + { url = "https://files.pythonhosted.org/packages/51/ea/2ecf727927f103ffd1739271ca19c424d0e65ea473fbaeea1c014aea93f6/kiwisolver-1.4.9-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:f2ba92255faa7309d06fe44c3a4a97efe1c8d640c2a79a5ef728b685762a6fd2", size = 66460, upload-time = "2025-08-10T21:26:11.083Z" }, + { url = "https://files.pythonhosted.org/packages/5b/5a/51f5464373ce2aeb5194508298a508b6f21d3867f499556263c64c621914/kiwisolver-1.4.9-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:4a2899935e724dd1074cb568ce7ac0dce28b2cd6ab539c8e001a8578eb106d14", size = 64952, upload-time = "2025-08-10T21:26:12.058Z" }, + { url = "https://files.pythonhosted.org/packages/70/90/6d240beb0f24b74371762873e9b7f499f1e02166a2d9c5801f4dbf8fa12e/kiwisolver-1.4.9-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:f6008a4919fdbc0b0097089f67a1eb55d950ed7e90ce2cc3e640abadd2757a04", size = 1474756, upload-time = "2025-08-10T21:26:13.096Z" }, + { url = "https://files.pythonhosted.org/packages/12/42/f36816eaf465220f683fb711efdd1bbf7a7005a2473d0e4ed421389bd26c/kiwisolver-1.4.9-cp312-cp312-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:67bb8b474b4181770f926f7b7d2f8c0248cbcb78b660fdd41a47054b28d2a752", size = 1276404, upload-time = "2025-08-10T21:26:14.457Z" }, + { url = "https://files.pythonhosted.org/packages/2e/64/bc2de94800adc830c476dce44e9b40fd0809cddeef1fde9fcf0f73da301f/kiwisolver-1.4.9-cp312-cp312-manylinux_2_24_ppc64le.manylinux_2_28_ppc64le.whl", hash = "sha256:2327a4a30d3ee07d2fbe2e7933e8a37c591663b96ce42a00bc67461a87d7df77", size = 1294410, upload-time = "2025-08-10T21:26:15.73Z" }, + { url = "https://files.pythonhosted.org/packages/5f/42/2dc82330a70aa8e55b6d395b11018045e58d0bb00834502bf11509f79091/kiwisolver-1.4.9-cp312-cp312-manylinux_2_24_s390x.manylinux_2_28_s390x.whl", hash = "sha256:7a08b491ec91b1d5053ac177afe5290adacf1f0f6307d771ccac5de30592d198", size = 1343631, upload-time = "2025-08-10T21:26:17.045Z" }, + { url = "https://files.pythonhosted.org/packages/22/fd/f4c67a6ed1aab149ec5a8a401c323cee7a1cbe364381bb6c9c0d564e0e20/kiwisolver-1.4.9-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:d8fc5c867c22b828001b6a38d2eaeb88160bf5783c6cb4a5e440efc981ce286d", size = 2224963, upload-time = "2025-08-10T21:26:18.737Z" }, + { url = "https://files.pythonhosted.org/packages/45/aa/76720bd4cb3713314677d9ec94dcc21ced3f1baf4830adde5bb9b2430a5f/kiwisolver-1.4.9-cp312-cp312-musllinux_1_2_ppc64le.whl", hash = "sha256:3b3115b2581ea35bb6d1f24a4c90af37e5d9b49dcff267eeed14c3893c5b86ab", size = 2321295, upload-time = "2025-08-10T21:26:20.11Z" }, + { url = "https://files.pythonhosted.org/packages/80/19/d3ec0d9ab711242f56ae0dc2fc5d70e298bb4a1f9dfab44c027668c673a1/kiwisolver-1.4.9-cp312-cp312-musllinux_1_2_s390x.whl", hash = "sha256:858e4c22fb075920b96a291928cb7dea5644e94c0ee4fcd5af7e865655e4ccf2", size = 2487987, upload-time = "2025-08-10T21:26:21.49Z" }, + { url = "https://files.pythonhosted.org/packages/39/e9/61e4813b2c97e86b6fdbd4dd824bf72d28bcd8d4849b8084a357bc0dd64d/kiwisolver-1.4.9-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:ed0fecd28cc62c54b262e3736f8bb2512d8dcfdc2bcf08be5f47f96bf405b145", size = 2291817, upload-time = "2025-08-10T21:26:22.812Z" }, + { url = "https://files.pythonhosted.org/packages/a0/41/85d82b0291db7504da3c2defe35c9a8a5c9803a730f297bd823d11d5fb77/kiwisolver-1.4.9-cp312-cp312-win_amd64.whl", hash = "sha256:f68208a520c3d86ea51acf688a3e3002615a7f0238002cccc17affecc86a8a54", size = 73895, upload-time = "2025-08-10T21:26:24.37Z" }, + { url = "https://files.pythonhosted.org/packages/e2/92/5f3068cf15ee5cb624a0c7596e67e2a0bb2adee33f71c379054a491d07da/kiwisolver-1.4.9-cp312-cp312-win_arm64.whl", hash = "sha256:2c1a4f57df73965f3f14df20b80ee29e6a7930a57d2d9e8491a25f676e197c60", size = 64992, upload-time = "2025-08-10T21:26:25.732Z" }, + { url = "https://files.pythonhosted.org/packages/31/c1/c2686cda909742ab66c7388e9a1a8521a59eb89f8bcfbee28fc980d07e24/kiwisolver-1.4.9-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:a5d0432ccf1c7ab14f9949eec60c5d1f924f17c037e9f8b33352fa05799359b8", size = 123681, upload-time = "2025-08-10T21:26:26.725Z" }, + { url = "https://files.pythonhosted.org/packages/ca/f0/f44f50c9f5b1a1860261092e3bc91ecdc9acda848a8b8c6abfda4a24dd5c/kiwisolver-1.4.9-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:efb3a45b35622bb6c16dbfab491a8f5a391fe0e9d45ef32f4df85658232ca0e2", size = 66464, upload-time = "2025-08-10T21:26:27.733Z" }, + { url = "https://files.pythonhosted.org/packages/2d/7a/9d90a151f558e29c3936b8a47ac770235f436f2120aca41a6d5f3d62ae8d/kiwisolver-1.4.9-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:1a12cf6398e8a0a001a059747a1cbf24705e18fe413bc22de7b3d15c67cffe3f", size = 64961, upload-time = "2025-08-10T21:26:28.729Z" }, + { url = "https://files.pythonhosted.org/packages/e9/e9/f218a2cb3a9ffbe324ca29a9e399fa2d2866d7f348ec3a88df87fc248fc5/kiwisolver-1.4.9-cp313-cp313-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:b67e6efbf68e077dd71d1a6b37e43e1a99d0bff1a3d51867d45ee8908b931098", size = 1474607, upload-time = "2025-08-10T21:26:29.798Z" }, + { url = "https://files.pythonhosted.org/packages/d9/28/aac26d4c882f14de59041636292bc838db8961373825df23b8eeb807e198/kiwisolver-1.4.9-cp313-cp313-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:5656aa670507437af0207645273ccdfee4f14bacd7f7c67a4306d0dcaeaf6eed", size = 1276546, upload-time = "2025-08-10T21:26:31.401Z" }, + { url = "https://files.pythonhosted.org/packages/8b/ad/8bfc1c93d4cc565e5069162f610ba2f48ff39b7de4b5b8d93f69f30c4bed/kiwisolver-1.4.9-cp313-cp313-manylinux_2_24_ppc64le.manylinux_2_28_ppc64le.whl", hash = "sha256:bfc08add558155345129c7803b3671cf195e6a56e7a12f3dde7c57d9b417f525", size = 1294482, upload-time = "2025-08-10T21:26:32.721Z" }, + { url = "https://files.pythonhosted.org/packages/da/f1/6aca55ff798901d8ce403206d00e033191f63d82dd708a186e0ed2067e9c/kiwisolver-1.4.9-cp313-cp313-manylinux_2_24_s390x.manylinux_2_28_s390x.whl", hash = "sha256:40092754720b174e6ccf9e845d0d8c7d8e12c3d71e7fc35f55f3813e96376f78", size = 1343720, upload-time = "2025-08-10T21:26:34.032Z" }, + { url = "https://files.pythonhosted.org/packages/d1/91/eed031876c595c81d90d0f6fc681ece250e14bf6998c3d7c419466b523b7/kiwisolver-1.4.9-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:497d05f29a1300d14e02e6441cf0f5ee81c1ff5a304b0d9fb77423974684e08b", size = 2224907, upload-time = "2025-08-10T21:26:35.824Z" }, + { url = "https://files.pythonhosted.org/packages/e9/ec/4d1925f2e49617b9cca9c34bfa11adefad49d00db038e692a559454dfb2e/kiwisolver-1.4.9-cp313-cp313-musllinux_1_2_ppc64le.whl", hash = "sha256:bdd1a81a1860476eb41ac4bc1e07b3f07259e6d55bbf739b79c8aaedcf512799", size = 2321334, upload-time = "2025-08-10T21:26:37.534Z" }, + { url = "https://files.pythonhosted.org/packages/43/cb/450cd4499356f68802750c6ddc18647b8ea01ffa28f50d20598e0befe6e9/kiwisolver-1.4.9-cp313-cp313-musllinux_1_2_s390x.whl", hash = "sha256:e6b93f13371d341afee3be9f7c5964e3fe61d5fa30f6a30eb49856935dfe4fc3", size = 2488313, upload-time = "2025-08-10T21:26:39.191Z" }, + { url = "https://files.pythonhosted.org/packages/71/67/fc76242bd99f885651128a5d4fa6083e5524694b7c88b489b1b55fdc491d/kiwisolver-1.4.9-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:d75aa530ccfaa593da12834b86a0724f58bff12706659baa9227c2ccaa06264c", size = 2291970, upload-time = "2025-08-10T21:26:40.828Z" }, + { url = "https://files.pythonhosted.org/packages/75/bd/f1a5d894000941739f2ae1b65a32892349423ad49c2e6d0771d0bad3fae4/kiwisolver-1.4.9-cp313-cp313-win_amd64.whl", hash = "sha256:dd0a578400839256df88c16abddf9ba14813ec5f21362e1fe65022e00c883d4d", size = 73894, upload-time = "2025-08-10T21:26:42.33Z" }, + { url = "https://files.pythonhosted.org/packages/95/38/dce480814d25b99a391abbddadc78f7c117c6da34be68ca8b02d5848b424/kiwisolver-1.4.9-cp313-cp313-win_arm64.whl", hash = "sha256:d4188e73af84ca82468f09cadc5ac4db578109e52acb4518d8154698d3a87ca2", size = 64995, upload-time = "2025-08-10T21:26:43.889Z" }, + { url = "https://files.pythonhosted.org/packages/e2/37/7d218ce5d92dadc5ebdd9070d903e0c7cf7edfe03f179433ac4d13ce659c/kiwisolver-1.4.9-cp313-cp313t-macosx_10_13_universal2.whl", hash = "sha256:5a0f2724dfd4e3b3ac5a82436a8e6fd16baa7d507117e4279b660fe8ca38a3a1", size = 126510, upload-time = "2025-08-10T21:26:44.915Z" }, + { url = "https://files.pythonhosted.org/packages/23/b0/e85a2b48233daef4b648fb657ebbb6f8367696a2d9548a00b4ee0eb67803/kiwisolver-1.4.9-cp313-cp313t-macosx_10_13_x86_64.whl", hash = "sha256:1b11d6a633e4ed84fc0ddafd4ebfd8ea49b3f25082c04ad12b8315c11d504dc1", size = 67903, upload-time = "2025-08-10T21:26:45.934Z" }, + { url = "https://files.pythonhosted.org/packages/44/98/f2425bc0113ad7de24da6bb4dae1343476e95e1d738be7c04d31a5d037fd/kiwisolver-1.4.9-cp313-cp313t-macosx_11_0_arm64.whl", hash = "sha256:61874cdb0a36016354853593cffc38e56fc9ca5aa97d2c05d3dcf6922cd55a11", size = 66402, upload-time = "2025-08-10T21:26:47.101Z" }, + { url = "https://files.pythonhosted.org/packages/98/d8/594657886df9f34c4177cc353cc28ca7e6e5eb562d37ccc233bff43bbe2a/kiwisolver-1.4.9-cp313-cp313t-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:60c439763a969a6af93b4881db0eed8fadf93ee98e18cbc35bc8da868d0c4f0c", size = 1582135, upload-time = "2025-08-10T21:26:48.665Z" }, + { url = "https://files.pythonhosted.org/packages/5c/c6/38a115b7170f8b306fc929e166340c24958347308ea3012c2b44e7e295db/kiwisolver-1.4.9-cp313-cp313t-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:92a2f997387a1b79a75e7803aa7ded2cfbe2823852ccf1ba3bcf613b62ae3197", size = 1389409, upload-time = "2025-08-10T21:26:50.335Z" }, + { url = "https://files.pythonhosted.org/packages/bf/3b/e04883dace81f24a568bcee6eb3001da4ba05114afa622ec9b6fafdc1f5e/kiwisolver-1.4.9-cp313-cp313t-manylinux_2_24_ppc64le.manylinux_2_28_ppc64le.whl", hash = "sha256:a31d512c812daea6d8b3be3b2bfcbeb091dbb09177706569bcfc6240dcf8b41c", size = 1401763, upload-time = "2025-08-10T21:26:51.867Z" }, + { url = "https://files.pythonhosted.org/packages/9f/80/20ace48e33408947af49d7d15c341eaee69e4e0304aab4b7660e234d6288/kiwisolver-1.4.9-cp313-cp313t-manylinux_2_24_s390x.manylinux_2_28_s390x.whl", hash = "sha256:52a15b0f35dad39862d376df10c5230155243a2c1a436e39eb55623ccbd68185", size = 1453643, upload-time = "2025-08-10T21:26:53.592Z" }, + { url = "https://files.pythonhosted.org/packages/64/31/6ce4380a4cd1f515bdda976a1e90e547ccd47b67a1546d63884463c92ca9/kiwisolver-1.4.9-cp313-cp313t-musllinux_1_2_aarch64.whl", hash = "sha256:a30fd6fdef1430fd9e1ba7b3398b5ee4e2887783917a687d86ba69985fb08748", size = 2330818, upload-time = "2025-08-10T21:26:55.051Z" }, + { url = "https://files.pythonhosted.org/packages/fa/e9/3f3fcba3bcc7432c795b82646306e822f3fd74df0ee81f0fa067a1f95668/kiwisolver-1.4.9-cp313-cp313t-musllinux_1_2_ppc64le.whl", hash = "sha256:cc9617b46837c6468197b5945e196ee9ca43057bb7d9d1ae688101e4e1dddf64", size = 2419963, upload-time = "2025-08-10T21:26:56.421Z" }, + { url = "https://files.pythonhosted.org/packages/99/43/7320c50e4133575c66e9f7dadead35ab22d7c012a3b09bb35647792b2a6d/kiwisolver-1.4.9-cp313-cp313t-musllinux_1_2_s390x.whl", hash = "sha256:0ab74e19f6a2b027ea4f845a78827969af45ce790e6cb3e1ebab71bdf9f215ff", size = 2594639, upload-time = "2025-08-10T21:26:57.882Z" }, + { url = "https://files.pythonhosted.org/packages/65/d6/17ae4a270d4a987ef8a385b906d2bdfc9fce502d6dc0d3aea865b47f548c/kiwisolver-1.4.9-cp313-cp313t-musllinux_1_2_x86_64.whl", hash = "sha256:dba5ee5d3981160c28d5490f0d1b7ed730c22470ff7f6cc26cfcfaacb9896a07", size = 2391741, upload-time = "2025-08-10T21:26:59.237Z" }, + { url = "https://files.pythonhosted.org/packages/2a/8f/8f6f491d595a9e5912971f3f863d81baddccc8a4d0c3749d6a0dd9ffc9df/kiwisolver-1.4.9-cp313-cp313t-win_arm64.whl", hash = "sha256:0749fd8f4218ad2e851e11cc4dc05c7cbc0cbc4267bdfdb31782e65aace4ee9c", size = 68646, upload-time = "2025-08-10T21:27:00.52Z" }, + { url = "https://files.pythonhosted.org/packages/6b/32/6cc0fbc9c54d06c2969faa9c1d29f5751a2e51809dd55c69055e62d9b426/kiwisolver-1.4.9-cp314-cp314-macosx_10_13_universal2.whl", hash = "sha256:9928fe1eb816d11ae170885a74d074f57af3a0d65777ca47e9aeb854a1fba386", size = 123806, upload-time = "2025-08-10T21:27:01.537Z" }, + { url = "https://files.pythonhosted.org/packages/b2/dd/2bfb1d4a4823d92e8cbb420fe024b8d2167f72079b3bb941207c42570bdf/kiwisolver-1.4.9-cp314-cp314-macosx_10_13_x86_64.whl", hash = "sha256:d0005b053977e7b43388ddec89fa567f43d4f6d5c2c0affe57de5ebf290dc552", size = 66605, upload-time = "2025-08-10T21:27:03.335Z" }, + { url = "https://files.pythonhosted.org/packages/f7/69/00aafdb4e4509c2ca6064646cba9cd4b37933898f426756adb2cb92ebbed/kiwisolver-1.4.9-cp314-cp314-macosx_11_0_arm64.whl", hash = "sha256:2635d352d67458b66fd0667c14cb1d4145e9560d503219034a18a87e971ce4f3", size = 64925, upload-time = "2025-08-10T21:27:04.339Z" }, + { url = "https://files.pythonhosted.org/packages/43/dc/51acc6791aa14e5cb6d8a2e28cefb0dc2886d8862795449d021334c0df20/kiwisolver-1.4.9-cp314-cp314-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:767c23ad1c58c9e827b649a9ab7809fd5fd9db266a9cf02b0e926ddc2c680d58", size = 1472414, upload-time = "2025-08-10T21:27:05.437Z" }, + { url = "https://files.pythonhosted.org/packages/3d/bb/93fa64a81db304ac8a246f834d5094fae4b13baf53c839d6bb6e81177129/kiwisolver-1.4.9-cp314-cp314-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:72d0eb9fba308b8311685c2268cf7d0a0639a6cd027d8128659f72bdd8a024b4", size = 1281272, upload-time = "2025-08-10T21:27:07.063Z" }, + { url = "https://files.pythonhosted.org/packages/70/e6/6df102916960fb8d05069d4bd92d6d9a8202d5a3e2444494e7cd50f65b7a/kiwisolver-1.4.9-cp314-cp314-manylinux_2_24_ppc64le.manylinux_2_28_ppc64le.whl", hash = "sha256:f68e4f3eeca8fb22cc3d731f9715a13b652795ef657a13df1ad0c7dc0e9731df", size = 1298578, upload-time = "2025-08-10T21:27:08.452Z" }, + { url = "https://files.pythonhosted.org/packages/7c/47/e142aaa612f5343736b087864dbaebc53ea8831453fb47e7521fa8658f30/kiwisolver-1.4.9-cp314-cp314-manylinux_2_24_s390x.manylinux_2_28_s390x.whl", hash = "sha256:d84cd4061ae292d8ac367b2c3fa3aad11cb8625a95d135fe93f286f914f3f5a6", size = 1345607, upload-time = "2025-08-10T21:27:10.125Z" }, + { url = "https://files.pythonhosted.org/packages/54/89/d641a746194a0f4d1a3670fb900d0dbaa786fb98341056814bc3f058fa52/kiwisolver-1.4.9-cp314-cp314-musllinux_1_2_aarch64.whl", hash = "sha256:a60ea74330b91bd22a29638940d115df9dc00af5035a9a2a6ad9399ffb4ceca5", size = 2230150, upload-time = "2025-08-10T21:27:11.484Z" }, + { url = "https://files.pythonhosted.org/packages/aa/6b/5ee1207198febdf16ac11f78c5ae40861b809cbe0e6d2a8d5b0b3044b199/kiwisolver-1.4.9-cp314-cp314-musllinux_1_2_ppc64le.whl", hash = "sha256:ce6a3a4e106cf35c2d9c4fa17c05ce0b180db622736845d4315519397a77beaf", size = 2325979, upload-time = "2025-08-10T21:27:12.917Z" }, + { url = "https://files.pythonhosted.org/packages/fc/ff/b269eefd90f4ae14dcc74973d5a0f6d28d3b9bb1afd8c0340513afe6b39a/kiwisolver-1.4.9-cp314-cp314-musllinux_1_2_s390x.whl", hash = "sha256:77937e5e2a38a7b48eef0585114fe7930346993a88060d0bf886086d2aa49ef5", size = 2491456, upload-time = "2025-08-10T21:27:14.353Z" }, + { url = "https://files.pythonhosted.org/packages/fc/d4/10303190bd4d30de547534601e259a4fbf014eed94aae3e5521129215086/kiwisolver-1.4.9-cp314-cp314-musllinux_1_2_x86_64.whl", hash = "sha256:24c175051354f4a28c5d6a31c93906dc653e2bf234e8a4bbfb964892078898ce", size = 2294621, upload-time = "2025-08-10T21:27:15.808Z" }, + { url = "https://files.pythonhosted.org/packages/28/e0/a9a90416fce5c0be25742729c2ea52105d62eda6c4be4d803c2a7be1fa50/kiwisolver-1.4.9-cp314-cp314-win_amd64.whl", hash = "sha256:0763515d4df10edf6d06a3c19734e2566368980d21ebec439f33f9eb936c07b7", size = 75417, upload-time = "2025-08-10T21:27:17.436Z" }, + { url = "https://files.pythonhosted.org/packages/1f/10/6949958215b7a9a264299a7db195564e87900f709db9245e4ebdd3c70779/kiwisolver-1.4.9-cp314-cp314-win_arm64.whl", hash = "sha256:0e4e2bf29574a6a7b7f6cb5fa69293b9f96c928949ac4a53ba3f525dffb87f9c", size = 66582, upload-time = "2025-08-10T21:27:18.436Z" }, + { url = "https://files.pythonhosted.org/packages/ec/79/60e53067903d3bc5469b369fe0dfc6b3482e2133e85dae9daa9527535991/kiwisolver-1.4.9-cp314-cp314t-macosx_10_13_universal2.whl", hash = "sha256:d976bbb382b202f71c67f77b0ac11244021cfa3f7dfd9e562eefcea2df711548", size = 126514, upload-time = "2025-08-10T21:27:19.465Z" }, + { url = "https://files.pythonhosted.org/packages/25/d1/4843d3e8d46b072c12a38c97c57fab4608d36e13fe47d47ee96b4d61ba6f/kiwisolver-1.4.9-cp314-cp314t-macosx_10_13_x86_64.whl", hash = "sha256:2489e4e5d7ef9a1c300a5e0196e43d9c739f066ef23270607d45aba368b91f2d", size = 67905, upload-time = "2025-08-10T21:27:20.51Z" }, + { url = "https://files.pythonhosted.org/packages/8c/ae/29ffcbd239aea8b93108de1278271ae764dfc0d803a5693914975f200596/kiwisolver-1.4.9-cp314-cp314t-macosx_11_0_arm64.whl", hash = "sha256:e2ea9f7ab7fbf18fffb1b5434ce7c69a07582f7acc7717720f1d69f3e806f90c", size = 66399, upload-time = "2025-08-10T21:27:21.496Z" }, + { url = "https://files.pythonhosted.org/packages/a1/ae/d7ba902aa604152c2ceba5d352d7b62106bedbccc8e95c3934d94472bfa3/kiwisolver-1.4.9-cp314-cp314t-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:b34e51affded8faee0dfdb705416153819d8ea9250bbbf7ea1b249bdeb5f1122", size = 1582197, upload-time = "2025-08-10T21:27:22.604Z" }, + { url = "https://files.pythonhosted.org/packages/f2/41/27c70d427eddb8bc7e4f16420a20fefc6f480312122a59a959fdfe0445ad/kiwisolver-1.4.9-cp314-cp314t-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:d8aacd3d4b33b772542b2e01beb50187536967b514b00003bdda7589722d2a64", size = 1390125, upload-time = "2025-08-10T21:27:24.036Z" }, + { url = "https://files.pythonhosted.org/packages/41/42/b3799a12bafc76d962ad69083f8b43b12bf4fe78b097b12e105d75c9b8f1/kiwisolver-1.4.9-cp314-cp314t-manylinux_2_24_ppc64le.manylinux_2_28_ppc64le.whl", hash = "sha256:7cf974dd4e35fa315563ac99d6287a1024e4dc2077b8a7d7cd3d2fb65d283134", size = 1402612, upload-time = "2025-08-10T21:27:25.773Z" }, + { url = "https://files.pythonhosted.org/packages/d2/b5/a210ea073ea1cfaca1bb5c55a62307d8252f531beb364e18aa1e0888b5a0/kiwisolver-1.4.9-cp314-cp314t-manylinux_2_24_s390x.manylinux_2_28_s390x.whl", hash = "sha256:85bd218b5ecfbee8c8a82e121802dcb519a86044c9c3b2e4aef02fa05c6da370", size = 1453990, upload-time = "2025-08-10T21:27:27.089Z" }, + { url = "https://files.pythonhosted.org/packages/5f/ce/a829eb8c033e977d7ea03ed32fb3c1781b4fa0433fbadfff29e39c676f32/kiwisolver-1.4.9-cp314-cp314t-musllinux_1_2_aarch64.whl", hash = "sha256:0856e241c2d3df4efef7c04a1e46b1936b6120c9bcf36dd216e3acd84bc4fb21", size = 2331601, upload-time = "2025-08-10T21:27:29.343Z" }, + { url = "https://files.pythonhosted.org/packages/e0/4b/b5e97eb142eb9cd0072dacfcdcd31b1c66dc7352b0f7c7255d339c0edf00/kiwisolver-1.4.9-cp314-cp314t-musllinux_1_2_ppc64le.whl", hash = "sha256:9af39d6551f97d31a4deebeac6f45b156f9755ddc59c07b402c148f5dbb6482a", size = 2422041, upload-time = "2025-08-10T21:27:30.754Z" }, + { url = "https://files.pythonhosted.org/packages/40/be/8eb4cd53e1b85ba4edc3a9321666f12b83113a178845593307a3e7891f44/kiwisolver-1.4.9-cp314-cp314t-musllinux_1_2_s390x.whl", hash = "sha256:bb4ae2b57fc1d8cbd1cf7b1d9913803681ffa903e7488012be5b76dedf49297f", size = 2594897, upload-time = "2025-08-10T21:27:32.803Z" }, + { url = "https://files.pythonhosted.org/packages/99/dd/841e9a66c4715477ea0abc78da039832fbb09dac5c35c58dc4c41a407b8a/kiwisolver-1.4.9-cp314-cp314t-musllinux_1_2_x86_64.whl", hash = "sha256:aedff62918805fb62d43a4aa2ecd4482c380dc76cd31bd7c8878588a61bd0369", size = 2391835, upload-time = "2025-08-10T21:27:34.23Z" }, + { url = "https://files.pythonhosted.org/packages/0c/28/4b2e5c47a0da96896fdfdb006340ade064afa1e63675d01ea5ac222b6d52/kiwisolver-1.4.9-cp314-cp314t-win_amd64.whl", hash = "sha256:1fa333e8b2ce4d9660f2cda9c0e1b6bafcfb2457a9d259faa82289e73ec24891", size = 79988, upload-time = "2025-08-10T21:27:35.587Z" }, + { url = "https://files.pythonhosted.org/packages/80/be/3578e8afd18c88cdf9cb4cffde75a96d2be38c5a903f1ed0ceec061bd09e/kiwisolver-1.4.9-cp314-cp314t-win_arm64.whl", hash = "sha256:4a48a2ce79d65d363597ef7b567ce3d14d68783d2b2263d98db3d9477805ba32", size = 70260, upload-time = "2025-08-10T21:27:36.606Z" }, +] + +[[package]] +name = "markupsafe" +version = "3.0.3" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/7e/99/7690b6d4034fffd95959cbe0c02de8deb3098cc577c67bb6a24fe5d7caa7/markupsafe-3.0.3.tar.gz", hash = "sha256:722695808f4b6457b320fdc131280796bdceb04ab50fe1795cd540799ebe1698", size = 80313, upload-time = "2025-09-27T18:37:40.426Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/5a/72/147da192e38635ada20e0a2e1a51cf8823d2119ce8883f7053879c2199b5/markupsafe-3.0.3-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:d53197da72cc091b024dd97249dfc7794d6a56530370992a5e1a08983ad9230e", size = 11615, upload-time = "2025-09-27T18:36:30.854Z" }, + { url = "https://files.pythonhosted.org/packages/9a/81/7e4e08678a1f98521201c3079f77db69fb552acd56067661f8c2f534a718/markupsafe-3.0.3-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:1872df69a4de6aead3491198eaf13810b565bdbeec3ae2dc8780f14458ec73ce", size = 12020, upload-time = "2025-09-27T18:36:31.971Z" }, + { url = "https://files.pythonhosted.org/packages/1e/2c/799f4742efc39633a1b54a92eec4082e4f815314869865d876824c257c1e/markupsafe-3.0.3-cp312-cp312-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:3a7e8ae81ae39e62a41ec302f972ba6ae23a5c5396c8e60113e9066ef893da0d", size = 24332, upload-time = "2025-09-27T18:36:32.813Z" }, + { url = "https://files.pythonhosted.org/packages/3c/2e/8d0c2ab90a8c1d9a24f0399058ab8519a3279d1bd4289511d74e909f060e/markupsafe-3.0.3-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:d6dd0be5b5b189d31db7cda48b91d7e0a9795f31430b7f271219ab30f1d3ac9d", size = 22947, upload-time = "2025-09-27T18:36:33.86Z" }, + { url = "https://files.pythonhosted.org/packages/2c/54/887f3092a85238093a0b2154bd629c89444f395618842e8b0c41783898ea/markupsafe-3.0.3-cp312-cp312-manylinux_2_31_riscv64.manylinux_2_39_riscv64.whl", hash = "sha256:94c6f0bb423f739146aec64595853541634bde58b2135f27f61c1ffd1cd4d16a", size = 21962, upload-time = "2025-09-27T18:36:35.099Z" }, + { url = "https://files.pythonhosted.org/packages/c9/2f/336b8c7b6f4a4d95e91119dc8521402461b74a485558d8f238a68312f11c/markupsafe-3.0.3-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:be8813b57049a7dc738189df53d69395eba14fb99345e0a5994914a3864c8a4b", size = 23760, upload-time = "2025-09-27T18:36:36.001Z" }, + { url = "https://files.pythonhosted.org/packages/32/43/67935f2b7e4982ffb50a4d169b724d74b62a3964bc1a9a527f5ac4f1ee2b/markupsafe-3.0.3-cp312-cp312-musllinux_1_2_riscv64.whl", hash = "sha256:83891d0e9fb81a825d9a6d61e3f07550ca70a076484292a70fde82c4b807286f", size = 21529, upload-time = "2025-09-27T18:36:36.906Z" }, + { url = "https://files.pythonhosted.org/packages/89/e0/4486f11e51bbba8b0c041098859e869e304d1c261e59244baa3d295d47b7/markupsafe-3.0.3-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:77f0643abe7495da77fb436f50f8dab76dbc6e5fd25d39589a0f1fe6548bfa2b", size = 23015, upload-time = "2025-09-27T18:36:37.868Z" }, + { url = "https://files.pythonhosted.org/packages/2f/e1/78ee7a023dac597a5825441ebd17170785a9dab23de95d2c7508ade94e0e/markupsafe-3.0.3-cp312-cp312-win32.whl", hash = "sha256:d88b440e37a16e651bda4c7c2b930eb586fd15ca7406cb39e211fcff3bf3017d", size = 14540, upload-time = "2025-09-27T18:36:38.761Z" }, + { url = "https://files.pythonhosted.org/packages/aa/5b/bec5aa9bbbb2c946ca2733ef9c4ca91c91b6a24580193e891b5f7dbe8e1e/markupsafe-3.0.3-cp312-cp312-win_amd64.whl", hash = "sha256:26a5784ded40c9e318cfc2bdb30fe164bdb8665ded9cd64d500a34fb42067b1c", size = 15105, upload-time = "2025-09-27T18:36:39.701Z" }, + { url = "https://files.pythonhosted.org/packages/e5/f1/216fc1bbfd74011693a4fd837e7026152e89c4bcf3e77b6692fba9923123/markupsafe-3.0.3-cp312-cp312-win_arm64.whl", hash = "sha256:35add3b638a5d900e807944a078b51922212fb3dedb01633a8defc4b01a3c85f", size = 13906, upload-time = "2025-09-27T18:36:40.689Z" }, + { url = "https://files.pythonhosted.org/packages/38/2f/907b9c7bbba283e68f20259574b13d005c121a0fa4c175f9bed27c4597ff/markupsafe-3.0.3-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:e1cf1972137e83c5d4c136c43ced9ac51d0e124706ee1c8aa8532c1287fa8795", size = 11622, upload-time = "2025-09-27T18:36:41.777Z" }, + { url = "https://files.pythonhosted.org/packages/9c/d9/5f7756922cdd676869eca1c4e3c0cd0df60ed30199ffd775e319089cb3ed/markupsafe-3.0.3-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:116bb52f642a37c115f517494ea5feb03889e04df47eeff5b130b1808ce7c219", size = 12029, upload-time = "2025-09-27T18:36:43.257Z" }, + { url = "https://files.pythonhosted.org/packages/00/07/575a68c754943058c78f30db02ee03a64b3c638586fba6a6dd56830b30a3/markupsafe-3.0.3-cp313-cp313-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:133a43e73a802c5562be9bbcd03d090aa5a1fe899db609c29e8c8d815c5f6de6", size = 24374, upload-time = "2025-09-27T18:36:44.508Z" }, + { url = "https://files.pythonhosted.org/packages/a9/21/9b05698b46f218fc0e118e1f8168395c65c8a2c750ae2bab54fc4bd4e0e8/markupsafe-3.0.3-cp313-cp313-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:ccfcd093f13f0f0b7fdd0f198b90053bf7b2f02a3927a30e63f3ccc9df56b676", size = 22980, upload-time = "2025-09-27T18:36:45.385Z" }, + { url = "https://files.pythonhosted.org/packages/7f/71/544260864f893f18b6827315b988c146b559391e6e7e8f7252839b1b846a/markupsafe-3.0.3-cp313-cp313-manylinux_2_31_riscv64.manylinux_2_39_riscv64.whl", hash = "sha256:509fa21c6deb7a7a273d629cf5ec029bc209d1a51178615ddf718f5918992ab9", size = 21990, upload-time = "2025-09-27T18:36:46.916Z" }, + { url = "https://files.pythonhosted.org/packages/c2/28/b50fc2f74d1ad761af2f5dcce7492648b983d00a65b8c0e0cb457c82ebbe/markupsafe-3.0.3-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:a4afe79fb3de0b7097d81da19090f4df4f8d3a2b3adaa8764138aac2e44f3af1", size = 23784, upload-time = "2025-09-27T18:36:47.884Z" }, + { url = "https://files.pythonhosted.org/packages/ed/76/104b2aa106a208da8b17a2fb72e033a5a9d7073c68f7e508b94916ed47a9/markupsafe-3.0.3-cp313-cp313-musllinux_1_2_riscv64.whl", hash = "sha256:795e7751525cae078558e679d646ae45574b47ed6e7771863fcc079a6171a0fc", size = 21588, upload-time = "2025-09-27T18:36:48.82Z" }, + { url = "https://files.pythonhosted.org/packages/b5/99/16a5eb2d140087ebd97180d95249b00a03aa87e29cc224056274f2e45fd6/markupsafe-3.0.3-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:8485f406a96febb5140bfeca44a73e3ce5116b2501ac54fe953e488fb1d03b12", size = 23041, upload-time = "2025-09-27T18:36:49.797Z" }, + { url = "https://files.pythonhosted.org/packages/19/bc/e7140ed90c5d61d77cea142eed9f9c303f4c4806f60a1044c13e3f1471d0/markupsafe-3.0.3-cp313-cp313-win32.whl", hash = "sha256:bdd37121970bfd8be76c5fb069c7751683bdf373db1ed6c010162b2a130248ed", size = 14543, upload-time = "2025-09-27T18:36:51.584Z" }, + { url = "https://files.pythonhosted.org/packages/05/73/c4abe620b841b6b791f2edc248f556900667a5a1cf023a6646967ae98335/markupsafe-3.0.3-cp313-cp313-win_amd64.whl", hash = "sha256:9a1abfdc021a164803f4d485104931fb8f8c1efd55bc6b748d2f5774e78b62c5", size = 15113, upload-time = "2025-09-27T18:36:52.537Z" }, + { url = "https://files.pythonhosted.org/packages/f0/3a/fa34a0f7cfef23cf9500d68cb7c32dd64ffd58a12b09225fb03dd37d5b80/markupsafe-3.0.3-cp313-cp313-win_arm64.whl", hash = "sha256:7e68f88e5b8799aa49c85cd116c932a1ac15caaa3f5db09087854d218359e485", size = 13911, upload-time = "2025-09-27T18:36:53.513Z" }, + { url = "https://files.pythonhosted.org/packages/e4/d7/e05cd7efe43a88a17a37b3ae96e79a19e846f3f456fe79c57ca61356ef01/markupsafe-3.0.3-cp313-cp313t-macosx_10_13_x86_64.whl", hash = "sha256:218551f6df4868a8d527e3062d0fb968682fe92054e89978594c28e642c43a73", size = 11658, upload-time = "2025-09-27T18:36:54.819Z" }, + { url = "https://files.pythonhosted.org/packages/99/9e/e412117548182ce2148bdeacdda3bb494260c0b0184360fe0d56389b523b/markupsafe-3.0.3-cp313-cp313t-macosx_11_0_arm64.whl", hash = "sha256:3524b778fe5cfb3452a09d31e7b5adefeea8c5be1d43c4f810ba09f2ceb29d37", size = 12066, upload-time = "2025-09-27T18:36:55.714Z" }, + { url = "https://files.pythonhosted.org/packages/bc/e6/fa0ffcda717ef64a5108eaa7b4f5ed28d56122c9a6d70ab8b72f9f715c80/markupsafe-3.0.3-cp313-cp313t-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:4e885a3d1efa2eadc93c894a21770e4bc67899e3543680313b09f139e149ab19", size = 25639, upload-time = "2025-09-27T18:36:56.908Z" }, + { url = "https://files.pythonhosted.org/packages/96/ec/2102e881fe9d25fc16cb4b25d5f5cde50970967ffa5dddafdb771237062d/markupsafe-3.0.3-cp313-cp313t-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:8709b08f4a89aa7586de0aadc8da56180242ee0ada3999749b183aa23df95025", size = 23569, upload-time = "2025-09-27T18:36:57.913Z" }, + { url = "https://files.pythonhosted.org/packages/4b/30/6f2fce1f1f205fc9323255b216ca8a235b15860c34b6798f810f05828e32/markupsafe-3.0.3-cp313-cp313t-manylinux_2_31_riscv64.manylinux_2_39_riscv64.whl", hash = "sha256:b8512a91625c9b3da6f127803b166b629725e68af71f8184ae7e7d54686a56d6", size = 23284, upload-time = "2025-09-27T18:36:58.833Z" }, + { url = "https://files.pythonhosted.org/packages/58/47/4a0ccea4ab9f5dcb6f79c0236d954acb382202721e704223a8aafa38b5c8/markupsafe-3.0.3-cp313-cp313t-musllinux_1_2_aarch64.whl", hash = "sha256:9b79b7a16f7fedff2495d684f2b59b0457c3b493778c9eed31111be64d58279f", size = 24801, upload-time = "2025-09-27T18:36:59.739Z" }, + { url = "https://files.pythonhosted.org/packages/6a/70/3780e9b72180b6fecb83a4814d84c3bf4b4ae4bf0b19c27196104149734c/markupsafe-3.0.3-cp313-cp313t-musllinux_1_2_riscv64.whl", hash = "sha256:12c63dfb4a98206f045aa9563db46507995f7ef6d83b2f68eda65c307c6829eb", size = 22769, upload-time = "2025-09-27T18:37:00.719Z" }, + { url = "https://files.pythonhosted.org/packages/98/c5/c03c7f4125180fc215220c035beac6b9cb684bc7a067c84fc69414d315f5/markupsafe-3.0.3-cp313-cp313t-musllinux_1_2_x86_64.whl", hash = "sha256:8f71bc33915be5186016f675cd83a1e08523649b0e33efdb898db577ef5bb009", size = 23642, upload-time = "2025-09-27T18:37:01.673Z" }, + { url = "https://files.pythonhosted.org/packages/80/d6/2d1b89f6ca4bff1036499b1e29a1d02d282259f3681540e16563f27ebc23/markupsafe-3.0.3-cp313-cp313t-win32.whl", hash = "sha256:69c0b73548bc525c8cb9a251cddf1931d1db4d2258e9599c28c07ef3580ef354", size = 14612, upload-time = "2025-09-27T18:37:02.639Z" }, + { url = "https://files.pythonhosted.org/packages/2b/98/e48a4bfba0a0ffcf9925fe2d69240bfaa19c6f7507b8cd09c70684a53c1e/markupsafe-3.0.3-cp313-cp313t-win_amd64.whl", hash = "sha256:1b4b79e8ebf6b55351f0d91fe80f893b4743f104bff22e90697db1590e47a218", size = 15200, upload-time = "2025-09-27T18:37:03.582Z" }, + { url = "https://files.pythonhosted.org/packages/0e/72/e3cc540f351f316e9ed0f092757459afbc595824ca724cbc5a5d4263713f/markupsafe-3.0.3-cp313-cp313t-win_arm64.whl", hash = "sha256:ad2cf8aa28b8c020ab2fc8287b0f823d0a7d8630784c31e9ee5edea20f406287", size = 13973, upload-time = "2025-09-27T18:37:04.929Z" }, + { url = "https://files.pythonhosted.org/packages/33/8a/8e42d4838cd89b7dde187011e97fe6c3af66d8c044997d2183fbd6d31352/markupsafe-3.0.3-cp314-cp314-macosx_10_13_x86_64.whl", hash = "sha256:eaa9599de571d72e2daf60164784109f19978b327a3910d3e9de8c97b5b70cfe", size = 11619, upload-time = "2025-09-27T18:37:06.342Z" }, + { url = "https://files.pythonhosted.org/packages/b5/64/7660f8a4a8e53c924d0fa05dc3a55c9cee10bbd82b11c5afb27d44b096ce/markupsafe-3.0.3-cp314-cp314-macosx_11_0_arm64.whl", hash = "sha256:c47a551199eb8eb2121d4f0f15ae0f923d31350ab9280078d1e5f12b249e0026", size = 12029, upload-time = "2025-09-27T18:37:07.213Z" }, + { url = "https://files.pythonhosted.org/packages/da/ef/e648bfd021127bef5fa12e1720ffed0c6cbb8310c8d9bea7266337ff06de/markupsafe-3.0.3-cp314-cp314-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:f34c41761022dd093b4b6896d4810782ffbabe30f2d443ff5f083e0cbbb8c737", size = 24408, upload-time = "2025-09-27T18:37:09.572Z" }, + { url = "https://files.pythonhosted.org/packages/41/3c/a36c2450754618e62008bf7435ccb0f88053e07592e6028a34776213d877/markupsafe-3.0.3-cp314-cp314-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:457a69a9577064c05a97c41f4e65148652db078a3a509039e64d3467b9e7ef97", size = 23005, upload-time = "2025-09-27T18:37:10.58Z" }, + { url = "https://files.pythonhosted.org/packages/bc/20/b7fdf89a8456b099837cd1dc21974632a02a999ec9bf7ca3e490aacd98e7/markupsafe-3.0.3-cp314-cp314-manylinux_2_31_riscv64.manylinux_2_39_riscv64.whl", hash = "sha256:e8afc3f2ccfa24215f8cb28dcf43f0113ac3c37c2f0f0806d8c70e4228c5cf4d", size = 22048, upload-time = "2025-09-27T18:37:11.547Z" }, + { url = "https://files.pythonhosted.org/packages/9a/a7/591f592afdc734f47db08a75793a55d7fbcc6902a723ae4cfbab61010cc5/markupsafe-3.0.3-cp314-cp314-musllinux_1_2_aarch64.whl", hash = "sha256:ec15a59cf5af7be74194f7ab02d0f59a62bdcf1a537677ce67a2537c9b87fcda", size = 23821, upload-time = "2025-09-27T18:37:12.48Z" }, + { url = "https://files.pythonhosted.org/packages/7d/33/45b24e4f44195b26521bc6f1a82197118f74df348556594bd2262bda1038/markupsafe-3.0.3-cp314-cp314-musllinux_1_2_riscv64.whl", hash = "sha256:0eb9ff8191e8498cca014656ae6b8d61f39da5f95b488805da4bb029cccbfbaf", size = 21606, upload-time = "2025-09-27T18:37:13.485Z" }, + { url = "https://files.pythonhosted.org/packages/ff/0e/53dfaca23a69fbfbbf17a4b64072090e70717344c52eaaaa9c5ddff1e5f0/markupsafe-3.0.3-cp314-cp314-musllinux_1_2_x86_64.whl", hash = "sha256:2713baf880df847f2bece4230d4d094280f4e67b1e813eec43b4c0e144a34ffe", size = 23043, upload-time = "2025-09-27T18:37:14.408Z" }, + { url = "https://files.pythonhosted.org/packages/46/11/f333a06fc16236d5238bfe74daccbca41459dcd8d1fa952e8fbd5dccfb70/markupsafe-3.0.3-cp314-cp314-win32.whl", hash = "sha256:729586769a26dbceff69f7a7dbbf59ab6572b99d94576a5592625d5b411576b9", size = 14747, upload-time = "2025-09-27T18:37:15.36Z" }, + { url = "https://files.pythonhosted.org/packages/28/52/182836104b33b444e400b14f797212f720cbc9ed6ba34c800639d154e821/markupsafe-3.0.3-cp314-cp314-win_amd64.whl", hash = "sha256:bdc919ead48f234740ad807933cdf545180bfbe9342c2bb451556db2ed958581", size = 15341, upload-time = "2025-09-27T18:37:16.496Z" }, + { url = "https://files.pythonhosted.org/packages/6f/18/acf23e91bd94fd7b3031558b1f013adfa21a8e407a3fdb32745538730382/markupsafe-3.0.3-cp314-cp314-win_arm64.whl", hash = "sha256:5a7d5dc5140555cf21a6fefbdbf8723f06fcd2f63ef108f2854de715e4422cb4", size = 14073, upload-time = "2025-09-27T18:37:17.476Z" }, + { url = "https://files.pythonhosted.org/packages/3c/f0/57689aa4076e1b43b15fdfa646b04653969d50cf30c32a102762be2485da/markupsafe-3.0.3-cp314-cp314t-macosx_10_13_x86_64.whl", hash = "sha256:1353ef0c1b138e1907ae78e2f6c63ff67501122006b0f9abad68fda5f4ffc6ab", size = 11661, upload-time = "2025-09-27T18:37:18.453Z" }, + { url = "https://files.pythonhosted.org/packages/89/c3/2e67a7ca217c6912985ec766c6393b636fb0c2344443ff9d91404dc4c79f/markupsafe-3.0.3-cp314-cp314t-macosx_11_0_arm64.whl", hash = "sha256:1085e7fbddd3be5f89cc898938f42c0b3c711fdcb37d75221de2666af647c175", size = 12069, upload-time = "2025-09-27T18:37:19.332Z" }, + { url = "https://files.pythonhosted.org/packages/f0/00/be561dce4e6ca66b15276e184ce4b8aec61fe83662cce2f7d72bd3249d28/markupsafe-3.0.3-cp314-cp314t-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:1b52b4fb9df4eb9ae465f8d0c228a00624de2334f216f178a995ccdcf82c4634", size = 25670, upload-time = "2025-09-27T18:37:20.245Z" }, + { url = "https://files.pythonhosted.org/packages/50/09/c419f6f5a92e5fadde27efd190eca90f05e1261b10dbd8cbcb39cd8ea1dc/markupsafe-3.0.3-cp314-cp314t-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:fed51ac40f757d41b7c48425901843666a6677e3e8eb0abcff09e4ba6e664f50", size = 23598, upload-time = "2025-09-27T18:37:21.177Z" }, + { url = "https://files.pythonhosted.org/packages/22/44/a0681611106e0b2921b3033fc19bc53323e0b50bc70cffdd19f7d679bb66/markupsafe-3.0.3-cp314-cp314t-manylinux_2_31_riscv64.manylinux_2_39_riscv64.whl", hash = "sha256:f190daf01f13c72eac4efd5c430a8de82489d9cff23c364c3ea822545032993e", size = 23261, upload-time = "2025-09-27T18:37:22.167Z" }, + { url = "https://files.pythonhosted.org/packages/5f/57/1b0b3f100259dc9fffe780cfb60d4be71375510e435efec3d116b6436d43/markupsafe-3.0.3-cp314-cp314t-musllinux_1_2_aarch64.whl", hash = "sha256:e56b7d45a839a697b5eb268c82a71bd8c7f6c94d6fd50c3d577fa39a9f1409f5", size = 24835, upload-time = "2025-09-27T18:37:23.296Z" }, + { url = "https://files.pythonhosted.org/packages/26/6a/4bf6d0c97c4920f1597cc14dd720705eca0bf7c787aebc6bb4d1bead5388/markupsafe-3.0.3-cp314-cp314t-musllinux_1_2_riscv64.whl", hash = "sha256:f3e98bb3798ead92273dc0e5fd0f31ade220f59a266ffd8a4f6065e0a3ce0523", size = 22733, upload-time = "2025-09-27T18:37:24.237Z" }, + { url = "https://files.pythonhosted.org/packages/14/c7/ca723101509b518797fedc2fdf79ba57f886b4aca8a7d31857ba3ee8281f/markupsafe-3.0.3-cp314-cp314t-musllinux_1_2_x86_64.whl", hash = "sha256:5678211cb9333a6468fb8d8be0305520aa073f50d17f089b5b4b477ea6e67fdc", size = 23672, upload-time = "2025-09-27T18:37:25.271Z" }, + { url = "https://files.pythonhosted.org/packages/fb/df/5bd7a48c256faecd1d36edc13133e51397e41b73bb77e1a69deab746ebac/markupsafe-3.0.3-cp314-cp314t-win32.whl", hash = "sha256:915c04ba3851909ce68ccc2b8e2cd691618c4dc4c4232fb7982bca3f41fd8c3d", size = 14819, upload-time = "2025-09-27T18:37:26.285Z" }, + { url = "https://files.pythonhosted.org/packages/1a/8a/0402ba61a2f16038b48b39bccca271134be00c5c9f0f623208399333c448/markupsafe-3.0.3-cp314-cp314t-win_amd64.whl", hash = "sha256:4faffd047e07c38848ce017e8725090413cd80cbc23d86e55c587bf979e579c9", size = 15426, upload-time = "2025-09-27T18:37:27.316Z" }, + { url = "https://files.pythonhosted.org/packages/70/bc/6f1c2f612465f5fa89b95bead1f44dcb607670fd42891d8fdcd5d039f4f4/markupsafe-3.0.3-cp314-cp314t-win_arm64.whl", hash = "sha256:32001d6a8fc98c8cb5c947787c5d08b0a50663d139f1305bac5885d98d9b40fa", size = 14146, upload-time = "2025-09-27T18:37:28.327Z" }, +] + +[[package]] +name = "matplotlib" +version = "3.10.7" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "contourpy" }, + { name = "cycler" }, + { name = "fonttools" }, + { name = "kiwisolver" }, + { name = "numpy" }, + { name = "packaging" }, + { name = "pillow" }, + { name = "pyparsing" }, + { name = "python-dateutil" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/ae/e2/d2d5295be2f44c678ebaf3544ba32d20c1f9ef08c49fe47f496180e1db15/matplotlib-3.10.7.tar.gz", hash = "sha256:a06ba7e2a2ef9131c79c49e63dad355d2d878413a0376c1727c8b9335ff731c7", size = 34804865, upload-time = "2025-10-09T00:28:00.669Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/be/b3/09eb0f7796932826ec20c25b517d568627754f6c6462fca19e12c02f2e12/matplotlib-3.10.7-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:7a0edb7209e21840e8361e91ea84ea676658aa93edd5f8762793dec77a4a6748", size = 8272389, upload-time = "2025-10-09T00:26:42.474Z" }, + { url = "https://files.pythonhosted.org/packages/11/0b/1ae80ddafb8652fd8046cb5c8460ecc8d4afccb89e2c6d6bec61e04e1eaf/matplotlib-3.10.7-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:c380371d3c23e0eadf8ebff114445b9f970aff2010198d498d4ab4c3b41eea4f", size = 8128247, upload-time = "2025-10-09T00:26:44.77Z" }, + { url = "https://files.pythonhosted.org/packages/7d/18/95ae2e242d4a5c98bd6e90e36e128d71cf1c7e39b0874feaed3ef782e789/matplotlib-3.10.7-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:d5f256d49fea31f40f166a5e3131235a5d2f4b7f44520b1cf0baf1ce568ccff0", size = 8696996, upload-time = "2025-10-09T00:26:46.792Z" }, + { url = "https://files.pythonhosted.org/packages/7e/3d/5b559efc800bd05cb2033aa85f7e13af51958136a48327f7c261801ff90a/matplotlib-3.10.7-cp312-cp312-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:11ae579ac83cdf3fb72573bb89f70e0534de05266728740d478f0f818983c695", size = 9530153, upload-time = "2025-10-09T00:26:49.07Z" }, + { url = "https://files.pythonhosted.org/packages/88/57/eab4a719fd110312d3c220595d63a3c85ec2a39723f0f4e7fa7e6e3f74ba/matplotlib-3.10.7-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:4c14b6acd16cddc3569a2d515cfdd81c7a68ac5639b76548cfc1a9e48b20eb65", size = 9593093, upload-time = "2025-10-09T00:26:51.067Z" }, + { url = "https://files.pythonhosted.org/packages/31/3c/80816f027b3a4a28cd2a0a6ef7f89a2db22310e945cd886ec25bfb399221/matplotlib-3.10.7-cp312-cp312-win_amd64.whl", hash = "sha256:0d8c32b7ea6fb80b1aeff5a2ceb3fb9778e2759e899d9beff75584714afcc5ee", size = 8122771, upload-time = "2025-10-09T00:26:53.296Z" }, + { url = "https://files.pythonhosted.org/packages/de/77/ef1fc78bfe99999b2675435cc52120887191c566b25017d78beaabef7f2d/matplotlib-3.10.7-cp312-cp312-win_arm64.whl", hash = "sha256:5f3f6d315dcc176ba7ca6e74c7768fb7e4cf566c49cb143f6bc257b62e634ed8", size = 7992812, upload-time = "2025-10-09T00:26:54.882Z" }, + { url = "https://files.pythonhosted.org/packages/02/9c/207547916a02c78f6bdd83448d9b21afbc42f6379ed887ecf610984f3b4e/matplotlib-3.10.7-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:1d9d3713a237970569156cfb4de7533b7c4eacdd61789726f444f96a0d28f57f", size = 8273212, upload-time = "2025-10-09T00:26:56.752Z" }, + { url = "https://files.pythonhosted.org/packages/bc/d0/b3d3338d467d3fc937f0bb7f256711395cae6f78e22cef0656159950adf0/matplotlib-3.10.7-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:37a1fea41153dd6ee061d21ab69c9cf2cf543160b1b85d89cd3d2e2a7902ca4c", size = 8128713, upload-time = "2025-10-09T00:26:59.001Z" }, + { url = "https://files.pythonhosted.org/packages/22/ff/6425bf5c20d79aa5b959d1ce9e65f599632345391381c9a104133fe0b171/matplotlib-3.10.7-cp313-cp313-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:b3c4ea4948d93c9c29dc01c0c23eef66f2101bf75158c291b88de6525c55c3d1", size = 8698527, upload-time = "2025-10-09T00:27:00.69Z" }, + { url = "https://files.pythonhosted.org/packages/d0/7f/ccdca06f4c2e6c7989270ed7829b8679466682f4cfc0f8c9986241c023b6/matplotlib-3.10.7-cp313-cp313-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:22df30ffaa89f6643206cf13877191c63a50e8f800b038bc39bee9d2d4957632", size = 9529690, upload-time = "2025-10-09T00:27:02.664Z" }, + { url = "https://files.pythonhosted.org/packages/b8/95/b80fc2c1f269f21ff3d193ca697358e24408c33ce2b106a7438a45407b63/matplotlib-3.10.7-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:b69676845a0a66f9da30e87f48be36734d6748024b525ec4710be40194282c84", size = 9593732, upload-time = "2025-10-09T00:27:04.653Z" }, + { url = "https://files.pythonhosted.org/packages/e1/b6/23064a96308b9aeceeffa65e96bcde459a2ea4934d311dee20afde7407a0/matplotlib-3.10.7-cp313-cp313-win_amd64.whl", hash = "sha256:744991e0cc863dd669c8dc9136ca4e6e0082be2070b9d793cbd64bec872a6815", size = 8122727, upload-time = "2025-10-09T00:27:06.814Z" }, + { url = "https://files.pythonhosted.org/packages/b3/a6/2faaf48133b82cf3607759027f82b5c702aa99cdfcefb7f93d6ccf26a424/matplotlib-3.10.7-cp313-cp313-win_arm64.whl", hash = "sha256:fba2974df0bf8ce3c995fa84b79cde38326e0f7b5409e7a3a481c1141340bcf7", size = 7992958, upload-time = "2025-10-09T00:27:08.567Z" }, + { url = "https://files.pythonhosted.org/packages/4a/f0/b018fed0b599bd48d84c08794cb242227fe3341952da102ee9d9682db574/matplotlib-3.10.7-cp313-cp313t-macosx_10_13_x86_64.whl", hash = "sha256:932c55d1fa7af4423422cb6a492a31cbcbdbe68fd1a9a3f545aa5e7a143b5355", size = 8316849, upload-time = "2025-10-09T00:27:10.254Z" }, + { url = "https://files.pythonhosted.org/packages/b0/b7/bb4f23856197659f275e11a2a164e36e65e9b48ea3e93c4ec25b4f163198/matplotlib-3.10.7-cp313-cp313t-macosx_11_0_arm64.whl", hash = "sha256:5e38c2d581d62ee729a6e144c47a71b3f42fb4187508dbbf4fe71d5612c3433b", size = 8178225, upload-time = "2025-10-09T00:27:12.241Z" }, + { url = "https://files.pythonhosted.org/packages/62/56/0600609893ff277e6f3ab3c0cef4eafa6e61006c058e84286c467223d4d5/matplotlib-3.10.7-cp313-cp313t-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:786656bb13c237bbcebcd402f65f44dd61ead60ee3deb045af429d889c8dbc67", size = 8711708, upload-time = "2025-10-09T00:27:13.879Z" }, + { url = "https://files.pythonhosted.org/packages/d8/1a/6bfecb0cafe94d6658f2f1af22c43b76cf7a1c2f0dc34ef84cbb6809617e/matplotlib-3.10.7-cp313-cp313t-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:09d7945a70ea43bf9248f4b6582734c2fe726723204a76eca233f24cffc7ef67", size = 9541409, upload-time = "2025-10-09T00:27:15.684Z" }, + { url = "https://files.pythonhosted.org/packages/08/50/95122a407d7f2e446fd865e2388a232a23f2b81934960ea802f3171518e4/matplotlib-3.10.7-cp313-cp313t-musllinux_1_2_x86_64.whl", hash = "sha256:d0b181e9fa8daf1d9f2d4c547527b167cb8838fc587deabca7b5c01f97199e84", size = 9594054, upload-time = "2025-10-09T00:27:17.547Z" }, + { url = "https://files.pythonhosted.org/packages/13/76/75b194a43b81583478a81e78a07da8d9ca6ddf50dd0a2ccabf258059481d/matplotlib-3.10.7-cp313-cp313t-win_amd64.whl", hash = "sha256:31963603041634ce1a96053047b40961f7a29eb8f9a62e80cc2c0427aa1d22a2", size = 8200100, upload-time = "2025-10-09T00:27:20.039Z" }, + { url = "https://files.pythonhosted.org/packages/f5/9e/6aefebdc9f8235c12bdeeda44cc0383d89c1e41da2c400caf3ee2073a3ce/matplotlib-3.10.7-cp313-cp313t-win_arm64.whl", hash = "sha256:aebed7b50aa6ac698c90f60f854b47e48cd2252b30510e7a1feddaf5a3f72cbf", size = 8042131, upload-time = "2025-10-09T00:27:21.608Z" }, + { url = "https://files.pythonhosted.org/packages/0d/4b/e5bc2c321b6a7e3a75638d937d19ea267c34bd5a90e12bee76c4d7c7a0d9/matplotlib-3.10.7-cp314-cp314-macosx_10_13_x86_64.whl", hash = "sha256:d883460c43e8c6b173fef244a2341f7f7c0e9725c7fe68306e8e44ed9c8fb100", size = 8273787, upload-time = "2025-10-09T00:27:23.27Z" }, + { url = "https://files.pythonhosted.org/packages/86/ad/6efae459c56c2fbc404da154e13e3a6039129f3c942b0152624f1c621f05/matplotlib-3.10.7-cp314-cp314-macosx_11_0_arm64.whl", hash = "sha256:07124afcf7a6504eafcb8ce94091c5898bbdd351519a1beb5c45f7a38c67e77f", size = 8131348, upload-time = "2025-10-09T00:27:24.926Z" }, + { url = "https://files.pythonhosted.org/packages/a6/5a/a4284d2958dee4116359cc05d7e19c057e64ece1b4ac986ab0f2f4d52d5a/matplotlib-3.10.7-cp314-cp314-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:c17398b709a6cce3d9fdb1595c33e356d91c098cd9486cb2cc21ea2ea418e715", size = 9533949, upload-time = "2025-10-09T00:27:26.704Z" }, + { url = "https://files.pythonhosted.org/packages/de/ff/f3781b5057fa3786623ad8976fc9f7b0d02b2f28534751fd5a44240de4cf/matplotlib-3.10.7-cp314-cp314-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:7146d64f561498764561e9cd0ed64fcf582e570fc519e6f521e2d0cfd43365e1", size = 9804247, upload-time = "2025-10-09T00:27:28.514Z" }, + { url = "https://files.pythonhosted.org/packages/47/5a/993a59facb8444efb0e197bf55f545ee449902dcee86a4dfc580c3b61314/matplotlib-3.10.7-cp314-cp314-musllinux_1_2_x86_64.whl", hash = "sha256:90ad854c0a435da3104c01e2c6f0028d7e719b690998a2333d7218db80950722", size = 9595497, upload-time = "2025-10-09T00:27:30.418Z" }, + { url = "https://files.pythonhosted.org/packages/0d/a5/77c95aaa9bb32c345cbb49626ad8eb15550cba2e6d4c88081a6c2ac7b08d/matplotlib-3.10.7-cp314-cp314-win_amd64.whl", hash = "sha256:4645fc5d9d20ffa3a39361fcdbcec731382763b623b72627806bf251b6388866", size = 8252732, upload-time = "2025-10-09T00:27:32.332Z" }, + { url = "https://files.pythonhosted.org/packages/74/04/45d269b4268d222390d7817dae77b159651909669a34ee9fdee336db5883/matplotlib-3.10.7-cp314-cp314-win_arm64.whl", hash = "sha256:9257be2f2a03415f9105c486d304a321168e61ad450f6153d77c69504ad764bb", size = 8124240, upload-time = "2025-10-09T00:27:33.94Z" }, + { url = "https://files.pythonhosted.org/packages/4b/c7/ca01c607bb827158b439208c153d6f14ddb9fb640768f06f7ca3488ae67b/matplotlib-3.10.7-cp314-cp314t-macosx_10_13_x86_64.whl", hash = "sha256:1e4bbad66c177a8fdfa53972e5ef8be72a5f27e6a607cec0d8579abd0f3102b1", size = 8316938, upload-time = "2025-10-09T00:27:35.534Z" }, + { url = "https://files.pythonhosted.org/packages/84/d2/5539e66e9f56d2fdec94bb8436f5e449683b4e199bcc897c44fbe3c99e28/matplotlib-3.10.7-cp314-cp314t-macosx_11_0_arm64.whl", hash = "sha256:d8eb7194b084b12feb19142262165832fc6ee879b945491d1c3d4660748020c4", size = 8178245, upload-time = "2025-10-09T00:27:37.334Z" }, + { url = "https://files.pythonhosted.org/packages/77/b5/e6ca22901fd3e4fe433a82e583436dd872f6c966fca7e63cf806b40356f8/matplotlib-3.10.7-cp314-cp314t-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:b4d41379b05528091f00e1728004f9a8d7191260f3862178b88e8fd770206318", size = 9541411, upload-time = "2025-10-09T00:27:39.387Z" }, + { url = "https://files.pythonhosted.org/packages/9e/99/a4524db57cad8fee54b7237239a8f8360bfcfa3170d37c9e71c090c0f409/matplotlib-3.10.7-cp314-cp314t-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:4a74f79fafb2e177f240579bc83f0b60f82cc47d2f1d260f422a0627207008ca", size = 9803664, upload-time = "2025-10-09T00:27:41.492Z" }, + { url = "https://files.pythonhosted.org/packages/e6/a5/85e2edf76ea0ad4288d174926d9454ea85f3ce5390cc4e6fab196cbf250b/matplotlib-3.10.7-cp314-cp314t-musllinux_1_2_x86_64.whl", hash = "sha256:702590829c30aada1e8cef0568ddbffa77ca747b4d6e36c6d173f66e301f89cc", size = 9594066, upload-time = "2025-10-09T00:27:43.694Z" }, + { url = "https://files.pythonhosted.org/packages/39/69/9684368a314f6d83fe5c5ad2a4121a3a8e03723d2e5c8ea17b66c1bad0e7/matplotlib-3.10.7-cp314-cp314t-win_amd64.whl", hash = "sha256:f79d5de970fc90cd5591f60053aecfce1fcd736e0303d9f0bf86be649fa68fb8", size = 8342832, upload-time = "2025-10-09T00:27:45.543Z" }, + { url = "https://files.pythonhosted.org/packages/04/5f/e22e08da14bc1a0894184640d47819d2338b792732e20d292bf86e5ab785/matplotlib-3.10.7-cp314-cp314t-win_arm64.whl", hash = "sha256:cb783436e47fcf82064baca52ce748af71725d0352e1d31564cbe9c95df92b9c", size = 8172585, upload-time = "2025-10-09T00:27:47.185Z" }, +] + +[[package]] +name = "matplotlib-inline" +version = "0.2.1" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "traitlets" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/c7/74/97e72a36efd4ae2bccb3463284300f8953f199b5ffbc04cbbb0ec78f74b1/matplotlib_inline-0.2.1.tar.gz", hash = "sha256:e1ee949c340d771fc39e241ea75683deb94762c8fa5f2927ec57c83c4dffa9fe", size = 8110, upload-time = "2025-10-23T09:00:22.126Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/af/33/ee4519fa02ed11a94aef9559552f3b17bb863f2ecfe1a35dc7f548cde231/matplotlib_inline-0.2.1-py3-none-any.whl", hash = "sha256:d56ce5156ba6085e00a9d54fead6ed29a9c47e215cd1bba2e976ef39f5710a76", size = 9516, upload-time = "2025-10-23T09:00:20.675Z" }, +] + +[[package]] +name = "mpmath" +version = "1.3.0" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/e0/47/dd32fa426cc72114383ac549964eecb20ecfd886d1e5ccf5340b55b02f57/mpmath-1.3.0.tar.gz", hash = "sha256:7a28eb2a9774d00c7bc92411c19a89209d5da7c4c9a9e227be8330a23a25b91f", size = 508106, upload-time = "2023-03-07T16:47:11.061Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/43/e3/7d92a15f894aa0c9c4b49b8ee9ac9850d6e63b03c9c32c0367a13ae62209/mpmath-1.3.0-py3-none-any.whl", hash = "sha256:a0b2b9fe80bbcd81a6647ff13108738cfb482d481d826cc0e02f5b35e5c88d2c", size = 536198, upload-time = "2023-03-07T16:47:09.197Z" }, +] + +[[package]] +name = "nest-asyncio" +version = "1.6.0" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/83/f8/51569ac65d696c8ecbee95938f89d4abf00f47d58d48f6fbabfe8f0baefe/nest_asyncio-1.6.0.tar.gz", hash = "sha256:6f172d5449aca15afd6c646851f4e31e02c598d553a667e38cafa997cfec55fe", size = 7418, upload-time = "2024-01-21T14:25:19.227Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/a0/c4/c2971a3ba4c6103a3d10c4b0f24f461ddc027f0f09763220cf35ca1401b3/nest_asyncio-1.6.0-py3-none-any.whl", hash = "sha256:87af6efd6b5e897c81050477ef65c62e2b2f35d51703cae01aff2905b1852e1c", size = 5195, upload-time = "2024-01-21T14:25:17.223Z" }, +] + +[[package]] +name = "networkx" +version = "3.5" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/6c/4f/ccdb8ad3a38e583f214547fd2f7ff1fc160c43a75af88e6aec213404b96a/networkx-3.5.tar.gz", hash = "sha256:d4c6f9cf81f52d69230866796b82afbccdec3db7ae4fbd1b65ea750feed50037", size = 2471065, upload-time = "2025-05-29T11:35:07.804Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/eb/8d/776adee7bbf76365fdd7f2552710282c79a4ead5d2a46408c9043a2b70ba/networkx-3.5-py3-none-any.whl", hash = "sha256:0030d386a9a06dee3565298b4a734b68589749a544acbb6c412dc9e2489ec6ec", size = 2034406, upload-time = "2025-05-29T11:35:04.961Z" }, +] + +[[package]] +name = "numpy" +version = "2.3.5" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/76/65/21b3bc86aac7b8f2862db1e808f1ea22b028e30a225a34a5ede9bf8678f2/numpy-2.3.5.tar.gz", hash = "sha256:784db1dcdab56bf0517743e746dfb0f885fc68d948aba86eeec2cba234bdf1c0", size = 20584950, upload-time = "2025-11-16T22:52:42.067Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/44/37/e669fe6cbb2b96c62f6bbedc6a81c0f3b7362f6a59230b23caa673a85721/numpy-2.3.5-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:74ae7b798248fe62021dbf3c914245ad45d1a6b0cb4a29ecb4b31d0bfbc4cc3e", size = 16733873, upload-time = "2025-11-16T22:49:49.84Z" }, + { url = "https://files.pythonhosted.org/packages/c5/65/df0db6c097892c9380851ab9e44b52d4f7ba576b833996e0080181c0c439/numpy-2.3.5-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:ee3888d9ff7c14604052b2ca5535a30216aa0a58e948cdd3eeb8d3415f638769", size = 12259838, upload-time = "2025-11-16T22:49:52.863Z" }, + { url = "https://files.pythonhosted.org/packages/5b/e1/1ee06e70eb2136797abe847d386e7c0e830b67ad1d43f364dd04fa50d338/numpy-2.3.5-cp312-cp312-macosx_14_0_arm64.whl", hash = "sha256:612a95a17655e213502f60cfb9bf9408efdc9eb1d5f50535cc6eb365d11b42b5", size = 5088378, upload-time = "2025-11-16T22:49:55.055Z" }, + { url = "https://files.pythonhosted.org/packages/6d/9c/1ca85fb86708724275103b81ec4cf1ac1d08f465368acfc8da7ab545bdae/numpy-2.3.5-cp312-cp312-macosx_14_0_x86_64.whl", hash = "sha256:3101e5177d114a593d79dd79658650fe28b5a0d8abeb8ce6f437c0e6df5be1a4", size = 6628559, upload-time = "2025-11-16T22:49:57.371Z" }, + { url = "https://files.pythonhosted.org/packages/74/78/fcd41e5a0ce4f3f7b003da85825acddae6d7ecb60cf25194741b036ca7d6/numpy-2.3.5-cp312-cp312-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:8b973c57ff8e184109db042c842423ff4f60446239bd585a5131cc47f06f789d", size = 14250702, upload-time = "2025-11-16T22:49:59.632Z" }, + { url = "https://files.pythonhosted.org/packages/b6/23/2a1b231b8ff672b4c450dac27164a8b2ca7d9b7144f9c02d2396518352eb/numpy-2.3.5-cp312-cp312-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:0d8163f43acde9a73c2a33605353a4f1bc4798745a8b1d73183b28e5b435ae28", size = 16606086, upload-time = "2025-11-16T22:50:02.127Z" }, + { url = "https://files.pythonhosted.org/packages/a0/c5/5ad26fbfbe2012e190cc7d5003e4d874b88bb18861d0829edc140a713021/numpy-2.3.5-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:51c1e14eb1e154ebd80e860722f9e6ed6ec89714ad2db2d3aa33c31d7c12179b", size = 16025985, upload-time = "2025-11-16T22:50:04.536Z" }, + { url = "https://files.pythonhosted.org/packages/d2/fa/dd48e225c46c819288148d9d060b047fd2a6fb1eb37eae25112ee4cb4453/numpy-2.3.5-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:b46b4ec24f7293f23adcd2d146960559aaf8020213de8ad1909dba6c013bf89c", size = 18542976, upload-time = "2025-11-16T22:50:07.557Z" }, + { url = "https://files.pythonhosted.org/packages/05/79/ccbd23a75862d95af03d28b5c6901a1b7da4803181513d52f3b86ed9446e/numpy-2.3.5-cp312-cp312-win32.whl", hash = "sha256:3997b5b3c9a771e157f9aae01dd579ee35ad7109be18db0e85dbdbe1de06e952", size = 6285274, upload-time = "2025-11-16T22:50:10.746Z" }, + { url = "https://files.pythonhosted.org/packages/2d/57/8aeaf160312f7f489dea47ab61e430b5cb051f59a98ae68b7133ce8fa06a/numpy-2.3.5-cp312-cp312-win_amd64.whl", hash = "sha256:86945f2ee6d10cdfd67bcb4069c1662dd711f7e2a4343db5cecec06b87cf31aa", size = 12782922, upload-time = "2025-11-16T22:50:12.811Z" }, + { url = "https://files.pythonhosted.org/packages/78/a6/aae5cc2ca78c45e64b9ef22f089141d661516856cf7c8a54ba434576900d/numpy-2.3.5-cp312-cp312-win_arm64.whl", hash = "sha256:f28620fe26bee16243be2b7b874da327312240a7cdc38b769a697578d2100013", size = 10194667, upload-time = "2025-11-16T22:50:16.16Z" }, + { url = "https://files.pythonhosted.org/packages/db/69/9cde09f36da4b5a505341180a3f2e6fadc352fd4d2b7096ce9778db83f1a/numpy-2.3.5-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:d0f23b44f57077c1ede8c5f26b30f706498b4862d3ff0a7298b8411dd2f043ff", size = 16728251, upload-time = "2025-11-16T22:50:19.013Z" }, + { url = "https://files.pythonhosted.org/packages/79/fb/f505c95ceddd7027347b067689db71ca80bd5ecc926f913f1a23e65cf09b/numpy-2.3.5-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:aa5bc7c5d59d831d9773d1170acac7893ce3a5e130540605770ade83280e7188", size = 12254652, upload-time = "2025-11-16T22:50:21.487Z" }, + { url = "https://files.pythonhosted.org/packages/78/da/8c7738060ca9c31b30e9301ee0cf6c5ffdbf889d9593285a1cead337f9a5/numpy-2.3.5-cp313-cp313-macosx_14_0_arm64.whl", hash = "sha256:ccc933afd4d20aad3c00bcef049cb40049f7f196e0397f1109dba6fed63267b0", size = 5083172, upload-time = "2025-11-16T22:50:24.562Z" }, + { url = "https://files.pythonhosted.org/packages/a4/b4/ee5bb2537fb9430fd2ef30a616c3672b991a4129bb1c7dcc42aa0abbe5d7/numpy-2.3.5-cp313-cp313-macosx_14_0_x86_64.whl", hash = "sha256:afaffc4393205524af9dfa400fa250143a6c3bc646c08c9f5e25a9f4b4d6a903", size = 6622990, upload-time = "2025-11-16T22:50:26.47Z" }, + { url = "https://files.pythonhosted.org/packages/95/03/dc0723a013c7d7c19de5ef29e932c3081df1c14ba582b8b86b5de9db7f0f/numpy-2.3.5-cp313-cp313-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:9c75442b2209b8470d6d5d8b1c25714270686f14c749028d2199c54e29f20b4d", size = 14248902, upload-time = "2025-11-16T22:50:28.861Z" }, + { url = "https://files.pythonhosted.org/packages/f5/10/ca162f45a102738958dcec8023062dad0cbc17d1ab99d68c4e4a6c45fb2b/numpy-2.3.5-cp313-cp313-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:11e06aa0af8c0f05104d56450d6093ee639e15f24ecf62d417329d06e522e017", size = 16597430, upload-time = "2025-11-16T22:50:31.56Z" }, + { url = "https://files.pythonhosted.org/packages/2a/51/c1e29be863588db58175175f057286900b4b3327a1351e706d5e0f8dd679/numpy-2.3.5-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:ed89927b86296067b4f81f108a2271d8926467a8868e554eaf370fc27fa3ccaf", size = 16024551, upload-time = "2025-11-16T22:50:34.242Z" }, + { url = "https://files.pythonhosted.org/packages/83/68/8236589d4dbb87253d28259d04d9b814ec0ecce7cb1c7fed29729f4c3a78/numpy-2.3.5-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:51c55fe3451421f3a6ef9a9c1439e82101c57a2c9eab9feb196a62b1a10b58ce", size = 18533275, upload-time = "2025-11-16T22:50:37.651Z" }, + { url = "https://files.pythonhosted.org/packages/40/56/2932d75b6f13465239e3b7b7e511be27f1b8161ca2510854f0b6e521c395/numpy-2.3.5-cp313-cp313-win32.whl", hash = "sha256:1978155dd49972084bd6ef388d66ab70f0c323ddee6f693d539376498720fb7e", size = 6277637, upload-time = "2025-11-16T22:50:40.11Z" }, + { url = "https://files.pythonhosted.org/packages/0c/88/e2eaa6cffb115b85ed7c7c87775cb8bcf0816816bc98ca8dbfa2ee33fe6e/numpy-2.3.5-cp313-cp313-win_amd64.whl", hash = "sha256:00dc4e846108a382c5869e77c6ed514394bdeb3403461d25a829711041217d5b", size = 12779090, upload-time = "2025-11-16T22:50:42.503Z" }, + { url = "https://files.pythonhosted.org/packages/8f/88/3f41e13a44ebd4034ee17baa384acac29ba6a4fcc2aca95f6f08ca0447d1/numpy-2.3.5-cp313-cp313-win_arm64.whl", hash = "sha256:0472f11f6ec23a74a906a00b48a4dcf3849209696dff7c189714511268d103ae", size = 10194710, upload-time = "2025-11-16T22:50:44.971Z" }, + { url = "https://files.pythonhosted.org/packages/13/cb/71744144e13389d577f867f745b7df2d8489463654a918eea2eeb166dfc9/numpy-2.3.5-cp313-cp313t-macosx_10_13_x86_64.whl", hash = "sha256:414802f3b97f3c1eef41e530aaba3b3c1620649871d8cb38c6eaff034c2e16bd", size = 16827292, upload-time = "2025-11-16T22:50:47.715Z" }, + { url = "https://files.pythonhosted.org/packages/71/80/ba9dc6f2a4398e7f42b708a7fdc841bb638d353be255655498edbf9a15a8/numpy-2.3.5-cp313-cp313t-macosx_11_0_arm64.whl", hash = "sha256:5ee6609ac3604fa7780e30a03e5e241a7956f8e2fcfe547d51e3afa5247ac47f", size = 12378897, upload-time = "2025-11-16T22:50:51.327Z" }, + { url = "https://files.pythonhosted.org/packages/2e/6d/db2151b9f64264bcceccd51741aa39b50150de9b602d98ecfe7e0c4bff39/numpy-2.3.5-cp313-cp313t-macosx_14_0_arm64.whl", hash = "sha256:86d835afea1eaa143012a2d7a3f45a3adce2d7adc8b4961f0b362214d800846a", size = 5207391, upload-time = "2025-11-16T22:50:54.542Z" }, + { url = "https://files.pythonhosted.org/packages/80/ae/429bacace5ccad48a14c4ae5332f6aa8ab9f69524193511d60ccdfdc65fa/numpy-2.3.5-cp313-cp313t-macosx_14_0_x86_64.whl", hash = "sha256:30bc11310e8153ca664b14c5f1b73e94bd0503681fcf136a163de856f3a50139", size = 6721275, upload-time = "2025-11-16T22:50:56.794Z" }, + { url = "https://files.pythonhosted.org/packages/74/5b/1919abf32d8722646a38cd527bc3771eb229a32724ee6ba340ead9b92249/numpy-2.3.5-cp313-cp313t-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:1062fde1dcf469571705945b0f221b73928f34a20c904ffb45db101907c3454e", size = 14306855, upload-time = "2025-11-16T22:50:59.208Z" }, + { url = "https://files.pythonhosted.org/packages/a5/87/6831980559434973bebc30cd9c1f21e541a0f2b0c280d43d3afd909b66d0/numpy-2.3.5-cp313-cp313t-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:ce581db493ea1a96c0556360ede6607496e8bf9b3a8efa66e06477267bc831e9", size = 16657359, upload-time = "2025-11-16T22:51:01.991Z" }, + { url = "https://files.pythonhosted.org/packages/dd/91/c797f544491ee99fd00495f12ebb7802c440c1915811d72ac5b4479a3356/numpy-2.3.5-cp313-cp313t-musllinux_1_2_aarch64.whl", hash = "sha256:cc8920d2ec5fa99875b670bb86ddeb21e295cb07aa331810d9e486e0b969d946", size = 16093374, upload-time = "2025-11-16T22:51:05.291Z" }, + { url = "https://files.pythonhosted.org/packages/74/a6/54da03253afcbe7a72785ec4da9c69fb7a17710141ff9ac5fcb2e32dbe64/numpy-2.3.5-cp313-cp313t-musllinux_1_2_x86_64.whl", hash = "sha256:9ee2197ef8c4f0dfe405d835f3b6a14f5fee7782b5de51ba06fb65fc9b36e9f1", size = 18594587, upload-time = "2025-11-16T22:51:08.585Z" }, + { url = "https://files.pythonhosted.org/packages/80/e9/aff53abbdd41b0ecca94285f325aff42357c6b5abc482a3fcb4994290b18/numpy-2.3.5-cp313-cp313t-win32.whl", hash = "sha256:70b37199913c1bd300ff6e2693316c6f869c7ee16378faf10e4f5e3275b299c3", size = 6405940, upload-time = "2025-11-16T22:51:11.541Z" }, + { url = "https://files.pythonhosted.org/packages/d5/81/50613fec9d4de5480de18d4f8ef59ad7e344d497edbef3cfd80f24f98461/numpy-2.3.5-cp313-cp313t-win_amd64.whl", hash = "sha256:b501b5fa195cc9e24fe102f21ec0a44dffc231d2af79950b451e0d99cea02234", size = 12920341, upload-time = "2025-11-16T22:51:14.312Z" }, + { url = "https://files.pythonhosted.org/packages/bb/ab/08fd63b9a74303947f34f0bd7c5903b9c5532c2d287bead5bdf4c556c486/numpy-2.3.5-cp313-cp313t-win_arm64.whl", hash = "sha256:a80afd79f45f3c4a7d341f13acbe058d1ca8ac017c165d3fa0d3de6bc1a079d7", size = 10262507, upload-time = "2025-11-16T22:51:16.846Z" }, + { url = "https://files.pythonhosted.org/packages/ba/97/1a914559c19e32d6b2e233cf9a6a114e67c856d35b1d6babca571a3e880f/numpy-2.3.5-cp314-cp314-macosx_10_15_x86_64.whl", hash = "sha256:bf06bc2af43fa8d32d30fae16ad965663e966b1a3202ed407b84c989c3221e82", size = 16735706, upload-time = "2025-11-16T22:51:19.558Z" }, + { url = "https://files.pythonhosted.org/packages/57/d4/51233b1c1b13ecd796311216ae417796b88b0616cfd8a33ae4536330748a/numpy-2.3.5-cp314-cp314-macosx_11_0_arm64.whl", hash = "sha256:052e8c42e0c49d2575621c158934920524f6c5da05a1d3b9bab5d8e259e045f0", size = 12264507, upload-time = "2025-11-16T22:51:22.492Z" }, + { url = "https://files.pythonhosted.org/packages/45/98/2fe46c5c2675b8306d0b4a3ec3494273e93e1226a490f766e84298576956/numpy-2.3.5-cp314-cp314-macosx_14_0_arm64.whl", hash = "sha256:1ed1ec893cff7040a02c8aa1c8611b94d395590d553f6b53629a4461dc7f7b63", size = 5093049, upload-time = "2025-11-16T22:51:25.171Z" }, + { url = "https://files.pythonhosted.org/packages/ce/0e/0698378989bb0ac5f1660c81c78ab1fe5476c1a521ca9ee9d0710ce54099/numpy-2.3.5-cp314-cp314-macosx_14_0_x86_64.whl", hash = "sha256:2dcd0808a421a482a080f89859a18beb0b3d1e905b81e617a188bd80422d62e9", size = 6626603, upload-time = "2025-11-16T22:51:27Z" }, + { url = "https://files.pythonhosted.org/packages/5e/a6/9ca0eecc489640615642a6cbc0ca9e10df70df38c4d43f5a928ff18d8827/numpy-2.3.5-cp314-cp314-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:727fd05b57df37dc0bcf1a27767a3d9a78cbbc92822445f32cc3436ba797337b", size = 14262696, upload-time = "2025-11-16T22:51:29.402Z" }, + { url = "https://files.pythonhosted.org/packages/c8/f6/07ec185b90ec9d7217a00eeeed7383b73d7e709dae2a9a021b051542a708/numpy-2.3.5-cp314-cp314-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:fffe29a1ef00883599d1dc2c51aa2e5d80afe49523c261a74933df395c15c520", size = 16597350, upload-time = "2025-11-16T22:51:32.167Z" }, + { url = "https://files.pythonhosted.org/packages/75/37/164071d1dde6a1a84c9b8e5b414fa127981bad47adf3a6b7e23917e52190/numpy-2.3.5-cp314-cp314-musllinux_1_2_aarch64.whl", hash = "sha256:8f7f0e05112916223d3f438f293abf0727e1181b5983f413dfa2fefc4098245c", size = 16040190, upload-time = "2025-11-16T22:51:35.403Z" }, + { url = "https://files.pythonhosted.org/packages/08/3c/f18b82a406b04859eb026d204e4e1773eb41c5be58410f41ffa511d114ae/numpy-2.3.5-cp314-cp314-musllinux_1_2_x86_64.whl", hash = "sha256:2e2eb32ddb9ccb817d620ac1d8dae7c3f641c1e5f55f531a33e8ab97960a75b8", size = 18536749, upload-time = "2025-11-16T22:51:39.698Z" }, + { url = "https://files.pythonhosted.org/packages/40/79/f82f572bf44cf0023a2fe8588768e23e1592585020d638999f15158609e1/numpy-2.3.5-cp314-cp314-win32.whl", hash = "sha256:66f85ce62c70b843bab1fb14a05d5737741e74e28c7b8b5a064de10142fad248", size = 6335432, upload-time = "2025-11-16T22:51:42.476Z" }, + { url = "https://files.pythonhosted.org/packages/a3/2e/235b4d96619931192c91660805e5e49242389742a7a82c27665021db690c/numpy-2.3.5-cp314-cp314-win_amd64.whl", hash = "sha256:e6a0bc88393d65807d751a614207b7129a310ca4fe76a74e5c7da5fa5671417e", size = 12919388, upload-time = "2025-11-16T22:51:45.275Z" }, + { url = "https://files.pythonhosted.org/packages/07/2b/29fd75ce45d22a39c61aad74f3d718e7ab67ccf839ca8b60866054eb15f8/numpy-2.3.5-cp314-cp314-win_arm64.whl", hash = "sha256:aeffcab3d4b43712bb7a60b65f6044d444e75e563ff6180af8f98dd4b905dfd2", size = 10476651, upload-time = "2025-11-16T22:51:47.749Z" }, + { url = "https://files.pythonhosted.org/packages/17/e1/f6a721234ebd4d87084cfa68d081bcba2f5cfe1974f7de4e0e8b9b2a2ba1/numpy-2.3.5-cp314-cp314t-macosx_10_15_x86_64.whl", hash = "sha256:17531366a2e3a9e30762c000f2c43a9aaa05728712e25c11ce1dbe700c53ad41", size = 16834503, upload-time = "2025-11-16T22:51:50.443Z" }, + { url = "https://files.pythonhosted.org/packages/5c/1c/baf7ffdc3af9c356e1c135e57ab7cf8d247931b9554f55c467efe2c69eff/numpy-2.3.5-cp314-cp314t-macosx_11_0_arm64.whl", hash = "sha256:d21644de1b609825ede2f48be98dfde4656aefc713654eeee280e37cadc4e0ad", size = 12381612, upload-time = "2025-11-16T22:51:53.609Z" }, + { url = "https://files.pythonhosted.org/packages/74/91/f7f0295151407ddc9ba34e699013c32c3c91944f9b35fcf9281163dc1468/numpy-2.3.5-cp314-cp314t-macosx_14_0_arm64.whl", hash = "sha256:c804e3a5aba5460c73955c955bdbd5c08c354954e9270a2c1565f62e866bdc39", size = 5210042, upload-time = "2025-11-16T22:51:56.213Z" }, + { url = "https://files.pythonhosted.org/packages/2e/3b/78aebf345104ec50dd50a4d06ddeb46a9ff5261c33bcc58b1c4f12f85ec2/numpy-2.3.5-cp314-cp314t-macosx_14_0_x86_64.whl", hash = "sha256:cc0a57f895b96ec78969c34f682c602bf8da1a0270b09bc65673df2e7638ec20", size = 6724502, upload-time = "2025-11-16T22:51:58.584Z" }, + { url = "https://files.pythonhosted.org/packages/02/c6/7c34b528740512e57ef1b7c8337ab0b4f0bddf34c723b8996c675bc2bc91/numpy-2.3.5-cp314-cp314t-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:900218e456384ea676e24ea6a0417f030a3b07306d29d7ad843957b40a9d8d52", size = 14308962, upload-time = "2025-11-16T22:52:01.698Z" }, + { url = "https://files.pythonhosted.org/packages/80/35/09d433c5262bc32d725bafc619e095b6a6651caf94027a03da624146f655/numpy-2.3.5-cp314-cp314t-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:09a1bea522b25109bf8e6f3027bd810f7c1085c64a0c7ce050c1676ad0ba010b", size = 16655054, upload-time = "2025-11-16T22:52:04.267Z" }, + { url = "https://files.pythonhosted.org/packages/7a/ab/6a7b259703c09a88804fa2430b43d6457b692378f6b74b356155283566ac/numpy-2.3.5-cp314-cp314t-musllinux_1_2_aarch64.whl", hash = "sha256:04822c00b5fd0323c8166d66c701dc31b7fbd252c100acd708c48f763968d6a3", size = 16091613, upload-time = "2025-11-16T22:52:08.651Z" }, + { url = "https://files.pythonhosted.org/packages/c2/88/330da2071e8771e60d1038166ff9d73f29da37b01ec3eb43cb1427464e10/numpy-2.3.5-cp314-cp314t-musllinux_1_2_x86_64.whl", hash = "sha256:d6889ec4ec662a1a37eb4b4fb26b6100841804dac55bd9df579e326cdc146227", size = 18591147, upload-time = "2025-11-16T22:52:11.453Z" }, + { url = "https://files.pythonhosted.org/packages/51/41/851c4b4082402d9ea860c3626db5d5df47164a712cb23b54be028b184c1c/numpy-2.3.5-cp314-cp314t-win32.whl", hash = "sha256:93eebbcf1aafdf7e2ddd44c2923e2672e1010bddc014138b229e49725b4d6be5", size = 6479806, upload-time = "2025-11-16T22:52:14.641Z" }, + { url = "https://files.pythonhosted.org/packages/90/30/d48bde1dfd93332fa557cff1972fbc039e055a52021fbef4c2c4b1eefd17/numpy-2.3.5-cp314-cp314t-win_amd64.whl", hash = "sha256:c8a9958e88b65c3b27e22ca2a076311636850b612d6bbfb76e8d156aacde2aaf", size = 13105760, upload-time = "2025-11-16T22:52:17.975Z" }, + { url = "https://files.pythonhosted.org/packages/2d/fd/4b5eb0b3e888d86aee4d198c23acec7d214baaf17ea93c1adec94c9518b9/numpy-2.3.5-cp314-cp314t-win_arm64.whl", hash = "sha256:6203fdf9f3dc5bdaed7319ad8698e685c7a3be10819f41d32a0723e611733b42", size = 10545459, upload-time = "2025-11-16T22:52:20.55Z" }, +] + +[[package]] +name = "nvidia-cublas-cu12" +version = "12.8.4.1" +source = { registry = "https://pypi.org/simple" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/dc/61/e24b560ab2e2eaeb3c839129175fb330dfcfc29e5203196e5541a4c44682/nvidia_cublas_cu12-12.8.4.1-py3-none-manylinux_2_27_x86_64.whl", hash = "sha256:8ac4e771d5a348c551b2a426eda6193c19aa630236b418086020df5ba9667142", size = 594346921, upload-time = "2025-03-07T01:44:31.254Z" }, +] + +[[package]] +name = "nvidia-cuda-cupti-cu12" +version = "12.8.90" +source = { registry = "https://pypi.org/simple" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/f8/02/2adcaa145158bf1a8295d83591d22e4103dbfd821bcaf6f3f53151ca4ffa/nvidia_cuda_cupti_cu12-12.8.90-py3-none-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:ea0cb07ebda26bb9b29ba82cda34849e73c166c18162d3913575b0c9db9a6182", size = 10248621, upload-time = "2025-03-07T01:40:21.213Z" }, +] + +[[package]] +name = "nvidia-cuda-nvrtc-cu12" +version = "12.8.93" +source = { registry = "https://pypi.org/simple" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/05/6b/32f747947df2da6994e999492ab306a903659555dddc0fbdeb9d71f75e52/nvidia_cuda_nvrtc_cu12-12.8.93-py3-none-manylinux2010_x86_64.manylinux_2_12_x86_64.whl", hash = "sha256:a7756528852ef889772a84c6cd89d41dfa74667e24cca16bb31f8f061e3e9994", size = 88040029, upload-time = "2025-03-07T01:42:13.562Z" }, +] + +[[package]] +name = "nvidia-cuda-runtime-cu12" +version = "12.8.90" +source = { registry = "https://pypi.org/simple" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/0d/9b/a997b638fcd068ad6e4d53b8551a7d30fe8b404d6f1804abf1df69838932/nvidia_cuda_runtime_cu12-12.8.90-py3-none-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:adade8dcbd0edf427b7204d480d6066d33902cab2a4707dcfc48a2d0fd44ab90", size = 954765, upload-time = "2025-03-07T01:40:01.615Z" }, +] + +[[package]] +name = "nvidia-cudnn-cu12" +version = "9.10.2.21" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "nvidia-cublas-cu12" }, +] +wheels = [ + { url = "https://files.pythonhosted.org/packages/ba/51/e123d997aa098c61d029f76663dedbfb9bc8dcf8c60cbd6adbe42f76d049/nvidia_cudnn_cu12-9.10.2.21-py3-none-manylinux_2_27_x86_64.whl", hash = "sha256:949452be657fa16687d0930933f032835951ef0892b37d2d53824d1a84dc97a8", size = 706758467, upload-time = "2025-06-06T21:54:08.597Z" }, +] + +[[package]] +name = "nvidia-cufft-cu12" +version = "11.3.3.83" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "nvidia-nvjitlink-cu12" }, +] +wheels = [ + { url = "https://files.pythonhosted.org/packages/1f/13/ee4e00f30e676b66ae65b4f08cb5bcbb8392c03f54f2d5413ea99a5d1c80/nvidia_cufft_cu12-11.3.3.83-py3-none-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:4d2dd21ec0b88cf61b62e6b43564355e5222e4a3fb394cac0db101f2dd0d4f74", size = 193118695, upload-time = "2025-03-07T01:45:27.821Z" }, +] + +[[package]] +name = "nvidia-cufile-cu12" +version = "1.13.1.3" +source = { registry = "https://pypi.org/simple" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/bb/fe/1bcba1dfbfb8d01be8d93f07bfc502c93fa23afa6fd5ab3fc7c1df71038a/nvidia_cufile_cu12-1.13.1.3-py3-none-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:1d069003be650e131b21c932ec3d8969c1715379251f8d23a1860554b1cb24fc", size = 1197834, upload-time = "2025-03-07T01:45:50.723Z" }, +] + +[[package]] +name = "nvidia-curand-cu12" +version = "10.3.9.90" +source = { registry = "https://pypi.org/simple" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/fb/aa/6584b56dc84ebe9cf93226a5cde4d99080c8e90ab40f0c27bda7a0f29aa1/nvidia_curand_cu12-10.3.9.90-py3-none-manylinux_2_27_x86_64.whl", hash = "sha256:b32331d4f4df5d6eefa0554c565b626c7216f87a06a4f56fab27c3b68a830ec9", size = 63619976, upload-time = "2025-03-07T01:46:23.323Z" }, +] + +[[package]] +name = "nvidia-cusolver-cu12" +version = "11.7.3.90" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "nvidia-cublas-cu12" }, + { name = "nvidia-cusparse-cu12" }, + { name = "nvidia-nvjitlink-cu12" }, +] +wheels = [ + { url = "https://files.pythonhosted.org/packages/85/48/9a13d2975803e8cf2777d5ed57b87a0b6ca2cc795f9a4f59796a910bfb80/nvidia_cusolver_cu12-11.7.3.90-py3-none-manylinux_2_27_x86_64.whl", hash = "sha256:4376c11ad263152bd50ea295c05370360776f8c3427b30991df774f9fb26c450", size = 267506905, upload-time = "2025-03-07T01:47:16.273Z" }, +] + +[[package]] +name = "nvidia-cusparse-cu12" +version = "12.5.8.93" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "nvidia-nvjitlink-cu12" }, +] +wheels = [ + { url = "https://files.pythonhosted.org/packages/c2/f5/e1854cb2f2bcd4280c44736c93550cc300ff4b8c95ebe370d0aa7d2b473d/nvidia_cusparse_cu12-12.5.8.93-py3-none-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:1ec05d76bbbd8b61b06a80e1eaf8cf4959c3d4ce8e711b65ebd0443bb0ebb13b", size = 288216466, upload-time = "2025-03-07T01:48:13.779Z" }, +] + +[[package]] +name = "nvidia-cusparselt-cu12" +version = "0.7.1" +source = { registry = "https://pypi.org/simple" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/56/79/12978b96bd44274fe38b5dde5cfb660b1d114f70a65ef962bcbbed99b549/nvidia_cusparselt_cu12-0.7.1-py3-none-manylinux2014_x86_64.whl", hash = "sha256:f1bb701d6b930d5a7cea44c19ceb973311500847f81b634d802b7b539dc55623", size = 287193691, upload-time = "2025-02-26T00:15:44.104Z" }, +] + +[[package]] +name = "nvidia-nccl-cu12" +version = "2.27.5" +source = { registry = "https://pypi.org/simple" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/6e/89/f7a07dc961b60645dbbf42e80f2bc85ade7feb9a491b11a1e973aa00071f/nvidia_nccl_cu12-2.27.5-py3-none-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:ad730cf15cb5d25fe849c6e6ca9eb5b76db16a80f13f425ac68d8e2e55624457", size = 322348229, upload-time = "2025-06-26T04:11:28.385Z" }, +] + +[[package]] +name = "nvidia-nvjitlink-cu12" +version = "12.8.93" +source = { registry = "https://pypi.org/simple" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/f6/74/86a07f1d0f42998ca31312f998bd3b9a7eff7f52378f4f270c8679c77fb9/nvidia_nvjitlink_cu12-12.8.93-py3-none-manylinux2010_x86_64.manylinux_2_12_x86_64.whl", hash = "sha256:81ff63371a7ebd6e6451970684f916be2eab07321b73c9d244dc2b4da7f73b88", size = 39254836, upload-time = "2025-03-07T01:49:55.661Z" }, +] + +[[package]] +name = "nvidia-nvshmem-cu12" +version = "3.3.20" +source = { registry = "https://pypi.org/simple" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/3b/6c/99acb2f9eb85c29fc6f3a7ac4dccfd992e22666dd08a642b303311326a97/nvidia_nvshmem_cu12-3.3.20-py3-none-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:d00f26d3f9b2e3c3065be895e3059d6479ea5c638a3f38c9fec49b1b9dd7c1e5", size = 124657145, upload-time = "2025-08-04T20:25:19.995Z" }, +] + +[[package]] +name = "nvidia-nvtx-cu12" +version = "12.8.90" +source = { registry = "https://pypi.org/simple" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/a2/eb/86626c1bbc2edb86323022371c39aa48df6fd8b0a1647bc274577f72e90b/nvidia_nvtx_cu12-12.8.90-py3-none-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:5b17e2001cc0d751a5bc2c6ec6d26ad95913324a4adb86788c944f8ce9ba441f", size = 89954, upload-time = "2025-03-07T01:42:44.131Z" }, +] + +[[package]] +name = "packaging" +version = "25.0" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/a1/d4/1fc4078c65507b51b96ca8f8c3ba19e6a61c8253c72794544580a7b6c24d/packaging-25.0.tar.gz", hash = "sha256:d443872c98d677bf60f6a1f2f8c1cb748e8fe762d2bf9d3148b5599295b0fc4f", size = 165727, upload-time = "2025-04-19T11:48:59.673Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/20/12/38679034af332785aac8774540895e234f4d07f7545804097de4b666afd8/packaging-25.0-py3-none-any.whl", hash = "sha256:29572ef2b1f17581046b3a2227d5c611fb25ec70ca1ba8554b24b0e69331a484", size = 66469, upload-time = "2025-04-19T11:48:57.875Z" }, +] + +[[package]] +name = "parso" +version = "0.8.5" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/d4/de/53e0bcf53d13e005bd8c92e7855142494f41171b34c2536b86187474184d/parso-0.8.5.tar.gz", hash = "sha256:034d7354a9a018bdce352f48b2a8a450f05e9d6ee85db84764e9b6bd96dafe5a", size = 401205, upload-time = "2025-08-23T15:15:28.028Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/16/32/f8e3c85d1d5250232a5d3477a2a28cc291968ff175caeadaf3cc19ce0e4a/parso-0.8.5-py2.py3-none-any.whl", hash = "sha256:646204b5ee239c396d040b90f9e272e9a8017c630092bf59980beb62fd033887", size = 106668, upload-time = "2025-08-23T15:15:25.663Z" }, +] + +[[package]] +name = "pexpect" +version = "4.9.0" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "ptyprocess" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/42/92/cc564bf6381ff43ce1f4d06852fc19a2f11d180f23dc32d9588bee2f149d/pexpect-4.9.0.tar.gz", hash = "sha256:ee7d41123f3c9911050ea2c2dac107568dc43b2d3b0c7557a33212c398ead30f", size = 166450, upload-time = "2023-11-25T09:07:26.339Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/9e/c3/059298687310d527a58bb01f3b1965787ee3b40dce76752eda8b44e9a2c5/pexpect-4.9.0-py2.py3-none-any.whl", hash = "sha256:7236d1e080e4936be2dc3e326cec0af72acf9212a7e1d060210e70a47e253523", size = 63772, upload-time = "2023-11-25T06:56:14.81Z" }, +] + +[[package]] +name = "pillow" +version = "12.0.0" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/5a/b0/cace85a1b0c9775a9f8f5d5423c8261c858760e2466c79b2dd184638b056/pillow-12.0.0.tar.gz", hash = "sha256:87d4f8125c9988bfbed67af47dd7a953e2fc7b0cc1e7800ec6d2080d490bb353", size = 47008828, upload-time = "2025-10-15T18:24:14.008Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/2c/90/4fcce2c22caf044e660a198d740e7fbc14395619e3cb1abad12192c0826c/pillow-12.0.0-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:53561a4ddc36facb432fae7a9d8afbfaf94795414f5cdc5fc52f28c1dca90371", size = 5249377, upload-time = "2025-10-15T18:22:05.993Z" }, + { url = "https://files.pythonhosted.org/packages/fd/e0/ed960067543d080691d47d6938ebccbf3976a931c9567ab2fbfab983a5dd/pillow-12.0.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:71db6b4c1653045dacc1585c1b0d184004f0d7e694c7b34ac165ca70c0838082", size = 4650343, upload-time = "2025-10-15T18:22:07.718Z" }, + { url = "https://files.pythonhosted.org/packages/e7/a1/f81fdeddcb99c044bf7d6faa47e12850f13cee0849537a7d27eeab5534d4/pillow-12.0.0-cp312-cp312-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:2fa5f0b6716fc88f11380b88b31fe591a06c6315e955c096c35715788b339e3f", size = 6232981, upload-time = "2025-10-15T18:22:09.287Z" }, + { url = "https://files.pythonhosted.org/packages/88/e1/9098d3ce341a8750b55b0e00c03f1630d6178f38ac191c81c97a3b047b44/pillow-12.0.0-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:82240051c6ca513c616f7f9da06e871f61bfd7805f566275841af15015b8f98d", size = 8041399, upload-time = "2025-10-15T18:22:10.872Z" }, + { url = "https://files.pythonhosted.org/packages/a7/62/a22e8d3b602ae8cc01446d0c57a54e982737f44b6f2e1e019a925143771d/pillow-12.0.0-cp312-cp312-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:55f818bd74fe2f11d4d7cbc65880a843c4075e0ac7226bc1a23261dbea531953", size = 6347740, upload-time = "2025-10-15T18:22:12.769Z" }, + { url = "https://files.pythonhosted.org/packages/4f/87/424511bdcd02c8d7acf9f65caa09f291a519b16bd83c3fb3374b3d4ae951/pillow-12.0.0-cp312-cp312-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:b87843e225e74576437fd5b6a4c2205d422754f84a06942cfaf1dc32243e45a8", size = 7040201, upload-time = "2025-10-15T18:22:14.813Z" }, + { url = "https://files.pythonhosted.org/packages/dc/4d/435c8ac688c54d11755aedfdd9f29c9eeddf68d150fe42d1d3dbd2365149/pillow-12.0.0-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:c607c90ba67533e1b2355b821fef6764d1dd2cbe26b8c1005ae84f7aea25ff79", size = 6462334, upload-time = "2025-10-15T18:22:16.375Z" }, + { url = "https://files.pythonhosted.org/packages/2b/f2/ad34167a8059a59b8ad10bc5c72d4d9b35acc6b7c0877af8ac885b5f2044/pillow-12.0.0-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:21f241bdd5080a15bc86d3466a9f6074a9c2c2b314100dd896ac81ee6db2f1ba", size = 7134162, upload-time = "2025-10-15T18:22:17.996Z" }, + { url = "https://files.pythonhosted.org/packages/0c/b1/a7391df6adacf0a5c2cf6ac1cf1fcc1369e7d439d28f637a847f8803beb3/pillow-12.0.0-cp312-cp312-win32.whl", hash = "sha256:dd333073e0cacdc3089525c7df7d39b211bcdf31fc2824e49d01c6b6187b07d0", size = 6298769, upload-time = "2025-10-15T18:22:19.923Z" }, + { url = "https://files.pythonhosted.org/packages/a2/0b/d87733741526541c909bbf159e338dcace4f982daac6e5a8d6be225ca32d/pillow-12.0.0-cp312-cp312-win_amd64.whl", hash = "sha256:9fe611163f6303d1619bbcb653540a4d60f9e55e622d60a3108be0d5b441017a", size = 7001107, upload-time = "2025-10-15T18:22:21.644Z" }, + { url = "https://files.pythonhosted.org/packages/bc/96/aaa61ce33cc98421fb6088af2a03be4157b1e7e0e87087c888e2370a7f45/pillow-12.0.0-cp312-cp312-win_arm64.whl", hash = "sha256:7dfb439562f234f7d57b1ac6bc8fe7f838a4bd49c79230e0f6a1da93e82f1fad", size = 2436012, upload-time = "2025-10-15T18:22:23.621Z" }, + { url = "https://files.pythonhosted.org/packages/62/f2/de993bb2d21b33a98d031ecf6a978e4b61da207bef02f7b43093774c480d/pillow-12.0.0-cp313-cp313-ios_13_0_arm64_iphoneos.whl", hash = "sha256:0869154a2d0546545cde61d1789a6524319fc1897d9ee31218eae7a60ccc5643", size = 4045493, upload-time = "2025-10-15T18:22:25.758Z" }, + { url = "https://files.pythonhosted.org/packages/0e/b6/bc8d0c4c9f6f111a783d045310945deb769b806d7574764234ffd50bc5ea/pillow-12.0.0-cp313-cp313-ios_13_0_arm64_iphonesimulator.whl", hash = "sha256:a7921c5a6d31b3d756ec980f2f47c0cfdbce0fc48c22a39347a895f41f4a6ea4", size = 4120461, upload-time = "2025-10-15T18:22:27.286Z" }, + { url = "https://files.pythonhosted.org/packages/5d/57/d60d343709366a353dc56adb4ee1e7d8a2cc34e3fbc22905f4167cfec119/pillow-12.0.0-cp313-cp313-ios_13_0_x86_64_iphonesimulator.whl", hash = "sha256:1ee80a59f6ce048ae13cda1abf7fbd2a34ab9ee7d401c46be3ca685d1999a399", size = 3576912, upload-time = "2025-10-15T18:22:28.751Z" }, + { url = "https://files.pythonhosted.org/packages/a4/a4/a0a31467e3f83b94d37568294b01d22b43ae3c5d85f2811769b9c66389dd/pillow-12.0.0-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:c50f36a62a22d350c96e49ad02d0da41dbd17ddc2e29750dbdba4323f85eb4a5", size = 5249132, upload-time = "2025-10-15T18:22:30.641Z" }, + { url = "https://files.pythonhosted.org/packages/83/06/48eab21dd561de2914242711434c0c0eb992ed08ff3f6107a5f44527f5e9/pillow-12.0.0-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:5193fde9a5f23c331ea26d0cf171fbf67e3f247585f50c08b3e205c7aeb4589b", size = 4650099, upload-time = "2025-10-15T18:22:32.73Z" }, + { url = "https://files.pythonhosted.org/packages/fc/bd/69ed99fd46a8dba7c1887156d3572fe4484e3f031405fcc5a92e31c04035/pillow-12.0.0-cp313-cp313-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:bde737cff1a975b70652b62d626f7785e0480918dece11e8fef3c0cf057351c3", size = 6230808, upload-time = "2025-10-15T18:22:34.337Z" }, + { url = "https://files.pythonhosted.org/packages/ea/94/8fad659bcdbf86ed70099cb60ae40be6acca434bbc8c4c0d4ef356d7e0de/pillow-12.0.0-cp313-cp313-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:a6597ff2b61d121172f5844b53f21467f7082f5fb385a9a29c01414463f93b07", size = 8037804, upload-time = "2025-10-15T18:22:36.402Z" }, + { url = "https://files.pythonhosted.org/packages/20/39/c685d05c06deecfd4e2d1950e9a908aa2ca8bc4e6c3b12d93b9cafbd7837/pillow-12.0.0-cp313-cp313-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:0b817e7035ea7f6b942c13aa03bb554fc44fea70838ea21f8eb31c638326584e", size = 6345553, upload-time = "2025-10-15T18:22:38.066Z" }, + { url = "https://files.pythonhosted.org/packages/38/57/755dbd06530a27a5ed74f8cb0a7a44a21722ebf318edbe67ddbd7fb28f88/pillow-12.0.0-cp313-cp313-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:f4f1231b7dec408e8670264ce63e9c71409d9583dd21d32c163e25213ee2a344", size = 7037729, upload-time = "2025-10-15T18:22:39.769Z" }, + { url = "https://files.pythonhosted.org/packages/ca/b6/7e94f4c41d238615674d06ed677c14883103dce1c52e4af16f000338cfd7/pillow-12.0.0-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:6e51b71417049ad6ab14c49608b4a24d8fb3fe605e5dfabfe523b58064dc3d27", size = 6459789, upload-time = "2025-10-15T18:22:41.437Z" }, + { url = "https://files.pythonhosted.org/packages/9c/14/4448bb0b5e0f22dd865290536d20ec8a23b64e2d04280b89139f09a36bb6/pillow-12.0.0-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:d120c38a42c234dc9a8c5de7ceaaf899cf33561956acb4941653f8bdc657aa79", size = 7130917, upload-time = "2025-10-15T18:22:43.152Z" }, + { url = "https://files.pythonhosted.org/packages/dd/ca/16c6926cc1c015845745d5c16c9358e24282f1e588237a4c36d2b30f182f/pillow-12.0.0-cp313-cp313-win32.whl", hash = "sha256:4cc6b3b2efff105c6a1656cfe59da4fdde2cda9af1c5e0b58529b24525d0a098", size = 6302391, upload-time = "2025-10-15T18:22:44.753Z" }, + { url = "https://files.pythonhosted.org/packages/6d/2a/dd43dcfd6dae9b6a49ee28a8eedb98c7d5ff2de94a5d834565164667b97b/pillow-12.0.0-cp313-cp313-win_amd64.whl", hash = "sha256:4cf7fed4b4580601c4345ceb5d4cbf5a980d030fd5ad07c4d2ec589f95f09905", size = 7007477, upload-time = "2025-10-15T18:22:46.838Z" }, + { url = "https://files.pythonhosted.org/packages/77/f0/72ea067f4b5ae5ead653053212af05ce3705807906ba3f3e8f58ddf617e6/pillow-12.0.0-cp313-cp313-win_arm64.whl", hash = "sha256:9f0b04c6b8584c2c193babcccc908b38ed29524b29dd464bc8801bf10d746a3a", size = 2435918, upload-time = "2025-10-15T18:22:48.399Z" }, + { url = "https://files.pythonhosted.org/packages/f5/5e/9046b423735c21f0487ea6cb5b10f89ea8f8dfbe32576fe052b5ba9d4e5b/pillow-12.0.0-cp313-cp313t-macosx_10_13_x86_64.whl", hash = "sha256:7fa22993bac7b77b78cae22bad1e2a987ddf0d9015c63358032f84a53f23cdc3", size = 5251406, upload-time = "2025-10-15T18:22:49.905Z" }, + { url = "https://files.pythonhosted.org/packages/12/66/982ceebcdb13c97270ef7a56c3969635b4ee7cd45227fa707c94719229c5/pillow-12.0.0-cp313-cp313t-macosx_11_0_arm64.whl", hash = "sha256:f135c702ac42262573fe9714dfe99c944b4ba307af5eb507abef1667e2cbbced", size = 4653218, upload-time = "2025-10-15T18:22:51.587Z" }, + { url = "https://files.pythonhosted.org/packages/16/b3/81e625524688c31859450119bf12674619429cab3119eec0e30a7a1029cb/pillow-12.0.0-cp313-cp313t-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:c85de1136429c524e55cfa4e033b4a7940ac5c8ee4d9401cc2d1bf48154bbc7b", size = 6266564, upload-time = "2025-10-15T18:22:53.215Z" }, + { url = "https://files.pythonhosted.org/packages/98/59/dfb38f2a41240d2408096e1a76c671d0a105a4a8471b1871c6902719450c/pillow-12.0.0-cp313-cp313t-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:38df9b4bfd3db902c9c2bd369bcacaf9d935b2fff73709429d95cc41554f7b3d", size = 8069260, upload-time = "2025-10-15T18:22:54.933Z" }, + { url = "https://files.pythonhosted.org/packages/dc/3d/378dbea5cd1874b94c312425ca77b0f47776c78e0df2df751b820c8c1d6c/pillow-12.0.0-cp313-cp313t-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:7d87ef5795da03d742bf49439f9ca4d027cde49c82c5371ba52464aee266699a", size = 6379248, upload-time = "2025-10-15T18:22:56.605Z" }, + { url = "https://files.pythonhosted.org/packages/84/b0/d525ef47d71590f1621510327acec75ae58c721dc071b17d8d652ca494d8/pillow-12.0.0-cp313-cp313t-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:aff9e4d82d082ff9513bdd6acd4f5bd359f5b2c870907d2b0a9c5e10d40c88fe", size = 7066043, upload-time = "2025-10-15T18:22:58.53Z" }, + { url = "https://files.pythonhosted.org/packages/61/2c/aced60e9cf9d0cde341d54bf7932c9ffc33ddb4a1595798b3a5150c7ec4e/pillow-12.0.0-cp313-cp313t-musllinux_1_2_aarch64.whl", hash = "sha256:8d8ca2b210ada074d57fcee40c30446c9562e542fc46aedc19baf758a93532ee", size = 6490915, upload-time = "2025-10-15T18:23:00.582Z" }, + { url = "https://files.pythonhosted.org/packages/ef/26/69dcb9b91f4e59f8f34b2332a4a0a951b44f547c4ed39d3e4dcfcff48f89/pillow-12.0.0-cp313-cp313t-musllinux_1_2_x86_64.whl", hash = "sha256:99a7f72fb6249302aa62245680754862a44179b545ded638cf1fef59befb57ef", size = 7157998, upload-time = "2025-10-15T18:23:02.627Z" }, + { url = "https://files.pythonhosted.org/packages/61/2b/726235842220ca95fa441ddf55dd2382b52ab5b8d9c0596fe6b3f23dafe8/pillow-12.0.0-cp313-cp313t-win32.whl", hash = "sha256:4078242472387600b2ce8d93ade8899c12bf33fa89e55ec89fe126e9d6d5d9e9", size = 6306201, upload-time = "2025-10-15T18:23:04.709Z" }, + { url = "https://files.pythonhosted.org/packages/c0/3d/2afaf4e840b2df71344ababf2f8edd75a705ce500e5dc1e7227808312ae1/pillow-12.0.0-cp313-cp313t-win_amd64.whl", hash = "sha256:2c54c1a783d6d60595d3514f0efe9b37c8808746a66920315bfd34a938d7994b", size = 7013165, upload-time = "2025-10-15T18:23:06.46Z" }, + { url = "https://files.pythonhosted.org/packages/6f/75/3fa09aa5cf6ed04bee3fa575798ddf1ce0bace8edb47249c798077a81f7f/pillow-12.0.0-cp313-cp313t-win_arm64.whl", hash = "sha256:26d9f7d2b604cd23aba3e9faf795787456ac25634d82cd060556998e39c6fa47", size = 2437834, upload-time = "2025-10-15T18:23:08.194Z" }, + { url = "https://files.pythonhosted.org/packages/54/2a/9a8c6ba2c2c07b71bec92cf63e03370ca5e5f5c5b119b742bcc0cde3f9c5/pillow-12.0.0-cp314-cp314-ios_13_0_arm64_iphoneos.whl", hash = "sha256:beeae3f27f62308f1ddbcfb0690bf44b10732f2ef43758f169d5e9303165d3f9", size = 4045531, upload-time = "2025-10-15T18:23:10.121Z" }, + { url = "https://files.pythonhosted.org/packages/84/54/836fdbf1bfb3d66a59f0189ff0b9f5f666cee09c6188309300df04ad71fa/pillow-12.0.0-cp314-cp314-ios_13_0_arm64_iphonesimulator.whl", hash = "sha256:d4827615da15cd59784ce39d3388275ec093ae3ee8d7f0c089b76fa87af756c2", size = 4120554, upload-time = "2025-10-15T18:23:12.14Z" }, + { url = "https://files.pythonhosted.org/packages/0d/cd/16aec9f0da4793e98e6b54778a5fbce4f375c6646fe662e80600b8797379/pillow-12.0.0-cp314-cp314-ios_13_0_x86_64_iphonesimulator.whl", hash = "sha256:3e42edad50b6909089750e65c91aa09aaf1e0a71310d383f11321b27c224ed8a", size = 3576812, upload-time = "2025-10-15T18:23:13.962Z" }, + { url = "https://files.pythonhosted.org/packages/f6/b7/13957fda356dc46339298b351cae0d327704986337c3c69bb54628c88155/pillow-12.0.0-cp314-cp314-macosx_10_15_x86_64.whl", hash = "sha256:e5d8efac84c9afcb40914ab49ba063d94f5dbdf5066db4482c66a992f47a3a3b", size = 5252689, upload-time = "2025-10-15T18:23:15.562Z" }, + { url = "https://files.pythonhosted.org/packages/fc/f5/eae31a306341d8f331f43edb2e9122c7661b975433de5e447939ae61c5da/pillow-12.0.0-cp314-cp314-macosx_11_0_arm64.whl", hash = "sha256:266cd5f2b63ff316d5a1bba46268e603c9caf5606d44f38c2873c380950576ad", size = 4650186, upload-time = "2025-10-15T18:23:17.379Z" }, + { url = "https://files.pythonhosted.org/packages/86/62/2a88339aa40c4c77e79108facbd307d6091e2c0eb5b8d3cf4977cfca2fe6/pillow-12.0.0-cp314-cp314-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:58eea5ebe51504057dd95c5b77d21700b77615ab0243d8152793dc00eb4faf01", size = 6230308, upload-time = "2025-10-15T18:23:18.971Z" }, + { url = "https://files.pythonhosted.org/packages/c7/33/5425a8992bcb32d1cb9fa3dd39a89e613d09a22f2c8083b7bf43c455f760/pillow-12.0.0-cp314-cp314-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:f13711b1a5ba512d647a0e4ba79280d3a9a045aaf7e0cc6fbe96b91d4cdf6b0c", size = 8039222, upload-time = "2025-10-15T18:23:20.909Z" }, + { url = "https://files.pythonhosted.org/packages/d8/61/3f5d3b35c5728f37953d3eec5b5f3e77111949523bd2dd7f31a851e50690/pillow-12.0.0-cp314-cp314-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:6846bd2d116ff42cba6b646edf5bf61d37e5cbd256425fa089fee4ff5c07a99e", size = 6346657, upload-time = "2025-10-15T18:23:23.077Z" }, + { url = "https://files.pythonhosted.org/packages/3a/be/ee90a3d79271227e0f0a33c453531efd6ed14b2e708596ba5dd9be948da3/pillow-12.0.0-cp314-cp314-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:c98fa880d695de164b4135a52fd2e9cd7b7c90a9d8ac5e9e443a24a95ef9248e", size = 7038482, upload-time = "2025-10-15T18:23:25.005Z" }, + { url = "https://files.pythonhosted.org/packages/44/34/a16b6a4d1ad727de390e9bd9f19f5f669e079e5826ec0f329010ddea492f/pillow-12.0.0-cp314-cp314-musllinux_1_2_aarch64.whl", hash = "sha256:fa3ed2a29a9e9d2d488b4da81dcb54720ac3104a20bf0bd273f1e4648aff5af9", size = 6461416, upload-time = "2025-10-15T18:23:27.009Z" }, + { url = "https://files.pythonhosted.org/packages/b6/39/1aa5850d2ade7d7ba9f54e4e4c17077244ff7a2d9e25998c38a29749eb3f/pillow-12.0.0-cp314-cp314-musllinux_1_2_x86_64.whl", hash = "sha256:d034140032870024e6b9892c692fe2968493790dd57208b2c37e3fb35f6df3ab", size = 7131584, upload-time = "2025-10-15T18:23:29.752Z" }, + { url = "https://files.pythonhosted.org/packages/bf/db/4fae862f8fad0167073a7733973bfa955f47e2cac3dc3e3e6257d10fab4a/pillow-12.0.0-cp314-cp314-win32.whl", hash = "sha256:1b1b133e6e16105f524a8dec491e0586d072948ce15c9b914e41cdadd209052b", size = 6400621, upload-time = "2025-10-15T18:23:32.06Z" }, + { url = "https://files.pythonhosted.org/packages/2b/24/b350c31543fb0107ab2599464d7e28e6f856027aadda995022e695313d94/pillow-12.0.0-cp314-cp314-win_amd64.whl", hash = "sha256:8dc232e39d409036af549c86f24aed8273a40ffa459981146829a324e0848b4b", size = 7142916, upload-time = "2025-10-15T18:23:34.71Z" }, + { url = "https://files.pythonhosted.org/packages/0f/9b/0ba5a6fd9351793996ef7487c4fdbde8d3f5f75dbedc093bb598648fddf0/pillow-12.0.0-cp314-cp314-win_arm64.whl", hash = "sha256:d52610d51e265a51518692045e372a4c363056130d922a7351429ac9f27e70b0", size = 2523836, upload-time = "2025-10-15T18:23:36.967Z" }, + { url = "https://files.pythonhosted.org/packages/f5/7a/ceee0840aebc579af529b523d530840338ecf63992395842e54edc805987/pillow-12.0.0-cp314-cp314t-macosx_10_15_x86_64.whl", hash = "sha256:1979f4566bb96c1e50a62d9831e2ea2d1211761e5662afc545fa766f996632f6", size = 5255092, upload-time = "2025-10-15T18:23:38.573Z" }, + { url = "https://files.pythonhosted.org/packages/44/76/20776057b4bfd1aef4eeca992ebde0f53a4dce874f3ae693d0ec90a4f79b/pillow-12.0.0-cp314-cp314t-macosx_11_0_arm64.whl", hash = "sha256:b2e4b27a6e15b04832fe9bf292b94b5ca156016bbc1ea9c2c20098a0320d6cf6", size = 4653158, upload-time = "2025-10-15T18:23:40.238Z" }, + { url = "https://files.pythonhosted.org/packages/82/3f/d9ff92ace07be8836b4e7e87e6a4c7a8318d47c2f1463ffcf121fc57d9cb/pillow-12.0.0-cp314-cp314t-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:fb3096c30df99fd01c7bf8e544f392103d0795b9f98ba71a8054bcbf56b255f1", size = 6267882, upload-time = "2025-10-15T18:23:42.434Z" }, + { url = "https://files.pythonhosted.org/packages/9f/7a/4f7ff87f00d3ad33ba21af78bfcd2f032107710baf8280e3722ceec28cda/pillow-12.0.0-cp314-cp314t-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:7438839e9e053ef79f7112c881cef684013855016f928b168b81ed5835f3e75e", size = 8071001, upload-time = "2025-10-15T18:23:44.29Z" }, + { url = "https://files.pythonhosted.org/packages/75/87/fcea108944a52dad8cca0715ae6247e271eb80459364a98518f1e4f480c1/pillow-12.0.0-cp314-cp314t-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:5d5c411a8eaa2299322b647cd932586b1427367fd3184ffbb8f7a219ea2041ca", size = 6380146, upload-time = "2025-10-15T18:23:46.065Z" }, + { url = "https://files.pythonhosted.org/packages/91/52/0d31b5e571ef5fd111d2978b84603fce26aba1b6092f28e941cb46570745/pillow-12.0.0-cp314-cp314t-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:d7e091d464ac59d2c7ad8e7e08105eaf9dafbc3883fd7265ffccc2baad6ac925", size = 7067344, upload-time = "2025-10-15T18:23:47.898Z" }, + { url = "https://files.pythonhosted.org/packages/7b/f4/2dd3d721f875f928d48e83bb30a434dee75a2531bca839bb996bb0aa5a91/pillow-12.0.0-cp314-cp314t-musllinux_1_2_aarch64.whl", hash = "sha256:792a2c0be4dcc18af9d4a2dfd8a11a17d5e25274a1062b0ec1c2d79c76f3e7f8", size = 6491864, upload-time = "2025-10-15T18:23:49.607Z" }, + { url = "https://files.pythonhosted.org/packages/30/4b/667dfcf3d61fc309ba5a15b141845cece5915e39b99c1ceab0f34bf1d124/pillow-12.0.0-cp314-cp314t-musllinux_1_2_x86_64.whl", hash = "sha256:afbefa430092f71a9593a99ab6a4e7538bc9eabbf7bf94f91510d3503943edc4", size = 7158911, upload-time = "2025-10-15T18:23:51.351Z" }, + { url = "https://files.pythonhosted.org/packages/a2/2f/16cabcc6426c32218ace36bf0d55955e813f2958afddbf1d391849fee9d1/pillow-12.0.0-cp314-cp314t-win32.whl", hash = "sha256:3830c769decf88f1289680a59d4f4c46c72573446352e2befec9a8512104fa52", size = 6408045, upload-time = "2025-10-15T18:23:53.177Z" }, + { url = "https://files.pythonhosted.org/packages/35/73/e29aa0c9c666cf787628d3f0dcf379f4791fba79f4936d02f8b37165bdf8/pillow-12.0.0-cp314-cp314t-win_amd64.whl", hash = "sha256:905b0365b210c73afb0ebe9101a32572152dfd1c144c7e28968a331b9217b94a", size = 7148282, upload-time = "2025-10-15T18:23:55.316Z" }, + { url = "https://files.pythonhosted.org/packages/c1/70/6b41bdcddf541b437bbb9f47f94d2db5d9ddef6c37ccab8c9107743748a4/pillow-12.0.0-cp314-cp314t-win_arm64.whl", hash = "sha256:99353a06902c2e43b43e8ff74ee65a7d90307d82370604746738a1e0661ccca7", size = 2525630, upload-time = "2025-10-15T18:23:57.149Z" }, +] + +[[package]] +name = "platformdirs" +version = "4.5.0" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/61/33/9611380c2bdb1225fdef633e2a9610622310fed35ab11dac9620972ee088/platformdirs-4.5.0.tar.gz", hash = "sha256:70ddccdd7c99fc5942e9fc25636a8b34d04c24b335100223152c2803e4063312", size = 21632, upload-time = "2025-10-08T17:44:48.791Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/73/cb/ac7874b3e5d58441674fb70742e6c374b28b0c7cb988d37d991cde47166c/platformdirs-4.5.0-py3-none-any.whl", hash = "sha256:e578a81bb873cbb89a41fcc904c7ef523cc18284b7e3b3ccf06aca1403b7ebd3", size = 18651, upload-time = "2025-10-08T17:44:47.223Z" }, +] + +[[package]] +name = "prompt-toolkit" +version = "3.0.52" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "wcwidth" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/a1/96/06e01a7b38dce6fe1db213e061a4602dd6032a8a97ef6c1a862537732421/prompt_toolkit-3.0.52.tar.gz", hash = "sha256:28cde192929c8e7321de85de1ddbe736f1375148b02f2e17edd840042b1be855", size = 434198, upload-time = "2025-08-27T15:24:02.057Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/84/03/0d3ce49e2505ae70cf43bc5bb3033955d2fc9f932163e84dc0779cc47f48/prompt_toolkit-3.0.52-py3-none-any.whl", hash = "sha256:9aac639a3bbd33284347de5ad8d68ecc044b91a762dc39b7c21095fcd6a19955", size = 391431, upload-time = "2025-08-27T15:23:59.498Z" }, +] + +[[package]] +name = "psutil" +version = "7.1.3" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/e1/88/bdd0a41e5857d5d703287598cbf08dad90aed56774ea52ae071bae9071b6/psutil-7.1.3.tar.gz", hash = "sha256:6c86281738d77335af7aec228328e944b30930899ea760ecf33a4dba66be5e74", size = 489059, upload-time = "2025-11-02T12:25:54.619Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/bd/93/0c49e776b8734fef56ec9c5c57f923922f2cf0497d62e0f419465f28f3d0/psutil-7.1.3-cp313-cp313t-macosx_10_13_x86_64.whl", hash = "sha256:0005da714eee687b4b8decd3d6cc7c6db36215c9e74e5ad2264b90c3df7d92dc", size = 239751, upload-time = "2025-11-02T12:25:58.161Z" }, + { url = "https://files.pythonhosted.org/packages/6f/8d/b31e39c769e70780f007969815195a55c81a63efebdd4dbe9e7a113adb2f/psutil-7.1.3-cp313-cp313t-macosx_11_0_arm64.whl", hash = "sha256:19644c85dcb987e35eeeaefdc3915d059dac7bd1167cdcdbf27e0ce2df0c08c0", size = 240368, upload-time = "2025-11-02T12:26:00.491Z" }, + { url = "https://files.pythonhosted.org/packages/62/61/23fd4acc3c9eebbf6b6c78bcd89e5d020cfde4acf0a9233e9d4e3fa698b4/psutil-7.1.3-cp313-cp313t-manylinux2010_x86_64.manylinux_2_12_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:95ef04cf2e5ba0ab9eaafc4a11eaae91b44f4ef5541acd2ee91d9108d00d59a7", size = 287134, upload-time = "2025-11-02T12:26:02.613Z" }, + { url = "https://files.pythonhosted.org/packages/30/1c/f921a009ea9ceb51aa355cb0cc118f68d354db36eae18174bab63affb3e6/psutil-7.1.3-cp313-cp313t-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:1068c303be3a72f8e18e412c5b2a8f6d31750fb152f9cb106b54090296c9d251", size = 289904, upload-time = "2025-11-02T12:26:05.207Z" }, + { url = "https://files.pythonhosted.org/packages/a6/82/62d68066e13e46a5116df187d319d1724b3f437ddd0f958756fc052677f4/psutil-7.1.3-cp313-cp313t-win_amd64.whl", hash = "sha256:18349c5c24b06ac5612c0428ec2a0331c26443d259e2a0144a9b24b4395b58fa", size = 249642, upload-time = "2025-11-02T12:26:07.447Z" }, + { url = "https://files.pythonhosted.org/packages/df/ad/c1cd5fe965c14a0392112f68362cfceb5230819dbb5b1888950d18a11d9f/psutil-7.1.3-cp313-cp313t-win_arm64.whl", hash = "sha256:c525ffa774fe4496282fb0b1187725793de3e7c6b29e41562733cae9ada151ee", size = 245518, upload-time = "2025-11-02T12:26:09.719Z" }, + { url = "https://files.pythonhosted.org/packages/2e/bb/6670bded3e3236eb4287c7bcdc167e9fae6e1e9286e437f7111caed2f909/psutil-7.1.3-cp314-cp314t-macosx_10_15_x86_64.whl", hash = "sha256:b403da1df4d6d43973dc004d19cee3b848e998ae3154cc8097d139b77156c353", size = 239843, upload-time = "2025-11-02T12:26:11.968Z" }, + { url = "https://files.pythonhosted.org/packages/b8/66/853d50e75a38c9a7370ddbeefabdd3d3116b9c31ef94dc92c6729bc36bec/psutil-7.1.3-cp314-cp314t-macosx_11_0_arm64.whl", hash = "sha256:ad81425efc5e75da3f39b3e636293360ad8d0b49bed7df824c79764fb4ba9b8b", size = 240369, upload-time = "2025-11-02T12:26:14.358Z" }, + { url = "https://files.pythonhosted.org/packages/41/bd/313aba97cb5bfb26916dc29cf0646cbe4dd6a89ca69e8c6edce654876d39/psutil-7.1.3-cp314-cp314t-manylinux2010_x86_64.manylinux_2_12_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:8f33a3702e167783a9213db10ad29650ebf383946e91bc77f28a5eb083496bc9", size = 288210, upload-time = "2025-11-02T12:26:16.699Z" }, + { url = "https://files.pythonhosted.org/packages/c2/fa/76e3c06e760927a0cfb5705eb38164254de34e9bd86db656d4dbaa228b04/psutil-7.1.3-cp314-cp314t-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:fac9cd332c67f4422504297889da5ab7e05fd11e3c4392140f7370f4208ded1f", size = 291182, upload-time = "2025-11-02T12:26:18.848Z" }, + { url = "https://files.pythonhosted.org/packages/0f/1d/5774a91607035ee5078b8fd747686ebec28a962f178712de100d00b78a32/psutil-7.1.3-cp314-cp314t-win_amd64.whl", hash = "sha256:3792983e23b69843aea49c8f5b8f115572c5ab64c153bada5270086a2123c7e7", size = 250466, upload-time = "2025-11-02T12:26:21.183Z" }, + { url = "https://files.pythonhosted.org/packages/00/ca/e426584bacb43a5cb1ac91fae1937f478cd8fbe5e4ff96574e698a2c77cd/psutil-7.1.3-cp314-cp314t-win_arm64.whl", hash = "sha256:31d77fcedb7529f27bb3a0472bea9334349f9a04160e8e6e5020f22c59893264", size = 245756, upload-time = "2025-11-02T12:26:23.148Z" }, + { url = "https://files.pythonhosted.org/packages/ef/94/46b9154a800253e7ecff5aaacdf8ebf43db99de4a2dfa18575b02548654e/psutil-7.1.3-cp36-abi3-macosx_10_9_x86_64.whl", hash = "sha256:2bdbcd0e58ca14996a42adf3621a6244f1bb2e2e528886959c72cf1e326677ab", size = 238359, upload-time = "2025-11-02T12:26:25.284Z" }, + { url = "https://files.pythonhosted.org/packages/68/3a/9f93cff5c025029a36d9a92fef47220ab4692ee7f2be0fba9f92813d0cb8/psutil-7.1.3-cp36-abi3-macosx_11_0_arm64.whl", hash = "sha256:bc31fa00f1fbc3c3802141eede66f3a2d51d89716a194bf2cd6fc68310a19880", size = 239171, upload-time = "2025-11-02T12:26:27.23Z" }, + { url = "https://files.pythonhosted.org/packages/ce/b1/5f49af514f76431ba4eea935b8ad3725cdeb397e9245ab919dbc1d1dc20f/psutil-7.1.3-cp36-abi3-manylinux2010_x86_64.manylinux_2_12_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:3bb428f9f05c1225a558f53e30ccbad9930b11c3fc206836242de1091d3e7dd3", size = 263261, upload-time = "2025-11-02T12:26:29.48Z" }, + { url = "https://files.pythonhosted.org/packages/e0/95/992c8816a74016eb095e73585d747e0a8ea21a061ed3689474fabb29a395/psutil-7.1.3-cp36-abi3-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:56d974e02ca2c8eb4812c3f76c30e28836fffc311d55d979f1465c1feeb2b68b", size = 264635, upload-time = "2025-11-02T12:26:31.74Z" }, + { url = "https://files.pythonhosted.org/packages/55/4c/c3ed1a622b6ae2fd3c945a366e64eb35247a31e4db16cf5095e269e8eb3c/psutil-7.1.3-cp37-abi3-win_amd64.whl", hash = "sha256:f39c2c19fe824b47484b96f9692932248a54c43799a84282cfe58d05a6449efd", size = 247633, upload-time = "2025-11-02T12:26:33.887Z" }, + { url = "https://files.pythonhosted.org/packages/c9/ad/33b2ccec09bf96c2b2ef3f9a6f66baac8253d7565d8839e024a6b905d45d/psutil-7.1.3-cp37-abi3-win_arm64.whl", hash = "sha256:bd0d69cee829226a761e92f28140bec9a5ee9d5b4fb4b0cc589068dbfff559b1", size = 244608, upload-time = "2025-11-02T12:26:36.136Z" }, +] + +[[package]] +name = "ptyprocess" +version = "0.7.0" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/20/e5/16ff212c1e452235a90aeb09066144d0c5a6a8c0834397e03f5224495c4e/ptyprocess-0.7.0.tar.gz", hash = "sha256:5c5d0a3b48ceee0b48485e0c26037c0acd7d29765ca3fbb5cb3831d347423220", size = 70762, upload-time = "2020-12-28T15:15:30.155Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/22/a6/858897256d0deac81a172289110f31629fc4cee19b6f01283303e18c8db3/ptyprocess-0.7.0-py2.py3-none-any.whl", hash = "sha256:4b41f3967fce3af57cc7e94b888626c18bf37a083e3651ca8feeb66d492fef35", size = 13993, upload-time = "2020-12-28T15:15:28.35Z" }, +] + +[[package]] +name = "pure-eval" +version = "0.2.3" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/cd/05/0a34433a064256a578f1783a10da6df098ceaa4a57bbeaa96a6c0352786b/pure_eval-0.2.3.tar.gz", hash = "sha256:5f4e983f40564c576c7c8635ae88db5956bb2229d7e9237d03b3c0b0190eaf42", size = 19752, upload-time = "2024-07-21T12:58:21.801Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/8e/37/efad0257dc6e593a18957422533ff0f87ede7c9c6ea010a2177d738fb82f/pure_eval-0.2.3-py3-none-any.whl", hash = "sha256:1db8e35b67b3d218d818ae653e27f06c3aa420901fa7b081ca98cbedc874e0d0", size = 11842, upload-time = "2024-07-21T12:58:20.04Z" }, +] + +[[package]] +name = "pycparser" +version = "2.23" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/fe/cf/d2d3b9f5699fb1e4615c8e32ff220203e43b248e1dfcc6736ad9057731ca/pycparser-2.23.tar.gz", hash = "sha256:78816d4f24add8f10a06d6f05b4d424ad9e96cfebf68a4ddc99c65c0720d00c2", size = 173734, upload-time = "2025-09-09T13:23:47.91Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/a0/e3/59cd50310fc9b59512193629e1984c1f95e5c8ae6e5d8c69532ccc65a7fe/pycparser-2.23-py3-none-any.whl", hash = "sha256:e5c6e8d3fbad53479cab09ac03729e0a9faf2bee3db8208a550daf5af81a5934", size = 118140, upload-time = "2025-09-09T13:23:46.651Z" }, +] + +[[package]] +name = "pygments" +version = "2.19.2" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/b0/77/a5b8c569bf593b0140bde72ea885a803b82086995367bf2037de0159d924/pygments-2.19.2.tar.gz", hash = "sha256:636cb2477cec7f8952536970bc533bc43743542f70392ae026374600add5b887", size = 4968631, upload-time = "2025-06-21T13:39:12.283Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/c7/21/705964c7812476f378728bdf590ca4b771ec72385c533964653c68e86bdc/pygments-2.19.2-py3-none-any.whl", hash = "sha256:86540386c03d588bb81d44bc3928634ff26449851e99741617ecb9037ee5ec0b", size = 1225217, upload-time = "2025-06-21T13:39:07.939Z" }, +] + +[[package]] +name = "pyparsing" +version = "3.2.5" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/f2/a5/181488fc2b9d093e3972d2a472855aae8a03f000592dbfce716a512b3359/pyparsing-3.2.5.tar.gz", hash = "sha256:2df8d5b7b2802ef88e8d016a2eb9c7aeaa923529cd251ed0fe4608275d4105b6", size = 1099274, upload-time = "2025-09-21T04:11:06.277Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/10/5e/1aa9a93198c6b64513c9d7752de7422c06402de6600a8767da1524f9570b/pyparsing-3.2.5-py3-none-any.whl", hash = "sha256:e38a4f02064cf41fe6593d328d0512495ad1f3d8a91c4f73fc401b3079a59a5e", size = 113890, upload-time = "2025-09-21T04:11:04.117Z" }, +] + +[[package]] +name = "python-dateutil" +version = "2.9.0.post0" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "six" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/66/c0/0c8b6ad9f17a802ee498c46e004a0eb49bc148f2fd230864601a86dcf6db/python-dateutil-2.9.0.post0.tar.gz", hash = "sha256:37dd54208da7e1cd875388217d5e00ebd4179249f90fb72437e91a35459a0ad3", size = 342432, upload-time = "2024-03-01T18:36:20.211Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/ec/57/56b9bcc3c9c6a792fcbaf139543cee77261f3651ca9da0c93f5c1221264b/python_dateutil-2.9.0.post0-py2.py3-none-any.whl", hash = "sha256:a8b2bc7bffae282281c8140a97d3aa9c14da0b136dfe83f850eea9a5f7470427", size = 229892, upload-time = "2024-03-01T18:36:18.57Z" }, +] + +[[package]] +name = "pyzmq" +version = "27.1.0" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "cffi", marker = "implementation_name == 'pypy'" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/04/0b/3c9baedbdf613ecaa7aa07027780b8867f57b6293b6ee50de316c9f3222b/pyzmq-27.1.0.tar.gz", hash = "sha256:ac0765e3d44455adb6ddbf4417dcce460fc40a05978c08efdf2948072f6db540", size = 281750, upload-time = "2025-09-08T23:10:18.157Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/92/e7/038aab64a946d535901103da16b953c8c9cc9c961dadcbf3609ed6428d23/pyzmq-27.1.0-cp312-abi3-macosx_10_15_universal2.whl", hash = "sha256:452631b640340c928fa343801b0d07eb0c3789a5ffa843f6e1a9cee0ba4eb4fc", size = 1306279, upload-time = "2025-09-08T23:08:03.807Z" }, + { url = "https://files.pythonhosted.org/packages/e8/5e/c3c49fdd0f535ef45eefcc16934648e9e59dace4a37ee88fc53f6cd8e641/pyzmq-27.1.0-cp312-abi3-manylinux2014_i686.manylinux_2_17_i686.whl", hash = "sha256:1c179799b118e554b66da67d88ed66cd37a169f1f23b5d9f0a231b4e8d44a113", size = 895645, upload-time = "2025-09-08T23:08:05.301Z" }, + { url = "https://files.pythonhosted.org/packages/f8/e5/b0b2504cb4e903a74dcf1ebae157f9e20ebb6ea76095f6cfffea28c42ecd/pyzmq-27.1.0-cp312-abi3-manylinux_2_26_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:3837439b7f99e60312f0c926a6ad437b067356dc2bc2ec96eb395fd0fe804233", size = 652574, upload-time = "2025-09-08T23:08:06.828Z" }, + { url = "https://files.pythonhosted.org/packages/f8/9b/c108cdb55560eaf253f0cbdb61b29971e9fb34d9c3499b0e96e4e60ed8a5/pyzmq-27.1.0-cp312-abi3-manylinux_2_26_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:43ad9a73e3da1fab5b0e7e13402f0b2fb934ae1c876c51d0afff0e7c052eca31", size = 840995, upload-time = "2025-09-08T23:08:08.396Z" }, + { url = "https://files.pythonhosted.org/packages/c2/bb/b79798ca177b9eb0825b4c9998c6af8cd2a7f15a6a1a4272c1d1a21d382f/pyzmq-27.1.0-cp312-abi3-musllinux_1_2_aarch64.whl", hash = "sha256:0de3028d69d4cdc475bfe47a6128eb38d8bc0e8f4d69646adfbcd840facbac28", size = 1642070, upload-time = "2025-09-08T23:08:09.989Z" }, + { url = "https://files.pythonhosted.org/packages/9c/80/2df2e7977c4ede24c79ae39dcef3899bfc5f34d1ca7a5b24f182c9b7a9ca/pyzmq-27.1.0-cp312-abi3-musllinux_1_2_i686.whl", hash = "sha256:cf44a7763aea9298c0aa7dbf859f87ed7012de8bda0f3977b6fb1d96745df856", size = 2021121, upload-time = "2025-09-08T23:08:11.907Z" }, + { url = "https://files.pythonhosted.org/packages/46/bd/2d45ad24f5f5ae7e8d01525eb76786fa7557136555cac7d929880519e33a/pyzmq-27.1.0-cp312-abi3-musllinux_1_2_x86_64.whl", hash = "sha256:f30f395a9e6fbca195400ce833c731e7b64c3919aa481af4d88c3759e0cb7496", size = 1878550, upload-time = "2025-09-08T23:08:13.513Z" }, + { url = "https://files.pythonhosted.org/packages/e6/2f/104c0a3c778d7c2ab8190e9db4f62f0b6957b53c9d87db77c284b69f33ea/pyzmq-27.1.0-cp312-abi3-win32.whl", hash = "sha256:250e5436a4ba13885494412b3da5d518cd0d3a278a1ae640e113c073a5f88edd", size = 559184, upload-time = "2025-09-08T23:08:15.163Z" }, + { url = "https://files.pythonhosted.org/packages/fc/7f/a21b20d577e4100c6a41795842028235998a643b1ad406a6d4163ea8f53e/pyzmq-27.1.0-cp312-abi3-win_amd64.whl", hash = "sha256:9ce490cf1d2ca2ad84733aa1d69ce6855372cb5ce9223802450c9b2a7cba0ccf", size = 619480, upload-time = "2025-09-08T23:08:17.192Z" }, + { url = "https://files.pythonhosted.org/packages/78/c2/c012beae5f76b72f007a9e91ee9401cb88c51d0f83c6257a03e785c81cc2/pyzmq-27.1.0-cp312-abi3-win_arm64.whl", hash = "sha256:75a2f36223f0d535a0c919e23615fc85a1e23b71f40c7eb43d7b1dedb4d8f15f", size = 552993, upload-time = "2025-09-08T23:08:18.926Z" }, + { url = "https://files.pythonhosted.org/packages/60/cb/84a13459c51da6cec1b7b1dc1a47e6db6da50b77ad7fd9c145842750a011/pyzmq-27.1.0-cp313-cp313-android_24_arm64_v8a.whl", hash = "sha256:93ad4b0855a664229559e45c8d23797ceac03183c7b6f5b4428152a6b06684a5", size = 1122436, upload-time = "2025-09-08T23:08:20.801Z" }, + { url = "https://files.pythonhosted.org/packages/dc/b6/94414759a69a26c3dd674570a81813c46a078767d931a6c70ad29fc585cb/pyzmq-27.1.0-cp313-cp313-android_24_x86_64.whl", hash = "sha256:fbb4f2400bfda24f12f009cba62ad5734148569ff4949b1b6ec3b519444342e6", size = 1156301, upload-time = "2025-09-08T23:08:22.47Z" }, + { url = "https://files.pythonhosted.org/packages/a5/ad/15906493fd40c316377fd8a8f6b1f93104f97a752667763c9b9c1b71d42d/pyzmq-27.1.0-cp313-cp313t-macosx_10_15_universal2.whl", hash = "sha256:e343d067f7b151cfe4eb3bb796a7752c9d369eed007b91231e817071d2c2fec7", size = 1341197, upload-time = "2025-09-08T23:08:24.286Z" }, + { url = "https://files.pythonhosted.org/packages/14/1d/d343f3ce13db53a54cb8946594e567410b2125394dafcc0268d8dda027e0/pyzmq-27.1.0-cp313-cp313t-manylinux2014_i686.manylinux_2_17_i686.whl", hash = "sha256:08363b2011dec81c354d694bdecaef4770e0ae96b9afea70b3f47b973655cc05", size = 897275, upload-time = "2025-09-08T23:08:26.063Z" }, + { url = "https://files.pythonhosted.org/packages/69/2d/d83dd6d7ca929a2fc67d2c3005415cdf322af7751d773524809f9e585129/pyzmq-27.1.0-cp313-cp313t-manylinux_2_26_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:d54530c8c8b5b8ddb3318f481297441af102517602b569146185fa10b63f4fa9", size = 660469, upload-time = "2025-09-08T23:08:27.623Z" }, + { url = "https://files.pythonhosted.org/packages/3e/cd/9822a7af117f4bc0f1952dbe9ef8358eb50a24928efd5edf54210b850259/pyzmq-27.1.0-cp313-cp313t-manylinux_2_26_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:6f3afa12c392f0a44a2414056d730eebc33ec0926aae92b5ad5cf26ebb6cc128", size = 847961, upload-time = "2025-09-08T23:08:29.672Z" }, + { url = "https://files.pythonhosted.org/packages/9a/12/f003e824a19ed73be15542f172fd0ec4ad0b60cf37436652c93b9df7c585/pyzmq-27.1.0-cp313-cp313t-musllinux_1_2_aarch64.whl", hash = "sha256:c65047adafe573ff023b3187bb93faa583151627bc9c51fc4fb2c561ed689d39", size = 1650282, upload-time = "2025-09-08T23:08:31.349Z" }, + { url = "https://files.pythonhosted.org/packages/d5/4a/e82d788ed58e9a23995cee70dbc20c9aded3d13a92d30d57ec2291f1e8a3/pyzmq-27.1.0-cp313-cp313t-musllinux_1_2_i686.whl", hash = "sha256:90e6e9441c946a8b0a667356f7078d96411391a3b8f80980315455574177ec97", size = 2024468, upload-time = "2025-09-08T23:08:33.543Z" }, + { url = "https://files.pythonhosted.org/packages/d9/94/2da0a60841f757481e402b34bf4c8bf57fa54a5466b965de791b1e6f747d/pyzmq-27.1.0-cp313-cp313t-musllinux_1_2_x86_64.whl", hash = "sha256:add071b2d25f84e8189aaf0882d39a285b42fa3853016ebab234a5e78c7a43db", size = 1885394, upload-time = "2025-09-08T23:08:35.51Z" }, + { url = "https://files.pythonhosted.org/packages/4f/6f/55c10e2e49ad52d080dc24e37adb215e5b0d64990b57598abc2e3f01725b/pyzmq-27.1.0-cp313-cp313t-win32.whl", hash = "sha256:7ccc0700cfdf7bd487bea8d850ec38f204478681ea02a582a8da8171b7f90a1c", size = 574964, upload-time = "2025-09-08T23:08:37.178Z" }, + { url = "https://files.pythonhosted.org/packages/87/4d/2534970ba63dd7c522d8ca80fb92777f362c0f321900667c615e2067cb29/pyzmq-27.1.0-cp313-cp313t-win_amd64.whl", hash = "sha256:8085a9fba668216b9b4323be338ee5437a235fe275b9d1610e422ccc279733e2", size = 641029, upload-time = "2025-09-08T23:08:40.595Z" }, + { url = "https://files.pythonhosted.org/packages/f6/fa/f8aea7a28b0641f31d40dea42d7ef003fded31e184ef47db696bc74cd610/pyzmq-27.1.0-cp313-cp313t-win_arm64.whl", hash = "sha256:6bb54ca21bcfe361e445256c15eedf083f153811c37be87e0514934d6913061e", size = 561541, upload-time = "2025-09-08T23:08:42.668Z" }, + { url = "https://files.pythonhosted.org/packages/87/45/19efbb3000956e82d0331bafca5d9ac19ea2857722fa2caacefb6042f39d/pyzmq-27.1.0-cp314-cp314t-macosx_10_15_universal2.whl", hash = "sha256:ce980af330231615756acd5154f29813d553ea555485ae712c491cd483df6b7a", size = 1341197, upload-time = "2025-09-08T23:08:44.973Z" }, + { url = "https://files.pythonhosted.org/packages/48/43/d72ccdbf0d73d1343936296665826350cb1e825f92f2db9db3e61c2162a2/pyzmq-27.1.0-cp314-cp314t-manylinux2014_i686.manylinux_2_17_i686.whl", hash = "sha256:1779be8c549e54a1c38f805e56d2a2e5c009d26de10921d7d51cfd1c8d4632ea", size = 897175, upload-time = "2025-09-08T23:08:46.601Z" }, + { url = "https://files.pythonhosted.org/packages/2f/2e/a483f73a10b65a9ef0161e817321d39a770b2acf8bcf3004a28d90d14a94/pyzmq-27.1.0-cp314-cp314t-manylinux_2_26_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:7200bb0f03345515df50d99d3db206a0a6bee1955fbb8c453c76f5bf0e08fb96", size = 660427, upload-time = "2025-09-08T23:08:48.187Z" }, + { url = "https://files.pythonhosted.org/packages/f5/d2/5f36552c2d3e5685abe60dfa56f91169f7a2d99bbaf67c5271022ab40863/pyzmq-27.1.0-cp314-cp314t-manylinux_2_26_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:01c0e07d558b06a60773744ea6251f769cd79a41a97d11b8bf4ab8f034b0424d", size = 847929, upload-time = "2025-09-08T23:08:49.76Z" }, + { url = "https://files.pythonhosted.org/packages/c4/2a/404b331f2b7bf3198e9945f75c4c521f0c6a3a23b51f7a4a401b94a13833/pyzmq-27.1.0-cp314-cp314t-musllinux_1_2_aarch64.whl", hash = "sha256:80d834abee71f65253c91540445d37c4c561e293ba6e741b992f20a105d69146", size = 1650193, upload-time = "2025-09-08T23:08:51.7Z" }, + { url = "https://files.pythonhosted.org/packages/1c/0b/f4107e33f62a5acf60e3ded67ed33d79b4ce18de432625ce2fc5093d6388/pyzmq-27.1.0-cp314-cp314t-musllinux_1_2_i686.whl", hash = "sha256:544b4e3b7198dde4a62b8ff6685e9802a9a1ebf47e77478a5eb88eca2a82f2fd", size = 2024388, upload-time = "2025-09-08T23:08:53.393Z" }, + { url = "https://files.pythonhosted.org/packages/0d/01/add31fe76512642fd6e40e3a3bd21f4b47e242c8ba33efb6809e37076d9b/pyzmq-27.1.0-cp314-cp314t-musllinux_1_2_x86_64.whl", hash = "sha256:cedc4c68178e59a4046f97eca31b148ddcf51e88677de1ef4e78cf06c5376c9a", size = 1885316, upload-time = "2025-09-08T23:08:55.702Z" }, + { url = "https://files.pythonhosted.org/packages/c4/59/a5f38970f9bf07cee96128de79590bb354917914a9be11272cfc7ff26af0/pyzmq-27.1.0-cp314-cp314t-win32.whl", hash = "sha256:1f0b2a577fd770aa6f053211a55d1c47901f4d537389a034c690291485e5fe92", size = 587472, upload-time = "2025-09-08T23:08:58.18Z" }, + { url = "https://files.pythonhosted.org/packages/70/d8/78b1bad170f93fcf5e3536e70e8fadac55030002275c9a29e8f5719185de/pyzmq-27.1.0-cp314-cp314t-win_amd64.whl", hash = "sha256:19c9468ae0437f8074af379e986c5d3d7d7bfe033506af442e8c879732bedbe0", size = 661401, upload-time = "2025-09-08T23:08:59.802Z" }, + { url = "https://files.pythonhosted.org/packages/81/d6/4bfbb40c9a0b42fc53c7cf442f6385db70b40f74a783130c5d0a5aa62228/pyzmq-27.1.0-cp314-cp314t-win_arm64.whl", hash = "sha256:dc5dbf68a7857b59473f7df42650c621d7e8923fb03fa74a526890f4d33cc4d7", size = 575170, upload-time = "2025-09-08T23:09:01.418Z" }, +] + +[[package]] +name = "scipy" +version = "1.16.3" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "numpy" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/0a/ca/d8ace4f98322d01abcd52d381134344bf7b431eba7ed8b42bdea5a3c2ac9/scipy-1.16.3.tar.gz", hash = "sha256:01e87659402762f43bd2fee13370553a17ada367d42e7487800bf2916535aecb", size = 30597883, upload-time = "2025-10-28T17:38:54.068Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/40/41/5bf55c3f386b1643812f3a5674edf74b26184378ef0f3e7c7a09a7e2ca7f/scipy-1.16.3-cp312-cp312-macosx_10_14_x86_64.whl", hash = "sha256:81fc5827606858cf71446a5e98715ba0e11f0dbc83d71c7409d05486592a45d6", size = 36659043, upload-time = "2025-10-28T17:32:40.285Z" }, + { url = "https://files.pythonhosted.org/packages/1e/0f/65582071948cfc45d43e9870bf7ca5f0e0684e165d7c9ef4e50d783073eb/scipy-1.16.3-cp312-cp312-macosx_12_0_arm64.whl", hash = "sha256:c97176013d404c7346bf57874eaac5187d969293bf40497140b0a2b2b7482e07", size = 28898986, upload-time = "2025-10-28T17:32:45.325Z" }, + { url = "https://files.pythonhosted.org/packages/96/5e/36bf3f0ac298187d1ceadde9051177d6a4fe4d507e8f59067dc9dd39e650/scipy-1.16.3-cp312-cp312-macosx_14_0_arm64.whl", hash = "sha256:2b71d93c8a9936046866acebc915e2af2e292b883ed6e2cbe5c34beb094b82d9", size = 20889814, upload-time = "2025-10-28T17:32:49.277Z" }, + { url = "https://files.pythonhosted.org/packages/80/35/178d9d0c35394d5d5211bbff7ac4f2986c5488b59506fef9e1de13ea28d3/scipy-1.16.3-cp312-cp312-macosx_14_0_x86_64.whl", hash = "sha256:3d4a07a8e785d80289dfe66b7c27d8634a773020742ec7187b85ccc4b0e7b686", size = 23565795, upload-time = "2025-10-28T17:32:53.337Z" }, + { url = "https://files.pythonhosted.org/packages/fa/46/d1146ff536d034d02f83c8afc3c4bab2eddb634624d6529a8512f3afc9da/scipy-1.16.3-cp312-cp312-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:0553371015692a898e1aa858fed67a3576c34edefa6b7ebdb4e9dde49ce5c203", size = 33349476, upload-time = "2025-10-28T17:32:58.353Z" }, + { url = "https://files.pythonhosted.org/packages/79/2e/415119c9ab3e62249e18c2b082c07aff907a273741b3f8160414b0e9193c/scipy-1.16.3-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:72d1717fd3b5e6ec747327ce9bda32d5463f472c9dce9f54499e81fbd50245a1", size = 35676692, upload-time = "2025-10-28T17:33:03.88Z" }, + { url = "https://files.pythonhosted.org/packages/27/82/df26e44da78bf8d2aeaf7566082260cfa15955a5a6e96e6a29935b64132f/scipy-1.16.3-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:1fb2472e72e24d1530debe6ae078db70fb1605350c88a3d14bc401d6306dbffe", size = 36019345, upload-time = "2025-10-28T17:33:09.773Z" }, + { url = "https://files.pythonhosted.org/packages/82/31/006cbb4b648ba379a95c87262c2855cd0d09453e500937f78b30f02fa1cd/scipy-1.16.3-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:c5192722cffe15f9329a3948c4b1db789fbb1f05c97899187dcf009b283aea70", size = 38678975, upload-time = "2025-10-28T17:33:15.809Z" }, + { url = "https://files.pythonhosted.org/packages/c2/7f/acbd28c97e990b421af7d6d6cd416358c9c293fc958b8529e0bd5d2a2a19/scipy-1.16.3-cp312-cp312-win_amd64.whl", hash = "sha256:56edc65510d1331dae01ef9b658d428e33ed48b4f77b1d51caf479a0253f96dc", size = 38555926, upload-time = "2025-10-28T17:33:21.388Z" }, + { url = "https://files.pythonhosted.org/packages/ce/69/c5c7807fd007dad4f48e0a5f2153038dc96e8725d3345b9ee31b2b7bed46/scipy-1.16.3-cp312-cp312-win_arm64.whl", hash = "sha256:a8a26c78ef223d3e30920ef759e25625a0ecdd0d60e5a8818b7513c3e5384cf2", size = 25463014, upload-time = "2025-10-28T17:33:25.975Z" }, + { url = "https://files.pythonhosted.org/packages/72/f1/57e8327ab1508272029e27eeef34f2302ffc156b69e7e233e906c2a5c379/scipy-1.16.3-cp313-cp313-macosx_10_14_x86_64.whl", hash = "sha256:d2ec56337675e61b312179a1ad124f5f570c00f920cc75e1000025451b88241c", size = 36617856, upload-time = "2025-10-28T17:33:31.375Z" }, + { url = "https://files.pythonhosted.org/packages/44/13/7e63cfba8a7452eb756306aa2fd9b37a29a323b672b964b4fdeded9a3f21/scipy-1.16.3-cp313-cp313-macosx_12_0_arm64.whl", hash = "sha256:16b8bc35a4cc24db80a0ec836a9286d0e31b2503cb2fd7ff7fb0e0374a97081d", size = 28874306, upload-time = "2025-10-28T17:33:36.516Z" }, + { url = "https://files.pythonhosted.org/packages/15/65/3a9400efd0228a176e6ec3454b1fa998fbbb5a8defa1672c3f65706987db/scipy-1.16.3-cp313-cp313-macosx_14_0_arm64.whl", hash = "sha256:5803c5fadd29de0cf27fa08ccbfe7a9e5d741bf63e4ab1085437266f12460ff9", size = 20865371, upload-time = "2025-10-28T17:33:42.094Z" }, + { url = "https://files.pythonhosted.org/packages/33/d7/eda09adf009a9fb81827194d4dd02d2e4bc752cef16737cc4ef065234031/scipy-1.16.3-cp313-cp313-macosx_14_0_x86_64.whl", hash = "sha256:b81c27fc41954319a943d43b20e07c40bdcd3ff7cf013f4fb86286faefe546c4", size = 23524877, upload-time = "2025-10-28T17:33:48.483Z" }, + { url = "https://files.pythonhosted.org/packages/7d/6b/3f911e1ebc364cb81320223a3422aab7d26c9c7973109a9cd0f27c64c6c0/scipy-1.16.3-cp313-cp313-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:0c3b4dd3d9b08dbce0f3440032c52e9e2ab9f96ade2d3943313dfe51a7056959", size = 33342103, upload-time = "2025-10-28T17:33:56.495Z" }, + { url = "https://files.pythonhosted.org/packages/21/f6/4bfb5695d8941e5c570a04d9fcd0d36bce7511b7d78e6e75c8f9791f82d0/scipy-1.16.3-cp313-cp313-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:7dc1360c06535ea6116a2220f760ae572db9f661aba2d88074fe30ec2aa1ff88", size = 35697297, upload-time = "2025-10-28T17:34:04.722Z" }, + { url = "https://files.pythonhosted.org/packages/04/e1/6496dadbc80d8d896ff72511ecfe2316b50313bfc3ebf07a3f580f08bd8c/scipy-1.16.3-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:663b8d66a8748051c3ee9c96465fb417509315b99c71550fda2591d7dd634234", size = 36021756, upload-time = "2025-10-28T17:34:13.482Z" }, + { url = "https://files.pythonhosted.org/packages/fe/bd/a8c7799e0136b987bda3e1b23d155bcb31aec68a4a472554df5f0937eef7/scipy-1.16.3-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:eab43fae33a0c39006a88096cd7b4f4ef545ea0447d250d5ac18202d40b6611d", size = 38696566, upload-time = "2025-10-28T17:34:22.384Z" }, + { url = "https://files.pythonhosted.org/packages/cd/01/1204382461fcbfeb05b6161b594f4007e78b6eba9b375382f79153172b4d/scipy-1.16.3-cp313-cp313-win_amd64.whl", hash = "sha256:062246acacbe9f8210de8e751b16fc37458213f124bef161a5a02c7a39284304", size = 38529877, upload-time = "2025-10-28T17:35:51.076Z" }, + { url = "https://files.pythonhosted.org/packages/7f/14/9d9fbcaa1260a94f4bb5b64ba9213ceb5d03cd88841fe9fd1ffd47a45b73/scipy-1.16.3-cp313-cp313-win_arm64.whl", hash = "sha256:50a3dbf286dbc7d84f176f9a1574c705f277cb6565069f88f60db9eafdbe3ee2", size = 25455366, upload-time = "2025-10-28T17:35:59.014Z" }, + { url = "https://files.pythonhosted.org/packages/e2/a3/9ec205bd49f42d45d77f1730dbad9ccf146244c1647605cf834b3a8c4f36/scipy-1.16.3-cp313-cp313t-macosx_10_14_x86_64.whl", hash = "sha256:fb4b29f4cf8cc5a8d628bc8d8e26d12d7278cd1f219f22698a378c3d67db5e4b", size = 37027931, upload-time = "2025-10-28T17:34:31.451Z" }, + { url = "https://files.pythonhosted.org/packages/25/06/ca9fd1f3a4589cbd825b1447e5db3a8ebb969c1eaf22c8579bd286f51b6d/scipy-1.16.3-cp313-cp313t-macosx_12_0_arm64.whl", hash = "sha256:8d09d72dc92742988b0e7750bddb8060b0c7079606c0d24a8cc8e9c9c11f9079", size = 29400081, upload-time = "2025-10-28T17:34:39.087Z" }, + { url = "https://files.pythonhosted.org/packages/6a/56/933e68210d92657d93fb0e381683bc0e53a965048d7358ff5fbf9e6a1b17/scipy-1.16.3-cp313-cp313t-macosx_14_0_arm64.whl", hash = "sha256:03192a35e661470197556de24e7cb1330d84b35b94ead65c46ad6f16f6b28f2a", size = 21391244, upload-time = "2025-10-28T17:34:45.234Z" }, + { url = "https://files.pythonhosted.org/packages/a8/7e/779845db03dc1418e215726329674b40576879b91814568757ff0014ad65/scipy-1.16.3-cp313-cp313t-macosx_14_0_x86_64.whl", hash = "sha256:57d01cb6f85e34f0946b33caa66e892aae072b64b034183f3d87c4025802a119", size = 23929753, upload-time = "2025-10-28T17:34:51.793Z" }, + { url = "https://files.pythonhosted.org/packages/4c/4b/f756cf8161d5365dcdef9e5f460ab226c068211030a175d2fc7f3f41ca64/scipy-1.16.3-cp313-cp313t-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:96491a6a54e995f00a28a3c3badfff58fd093bf26cd5fb34a2188c8c756a3a2c", size = 33496912, upload-time = "2025-10-28T17:34:59.8Z" }, + { url = "https://files.pythonhosted.org/packages/09/b5/222b1e49a58668f23839ca1542a6322bb095ab8d6590d4f71723869a6c2c/scipy-1.16.3-cp313-cp313t-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:cd13e354df9938598af2be05822c323e97132d5e6306b83a3b4ee6724c6e522e", size = 35802371, upload-time = "2025-10-28T17:35:08.173Z" }, + { url = "https://files.pythonhosted.org/packages/c1/8d/5964ef68bb31829bde27611f8c9deeac13764589fe74a75390242b64ca44/scipy-1.16.3-cp313-cp313t-musllinux_1_2_aarch64.whl", hash = "sha256:63d3cdacb8a824a295191a723ee5e4ea7768ca5ca5f2838532d9f2e2b3ce2135", size = 36190477, upload-time = "2025-10-28T17:35:16.7Z" }, + { url = "https://files.pythonhosted.org/packages/ab/f2/b31d75cb9b5fa4dd39a0a931ee9b33e7f6f36f23be5ef560bf72e0f92f32/scipy-1.16.3-cp313-cp313t-musllinux_1_2_x86_64.whl", hash = "sha256:e7efa2681ea410b10dde31a52b18b0154d66f2485328830e45fdf183af5aefc6", size = 38796678, upload-time = "2025-10-28T17:35:26.354Z" }, + { url = "https://files.pythonhosted.org/packages/b4/1e/b3723d8ff64ab548c38d87055483714fefe6ee20e0189b62352b5e015bb1/scipy-1.16.3-cp313-cp313t-win_amd64.whl", hash = "sha256:2d1ae2cf0c350e7705168ff2429962a89ad90c2d49d1dd300686d8b2a5af22fc", size = 38640178, upload-time = "2025-10-28T17:35:35.304Z" }, + { url = "https://files.pythonhosted.org/packages/8e/f3/d854ff38789aca9b0cc23008d607ced9de4f7ab14fa1ca4329f86b3758ca/scipy-1.16.3-cp313-cp313t-win_arm64.whl", hash = "sha256:0c623a54f7b79dd88ef56da19bc2873afec9673a48f3b85b18e4d402bdd29a5a", size = 25803246, upload-time = "2025-10-28T17:35:42.155Z" }, + { url = "https://files.pythonhosted.org/packages/99/f6/99b10fd70f2d864c1e29a28bbcaa0c6340f9d8518396542d9ea3b4aaae15/scipy-1.16.3-cp314-cp314-macosx_10_14_x86_64.whl", hash = "sha256:875555ce62743e1d54f06cdf22c1e0bc47b91130ac40fe5d783b6dfa114beeb6", size = 36606469, upload-time = "2025-10-28T17:36:08.741Z" }, + { url = "https://files.pythonhosted.org/packages/4d/74/043b54f2319f48ea940dd025779fa28ee360e6b95acb7cd188fad4391c6b/scipy-1.16.3-cp314-cp314-macosx_12_0_arm64.whl", hash = "sha256:bb61878c18a470021fb515a843dc7a76961a8daceaaaa8bad1332f1bf4b54657", size = 28872043, upload-time = "2025-10-28T17:36:16.599Z" }, + { url = "https://files.pythonhosted.org/packages/4d/e1/24b7e50cc1c4ee6ffbcb1f27fe9f4c8b40e7911675f6d2d20955f41c6348/scipy-1.16.3-cp314-cp314-macosx_14_0_arm64.whl", hash = "sha256:f2622206f5559784fa5c4b53a950c3c7c1cf3e84ca1b9c4b6c03f062f289ca26", size = 20862952, upload-time = "2025-10-28T17:36:22.966Z" }, + { url = "https://files.pythonhosted.org/packages/dd/3a/3e8c01a4d742b730df368e063787c6808597ccb38636ed821d10b39ca51b/scipy-1.16.3-cp314-cp314-macosx_14_0_x86_64.whl", hash = "sha256:7f68154688c515cdb541a31ef8eb66d8cd1050605be9dcd74199cbd22ac739bc", size = 23508512, upload-time = "2025-10-28T17:36:29.731Z" }, + { url = "https://files.pythonhosted.org/packages/1f/60/c45a12b98ad591536bfe5330cb3cfe1850d7570259303563b1721564d458/scipy-1.16.3-cp314-cp314-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:8b3c820ddb80029fe9f43d61b81d8b488d3ef8ca010d15122b152db77dc94c22", size = 33413639, upload-time = "2025-10-28T17:36:37.982Z" }, + { url = "https://files.pythonhosted.org/packages/71/bc/35957d88645476307e4839712642896689df442f3e53b0fa016ecf8a3357/scipy-1.16.3-cp314-cp314-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:d3837938ae715fc0fe3c39c0202de3a8853aff22ca66781ddc2ade7554b7e2cc", size = 35704729, upload-time = "2025-10-28T17:36:46.547Z" }, + { url = "https://files.pythonhosted.org/packages/3b/15/89105e659041b1ca11c386e9995aefacd513a78493656e57789f9d9eab61/scipy-1.16.3-cp314-cp314-musllinux_1_2_aarch64.whl", hash = "sha256:aadd23f98f9cb069b3bd64ddc900c4d277778242e961751f77a8cb5c4b946fb0", size = 36086251, upload-time = "2025-10-28T17:36:55.161Z" }, + { url = "https://files.pythonhosted.org/packages/1a/87/c0ea673ac9c6cc50b3da2196d860273bc7389aa69b64efa8493bdd25b093/scipy-1.16.3-cp314-cp314-musllinux_1_2_x86_64.whl", hash = "sha256:b7c5f1bda1354d6a19bc6af73a649f8285ca63ac6b52e64e658a5a11d4d69800", size = 38716681, upload-time = "2025-10-28T17:37:04.1Z" }, + { url = "https://files.pythonhosted.org/packages/91/06/837893227b043fb9b0d13e4bd7586982d8136cb249ffb3492930dab905b8/scipy-1.16.3-cp314-cp314-win_amd64.whl", hash = "sha256:e5d42a9472e7579e473879a1990327830493a7047506d58d73fc429b84c1d49d", size = 39358423, upload-time = "2025-10-28T17:38:20.005Z" }, + { url = "https://files.pythonhosted.org/packages/95/03/28bce0355e4d34a7c034727505a02d19548549e190bedd13a721e35380b7/scipy-1.16.3-cp314-cp314-win_arm64.whl", hash = "sha256:6020470b9d00245926f2d5bb93b119ca0340f0d564eb6fbaad843eaebf9d690f", size = 26135027, upload-time = "2025-10-28T17:38:24.966Z" }, + { url = "https://files.pythonhosted.org/packages/b2/6f/69f1e2b682efe9de8fe9f91040f0cd32f13cfccba690512ba4c582b0bc29/scipy-1.16.3-cp314-cp314t-macosx_10_14_x86_64.whl", hash = "sha256:e1d27cbcb4602680a49d787d90664fa4974063ac9d4134813332a8c53dbe667c", size = 37028379, upload-time = "2025-10-28T17:37:14.061Z" }, + { url = "https://files.pythonhosted.org/packages/7c/2d/e826f31624a5ebbab1cd93d30fd74349914753076ed0593e1d56a98c4fb4/scipy-1.16.3-cp314-cp314t-macosx_12_0_arm64.whl", hash = "sha256:9b9c9c07b6d56a35777a1b4cc8966118fb16cfd8daf6743867d17d36cfad2d40", size = 29400052, upload-time = "2025-10-28T17:37:21.709Z" }, + { url = "https://files.pythonhosted.org/packages/69/27/d24feb80155f41fd1f156bf144e7e049b4e2b9dd06261a242905e3bc7a03/scipy-1.16.3-cp314-cp314t-macosx_14_0_arm64.whl", hash = "sha256:3a4c460301fb2cffb7f88528f30b3127742cff583603aa7dc964a52c463b385d", size = 21391183, upload-time = "2025-10-28T17:37:29.559Z" }, + { url = "https://files.pythonhosted.org/packages/f8/d3/1b229e433074c5738a24277eca520a2319aac7465eea7310ea6ae0e98ae2/scipy-1.16.3-cp314-cp314t-macosx_14_0_x86_64.whl", hash = "sha256:f667a4542cc8917af1db06366d3f78a5c8e83badd56409f94d1eac8d8d9133fa", size = 23930174, upload-time = "2025-10-28T17:37:36.306Z" }, + { url = "https://files.pythonhosted.org/packages/16/9d/d9e148b0ec680c0f042581a2be79a28a7ab66c0c4946697f9e7553ead337/scipy-1.16.3-cp314-cp314t-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:f379b54b77a597aa7ee5e697df0d66903e41b9c85a6dd7946159e356319158e8", size = 33497852, upload-time = "2025-10-28T17:37:42.228Z" }, + { url = "https://files.pythonhosted.org/packages/2f/22/4e5f7561e4f98b7bea63cf3fd7934bff1e3182e9f1626b089a679914d5c8/scipy-1.16.3-cp314-cp314t-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:4aff59800a3b7f786b70bfd6ab551001cb553244988d7d6b8299cb1ea653b353", size = 35798595, upload-time = "2025-10-28T17:37:48.102Z" }, + { url = "https://files.pythonhosted.org/packages/83/42/6644d714c179429fc7196857866f219fef25238319b650bb32dde7bf7a48/scipy-1.16.3-cp314-cp314t-musllinux_1_2_aarch64.whl", hash = "sha256:da7763f55885045036fabcebd80144b757d3db06ab0861415d1c3b7c69042146", size = 36186269, upload-time = "2025-10-28T17:37:53.72Z" }, + { url = "https://files.pythonhosted.org/packages/ac/70/64b4d7ca92f9cf2e6fc6aaa2eecf80bb9b6b985043a9583f32f8177ea122/scipy-1.16.3-cp314-cp314t-musllinux_1_2_x86_64.whl", hash = "sha256:ffa6eea95283b2b8079b821dc11f50a17d0571c92b43e2b5b12764dc5f9b285d", size = 38802779, upload-time = "2025-10-28T17:37:59.393Z" }, + { url = "https://files.pythonhosted.org/packages/61/82/8d0e39f62764cce5ffd5284131e109f07cf8955aef9ab8ed4e3aa5e30539/scipy-1.16.3-cp314-cp314t-win_amd64.whl", hash = "sha256:d9f48cafc7ce94cf9b15c6bffdc443a81a27bf7075cf2dcd5c8b40f85d10c4e7", size = 39471128, upload-time = "2025-10-28T17:38:05.259Z" }, + { url = "https://files.pythonhosted.org/packages/64/47/a494741db7280eae6dc033510c319e34d42dd41b7ac0c7ead39354d1a2b5/scipy-1.16.3-cp314-cp314t-win_arm64.whl", hash = "sha256:21d9d6b197227a12dcbf9633320a4e34c6b0e51c57268df255a0942983bac562", size = 26464127, upload-time = "2025-10-28T17:38:11.34Z" }, +] + +[[package]] +name = "setuptools" +version = "80.9.0" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/18/5d/3bf57dcd21979b887f014ea83c24ae194cfcd12b9e0fda66b957c69d1fca/setuptools-80.9.0.tar.gz", hash = "sha256:f36b47402ecde768dbfafc46e8e4207b4360c654f1f3bb84475f0a28628fb19c", size = 1319958, upload-time = "2025-05-27T00:56:51.443Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/a3/dc/17031897dae0efacfea57dfd3a82fdd2a2aeb58e0ff71b77b87e44edc772/setuptools-80.9.0-py3-none-any.whl", hash = "sha256:062d34222ad13e0cc312a4c02d73f059e86a4acbfbdea8f8f76b28c99f306922", size = 1201486, upload-time = "2025-05-27T00:56:49.664Z" }, +] + +[[package]] +name = "six" +version = "1.17.0" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/94/e7/b2c673351809dca68a0e064b6af791aa332cf192da575fd474ed7d6f16a2/six-1.17.0.tar.gz", hash = "sha256:ff70335d468e7eb6ec65b95b99d3a2836546063f63acc5171de367e834932a81", size = 34031, upload-time = "2024-12-04T17:35:28.174Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/b7/ce/149a00dd41f10bc29e5921b496af8b574d8413afcd5e30dfa0ed46c2cc5e/six-1.17.0-py2.py3-none-any.whl", hash = "sha256:4721f391ed90541fddacab5acf947aa0d3dc7d27b2e1e8eda2be8970586c3274", size = 11050, upload-time = "2024-12-04T17:35:26.475Z" }, +] + +[[package]] +name = "stack-data" +version = "0.6.3" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "asttokens" }, + { name = "executing" }, + { name = "pure-eval" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/28/e3/55dcc2cfbc3ca9c29519eb6884dd1415ecb53b0e934862d3559ddcb7e20b/stack_data-0.6.3.tar.gz", hash = "sha256:836a778de4fec4dcd1dcd89ed8abff8a221f58308462e1c4aa2a3cf30148f0b9", size = 44707, upload-time = "2023-09-30T13:58:05.479Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/f1/7b/ce1eafaf1a76852e2ec9b22edecf1daa58175c090266e9f6c64afcd81d91/stack_data-0.6.3-py3-none-any.whl", hash = "sha256:d5558e0c25a4cb0853cddad3d77da9891a08cb85dd9f9f91b9f8cd66e511e695", size = 24521, upload-time = "2023-09-30T13:58:03.53Z" }, +] + +[[package]] +name = "sympy" +version = "1.14.0" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "mpmath" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/83/d3/803453b36afefb7c2bb238361cd4ae6125a569b4db67cd9e79846ba2d68c/sympy-1.14.0.tar.gz", hash = "sha256:d3d3fe8df1e5a0b42f0e7bdf50541697dbe7d23746e894990c030e2b05e72517", size = 7793921, upload-time = "2025-04-27T18:05:01.611Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/a2/09/77d55d46fd61b4a135c444fc97158ef34a095e5681d0a6c10b75bf356191/sympy-1.14.0-py3-none-any.whl", hash = "sha256:e091cc3e99d2141a0ba2847328f5479b05d94a6635cb96148ccb3f34671bd8f5", size = 6299353, upload-time = "2025-04-27T18:04:59.103Z" }, +] + +[[package]] +name = "torch" +version = "2.9.1" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "filelock" }, + { name = "fsspec" }, + { name = "jinja2" }, + { name = "networkx" }, + { name = "nvidia-cublas-cu12", marker = "platform_machine == 'x86_64' and sys_platform == 'linux'" }, + { name = "nvidia-cuda-cupti-cu12", marker = "platform_machine == 'x86_64' and sys_platform == 'linux'" }, + { name = "nvidia-cuda-nvrtc-cu12", marker = "platform_machine == 'x86_64' and sys_platform == 'linux'" }, + { name = "nvidia-cuda-runtime-cu12", marker = "platform_machine == 'x86_64' and sys_platform == 'linux'" }, + { name = "nvidia-cudnn-cu12", marker = "platform_machine == 'x86_64' and sys_platform == 'linux'" }, + { name = "nvidia-cufft-cu12", marker = "platform_machine == 'x86_64' and sys_platform == 'linux'" }, + { name = "nvidia-cufile-cu12", marker = "platform_machine == 'x86_64' and sys_platform == 'linux'" }, + { name = "nvidia-curand-cu12", marker = "platform_machine == 'x86_64' and sys_platform == 'linux'" }, + { name = "nvidia-cusolver-cu12", marker = "platform_machine == 'x86_64' and sys_platform == 'linux'" }, + { name = "nvidia-cusparse-cu12", marker = "platform_machine == 'x86_64' and sys_platform == 'linux'" }, + { name = "nvidia-cusparselt-cu12", marker = "platform_machine == 'x86_64' and sys_platform == 'linux'" }, + { name = "nvidia-nccl-cu12", marker = "platform_machine == 'x86_64' and sys_platform == 'linux'" }, + { name = "nvidia-nvjitlink-cu12", marker = "platform_machine == 'x86_64' and sys_platform == 'linux'" }, + { name = "nvidia-nvshmem-cu12", marker = "platform_machine == 'x86_64' and sys_platform == 'linux'" }, + { name = "nvidia-nvtx-cu12", marker = "platform_machine == 'x86_64' and sys_platform == 'linux'" }, + { name = "setuptools" }, + { name = "sympy" }, + { name = "triton", marker = "platform_machine == 'x86_64' and sys_platform == 'linux'" }, + { name = "typing-extensions" }, +] +wheels = [ + { url = "https://files.pythonhosted.org/packages/0f/27/07c645c7673e73e53ded71705045d6cb5bae94c4b021b03aa8d03eee90ab/torch-2.9.1-cp312-cp312-manylinux_2_28_aarch64.whl", hash = "sha256:da5f6f4d7f4940a173e5572791af238cb0b9e21b1aab592bd8b26da4c99f1cd6", size = 104126592, upload-time = "2025-11-12T15:20:41.62Z" }, + { url = "https://files.pythonhosted.org/packages/19/17/e377a460603132b00760511299fceba4102bd95db1a0ee788da21298ccff/torch-2.9.1-cp312-cp312-manylinux_2_28_x86_64.whl", hash = "sha256:27331cd902fb4322252657f3902adf1c4f6acad9dcad81d8df3ae14c7c4f07c4", size = 899742281, upload-time = "2025-11-12T15:22:17.602Z" }, + { url = "https://files.pythonhosted.org/packages/b1/1a/64f5769025db846a82567fa5b7d21dba4558a7234ee631712ee4771c436c/torch-2.9.1-cp312-cp312-win_amd64.whl", hash = "sha256:81a285002d7b8cfd3fdf1b98aa8df138d41f1a8334fd9ea37511517cedf43083", size = 110940568, upload-time = "2025-11-12T15:21:18.689Z" }, + { url = "https://files.pythonhosted.org/packages/6e/ab/07739fd776618e5882661d04c43f5b5586323e2f6a2d7d84aac20d8f20bd/torch-2.9.1-cp312-none-macosx_11_0_arm64.whl", hash = "sha256:c0d25d1d8e531b8343bea0ed811d5d528958f1dcbd37e7245bc686273177ad7e", size = 74479191, upload-time = "2025-11-12T15:21:25.816Z" }, + { url = "https://files.pythonhosted.org/packages/20/60/8fc5e828d050bddfab469b3fe78e5ab9a7e53dda9c3bdc6a43d17ce99e63/torch-2.9.1-cp313-cp313-manylinux_2_28_aarch64.whl", hash = "sha256:c29455d2b910b98738131990394da3e50eea8291dfeb4b12de71ecf1fdeb21cb", size = 104135743, upload-time = "2025-11-12T15:21:34.936Z" }, + { url = "https://files.pythonhosted.org/packages/f2/b7/6d3f80e6918213babddb2a37b46dbb14c15b14c5f473e347869a51f40e1f/torch-2.9.1-cp313-cp313-manylinux_2_28_x86_64.whl", hash = "sha256:524de44cd13931208ba2c4bde9ec7741fd4ae6bfd06409a604fc32f6520c2bc9", size = 899749493, upload-time = "2025-11-12T15:24:36.356Z" }, + { url = "https://files.pythonhosted.org/packages/a6/47/c7843d69d6de8938c1cbb1eba426b1d48ddf375f101473d3e31a5fc52b74/torch-2.9.1-cp313-cp313-win_amd64.whl", hash = "sha256:545844cc16b3f91e08ce3b40e9c2d77012dd33a48d505aed34b7740ed627a1b2", size = 110944162, upload-time = "2025-11-12T15:21:53.151Z" }, + { url = "https://files.pythonhosted.org/packages/28/0e/2a37247957e72c12151b33a01e4df651d9d155dd74d8cfcbfad15a79b44a/torch-2.9.1-cp313-cp313t-macosx_11_0_arm64.whl", hash = "sha256:5be4bf7496f1e3ffb1dd44b672adb1ac3f081f204c5ca81eba6442f5f634df8e", size = 74830751, upload-time = "2025-11-12T15:21:43.792Z" }, + { url = "https://files.pythonhosted.org/packages/4b/f7/7a18745edcd7b9ca2381aa03353647bca8aace91683c4975f19ac233809d/torch-2.9.1-cp313-cp313t-manylinux_2_28_aarch64.whl", hash = "sha256:30a3e170a84894f3652434b56d59a64a2c11366b0ed5776fab33c2439396bf9a", size = 104142929, upload-time = "2025-11-12T15:21:48.319Z" }, + { url = "https://files.pythonhosted.org/packages/f4/dd/f1c0d879f2863ef209e18823a988dc7a1bf40470750e3ebe927efdb9407f/torch-2.9.1-cp313-cp313t-manylinux_2_28_x86_64.whl", hash = "sha256:8301a7b431e51764629208d0edaa4f9e4c33e6df0f2f90b90e261d623df6a4e2", size = 899748978, upload-time = "2025-11-12T15:23:04.568Z" }, + { url = "https://files.pythonhosted.org/packages/1f/9f/6986b83a53b4d043e36f3f898b798ab51f7f20fdf1a9b01a2720f445043d/torch-2.9.1-cp313-cp313t-win_amd64.whl", hash = "sha256:2e1c42c0ae92bf803a4b2409fdfed85e30f9027a66887f5e7dcdbc014c7531db", size = 111176995, upload-time = "2025-11-12T15:22:01.618Z" }, + { url = "https://files.pythonhosted.org/packages/40/60/71c698b466dd01e65d0e9514b5405faae200c52a76901baf6906856f17e4/torch-2.9.1-cp313-none-macosx_11_0_arm64.whl", hash = "sha256:2c14b3da5df416cf9cb5efab83aa3056f5b8cd8620b8fde81b4987ecab730587", size = 74480347, upload-time = "2025-11-12T15:21:57.648Z" }, + { url = "https://files.pythonhosted.org/packages/48/50/c4b5112546d0d13cc9eaa1c732b823d676a9f49ae8b6f97772f795874a03/torch-2.9.1-cp314-cp314-macosx_11_0_arm64.whl", hash = "sha256:1edee27a7c9897f4e0b7c14cfc2f3008c571921134522d5b9b5ec4ebbc69041a", size = 74433245, upload-time = "2025-11-12T15:22:39.027Z" }, + { url = "https://files.pythonhosted.org/packages/81/c9/2628f408f0518b3bae49c95f5af3728b6ab498c8624ab1e03a43dd53d650/torch-2.9.1-cp314-cp314-manylinux_2_28_aarch64.whl", hash = "sha256:19d144d6b3e29921f1fc70503e9f2fc572cde6a5115c0c0de2f7ca8b1483e8b6", size = 104134804, upload-time = "2025-11-12T15:22:35.222Z" }, + { url = "https://files.pythonhosted.org/packages/28/fc/5bc91d6d831ae41bf6e9e6da6468f25330522e92347c9156eb3f1cb95956/torch-2.9.1-cp314-cp314-manylinux_2_28_x86_64.whl", hash = "sha256:c432d04376f6d9767a9852ea0def7b47a7bbc8e7af3b16ac9cf9ce02b12851c9", size = 899747132, upload-time = "2025-11-12T15:23:36.068Z" }, + { url = "https://files.pythonhosted.org/packages/63/5d/e8d4e009e52b6b2cf1684bde2a6be157b96fb873732542fb2a9a99e85a83/torch-2.9.1-cp314-cp314-win_amd64.whl", hash = "sha256:d187566a2cdc726fc80138c3cdb260970fab1c27e99f85452721f7759bbd554d", size = 110934845, upload-time = "2025-11-12T15:22:48.367Z" }, + { url = "https://files.pythonhosted.org/packages/bd/b2/2d15a52516b2ea3f414643b8de68fa4cb220d3877ac8b1028c83dc8ca1c4/torch-2.9.1-cp314-cp314t-macosx_11_0_arm64.whl", hash = "sha256:cb10896a1f7fedaddbccc2017ce6ca9ecaaf990f0973bdfcf405439750118d2c", size = 74823558, upload-time = "2025-11-12T15:22:43.392Z" }, + { url = "https://files.pythonhosted.org/packages/86/5c/5b2e5d84f5b9850cd1e71af07524d8cbb74cba19379800f1f9f7c997fc70/torch-2.9.1-cp314-cp314t-manylinux_2_28_aarch64.whl", hash = "sha256:0a2bd769944991c74acf0c4ef23603b9c777fdf7637f115605a4b2d8023110c7", size = 104145788, upload-time = "2025-11-12T15:23:52.109Z" }, + { url = "https://files.pythonhosted.org/packages/a9/8c/3da60787bcf70add986c4ad485993026ac0ca74f2fc21410bc4eb1bb7695/torch-2.9.1-cp314-cp314t-manylinux_2_28_x86_64.whl", hash = "sha256:07c8a9660bc9414c39cac530ac83b1fb1b679d7155824144a40a54f4a47bfa73", size = 899735500, upload-time = "2025-11-12T15:24:08.788Z" }, + { url = "https://files.pythonhosted.org/packages/db/2b/f7818f6ec88758dfd21da46b6cd46af9d1b3433e53ddbb19ad1e0da17f9b/torch-2.9.1-cp314-cp314t-win_amd64.whl", hash = "sha256:c88d3299ddeb2b35dcc31753305612db485ab6f1823e37fb29451c8b2732b87e", size = 111163659, upload-time = "2025-11-12T15:23:20.009Z" }, +] + +[[package]] +name = "tornado" +version = "6.5.2" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/09/ce/1eb500eae19f4648281bb2186927bb062d2438c2e5093d1360391afd2f90/tornado-6.5.2.tar.gz", hash = "sha256:ab53c8f9a0fa351e2c0741284e06c7a45da86afb544133201c5cc8578eb076a0", size = 510821, upload-time = "2025-08-08T18:27:00.78Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/f6/48/6a7529df2c9cc12efd2e8f5dd219516184d703b34c06786809670df5b3bd/tornado-6.5.2-cp39-abi3-macosx_10_9_universal2.whl", hash = "sha256:2436822940d37cde62771cff8774f4f00b3c8024fe482e16ca8387b8a2724db6", size = 442563, upload-time = "2025-08-08T18:26:42.945Z" }, + { url = "https://files.pythonhosted.org/packages/f2/b5/9b575a0ed3e50b00c40b08cbce82eb618229091d09f6d14bce80fc01cb0b/tornado-6.5.2-cp39-abi3-macosx_10_9_x86_64.whl", hash = "sha256:583a52c7aa94ee046854ba81d9ebb6c81ec0fd30386d96f7640c96dad45a03ef", size = 440729, upload-time = "2025-08-08T18:26:44.473Z" }, + { url = "https://files.pythonhosted.org/packages/1b/4e/619174f52b120efcf23633c817fd3fed867c30bff785e2cd5a53a70e483c/tornado-6.5.2-cp39-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b0fe179f28d597deab2842b86ed4060deec7388f1fd9c1b4a41adf8af058907e", size = 444295, upload-time = "2025-08-08T18:26:46.021Z" }, + { url = "https://files.pythonhosted.org/packages/95/fa/87b41709552bbd393c85dd18e4e3499dcd8983f66e7972926db8d96aa065/tornado-6.5.2-cp39-abi3-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:b186e85d1e3536d69583d2298423744740986018e393d0321df7340e71898882", size = 443644, upload-time = "2025-08-08T18:26:47.625Z" }, + { url = "https://files.pythonhosted.org/packages/f9/41/fb15f06e33d7430ca89420283a8762a4e6b8025b800ea51796ab5e6d9559/tornado-6.5.2-cp39-abi3-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e792706668c87709709c18b353da1f7662317b563ff69f00bab83595940c7108", size = 443878, upload-time = "2025-08-08T18:26:50.599Z" }, + { url = "https://files.pythonhosted.org/packages/11/92/fe6d57da897776ad2e01e279170ea8ae726755b045fe5ac73b75357a5a3f/tornado-6.5.2-cp39-abi3-musllinux_1_2_aarch64.whl", hash = "sha256:06ceb1300fd70cb20e43b1ad8aaee0266e69e7ced38fa910ad2e03285009ce7c", size = 444549, upload-time = "2025-08-08T18:26:51.864Z" }, + { url = "https://files.pythonhosted.org/packages/9b/02/c8f4f6c9204526daf3d760f4aa555a7a33ad0e60843eac025ccfd6ff4a93/tornado-6.5.2-cp39-abi3-musllinux_1_2_i686.whl", hash = "sha256:74db443e0f5251be86cbf37929f84d8c20c27a355dd452a5cfa2aada0d001ec4", size = 443973, upload-time = "2025-08-08T18:26:53.625Z" }, + { url = "https://files.pythonhosted.org/packages/ae/2d/f5f5707b655ce2317190183868cd0f6822a1121b4baeae509ceb9590d0bd/tornado-6.5.2-cp39-abi3-musllinux_1_2_x86_64.whl", hash = "sha256:b5e735ab2889d7ed33b32a459cac490eda71a1ba6857b0118de476ab6c366c04", size = 443954, upload-time = "2025-08-08T18:26:55.072Z" }, + { url = "https://files.pythonhosted.org/packages/e8/59/593bd0f40f7355806bf6573b47b8c22f8e1374c9b6fd03114bd6b7a3dcfd/tornado-6.5.2-cp39-abi3-win32.whl", hash = "sha256:c6f29e94d9b37a95013bb669616352ddb82e3bfe8326fccee50583caebc8a5f0", size = 445023, upload-time = "2025-08-08T18:26:56.677Z" }, + { url = "https://files.pythonhosted.org/packages/c7/2a/f609b420c2f564a748a2d80ebfb2ee02a73ca80223af712fca591386cafb/tornado-6.5.2-cp39-abi3-win_amd64.whl", hash = "sha256:e56a5af51cc30dd2cae649429af65ca2f6571da29504a07995175df14c18f35f", size = 445427, upload-time = "2025-08-08T18:26:57.91Z" }, + { url = "https://files.pythonhosted.org/packages/5e/4f/e1f65e8f8c76d73658b33d33b81eed4322fb5085350e4328d5c956f0c8f9/tornado-6.5.2-cp39-abi3-win_arm64.whl", hash = "sha256:d6c33dc3672e3a1f3618eb63b7ef4683a7688e7b9e6e8f0d9aa5726360a004af", size = 444456, upload-time = "2025-08-08T18:26:59.207Z" }, +] + +[[package]] +name = "traitlets" +version = "5.14.3" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/eb/79/72064e6a701c2183016abbbfedaba506d81e30e232a68c9f0d6f6fcd1574/traitlets-5.14.3.tar.gz", hash = "sha256:9ed0579d3502c94b4b3732ac120375cda96f923114522847de4b3bb98b96b6b7", size = 161621, upload-time = "2024-04-19T11:11:49.746Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/00/c0/8f5d070730d7836adc9c9b6408dec68c6ced86b304a9b26a14df072a6e8c/traitlets-5.14.3-py3-none-any.whl", hash = "sha256:b74e89e397b1ed28cc831db7aea759ba6640cb3de13090ca145426688ff1ac4f", size = 85359, upload-time = "2024-04-19T11:11:46.763Z" }, +] + +[[package]] +name = "triton" +version = "3.5.1" +source = { registry = "https://pypi.org/simple" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/f2/50/9a8358d3ef58162c0a415d173cfb45b67de60176e1024f71fbc4d24c0b6d/triton-3.5.1-cp312-cp312-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:d2c6b915a03888ab931a9fd3e55ba36785e1fe70cbea0b40c6ef93b20fc85232", size = 170470207, upload-time = "2025-11-11T17:41:00.253Z" }, + { url = "https://files.pythonhosted.org/packages/27/46/8c3bbb5b0a19313f50edcaa363b599e5a1a5ac9683ead82b9b80fe497c8d/triton-3.5.1-cp313-cp313-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:f3f4346b6ebbd4fad18773f5ba839114f4826037c9f2f34e0148894cd5dd3dba", size = 170470410, upload-time = "2025-11-11T17:41:06.319Z" }, + { url = "https://files.pythonhosted.org/packages/37/92/e97fcc6b2c27cdb87ce5ee063d77f8f26f19f06916aa680464c8104ef0f6/triton-3.5.1-cp313-cp313t-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:0b4d2c70127fca6a23e247f9348b8adde979d2e7a20391bfbabaac6aebc7e6a8", size = 170579924, upload-time = "2025-11-11T17:41:12.455Z" }, + { url = "https://files.pythonhosted.org/packages/a4/e6/c595c35e5c50c4bc56a7bac96493dad321e9e29b953b526bbbe20f9911d0/triton-3.5.1-cp314-cp314-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:d0637b1efb1db599a8e9dc960d53ab6e4637db7d4ab6630a0974705d77b14b60", size = 170480488, upload-time = "2025-11-11T17:41:18.222Z" }, + { url = "https://files.pythonhosted.org/packages/16/b5/b0d3d8b901b6a04ca38df5e24c27e53afb15b93624d7fd7d658c7cd9352a/triton-3.5.1-cp314-cp314t-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:bac7f7d959ad0f48c0e97d6643a1cc0fd5786fe61cb1f83b537c6b2d54776478", size = 170582192, upload-time = "2025-11-11T17:41:23.963Z" }, +] + +[[package]] +name = "typing-extensions" +version = "4.15.0" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/72/94/1a15dd82efb362ac84269196e94cf00f187f7ed21c242792a923cdb1c61f/typing_extensions-4.15.0.tar.gz", hash = "sha256:0cea48d173cc12fa28ecabc3b837ea3cf6f38c6d1136f85cbaaf598984861466", size = 109391, upload-time = "2025-08-25T13:49:26.313Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/18/67/36e9267722cc04a6b9f15c7f3441c2363321a3ea07da7ae0c0707beb2a9c/typing_extensions-4.15.0-py3-none-any.whl", hash = "sha256:f0fa19c6845758ab08074a0cfa8b7aecb71c999ca73d62883bc25cc018c4e548", size = 44614, upload-time = "2025-08-25T13:49:24.86Z" }, +] + +[[package]] +name = "wcwidth" +version = "0.2.14" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/24/30/6b0809f4510673dc723187aeaf24c7f5459922d01e2f794277a3dfb90345/wcwidth-0.2.14.tar.gz", hash = "sha256:4d478375d31bc5395a3c55c40ccdf3354688364cd61c4f6adacaa9215d0b3605", size = 102293, upload-time = "2025-09-22T16:29:53.023Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/af/b5/123f13c975e9f27ab9c0770f514345bd406d0e8d3b7a0723af9d43f710af/wcwidth-0.2.14-py2.py3-none-any.whl", hash = "sha256:a7bb560c8aee30f9957e5f9895805edd20602f2d7f720186dfd906e82b4982e1", size = 37286, upload-time = "2025-09-22T16:29:51.641Z" }, +] From c2517f45c00bd30a05355e703b46da9e512164df Mon Sep 17 00:00:00 2001 From: daan Date: Sat, 22 Nov 2025 14:56:23 +0100 Subject: [PATCH 05/16] rebasing --- pretrained_models.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/pretrained_models.py b/pretrained_models.py index 41267b6..fe3c5e3 100644 --- a/pretrained_models.py +++ b/pretrained_models.py @@ -164,4 +164,4 @@ def evaluate_pretrained_models(noisy_pretrained_models, imbalanced_pretrained_mo all_measurement_losses.append(normalized_measurement_val_losses) plot_several_models(all_imbalanced_losses, all_measurement_losses, SNR, IRR_ratios, measurement_sizes, all_noisy_losses) - plt.show() \ No newline at end of file + plt.show() From e0a023444eb9b8dcd0ff7eed2fc473af8d067d06 Mon Sep 17 00:00:00 2001 From: daan Date: Thu, 27 Nov 2025 21:23:38 +0100 Subject: [PATCH 06/16] added comparison.py between OMP, PSOMP and autoencoders --- comparison.py | 131 +++++++++++++++++++++++++++++++++++++++++++ data.py | 73 ++++++++++++++++++++++-- main.py | 28 ++++----- models.py | 106 +++++++++++++++++++++++++++++++++- plotting.py | 5 +- pretrained_models.py | 6 +- utils.py | 107 ++++++++++++++++++++++++++++++++++- 7 files changed, 428 insertions(+), 28 deletions(-) create mode 100644 comparison.py diff --git a/comparison.py b/comparison.py new file mode 100644 index 0000000..e7042bf --- /dev/null +++ b/comparison.py @@ -0,0 +1,131 @@ +import numpy as np +import matplotlib.pyplot as plt +import scipy as sp + +from data import build_dataset, DataConfig +from pretrained_models import load_pretrained_models, evaluate_pretrained_models +from utils import generate_sensing_matrix, apply_iq_imbalance +from models import omp, psomp + + +config = DataConfig(dataset_size = 1, + vector_size= 100, + max_amplitude= 100, + min_sparsity= 5, + max_sparsity= 10) +noise_level= 1 +omp_epsilon= 1 +omp_max_iterations= 10 +sensing_matrix_rows= 50 +alg= "omp", # Options: "omp", "psomp", "ml" +model_path= "models/sparse_recovery_model.pth" + +noise_levels = [2, 5, 8, 11, 14, 17, 20] +sensing_sizes = [5, 10, 20, 30, 40, 50] + + +noisy_pretrained_models, imbalanced_pretrained_models, measurement_pretrained_models = load_pretrained_models() +all_imbalanced_losses, all_measurement_losses, SNR, IRR_ratios, measurement_sizes, all_noisy_losses = evaluate_pretrained_models(noisy_pretrained_models, imbalanced_pretrained_models, measurement_pretrained_models) + +print("training (PS)OMP model") +OMP_noisy_losses = [] +PSOMP_noisy_losses = [] +for noise_level in noise_levels: + print(f"Printing models with {noise_level}dB of noise") + variance = 133 / (10 ** (noise_level / 10)) + h, x = build_dataset(config) + Phi = generate_sensing_matrix(sensing_matrix_rows,config.vector_size) + # First generate the output + y = Phi @ x + y = y + np.random.normal(0, variance, size=y.shape) + x_hat_omp = omp(Phi,y,omp_epsilon,omp_max_iterations) + x_hat_psomp = psomp(Phi,y, config.max_sparsity) + DFT = sp.linalg.dft(config.vector_size)/np.sqrt(config.vector_size) + h_hat_omp = DFT @ x_hat_omp + h_hat_psomp = DFT @ x_hat_psomp + indices = range(len(x_hat_omp)) + + OMP_MSE = sum((x-x_hat_omp)**2)/len(y) + OMP_noisy_losses.append(OMP_noisy_losses) + PSOMP_MSE = sum((x-x_hat_psomp)**2)/len(y) + PSOMP_noisy_losses.append(PSOMP_noisy_losses) + +OMP_imbalanced_losses = [] +PSOMP_imbalanced_losses = [] +for IRR_ratio in IRR_ratios: + print(f"Printing models with {IRR_ratio} IRR ratio") + variance = 133 / (10 ** (noise_level / 10)) + h, x = build_dataset(config) + Phi = generate_sensing_matrix(sensing_matrix_rows, config.vector_size) + # First generate the output + y = Phi @ x + y = apply_iq_imbalance(y, IRR_ratio)[sensing_matrix_rows:] + x_hat_omp = omp(Phi, y, omp_epsilon, omp_max_iterations) + x_hat_psomp = psomp(Phi,y, config.max_sparsity) + DFT = sp.linalg.dft(config.vector_size) / np.sqrt(config.vector_size) + h_hat_omp = DFT @ x_hat_omp + h_hat_psomp = DFT @ x_hat_psomp + indices = range(len(x_hat_omp)) + + OMP_MSE = sum((x - x_hat_omp) ** 2) + OMP_imbalanced_losses.append(OMP_MSE) + PSOMP_MSE = sum((x - x_hat_psomp) ** 2) + PSOMP_imbalanced_losses.append(PSOMP_MSE) + +OMP_sensing_size_losses = [] +PSOMP_sensing_size_losses = [] +for sensing_size in sensing_sizes: + print(f"Training models with sensing matrix with {sensing_size} columns") + variance = 133 / (10 ** (noise_level / 10)) + h, x = build_dataset(config) + Phi = generate_sensing_matrix(sensing_size, config.vector_size) + # First generate the output + y = Phi @ x + x_hat_omp = omp(Phi, y, omp_epsilon, omp_max_iterations) + x_hat_psomp = psomp(Phi,y, config.max_sparsity) + DFT = sp.linalg.dft(config.vector_size) / np.sqrt(config.vector_size) + h_hat_omp = DFT @ x_hat_omp + h_hat_psomp = DFT @ x_hat_psomp + indices = range(len(x_hat_omp)) + + OMP_MSE = sum((x - x_hat_omp) ** 2) + OMP_imbalanced_losses.append(OMP_MSE) + PSOMP_MSE = sum((x - x_hat_psomp) ** 2) + PSOMP_imbalanced_losses.append(PSOMP_MSE) + +print("model training complete") +plt.style.use('ggplot') +fig1, (ax1, ax2, ax3) = plt.subplots(ncols=3, nrows=1, figsize=(18, 6)) + +for i in range(4): + if i == 0: + noiseless_loss = all_imbalanced_losses[0][0] + ax1.plot(SNR.keys(), [noiseless_loss for i in SNR.keys()]) + ax2.plot(IRR_ratios.values(), [noiseless_loss for i in IRR_ratios.values()]) + ax3.plot(measurement_sizes, [noiseless_loss for i in measurement_sizes]) + + ax1.plot(SNR.keys(), all_noisy_losses[i], marker="o") + ax1.plot(SNR.keys(), OMP_noisy_losses, marker="o") + ax1.plot(SNR.keys(), PSOMP_noisy_losses, marker="o") + ax1.set_xlabel("SNR $(dB)$") + ax1.set_ylabel("NMSE") + ax1.set_title("Noisy Model Performance") + ax1.grid(True) + ax1.legend(["baseline model", "sparsity 3-5", "sparsity 5-7", "sparsity 7-9", "sparsity 10-30", "OMP", "PSOMP"]) + + ax2.plot(IRR_ratios.values(), all_imbalanced_losses[i], marker='s') + ax2.plot(IRR_ratios.values(), OMP_imbalanced_losses, marker="s") + ax2.plot(IRR_ratios.values(), PSOMP_imbalanced_losses, marker="s") + ax2.set_xlabel("IRR $(dB)$") + ax2.set_title("IQ Imbalanced Model Performance") + ax2.legend(["baseline model", "sparsity 3-5", "sparsity 5-7", "sparsity 7-9", "sparsity 10-30", "OMP", "PSOMP"]) + ax2.grid(True) + + ax3.plot(measurement_sizes, all_measurement_losses[i], marker='^') + ax3.plot(measurement_sizes, OMP_sensing_size_losses, marker="^") + ax3.plot(measurement_sizes, PSOMP_sensing_size_losses, marker="^") + ax3.set_xlabel("Measurement Dimension") + ax3.set_title("Measurement Model Performance") + ax3.legend(["baseline model", "sparsity 3-5", "sparsity 5-7", "sparsity 7-9", "sparsity 10-30", "OMP", "PSOMP"]) + ax3.grid(True) +plt.show() diff --git a/data.py b/data.py index 67c906d..fc095b8 100644 --- a/data.py +++ b/data.py @@ -1,3 +1,4 @@ +from dataclasses import dataclass import random import numpy as np @@ -5,7 +6,34 @@ import torch from torch.utils.data import TensorDataset, DataLoader -def buildDataSet(max_amplitude, min_sparsity, max_sparsity, vector_size, data_set_size): +@dataclass +class DataConfig: + vector_size: int = 100 + dataset_size: int = 10000 + max_amplitude: int = 100 + min_sparsity: int = 3 + max_sparsity: int = 7 + +def build_dataset(config: DataConfig): + """ + Function to build a dataset of sparse and dense signals. + Parameters: + config : Config + Configuration object containing parameters for dataset generation. + + Returns: + dense_data : np.ndarray + The dense signal dataset (size: vector_size x data_set_size). + sparse_data : np.ndarray + The sparse signal dataset (size: vector_size x data_set_size). + """ + # Fetch configuration parameters + vector_size = config.vector_size + data_set_size = config.dataset_size + max_amplitude = config.max_amplitude + min_sparsity = config.min_sparsity + max_sparsity = config.max_sparsity + sparse_data = np.zeros((vector_size, data_set_size), dtype=float) # Ensure float type # Iterate over the columns of the sparse_data matrix to define the data samples @@ -21,10 +49,42 @@ def buildDataSet(max_amplitude, min_sparsity, max_sparsity, vector_size, data_se return dense_data, sparse_data -def Generate_Dataloader(max_amplitude,min_sparsity,max_sparsity,vector_size,data_set_size): - # Function takes as inputs the (maximum) amplitude of the signal, minimum and maximum sparsity of the signal, the signal length (vector_size) and the size of the dataset - # Outputs dataloader and signal variance, which is important for normalization - dense_data, sparse_data = buildDataSet(max_amplitude,min_sparsity,max_sparsity,vector_size,data_set_size) + +def generate_sparse_vector(sparsity: int, vector_size: int, max_amplitude: int): + """ + Function to generate a single sparse vector. + Parameters: + sparsity : int + The number of non-zero elements in the sparse vector. + vector_size : int + The size of the sparse vector. + max_amplitude : int + The maximum amplitude for the non-zero elements. + + Returns: + x : np.ndarray + The generated sparse vector (size: vector_size x 1). + """ + x = np.zeros((vector_size, 1), dtype=float) # Ensure float type + indices = random.sample(range(vector_size), sparsity) + amps = np.random.uniform(-max_amplitude, max_amplitude, sparsity) # Use negative and positive values + x[indices, 0] = amps + return x + +def generate_dataloader(config): + """ + Generates a torch.Dataloader object of dense vectors + Parameters: + config : Config + Configuration object containing parameters for dataset generation. + + Returns: + dataloader : torch.utils.data.Dataloader + dataloader object used to access training and test data + variance : np.float + variance of labels, used for normalization + """ + dense_data, sparse_data = build_dataset(config) X = np.concatenate((dense_data.real,dense_data.imag)).T Y = np.concatenate((dense_data.real,dense_data.imag)).T @@ -35,4 +95,5 @@ def Generate_Dataloader(max_amplitude,min_sparsity,max_sparsity,vector_size,data dataloader = DataLoader(dataset,batch_size = 500,shuffle = True, ) variance = np.var(Y) - return dataloader, variance \ No newline at end of file + return dataloader, variance + diff --git a/main.py b/main.py index becf38c..90dee45 100644 --- a/main.py +++ b/main.py @@ -5,7 +5,7 @@ import torch from torch import nn -from data import Generate_Dataloader +from data import generate_dataloader, DataConfig from models import (LearnedAutoencoderWithIQImbalance, LearnedAutoencoderWithVarIQImbalance, LearnedAutoencoder, @@ -14,19 +14,20 @@ from pretrained_models import load_pretrained_models, evaluate_pretrained_models from utils import discreteLossPoly, mapToDiscreteValues, validateModels -# Build a standard dataset -max_amplitude = 100 -min_sparsity = 7 -max_sparsity = 9 -vector_size = 100 -data_set_size = 10000 -dataloader, signal_variance = Generate_Dataloader(max_amplitude,min_sparsity,max_sparsity,vector_size,data_set_size) +base_config = DataConfig( + max_amplitude = 100, + min_sparsity = 7, + max_sparsity = 9, + vector_size = 100, + dataset_size = 10000) +dataloader, signal_variance = generate_dataloader(base_config) noisy_pretrained_models, imbalanced_pretrained_models, measurement_pretrained_models = load_pretrained_models() evaluate_pretrained_models(noisy_pretrained_models, imbalanced_pretrained_models, measurement_pretrained_models) + vector_size = 100 -encoding_dim = 50 +encoding_dim = 50, hidden_dims = np.array([60,80]) discrete_autoencoder_model = LearnedAutoencoder(vector_size,encoding_dim,hidden_dims) optimizer = torch.optim.Adam(discrete_autoencoder_model.parameters(), lr=1E-3, betas=(0.9,0.999)) @@ -75,11 +76,11 @@ # Load the state dictionary discrete_model.load_state_dict(torch.load("Models/discrete_models/discrete_model.pt")) -visualizeReconstruction(discrete_model,max_amplitude,min_sparsity,max_sparsity,vector_size) +visualizeReconstruction(discrete_model,base_config) discrete_model_losses = [] -dataloader_val, signal_variance = Generate_Dataloader(max_amplitude, min_sparsity, max_sparsity, vector_size, data_set_size) +dataloader_val, signal_variance = generate_dataloader(base_config) loss_fn = nn.MSELoss() @@ -179,7 +180,7 @@ vector_size = 100 data_set_size = 10000 -dataloader, signal_variance = Generate_Dataloader(max_amplitude, min_sparsity, max_sparsity, vector_size, data_set_size) +dataloader, signal_variance = generate_dataloader(max_amplitude, base_config) # discrete_values = np.array([-np.pi, -0.5*np.pi,0,0.5*np.pi,np.pi]) scale_factor = 0.01 @@ -251,8 +252,7 @@ vector_size = 100 data_set_size = 10000 -dataloader_val, signal_variance = Generate_Dataloader(max_amplitude, min_sparsity, max_sparsity, vector_size, - data_set_size) +dataloader_val, signal_variance = generate_dataloader(max_amplitude, base_config) normalized_losses, unnormalized_losses = validateModels(dataloader_val, iq_imbalanced_models, loss_fn) diff --git a/models.py b/models.py index 4e254d2..6c21562 100644 --- a/models.py +++ b/models.py @@ -8,9 +8,9 @@ from utils import discreteLossPoly, mapToDiscreteValues def complex_xavier_init(tensor_real, tensor_imag, gain=1.0): - # Apply Xavier initialization (using uniform variant) to both real and imaginary parts - # If we do not do this the neural network initializes at a *very* bad initial point and we get terrible convergence - # Only applicable for the ComplexLinear layer + """ + Apply Xavier initialization (using uniform variant) to both real and imaginary parts + """ init.xavier_uniform_(tensor_real, gain=gain) init.xavier_uniform_(tensor_imag, gain=gain) @@ -343,3 +343,103 @@ def forward(self, x): # And run the decoder return self.decoder(y_IQ_noisy) + +def omp(A, y, epsilon, max_iterations=np.inf): + """ + Orthogonal Matching Pursuit (OMP) algorithm for sparse signal recovery. + + Parameters: + D : np.ndarray + The sensing matrix (size: m x n). + y : np.ndarray + The observed vector (size: m x 1). + epsilon: float + The error tolerance for stopping criterion. + max_iterations : int + Maximum number of iterations to perform. + + Returns: + x_hat : np.ndarray + The recovered sparse signal (size: n x 1). + """ + m, n = A.shape + x_hat = np.zeros((n, 1)) + residual = y.copy() + index_set = [] + max_iterations = min(max_iterations, n) + err = np.inf + while err > epsilon and len(index_set) < max_iterations: + # Step 1: Find the index of the atom that best correlates with the residual + correlations = A.T @ residual + correlations[index_set] = 0 + best_index = np.argmax(np.abs(correlations)) + index_set.append(best_index) + + # Step 2: Solve the least squares problem to update the coefficients + A_subset = A[:, index_set] + x_subset, _, _, _ = np.linalg.lstsq(A_subset, y, rcond=None) + + # Step 3: Update the residual + residual = y - A_subset @ x_subset + err = np.linalg.norm(residual) + + # Step 4: Construct the full solution vector + for i, idx in enumerate(index_set): + x_hat[idx] = x_subset[i] + + return x_hat + + +def psomp(A, y, K, sigma2=None): + """ + Paired-Support Orthogonal Matching Pursuit (PSOMP) + Based on Algorithm 1 in Masoumi & Myers (2023). + + Inputs: + A : sensing matrix (M x N) + y : measurement vector (M,) + K : sparsity level of x + sigma2 : noise variance (optional for stopping rule) + + Outputs: + z_hat : estimated augmented sparse vector (2N,) + """ + + M, N = A.shape + + # Build augmented matrix + A_aug = np.hstack([A, np.conjugate(A)]) + + # Initialize + r = y.copy() + Q = [] # support set + z_hat = np.zeros(2 * N, dtype=complex) + + max_iter = 2 * K + err = np.inf + while len(Q) < max_iter and (sigma2 is None or err > sigma2): + + # --- Step 1: support detection (paired) --- + # Compute both matching terms + match1 = np.abs(np.conjugate(A).T @ r) # |a_j^* r| + match2 = np.abs(A.T @ r) # |a_j^T r| + + # Choose best index from first N entries + j = np.argmax(np.maximum(match1[:N], match2[:N])) + + # Paired support structure + pair = [j, j + N] + Q.extend(pair) + + # --- Step 2: least squares on selected support --- + A_sub = A_aug[:, Q] + z_sub, *_ = np.linalg.lstsq(A_sub, y, rcond=None) + + # assign + for ii, idx in enumerate(Q): + z_hat[idx] = z_sub[ii] + + # --- Step 3: update residual --- + r = y - A_sub @ z_sub + + return z_hat \ No newline at end of file diff --git a/plotting.py b/plotting.py index c17554b..c8b4cf1 100644 --- a/plotting.py +++ b/plotting.py @@ -4,7 +4,8 @@ import torch from torch import nn -from data import buildDataSet +from data import build_dataset + def plot_several_models(all_imbalanced_losses, all_measurement_losses, SNR, IRR_ratios, measurement_sizes, all_noisy_losses): plt.style.use('ggplot') fig1, (ax1, ax2, ax3) = plt.subplots(ncols=3, nrows=1, figsize=(18, 6)) @@ -38,7 +39,7 @@ def plot_several_models(all_imbalanced_losses, all_measurement_losses, SNR, IRR_ plt.show() def visualizeReconstruction(model, max_amplitude=100, min_sparsity=3, max_sparsity=5, vector_size=100): - h, x = buildDataSet(max_amplitude, min_sparsity, max_sparsity, vector_size, 1) + h, x = build_dataset(max_amplitude, min_sparsity, max_sparsity, vector_size, 1) H = np.concatenate((h.real, h.imag)).T diff --git a/pretrained_models.py b/pretrained_models.py index fe3c5e3..819aecc 100644 --- a/pretrained_models.py +++ b/pretrained_models.py @@ -3,7 +3,7 @@ import torch from torch import nn -from data import Generate_Dataloader +from data import generate_dataloader, DataConfig from models import LearnedAutoencoderWithNoise, LearnedAutoencoderWithIQImbalance from plotting import plot_several_models from utils import calc_IRR_ratios @@ -103,7 +103,7 @@ def evaluate_pretrained_models(noisy_pretrained_models, imbalanced_pretrained_mo loss_fn = nn.MSELoss() for i, (min_spars, max_spars) in enumerate(sparsity_ranges): - dataloader_val, signal_variance = Generate_Dataloader(max_amplitude, min_spars, max_spars, vector_size, data_set_size) + dataloader_val, signal_variance = generate_dataloader(DataConfig) # Evaluate noisy models noisy_val_losses = [] noisy_model_losses = [] @@ -165,3 +165,5 @@ def evaluate_pretrained_models(noisy_pretrained_models, imbalanced_pretrained_mo plot_several_models(all_imbalanced_losses, all_measurement_losses, SNR, IRR_ratios, measurement_sizes, all_noisy_losses) plt.show() + + return all_imbalanced_losses, all_measurement_losses, SNR, IRR_ratios, measurement_sizes, all_noisy_losses diff --git a/utils.py b/utils.py index e27837f..79432d9 100644 --- a/utils.py +++ b/utils.py @@ -62,4 +62,109 @@ def calc_IRR_ratios(imb_percentage_list): IRR_ratio = (np.abs(r) ** 2) / (np.abs(1 - r) ** 2) IRR_ratios[level] = 10 * np.log10(IRR_ratio) - return IRR_ratios \ No newline at end of file + return IRR_ratios + +def find_x_xi(z: np.ndarray): + """ + Function to recover the original signal and IQ imbalance parameter from the IQ imbalanced signal. + Parameters: + z : np.ndarray + IQ imbalanced signal (size: 2n x 1). + + Returns: + x : np.ndarray + Recovered original signal (size: n x 1). + xi : float + Estimated IQ imbalance parameter. + """ + z_1, z_2 = np.split(z, 2) + alpha = np.linalg.norm(z_1) ** 2 + beta = np.linalg.norm(z_2) ** 2 + gamma = z_1.T @ z_2 + xi_hat = (alpha - beta - 2 * gamma + np.sqrt((alpha - beta) ** 2 + 4 * np.abs(gamma) ** 2)) / ( + 2 * (alpha - beta + np.conj(gamma) - gamma)) + x_hat = z_1 / xi_hat + return x_hat.reshape(-1, 1), xi_hat + + +def generate_sensing_matrix(m, n): + """ + Function to generate a random sensing matrix. + + Parameters: + m : int + Number of rows (measurements). + n : int + Number of columns (signal dimension). + + Returns: + Phi : np.ndarray + The generated sensing matrix (size: m x n). + """ + # DFT = sp.linalg.dft(n)/np.sqrt(n) + A = np.random.randn(m, n) + Phi = A # @ DFT + Phi = Phi / np.linalg.norm(Phi, axis=0, keepdims=True) + return Phi + + +def apply_iq_imbalance(x, xi): + """ + Function which applies IQ imbalance to a given signal. + Parameters: + x : np.ndarray + Input signal (size: n x 1). + xi : float + IQ imbalance parameter. + + Returns: + y : np.ndarray + Signal after applying IQ imbalance (size: n x 1). + """ + z_1 = xi * x + z_2 = (1 - np.conj(xi)) * np.conj(x) + z = np.concatenate([z_1, z_2]) + return z.reshape(-1, 1) + + +def generate_random_phase_matrix(m: int, n: int): + """ + Function to generate a random phase matrix. + + Parameters: + m : int + Number of rows. + n: int + Number of columns. + + Returns: + P : np.ndarray + The generated random phase matrix (size: m x n). + """ + phase_matrix = np.exp(1j * np.random.uniform(-np.pi, np.pi, size=(m, n))) / np.sqrt(n) + return phase_matrix + + +def iq_imbalanced_measurement(A: np.ndarray, x: np.ndarray, xi: complex, noise_level: float = 0.0): + """ + Function to obtain IQ imbalanced measurements of a signal. + + Parameters: + F: np.ndarray + Sensing matrix (random phases)(size: m x n). + x : np.ndarray + Original signal (size: n x 1). + xi : complex + IQ imbalance parameter. + noise_level : float + Standard deviation of the Gaussian noise to be added. + + Returns: + y : np.ndarray + IQ imbalanced measurements (size: m x 1). + """ + y = xi * A @ x + (1 - np.conj(xi)) * np.conjugate(A) @ np.conjugate(x) # IQ imbalanced measurements + if noise_level > 0: + noise = noise_level * (np.random.randn(*y.shape) + 1j * np.random.randn(*y.shape)) + y += noise # Add noise + return y \ No newline at end of file From 36cf01026252cea3706107cba065f809bb7c221c Mon Sep 17 00:00:00 2001 From: tomlijding Date: Tue, 2 Dec 2025 17:11:40 +0100 Subject: [PATCH 07/16] Cleaning up the refactorization. Everything now resides in the src folder --- .gitignore | 1 + main.ipynb => Notebooks/main.ipynb | 0 .../main_cleaned.ipynb | 0 Notebooks/testing.ipynb | 55 +++ .../testing_omp.ipynb | 0 data.py | 99 ---- main.py | 264 ----------- models.py | 445 ------------------ plotting.py | 108 ----- src/__pycache__/algorithms.cpython-312.pyc | Bin 5293 -> 24945 bytes .../data_generation.cpython-312.pyc | Bin 2797 -> 4219 bytes src/__pycache__/utils.cpython-312.pyc | Bin 5073 -> 8713 bytes src/__pycache__/visualization.cpython-312.pyc | Bin 3416 -> 10146 bytes src/algorithms.py | 350 ++++++++++++++ comparison.py => src/comparison.py | 8 +- src/data_generation.py | 33 +- pretrained_models.py => src/eval.py | 16 +- src/utils.py | 88 +++- src/visualization.py | 108 +++++ test.py | 45 -- 20 files changed, 646 insertions(+), 974 deletions(-) create mode 100644 .gitignore rename main.ipynb => Notebooks/main.ipynb (100%) rename main_cleaned.ipynb => Notebooks/main_cleaned.ipynb (100%) create mode 100644 Notebooks/testing.ipynb rename testing_omp.ipynb => Notebooks/testing_omp.ipynb (100%) delete mode 100644 data.py delete mode 100644 main.py delete mode 100644 models.py delete mode 100644 plotting.py rename comparison.py => src/comparison.py (95%) rename pretrained_models.py => src/eval.py (96%) delete mode 100644 test.py diff --git a/.gitignore b/.gitignore new file mode 100644 index 0000000..7e99e36 --- /dev/null +++ b/.gitignore @@ -0,0 +1 @@ +*.pyc \ No newline at end of file diff --git a/main.ipynb b/Notebooks/main.ipynb similarity index 100% rename from main.ipynb rename to Notebooks/main.ipynb diff --git a/main_cleaned.ipynb b/Notebooks/main_cleaned.ipynb similarity index 100% rename from main_cleaned.ipynb rename to Notebooks/main_cleaned.ipynb diff --git a/Notebooks/testing.ipynb b/Notebooks/testing.ipynb new file mode 100644 index 0000000..7d5afc5 --- /dev/null +++ b/Notebooks/testing.ipynb @@ -0,0 +1,55 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": null, + "id": "ea564e45", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "c:\\Users\\tomli\\Documents\\S_C\\Year 1\\Semester 3\\Data Compression\\Projects\\Main Project\n" + ] + } + ], + "source": [ + "import os\n", + "import sys\n", + "cwd_dir = os.path.split(os.getcwd())[0]\n", + "if cwd_dir not in sys.path:\n", + " sys.path.append(cwd_dir)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "528be207", + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "compression", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.12.3" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/testing_omp.ipynb b/Notebooks/testing_omp.ipynb similarity index 100% rename from testing_omp.ipynb rename to Notebooks/testing_omp.ipynb diff --git a/data.py b/data.py deleted file mode 100644 index fc095b8..0000000 --- a/data.py +++ /dev/null @@ -1,99 +0,0 @@ -from dataclasses import dataclass -import random - -import numpy as np -import scipy as sp -import torch -from torch.utils.data import TensorDataset, DataLoader - -@dataclass -class DataConfig: - vector_size: int = 100 - dataset_size: int = 10000 - max_amplitude: int = 100 - min_sparsity: int = 3 - max_sparsity: int = 7 - -def build_dataset(config: DataConfig): - """ - Function to build a dataset of sparse and dense signals. - Parameters: - config : Config - Configuration object containing parameters for dataset generation. - - Returns: - dense_data : np.ndarray - The dense signal dataset (size: vector_size x data_set_size). - sparse_data : np.ndarray - The sparse signal dataset (size: vector_size x data_set_size). - """ - # Fetch configuration parameters - vector_size = config.vector_size - data_set_size = config.dataset_size - max_amplitude = config.max_amplitude - min_sparsity = config.min_sparsity - max_sparsity = config.max_sparsity - - sparse_data = np.zeros((vector_size, data_set_size), dtype=float) # Ensure float type - - # Iterate over the columns of the sparse_data matrix to define the data samples - for i in range(data_set_size): - sparsity = random.randint(min_sparsity, max_sparsity) - indices = random.sample(range(vector_size), sparsity) - amps = np.random.uniform(-max_amplitude, max_amplitude, sparsity) # Use negative and positive values - sparse_data[indices, i] = amps - - # Define the DFT matrix and multiply our sparse_data vectors with it to find dense data - DFT = sp.linalg.dft(vector_size) / np.sqrt(vector_size) - dense_data = DFT @ sparse_data - - return dense_data, sparse_data - - -def generate_sparse_vector(sparsity: int, vector_size: int, max_amplitude: int): - """ - Function to generate a single sparse vector. - Parameters: - sparsity : int - The number of non-zero elements in the sparse vector. - vector_size : int - The size of the sparse vector. - max_amplitude : int - The maximum amplitude for the non-zero elements. - - Returns: - x : np.ndarray - The generated sparse vector (size: vector_size x 1). - """ - x = np.zeros((vector_size, 1), dtype=float) # Ensure float type - indices = random.sample(range(vector_size), sparsity) - amps = np.random.uniform(-max_amplitude, max_amplitude, sparsity) # Use negative and positive values - x[indices, 0] = amps - return x - -def generate_dataloader(config): - """ - Generates a torch.Dataloader object of dense vectors - Parameters: - config : Config - Configuration object containing parameters for dataset generation. - - Returns: - dataloader : torch.utils.data.Dataloader - dataloader object used to access training and test data - variance : np.float - variance of labels, used for normalization - """ - dense_data, sparse_data = build_dataset(config) - - X = np.concatenate((dense_data.real,dense_data.imag)).T - Y = np.concatenate((dense_data.real,dense_data.imag)).T - - X_tensor = torch.tensor(X,dtype=torch.float) - Y_tensor = torch.tensor(Y,dtype=torch.float) - dataset = TensorDataset(X_tensor,Y_tensor) - - dataloader = DataLoader(dataset,batch_size = 500,shuffle = True, ) - variance = np.var(Y) - return dataloader, variance - diff --git a/main.py b/main.py deleted file mode 100644 index 90dee45..0000000 --- a/main.py +++ /dev/null @@ -1,264 +0,0 @@ -import itertools -import matplotlib.pyplot as plt -import numpy as np -import scipy as sp -import torch -from torch import nn - -from data import generate_dataloader, DataConfig -from models import (LearnedAutoencoderWithIQImbalance, - LearnedAutoencoderWithVarIQImbalance, - LearnedAutoencoder, - trainModelsForDiscreteSet) -from plotting import visualizeReconstruction, plotting, plot_losses -from pretrained_models import load_pretrained_models, evaluate_pretrained_models -from utils import discreteLossPoly, mapToDiscreteValues, validateModels - -base_config = DataConfig( - max_amplitude = 100, - min_sparsity = 7, - max_sparsity = 9, - vector_size = 100, - dataset_size = 10000) -dataloader, signal_variance = generate_dataloader(base_config) - -noisy_pretrained_models, imbalanced_pretrained_models, measurement_pretrained_models = load_pretrained_models() -evaluate_pretrained_models(noisy_pretrained_models, imbalanced_pretrained_models, measurement_pretrained_models) - - -vector_size = 100 -encoding_dim = 50, -hidden_dims = np.array([60,80]) -discrete_autoencoder_model = LearnedAutoencoder(vector_size,encoding_dim,hidden_dims) -optimizer = torch.optim.Adam(discrete_autoencoder_model.parameters(), lr=1E-3, betas=(0.9,0.999)) -MSELossfn = nn.MSELoss() -scaleFactor = 0.05 # Hyperparameter, setting this too high causes the problem to not converge to low loss, due to the problem converging to discrete values too early, setting too low causes the -# values to not converge to discrete values. Empirical testing showed that scaleFactor of 0.05 was nice - -# Training loop -losses = [] -lowest_loss = float("inf") -for epoch in range(5000): - for batch in dataloader: - inputs, targets = batch # Unpack the tuple - optimizer.zero_grad() - output = discrete_autoencoder_model(inputs) - qweights = discrete_autoencoder_model.encoder.q_values - loss = discreteLossPoly(qweights,scaleFactor) + MSELossfn(output,targets) - loss.backward() - optimizer.step() - losses.append(loss.item()) - if loss < lowest_loss: - lowest_loss = loss.item() - early_stopping_counter = 0 - best_model = discrete_autoencoder_model - else: - early_stopping_counter += 1 - if early_stopping_counter > 100: - discrete_autoencoder_model = best_model - print(f"stopped early after {epoch+1} epochs, with a loss of: {lowest_loss}") - break - - print(f"Epoch {epoch+1}, Loss: {lowest_loss:.6f}") - -plt.plot(losses) -plt.show() - -qweights = discrete_autoencoder_model.encoder.q_values -discrete_values = np.array([-np.pi, -0.5*np.pi,0,0.5*np.pi,np.pi]) -mapped_q_weights = mapToDiscreteValues(qweights,discrete_values) - - -mapped_discrete_autoencoder_model = discrete_autoencoder_model -mapped_discrete_autoencoder_model.encoder.q_values = mapped_q_weights - -discrete_model = LearnedAutoencoder(vector_size,encoding_dim,hidden_dims) -# Load the state dictionary -discrete_model.load_state_dict(torch.load("Models/discrete_models/discrete_model.pt")) - -visualizeReconstruction(discrete_model,base_config) - -discrete_model_losses = [] - -dataloader_val, signal_variance = generate_dataloader(base_config) - -loss_fn = nn.MSELoss() - -# We need to put it in an array for our function to work! -discrete_models = [discrete_model] - -normalized_loss, unnormalized_loss = validateModels(dataloader_val,discrete_models,loss_fn) - -print(f"Normalized loss is:{normalized_loss}, Unnormalized loss is:{unnormalized_loss}") - -# Training just one model for illustration purposes -encoding_dims_list = [30] -SNR_list = [np.inf] -imb_percentage_list = [0] - -discrete_models = trainModelsForDiscreteSet(dataloader,SNR_list,imb_percentage_list,encoding_dims_list,scale_factor=0.01) - -encoding_dims_list = [50, 40, 30, 20, 10, 5, 50, 50, 50, 50,50,50,50,50,50,50,50,50,50] -SNR_list = [np.inf, np.inf, np.inf, np.inf, np.inf, np.inf, 20, 17, 14, 11, 8, 5, 2, np.inf, np.inf,np.inf, np.inf,np.inf, np.inf] -imb_percentage_list = [0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0.04, 0.1, 0.3, 0.6, 1] - -discrete_models = [] - -for iter,__ in enumerate(SNR_list): - abs_noise_ratio = 10**(SNR_list[iter]/10) - variance = signal_variance/abs_noise_ratio - b = 1 - (0.2 * imb_percentage_list[iter]) - d = imb_percentage_list[iter] * np.pi/8 - hidden_dims = np.array([60,80]) - discrete_models.append(LearnedAutoencoderWithIQImbalance(vector_size,encoding_dims_list[iter],hidden_dims,b,d,variance)) - discrete_models[iter].load_state_dict(torch.load( - f'Models/discrete_models/discrete_model_SNR{SNR_list[iter]}_IRR{imb_percentage_list[iter]}_enc{encoding_dims_list[iter]}.pt', weights_only=True)) - -loss_fn = nn.MSELoss() -normalized_losses, unnormalized_losses = validateModels(dataloader_val,discrete_models,loss_fn) -visualizeReconstruction(discrete_models[2]) - -plotting(imb_percentage_list, SNR_list, normalized_losses, encoding_dims_list) -plt.show() - -# Create an array of 100 numbers (0 to 99) -numbers = list(range(100)) -RIC = {} - -# Generate all possible 3-length combinations -for model in discrete_models: - max_RIC = 0 - # Get q-values and create the complex matrix W - qvalues = model.encoder.q_values.data.numpy() - W = np.e ** (1j * qvalues) - DFT = sp.linalg.dft(vector_size) / np.sqrt(vector_size) - W = W @ DFT - # Normalize each column so they have unit norm - col_norms = np.linalg.norm(W, axis=0) - diag_norm_matrix = np.diag(col_norms) - W_normalized = W @ np.linalg.inv(diag_norm_matrix) - - for combo in itertools.combinations(numbers, 3): - # Select the columns specified by the combination - W_cols = W_normalized[:, combo] - mod_mat = W_cols.T.conj() @ W_cols - np.eye(3) - - # Compute eigenvalues of the Gram matrix - eig_vals, _ = np.linalg.eig(mod_mat) - eigenvalues = np.abs(eig_vals) # They should be real and close to 1 - - temp_RIC = np.max(eigenvalues) - - if temp_RIC > max_RIC: - max_RIC = temp_RIC - - RIC[model] = max_RIC - -print(RIC.values()) -models = discrete_models - -mu = {} -for model in discrete_models: - qvalues = model.encoder.q_values.data.numpy() - W = np.e**(1j * qvalues) - DFT = sp.linalg.dft(vector_size)/np.sqrt(vector_size) - A = W@DFT - # Normalize each column so they have unit norm - col_norms = np.linalg.norm(A, axis=0) - diag_norm_matrix = np.diag(col_norms) - A_normalized = A @ np.linalg.inv(diag_norm_matrix) - A_dotprod = np.abs(A_normalized.conj().T@A_normalized) - A_no_diag = A_dotprod - np.diag(np.diag(A_dotprod)) - mu[model] = np.max(A_no_diag) - -print(mu.values()) - -# Generate the data -max_amplitude = 100 -min_sparsity = 7 -max_sparsity = 9 -vector_size = 100 -data_set_size = 10000 - -dataloader, signal_variance = generate_dataloader(max_amplitude, base_config) - -# discrete_values = np.array([-np.pi, -0.5*np.pi,0,0.5*np.pi,np.pi]) -scale_factor = 0.01 -vector_size = 100 -encoding_dim = 50 -variance = 0 -hidden_dims = np.array([60,80]) -current_training_model = LearnedAutoencoderWithVarIQImbalance(vector_size,encoding_dim,hidden_dims,variance) -optimizer = torch.optim.Adam(current_training_model.parameters(), lr=1E-3, betas=(0.9,0.999)) -MSEloss_fn = nn.MSELoss() - -# Training loop -losses = [] -lowest_loss = float("inf") -for epoch in range(10000): - for batch in dataloader: - b = np.random.uniform(0.8,1) - d = np.random.uniform(0,np.pi/8) - current_training_model.b = b - current_training_model.d = d - inputs, targets = batch # Unpack the tuple - optimizer.zero_grad() - output = current_training_model(inputs) - # qweights = current_training_model.encoder.q_values - loss = MSEloss_fn(output, targets) # + discreteLossPoly(qweights,scale_factor) - loss.backward() - optimizer.step() - losses.append(loss.item()) - if loss< lowest_loss: - lowest_loss = loss - early_stopping_counter = 0 - best_model = current_training_model - else: - early_stopping_counter += 1 - if early_stopping_counter > 100: - current_training_model = best_model - print(f"Stopped early after {epoch+1} epochs, with loss of {lowest_loss:.6f}") - break - print(f"Epoch {epoch+1}, Loss: {loss.item():.6f}") -torch.save(best_model.state_dict(),f'Models/random_imbalanced_models/random_imbalanced_model.pt') - -vector_size = 100 -encoding_dim = 50 -variance = 0 -hidden_dims = np.array([60,80]) -random_imb_model = LearnedAutoencoderWithVarIQImbalance(vector_size,encoding_dim,hidden_dims,variance) -random_imb_model.load_state_dict(torch.load("Models/random_imbalanced_models/random_imbalanced_model.pt",weights_only=True)) - -loss_fn = nn.MSELoss() - -iq_imbalanced_models = [] -imb_percentage_list = [0, 0.04, 0.1, 0.3, 0.6, 1] -IRR_ratios = [] -for level in imb_percentage_list: - b = 1 - (0.2 * level) - d = level * np.pi / 8 - r = 0.5 * (1 + b * np.exp(1j * d)) - IRR_ratio = (np.abs(r) ** 2) / (np.abs(1 - r) ** 2) - IRR_ratios.append(10 * np.log10(IRR_ratio)) - random_imb_model.b = b - random_imb_model.d = d - iq_imbalanced_models.append(random_imb_model) - print(random_imb_model.b) - print(random_imb_model.d) - -max_amplitude = 100 -min_sparsity = 7 -max_sparsity = 9 -vector_size = 100 -data_set_size = 10000 - -dataloader_val, signal_variance = generate_dataloader(max_amplitude, base_config) - -normalized_losses, unnormalized_losses = validateModels(dataloader_val, iq_imbalanced_models, loss_fn) - -plot_losses(IRR_ratios, normalized_losses) -plt.show() -print(normalized_losses) -print(unnormalized_losses) - - diff --git a/models.py b/models.py deleted file mode 100644 index 6c21562..0000000 --- a/models.py +++ /dev/null @@ -1,445 +0,0 @@ -import math - -import numpy as np -import torch -from torch import nn -from torch.nn import init - -from utils import discreteLossPoly, mapToDiscreteValues - -def complex_xavier_init(tensor_real, tensor_imag, gain=1.0): - """ - Apply Xavier initialization (using uniform variant) to both real and imaginary parts - """ - init.xavier_uniform_(tensor_real, gain=gain) - init.xavier_uniform_(tensor_imag, gain=gain) - - -class ComplexUnitModulus(nn.Module): - # This class serves as the encoder layer. We are restricted to values which are of the form e^jq where q are trainable parameters - # Notice that the input and output dimensions are half of what the actual vector size is! Because it is a complex value, our dimensions are twice as long - def __init__(self, input_dim, output_dim): - super(ComplexUnitModulus, self).__init__() - # Here we create the q-values of our unitary matrix. These are the parameters we are training such that each entry of our complex matrix to encode our data is |F_ij| = 1 - self.q_values = nn.Parameter(torch.randn(output_dim, input_dim)) - - def forward(self, x): - # Compute unitary weights dynamically in each forward pass - W_real = torch.cos(self.q_values) - W_imag = torch.sin(self.q_values) - W_top = torch.cat([W_real, -W_imag], dim=1) # [W_real, -W_imag] - W_bottom = torch.cat([W_imag, W_real], dim=1) # [W_imag, W_real] - W_total = torch.cat([W_top, W_bottom], dim=0) # Stack rows to form the full matrix - out = torch.matmul(x, W_total.T) - return out - - -class ComplexLinear(nn.Module): - # This custom layer was found to work less well than a regular linear layer, probably because we put restrictions on the network allowing it to be less expressive. - # Notice that the input and output dimensions are half of what the actual vector size is! Because it is a complex value, our dimensions are twice as long. This gets fixed because we make the matrix - # W_total which multiplies [x_real;x_imag] and returns [y_real;y_imag] - def __init__(self, input_dim, output_dim): - super(ComplexLinear, self).__init__() - # Here we create the complex matrix W - # self.W_real = nn.Parameter(torch.randn(output_dim,input_dim))# eye(input_dim)) - # self.W_imag = nn.Parameter(torch.randn(output_dim,input_dim)) #zeros((input_dim,output_dim))) - - self.W_real = nn.Parameter(torch.empty(output_dim, input_dim)) - self.W_imag = nn.Parameter(torch.empty(output_dim, input_dim)) - self.reset_parameters() - - def reset_parameters(self): - # Initialize both the real and imaginary parts using Xavier initialization. - complex_xavier_init(self.W_real, self.W_imag) - - def forward(self, x): - # Compute unitary weights dynamically in each forward pass - W_real = self.W_real - W_imag = self.W_imag - W_top = torch.cat([W_real, -W_imag], dim=1) # [W_real, -W_imag] - W_bottom = torch.cat([W_imag, W_real], dim=1) # [W_imag, W_real] - W_total = torch.cat([W_top, W_bottom], dim=0) # Stack rows to form the full matrix - out = torch.matmul(x, W_total.T) - return out - - -class LearnedAutoencoder(nn.Module): - def __init__(self, input_dim, encoding_dim, hidden_dims): - super(LearnedAutoencoder, self).__init__() - - self.encoder = ComplexUnitModulus(input_dim, encoding_dim) - layers = [] - prev_dim = encoding_dim * 2 - for dim in hidden_dims: - layers.append(nn.Linear(prev_dim, dim * 2)) - layers.append(nn.ReLU()) - prev_dim = dim * 2 - self.decoder = nn.Sequential( - *layers, - nn.Linear(prev_dim, input_dim * 2) - ) - - def forward(self, x): - encoder_out = self.encoder(x) - - return self.decoder(encoder_out) - - -class LearnedAutoencoderWithNoise(nn.Module): - def __init__(self, input_dim, encoding_dim, hidden_dims, variance): - super(LearnedAutoencoderWithNoise, self).__init__() - self.variance = variance - self.encoder = ComplexUnitModulus(input_dim, encoding_dim) - self.encoding_dim = encoding_dim - layers = [] - prev_dim = encoding_dim * 2 - for dim in hidden_dims: - layers.append(nn.Linear(prev_dim, dim * 2)) - layers.append(nn.ReLU()) - prev_dim = dim * 2 - self.decoder = nn.Sequential( - *layers, - nn.Linear(prev_dim, input_dim * 2) - ) - - def forward(self, x): - encoder_out = self.encoder(x) - noise_np = np.random.normal(0, self.variance, size=self.encoding_dim * 2) - noise = torch.tensor(noise_np, dtype=torch.float) - noisy_y = encoder_out + noise - return self.decoder(noisy_y) - - -# It should be noted that all previous autoencoders are less general versions of this neural network architecture. -# If we set the IQ imbalance to 0 and the SNR to inf(), then we get previous architectures -class LearnedAutoencoderWithIQImbalance(nn.Module): - def __init__(self, input_dim, encoding_dim, hidden_dims, b, d, variance): - super(LearnedAutoencoderWithIQImbalance, self).__init__() - self.encoder = ComplexUnitModulus(input_dim, encoding_dim) - self.encoding_dim = encoding_dim - self.variance = variance - self.r = torch.tensor(0.5 * (1 + b * np.exp(1j * d)), dtype=torch.complex64) - layers = [] - prev_dim = encoding_dim * 2 - for dim in hidden_dims: - layers.append(nn.Linear(prev_dim, dim * 2)) - layers.append(nn.ReLU()) - prev_dim = dim * 2 - self.decoder = nn.Sequential( - *layers, - nn.Linear(prev_dim, input_dim * 2) - ) - - def forward(self, x): - encoder_out = self.encoder(x) - y_real = encoder_out[:, :self.encoding_dim] - y_imag = encoder_out[:, self.encoding_dim:] - y = torch.complex(y_real, y_imag) - yiq = self.r * y + (1 - self.r.conj()) * (y.conj()) - yiqr = yiq.real - yiqi = yiq.imag - yiqstack = torch.cat((yiqr, yiqi), dim=1) - noise_np = np.random.normal(0, self.variance, size=self.encoding_dim * 2) - noise_tensor = torch.tensor(noise_np, dtype=torch.float) - y_iq_stack_noisy = yiqstack + noise_tensor - return self.decoder(y_iq_stack_noisy) - -def trainModels(dataloader,SNR_values,imb_percentages,encoding_dims,epochs,signal_variance = 133,hidden_dims=[60,80], input_dim=100): - # Function takes as inputs: - # dataloader: The dataloader object of the training data set - # SNR_values: Signal to noise ratios - # imb_percentages: imbalance percentages - # encoding_dims: Encoding dimensions - # epochs: Maximum amount of epochs we want the model to run for - # signal_variance: The variance of the original signal - # hidden_dims: Hidden dimensions for the neural network - # Returns the best model with corresponding MSELoss - models = [] - for model_num,(SNR,imb_percentage,encoding_dim) in enumerate(zip(SNR_values,imb_percentages,encoding_dims)): - abs_noise_ratio = 10**(SNR/10) - variance = signal_variance/abs_noise_ratio - b = 1 - (0.2 * imb_percentage) - d = imb_percentage * np.pi/8 - hidden_dims = np.array([60,80]) - current_training_model = LearnedAutoencoderWithIQImbalance(input_dim,encoding_dim,hidden_dims,b,d,variance) - optimizer = torch.optim.Adam(current_training_model.parameters(), lr=1E-3, betas=(0.9,0.999)) - MSEloss_fn = nn.MSELoss() - - # Training loop - losses = [] - lowest_loss = float("inf") - for epoch in range(epochs): - for batch in dataloader: - inputs, targets = batch # Unpack the tuple - optimizer.zero_grad() - output = current_training_model(inputs) - loss = MSEloss_fn(output, targets) - loss.backward() - optimizer.step() - losses.append(loss.item()) - if loss< lowest_loss: - lowest_loss = loss - early_stopping_counter = 0 - best_model = current_training_model - else: - early_stopping_counter += 1 - if early_stopping_counter > 100: - current_training_model = best_model - print(f"Stopped early after {epoch+1} epochs, with loss of {lowest_loss:.6f}") - break - print(f"SNR:{SNR}, Imbalance Percentage:{imb_percentage}, Encoding dimension:{encoding_dim}, Epoch {epoch+1}, Loss: {loss.item():.6f}") - models.append(best_model) - losses.append(lowest_loss) - return models, losses - -def trainModelsForDiscreteSet(dataloader,SNR_values,imb_percentages,encoding_dims,signal_variance = 133,hidden_dims=[60,80], input_dim=100, scale_factor=0.05): - # Function takes as inputs: - # dataloader: The dataloader object of the training data set - # SNR_values: Signal to noise ratios - # imb_percentages: imbalance percentages - # encoding_dims: Encoding dimensions - # signal_variance: The variance of the original signal - # hidden_dims: Hidden dimensions for the neural network - # scale_factor: Hyperparameter for the discretization step - models = [] - discrete_values = np.array([-np.pi, -0.5*np.pi,0,0.5*np.pi,np.pi]) - for model_num,(SNR,imb_percentage,encoding_dim) in enumerate(zip(SNR_values,imb_percentages,encoding_dims)): - abs_noise_ratio = 10**(SNR/10) - variance = signal_variance/abs_noise_ratio - b = 1 - (0.2 * imb_percentage) - d = imb_percentage * np.pi/8 - hidden_dims = np.array([60,80]) - current_training_model = LearnedAutoencoderWithIQImbalance(input_dim,encoding_dim,hidden_dims,b,d,variance) - optimizer = torch.optim.Adam(current_training_model.parameters(), lr=1E-3, betas=(0.9,0.999)) - MSEloss_fn = nn.MSELoss() - - # Training loop - losses = [] - lowest_loss = float("inf") - for epoch in range(10000): - for batch in dataloader: - inputs, targets = batch # Unpack the tuple - optimizer.zero_grad() - output = current_training_model(inputs) - qweights = current_training_model.encoder.q_values - loss = discreteLossPoly(qweights,scale_factor) + MSEloss_fn(output, targets) - loss.backward() - optimizer.step() - losses.append(loss.item()) - if loss< lowest_loss: - lowest_loss = loss - early_stopping_counter = 0 - best_model = current_training_model - else: - early_stopping_counter += 1 - if early_stopping_counter > 100: - current_training_model = best_model - print(f"Stopped early after {epoch+1} epochs, with loss of {lowest_loss:.6f}") - break - print(f"SNR:{SNR}, Imbalance Percentage:{imb_percentage}, Encoding dimension:{encoding_dim}, Epoch {epoch+1}, Loss: {loss.item():.6f}") - best_qvalues = best_model.encoder.q_values - mapped_best_qvalues = mapToDiscreteValues(best_qvalues,discrete_values) - best_model.encoder.q_values = mapped_best_qvalues - models.append(best_model) - losses.append(lowest_loss) - return models - -class LearnedAutoencoderWithVarIQImbalance(nn.Module): - def __init__(self, input_dim, encoding_dim,hidden_dims,variance,b=1, d=0): - super(LearnedAutoencoderWithVarIQImbalance, self).__init__() - self.encoder = ComplexUnitModulus(input_dim,encoding_dim) - self.encoding_dim = encoding_dim - self.variance = variance - self.b = b - self.d = d - layers = [] - prev_dim = encoding_dim*2 - for dim in hidden_dims: - layers.append(nn.Linear(prev_dim,dim*2)) - layers.append(nn.ReLU()) - prev_dim = dim*2 - self.decoder = nn.Sequential( - *layers, - nn.Linear(prev_dim,input_dim*2) - ) - - def forward(self,x): - encoder_out = self.encoder(x) - self.r = torch.tensor(0.5*(1+self.b*np.exp(1j*self.d)), dtype=torch.complex64) - y_real = encoder_out[:, :self.encoding_dim] - y_imag = encoder_out[:, self.encoding_dim:] - y = torch.complex(y_real,y_imag) - yiq = self.r * y + (1-self.r.conj()) * (y.conj()) - yiqr = yiq.real - yiqi = yiq.imag - yiqstack = torch.cat((yiqr,yiqi),dim=1) - noise_np = np.random.normal(0,self.variance,size=self.encoding_dim*2) - noise_tensor = torch.tensor(noise_np,dtype=torch.float) - y_iq_stack_noisy = yiqstack + noise_tensor - return self.decoder(y_iq_stack_noisy) - - class AdversarialNetwork(nn.Module): - def __init__(self, input_dim, encoding_dim, hidden_dec_dims, hidden_pred_dims, variance): - self.encoder = ComplexUnitModulus(input_dim, encoding_dim) - self.encoding_dim = encoding_dim - self.variance = variance - dec_layers = [] - prev_dim = encoding_dim * 2 - for dim in hidden_dec_dims: - dec_layers.append(nn.Linear(prev_dim, dim * 2)) - dec_layers.append(nn.ReLU()) - prev_dim = dim * 2 - self.decoder = nn.Sequential( - *dec_layers, - nn.Linear(prev_dim, input_dim * 2) - ) - pred_layers = [] - prev_dim = encoding_dim * 2 - for dim in hidden_pred_dims: - pred_layers.append(nn.Linear(prev_dim, dim * 2)) - pred_layers.append(nn.ReLU()) - prev_dim = dim * 2 - self.predictor = nn.Sequential( - *pred_layers, - nn.Linear(prev_dim, 2), - ) - - def forward(self, x): - # Encoder output - encoder_out = self.encoder(x) - - # Predictor output, we scale the output by our predefined ranges (softmax normalizes between [0,1]) and add bias - predictor_out = self.predictor(encoder_out) # Size: B x 2 where B is batch size - b_raw = predictor_out[:, 0] - d_raw = predictor_out[:, 1] - b_tensor = torch.tanh(d_raw) * 0.1 + 0.9 # Scale between 0.1 and -0.1 and add bias - d_tensor = torch.tanh( - b_raw) * math.pi / 16 + math.pi / 16 # We scale it between pi/16 and -pi/16 and then add pi/16 - - cos_d_tensor = torch.cos(d_tensor) - sin_d_tensor = torch.sin(d_tensor) - K1R_tensor = 0.5 * (1 + b_tensor * cos_d_tensor) - K1I_tensor = 0.5 * b_tensor * sin_d_tensor - K2R_tensor = 0.5 * (1 - b_tensor * cos_d_tensor) - K2I_tensor = 0.5 * b_tensor * sin_d_tensor - - # Some nice information about the mean b and d distortion - self.b_mean = torch.mean(b_tensor) - self.d_mean = torch.mean(d_tensor) - - # Here we add IQ imbalance - y_real = encoder_out[:, :self.encoding_dim] # Size: B x E where E is encoding dimension - y_imag = encoder_out[:, self.encoding_dim:] # Size: B x E where E is encoding dimension - y_IQ_real = (K1R_tensor + K2R_tensor).unsqueeze(1) * y_real + (-K1I_tensor + K2I_tensor).unsqueeze( - 1) * y_imag - y_IQ_imag = (K1R_tensor + K2I_tensor).unsqueeze(1) * y_real + (K1R_tensor - K2R_tensor).unsqueeze( - 1) * y_imag - y_IQ = torch.cat([y_IQ_real, y_IQ_imag], dim=1) - - # Finally we add noise - noise = torch.randn_like(y_IQ) * self.variance - y_IQ_noisy = y_IQ + noise - - # And run the decoder - return self.decoder(y_IQ_noisy) - - -def omp(A, y, epsilon, max_iterations=np.inf): - """ - Orthogonal Matching Pursuit (OMP) algorithm for sparse signal recovery. - - Parameters: - D : np.ndarray - The sensing matrix (size: m x n). - y : np.ndarray - The observed vector (size: m x 1). - epsilon: float - The error tolerance for stopping criterion. - max_iterations : int - Maximum number of iterations to perform. - - Returns: - x_hat : np.ndarray - The recovered sparse signal (size: n x 1). - """ - m, n = A.shape - x_hat = np.zeros((n, 1)) - residual = y.copy() - index_set = [] - max_iterations = min(max_iterations, n) - err = np.inf - while err > epsilon and len(index_set) < max_iterations: - # Step 1: Find the index of the atom that best correlates with the residual - correlations = A.T @ residual - correlations[index_set] = 0 - best_index = np.argmax(np.abs(correlations)) - index_set.append(best_index) - - # Step 2: Solve the least squares problem to update the coefficients - A_subset = A[:, index_set] - x_subset, _, _, _ = np.linalg.lstsq(A_subset, y, rcond=None) - - # Step 3: Update the residual - residual = y - A_subset @ x_subset - err = np.linalg.norm(residual) - - # Step 4: Construct the full solution vector - for i, idx in enumerate(index_set): - x_hat[idx] = x_subset[i] - - return x_hat - - -def psomp(A, y, K, sigma2=None): - """ - Paired-Support Orthogonal Matching Pursuit (PSOMP) - Based on Algorithm 1 in Masoumi & Myers (2023). - - Inputs: - A : sensing matrix (M x N) - y : measurement vector (M,) - K : sparsity level of x - sigma2 : noise variance (optional for stopping rule) - - Outputs: - z_hat : estimated augmented sparse vector (2N,) - """ - - M, N = A.shape - - # Build augmented matrix - A_aug = np.hstack([A, np.conjugate(A)]) - - # Initialize - r = y.copy() - Q = [] # support set - z_hat = np.zeros(2 * N, dtype=complex) - - max_iter = 2 * K - err = np.inf - while len(Q) < max_iter and (sigma2 is None or err > sigma2): - - # --- Step 1: support detection (paired) --- - # Compute both matching terms - match1 = np.abs(np.conjugate(A).T @ r) # |a_j^* r| - match2 = np.abs(A.T @ r) # |a_j^T r| - - # Choose best index from first N entries - j = np.argmax(np.maximum(match1[:N], match2[:N])) - - # Paired support structure - pair = [j, j + N] - Q.extend(pair) - - # --- Step 2: least squares on selected support --- - A_sub = A_aug[:, Q] - z_sub, *_ = np.linalg.lstsq(A_sub, y, rcond=None) - - # assign - for ii, idx in enumerate(Q): - z_hat[idx] = z_sub[ii] - - # --- Step 3: update residual --- - r = y - A_sub @ z_sub - - return z_hat \ No newline at end of file diff --git a/plotting.py b/plotting.py deleted file mode 100644 index c8b4cf1..0000000 --- a/plotting.py +++ /dev/null @@ -1,108 +0,0 @@ -import matplotlib.pyplot as plt -import numpy as np -import scipy as sp -import torch -from torch import nn - -from data import build_dataset - -def plot_several_models(all_imbalanced_losses, all_measurement_losses, SNR, IRR_ratios, measurement_sizes, all_noisy_losses): - plt.style.use('ggplot') - fig1, (ax1, ax2, ax3) = plt.subplots(ncols=3, nrows=1, figsize=(18, 6)) - - for i in range(4): - if i == 0: - noiseless_loss = all_imbalanced_losses[0][0] - ax1.plot(SNR.keys(), [noiseless_loss for i in SNR.keys()]) - ax2.plot(IRR_ratios.values(), [noiseless_loss for i in IRR_ratios.values()]) - ax3.plot(measurement_sizes, [noiseless_loss for i in measurement_sizes]) - - ax1.plot(SNR.keys(), all_noisy_losses[i], marker="o") - ax1.set_xlabel("SNR $(dB)$") - ax1.set_ylabel("NMSE") - ax1.set_title("Noisy Model Performance") - ax1.grid(True) - ax1.legend(["baseline model", "sparsity 3-5", "sparsity 5-7", "sparsity 7-9", "sparsity 10-30"]) - - ax2.plot(IRR_ratios.values(), all_imbalanced_losses[i], marker='s') - ax2.set_xlabel("IRR $(dB)$") - ax2.set_title("IQ Imbalanced Model Performance") - ax2.legend(["baseline model", "sparsity 3-5", "sparsity 5-7", "sparsity 7-9", "sparsity 10-30"]) - ax2.grid(True) - - ax3.plot(measurement_sizes, all_measurement_losses[i], marker='^') - ax3.set_xlabel("Measurement Dimension") - ax3.set_title("Measurement Model Performance") - ax3.legend(["baseline model", "sparsity 3-5", "sparsity 5-7", "sparsity 7-9", "sparsity 10-30"]) - ax3.grid(True) - - plt.show() - -def visualizeReconstruction(model, max_amplitude=100, min_sparsity=3, max_sparsity=5, vector_size=100): - h, x = build_dataset(max_amplitude, min_sparsity, max_sparsity, vector_size, 1) - - H = np.concatenate((h.real, h.imag)).T - - H_tensor = torch.tensor(H, dtype=torch.float) - - H_hat = model(H_tensor) - - h_hat = np.array(H_hat.detach()) - - h_real, h_imag = np.split(h_hat, 2, 1) - h_hat = h_real + 1j * h_imag - h_hat = h_hat.reshape(-1, 1) - DFT = sp.linalg.dft(vector_size) / np.sqrt(vector_size) - iDFT = DFT.conj().T - - x_hat = iDFT @ h_hat - indices = range(len(x_hat)) - - plt.vlines(indices, 0, x, linewidth=3) - plt.vlines(indices, 0, x_hat, colors="orange") - - plt.legend(("x", "x_hat")) - -def plotting(imb_percentage_list, SNR_list, normalized_losses, encoding_dims_list): - # Quick calculation for the sake of plotting - imb_db_list = [] - - for perc in imb_percentage_list[13:19]: - b = 1 - 0.2 * perc - d = np.pi / 8 * perc - r = 0.5 * (1 + b * np.exp(1j * d)) - IRR_abs = np.abs(r) ** 2 / np.abs(1 - r) ** 2 - imb_db_list.append(10 * np.log10(IRR_abs)) - - plt.style.use('ggplot') - fig1, (ax1, ax2, ax3) = plt.subplots(ncols=3, nrows=1, figsize=(18, 6)) - - ax1.plot(SNR_list[6:13], normalized_losses[6:13], marker="o", color="g") - ax2.plot(imb_db_list, normalized_losses[13:20], marker='s', color='b') - ax3.plot(encoding_dims_list[0:6], normalized_losses[0:6], marker='^', color='r') - - ax1.set_xlabel("SNR $(dB)$") - ax1.set_ylabel("NMSE") - ax1.set_title("Noisy Model Performance") - ax1.grid(True) - ax1.legend(["Discrete Model"]) - - ax2.set_xlabel("IRR $(dB)$") - ax2.set_title("IQ Imbalanced Model Performance") - ax2.legend(["Discrete Model"]) - ax2.grid(True) - - ax3.set_xlabel("Measurement Dimension") - ax3.set_title("Measurement Model Performance") - ax3.legend(["Discrete Model"]) - ax3.grid(True) - plt.savefig("Images/discrete_model_performance.pdf", format="pdf", bbox_inches="tight") - -def plot_losses(IRR_ratios, normalized_losses): - fig, ax = plt.subplots() - ax.plot(IRR_ratios, normalized_losses, '-o') - ax.set_xlabel('IRR Ratios [-]') - ax.set_ylabel('NMSE [-]') - - # Turn off the offset notation - ax.ticklabel_format(useOffset=False, style='plain', axis='y') diff --git a/src/__pycache__/algorithms.cpython-312.pyc b/src/__pycache__/algorithms.cpython-312.pyc index 53e11c130ff4782c5b138dd63d1f0646e9d25d77..87016e9b4870ffbb5bdb17f771c20ba11d46a6dd 100644 GIT binary patch literal 24945 zcmdUX3ve69ndS_h0}>zs0(?INiWDX2Ws{PnP_!*mqGUa(w`@_A5r_auPr7GJJ|7py0_jLDk|Nqzj|9AhT#Zp8;IAnUt|K?GO`WyTq1-%$~ zFh^6=6y>G7bb#ui$yL*%fvYB<32J+^G(OV?bU}TOp2T$lL(te`3^F|oO_?Zfy;uJl z-DA>FFH&B^Yn0dM(+)YL*C^MwwL-k7n51MNrD>IvW|Fc9QWme0(n3<2A*E%NlqDo( z38XAtC1t7C>a}^x1~guKzt-!3Hd>WC-tvB(w*v0jNO_e|Uezk)m6<3XJ=CJ~h!pFm zz12{X!`tAkfor+97Se5&o+{UVjkoSKT~FmG?OJmmZ+E+BUK0ud)%ipIs7u3Jz5Yla z>x=r1gd>sT;lLT*WI&Wqvbpp*4^0!~lJ>+}ab1OAYQ9d!I+4}tQ!lGe_&xO134nt8&JhhB71lBo{9L_NN+S84ETGy z!hIt_Unm;sJ>}lpd(P)!ovpp6d_i9%3XRy-+vSORoO{E;Vb&LkKtp^Hddh=66*uGv*U?9x;ql3Z7)?xTweNaHacg-zU8~cW}K#j~;wPqmW)I)~Sn-+9c z8C_Mfc4qsJbWbnp80Ghmbx%KlbW|S_DM%ml0T%HE_|QHw+j}%|3dSG(8q=foYF?vy zbaCn$-J?H6K|hsYRiQ3tpbkgF-jTq_@}XmZqR7zs*AV%A8U~N_HYzH;kK(8=7gN;R z;u9D$Mk&z{_I5#tLRujVVS@_-r{Uzm_qI4tIm#`UI7-dZ-7bdLM@EKyENg}AJmYp_ zAG+NvR+Tp$_pqKI%n+8>N5gF2Ag^a(EQNUHvik~|9kV)K7x4x9d6PdhJQ8(#{XxDc zJQ9`SCbzpU;E6=s?g$Pr7%Af{)|Ex3H&**-pKX3Jz1UHe)GBM=dw0e+_3oQ9c%fN zY0{M3k=mcynXcJ1XPdWfi|ZHdRa5Pg?aBUBf4Y9lTZMqnb4Y)uZ_^iTVX=)1J1b+Oft8dFLJws$T=`>cDpZ+ zcml!`GF#ZEq0+oXoKStfK)~&urP+FH4|e?v!o7N%d zdOLY7NubX1HbRb-Se{o4j89J(p8*)3j<<+?eZ(IEF277%$~;d475rV`dA|jIDoAhrcw z9AT^Bwi-XJSoSGoR*I!WP6H8G>GfdpbcWe9&un>EL{(N#1ttS;J#)L`R>#cPz4mO= zzHG(*xbAxKVnx;C9_1MG0#l!1>VL$n5m+t`Kq<&9w+rs%gCyvoeAX>H}N(RPAJK+>nzZ zi@#ld3^JI-{)Y@ZIYO98(q!91Z~i|xYKmk|g6M!Dnx zDyHKApNzrSiRn3Q7j@wz#0;EnNCu)(6(}l-IGltb6hZ}o({l!)Bxy`ZD2t|6Ee}Op zL6F#NUMXVvG5z(^y8PPU=P3vS@Xl}0tJWBxKek<}@g)66hOYoeaLY3VAho9ZKEXc4 z0+-(nZxV(O!PiFdbMXex@USoB6=1eO5S_g4r0>WXzUY+i@(8S)V3Efgy*~1JT>?mA zYoR#aObUTjA3@v2gMP2q7s7aiHv~MRum!;Vh;hHx$=PGNGCnm2>99S|!W>~jX)l9`EV@s5_ zswii%FKOZWp}FM7!HI*3!IWvH^OhxR-ukf~ZUgo=Kgzpt4v=}UA0mWz=Zh)0hXEEz z;$6bUF?~UR*&wDkC5mtjyBE^12Y|S=L<+Gki1Wqb=XE1I#gd@E1<8ciZLCJ6t3{rN z(mB!qWSq)X)S%o=wZ0yX7k^M{zrjs#$-~*w4QXbB0Nz?5-6K4Rj5H)&SQJh^7sPY#ki{#91GwU0LAC0LSohy4*>AIuLq$b9IFzXBiPbTFgjuMjm! zr4?```8}|1qTI4<1s@#A=utRMh5)d@wrECPc%4spVuct+42_4&x+ zKp5c%@hJ`{0i+^7U~w|BFCro1-z1EG)X;={8t}L{aM_vtzw>w%%`wZ}PWg)JO%EM|%MJV6VNum;g z1E(8!4$Qr}G!2<#rn02&2d#6RYPtKJ(O9rnQjYA@UeW$rLa>W8%YmV zNtOyFAQhZ?{W>8hKL3rSLZf=W96WI_c+nH^g!+7a`2!UB02%ysAcB5%)j)wX&_QV= z5NV*u21CAVh{_T`ZLoT2FAUMByo6UX%Xqb%o*+OG4`3VzHD04K${kYS-pW*f8p)Fe zq?Hk*6)7{u$kNKh8HbRc7KA9mI1+{sDHH^b;Y>nF(xj6n6iBPp%5xSJ20vA#l~{g^ zA<{~z4RZH_0Mg0`(n?9AUSoQBjb%hF%eGNiV0M2b6#l_()(NqHT>h%1-RxPoLwJSD zE(kRb-XIG%jEE)tJS>V5_GKWv)^}}~H}whH`yJbPnq5WW6{|@+p1#P_-p9+m zVtAD#_m(TcH?BHyWcham3W_6PfZc37%-{k+a^p=d6ug2${{r16a?U()KFEy zP5AkkUe^&gqL<-FQC=O65gqNpqfhUy9)!p}Pfi8IEEITKe*;D{OCz2?!hoLSPAkWK+6EUwuI?{Qi4SPXI(-YBvYb^w3r`of_hUPmmbI$}Cqhgp&Pu;-AV za28kxVN1RE6T$VYr4XzbMnx0Js9++YM|th2|1z%w!V>D|8Hh)sp1w=$1t^0z3;0Ha zLRQFl*-ak13CdA3f zW!)4v$)yf_d*62s-#t8E`9j>Bt8GdJGPP}Krb+~2>AKC?(k*Fb%L+)0$Rs2q*i$kR zD+MIB)~w$uDBnZszdx7-jvk`BI(QG7xILL^Sc^3rhb zq7w9lKcuK$V4*QnFQkqY#foEQU`Iu;*ag-y2JeblKtX50U$GJ|mb-^mS-BE3DE4e%H)dFVmvUCF7 zdezad0Z~!jeIFOrL|%OK^=S-$vHL!beHPoveg?=#|1|rv_m5sYzI#^l(SQ9f7=F5Y zVAB^We)8Xb@%M0#*95@b;-W9=iSSx~s9%sc9Ax~&aSH6=!#=MQ^#9-y>2Rw`lNib zb01m|(1!@r#o+1#zBs!+Vc<5F>BJbiN9}UD9K6XF0-qk%6ZP@hG5@dtpEbjNUhiR9 z&nS!BOSEBzhoj&LqU-c}z#k;fa*5oDHy%B;4+~{c&=HrC0UvJ~^RZ#~0PFGc%ta7h zXvc?@f7CZj;5c|~MSVeDKg{~Uy{UmO@`3{qtm?t`0UGn}lcGNgU+NEDbb~*O*un^J z$=8;HhFs_?zBJ+=2zdgK4IQRH>2(MzkJA@?6TqSpi0~$IbwitZExds*Sza{JcJZa2 zixDD7eQxL&e^?OXgIJg!3#;fGVOi*Hca#OcCREy!Qh5{UA<%0;^`SfPqq+M-pumTS zFTxiG!dJmn%8fsHJ*hK{2~QMUa16xLCc+z|9(KSNg(eC9HoT4`t{`IrBs`21d|h97 zB!mt;MHjI=p=r1nTPE@!`9UxMxO-uxkCN_S{}?j;KKw;mVX}`?OAe~UI=+8#=L__ubDTya^x))RN|S0!Ud>jlj~6dC z?s>QUz20<>FWofJ|7je$$hT}pycwJIG|4#@aM*UH6mfr{)aV>YWM0PbwQzEi>!0m2C-K&gz)5 zOj^EH3Q4C*CQIh6&YZOZZza9x{_)18A6Yjpl|r#gR?6x~oPWR6nQK^^D9*VyrmZcx z`fZa%A6Q#v8Z*{S_}lK9+55izsoa*GX~#xrVY=?=x$?QocPr;i>Gosk7M@dxqB7{h{7lo zf|?$*7`$^=PC*a~pqkZFt(;;&)>+0(if74klf`2Y*guH~tcV~mz+W+oSH~3#xQQUJ z5-^065ENC4IEgdM2+YcvSFRUnpONIXDacT*C%uf?a1Gv45y!2Gl|{EmC3>w~C8U9$1fNxS%T#cjlG;uXoP!{^a?S#ID)RDIu3TqQ zc0P{#JE-}ZC;leR=u=XyIVWe5zCo;!Yvfc*aa-l|jA{?BQF`$)-=IQC0ci1`5iJ5z ztm=lf0EQ2~Cm_5&h_jzX;zaT)l5r$5aAZG+KYtI&Ye>ET#BYUR!6G_j<47iuz!<04 zFCn>(8=FKjjbtwp zROzs=?4#JPBY6V};C+gH6UiSS!9|>FE&FdVeiKOw$t@(`M54eibEMA$E|C46K5#i^ z--3sHspP3IqCEEBVHQ}$QtWLc2a(JmAqrj@eX+B6@82WAG0)yX@<&Mi1Cn=;%ptjp z|G;20!hQ?yeH+Pt!Utx8pDqh-&t#_n0C9Kz&B$6v_Xv`DvDq`P_kK({6l}&k0XECkwl37RXKLFQYWHMn z_avCb%JnnMTwS*E`R~`fw?BRQe73VUQ`!5Z$jt^XT`Kz*jNDwwOQ3c)VRtVf#e(;D=`SA=!`QMI;A+xK!+UB}4%$|9sOEBXd$yRm}w>rsxMKI&#Y-NIRPP~XVI(qVX z+2yYOQJ1?@bGF$t*_v(h=I!b(cde5ng3Dd~DlT`)(HYzHXR_u^E4bX5pjBjsH3NMT z6P=>3R$I#vqr9r?w6e-l^<+UqlNst#5O8HA%?q-gg6DY6^Q@7_o|1K$@m`+2lF5)5 z7iCkJl1nxj<{KAP(k(MCV&9RVW>Vt{jf*lim2#nZkgWdDAzkIEno&-g>7sE_#cU_1 zfSy7yN{ovtJcAe)Rk#7zCzN*8DRq@%qH$4kM=#@XQ&jF}RczlV1!cML=Uh7;2Vc%2gR71;#~y=Y?UJanaPx_CW&HiNuTK zED~&BfvwTy5YRUAQo(#M*{1SJ+fgS zD;fniKM}JN?Skmr7TE!$z%Gb8tpuNh*3{|SXK$Uov*(@tv-{`T=DgqOzuSMeJ-hk2 z%(~|?P0wW-p8tXGhvDys=WS;N{`VVL6f3gk4FwiOP|WpD_usrUed&$h^szbmJBGW4 zZ!rKFGbQaS8x*%E&(EBgw?Fl$LD73Vcq@3%vCw`f(|+i^)=c{m;@EW*QpyI!XTH;M zw`0C?_v!{k93OIkt|Z|BPC#X6D(p(7Bs4Xub?H9Y`9xo-(|ZN{#Zdc=z`T%zfz%&IAVdS)+j5!I+gaMBP z6dMIWQAMdSa%34oNfOJD*gB{}Rx3}1#Y-$MuN1NTn32GpVySv+Y!%>+0lb}*G%BJ8 zYWz63Bex!U$duPZI=P2T|DStkweo%&J!D$FhrIHJW!V#~Na}Y93Kkc-C&L(8#YdSp z!FC9*AN2{~Jcfv~+o!G(M=NhRElU|kh_ zD7aBL;NI8^zvf(&5n~;4(WeL(U98yTdtV{bA9(Z?+#?wK0j~Wo&RwC zt@Yn@&09C;Y8z6v>7A1dY{sxO0Wz#>z+JMi8KbTwXRC$H7gR&SchKbq?s? zMyWjI$~mM`KsCgO+XtNRTr@d;cQ^a5;MaW|ECSxfLR>ZhQU4j<#jnQeqMp#8pdbG# z-fTjGaG%!&eIBsSUvvvsFS!aL#559$z?MB981vU*(jsz5hCATD;)a(WnUr9AqfO$LDc9dA}%i`NV})u@!0NPSK5h7hG&3d zM2dlF!~WlzhMSwGH>WPY@l^aU*z4;XZ+1_2&vaz#cE*q99F5;-Or3yZK^*JBT)*rW z!tAlhvDCV3<%XGUnaZtm_DtpW_yO^L&RYIJOIKAcR@dGvpDzCy#Mk5+oABDa*s|fa z@0M@o;;kY4-5Nje&_LBS-fW+4PraP2-5Ni#SnJIDm8-5x(Xh9X%QSanoE@3!XF&v4 z*Cnq_H_U9#RPP|aR!ISGfHF5uZ-h70Yy|;&c(G>9vft47ipFo)(#<c~`e-0RF%J^yY+rs~D_4!zfr zKG&By+_!KjlsOd2S#8iAhiQARycXJgn6CR7MOW9w4}S2t0(PZezL+_Dap6!fb13-O z>>rA!WcX*Q)Aif#+2-vX@h)gA6W>nu5PPCOs{t^C&aR_!~{)5J5D_G0GYK9n$|6JKf#xc^nIqfBA z4SNqbx+-!Q1FQ!4Km+oOc@~PzYZtQdf{^!AMcu>6CS&RCpr&DlWCgWS7*{N%fR!X1 z=H}IYUW2~xD6C`VycVlSc{M2tj;u7Cx1*C3O}*GEORNO{fs3vgWHsC&uC>NhN|&8W z^J*)jmb~6BU7@$>>-UshIm)+ym8L~>Nhyt4U$tTj7MhC+KVep}I9!0-2^dLMw!bV2?QRjwZM~}Ol@>yL@VC>EacmYOyPQmRCjwS00 zgXUp$D=CW*`K+nPF7ms}xyuJ0Dh28vTtzNtKp<9$P*32%tyCD zp=qM8owE;)CiAi2K`B%s=(*;`8|0+62-FB%7v;i^dan6{BS9y)7hVJ}PH@=FOA4pA zfe#~eTTmzo8%}bb^hHP5kk~`l+=HIz;~OgWF|>4f--`_nL3c?FR`^~w?z3cJ!-CgU z3P*ztdY~StVdVAbpBcfu3~=z8Hs}u#_XA!V@P)`hA8@1rI{+=_wcrscxNI5%aNt}3 z&T$Gvq7m4mfSWXlvw_RT)154f#Tv!F=1Z3M7EcFxI>hTq8+is!aq)ZMJS044%nJv; z!GSoiaf@Ynz(n9*84$WybaEs~c&5`G8G&ydE*s@5_~1Z(NzU z@}+Cz2XfZ3@q>%yRmp}KTef`Dc=uwF`9{k`%lO`0ktJdL;+8k}rc7^i&%E+}UB?HN zRa244Nb=>$&w?UwZByKwIG178pqt{k$#ZYAH?K@zNd>ZNwq?t=$BS}|ZGoxEFjYw~ z%r>KxEdT0>q$$xmxf@iAutYyNeemY7>0_|I_uPvnk7et?uv8sq5{-!yNt&cjTuW`p zRBp`JH$sjQ>ka>e|3+vclzcf`(h}D$)l$VJ`Blu;bv$%Z_PXT3Y#AsMXno^^Ax_7) z<;v@mp2_oZeZ23BMN3+^52c%J<41@DTPD0@CE~Ln!hS>Hl`jO;7SghHC(o-5MV!0{ zgs(1!0uhJel>}9L5-r$O6#uup1JuAS%8{MZv3whWib#tUE8F)K*2@*47);P?38(#> zfhz{F*hPLDRu*Y_Pgm>-RZEf)h0fbBvN3>IQ(CVkJgFxr!;)8qifGJxs$x0f%(%6- z29~_K7FHpqgfqSzu-0vCvGYo2gbu|cWrqJYKhGSU4C9kao5 zwo&Lc5RWpH$rGRUm;-z!?L>TCXEDE172eW z&P2rTRcIg)1jjvo&`)kTH8MOLW}_=hsi4z1*p&UL6BBfh+5hfT#g6Uw%92sHZ z@Xt_GmbynbD+v!v35lTcM@O9j-xXf~h2k|*1AGq1A?RsCafkc$#gk4!0&hT1dV)g; z%#dU;3*g)()c+Vck20?TV?=O5QQ#5}tKBGciDzU0tEUJ{2_3X`ixnk1jEQlsoBf~g zTn-%XlP^rie&HO!@osx3CS0b{4XT`8wr{P*`EU8jUf0C3BcBb zYp~?^vVVt<{vJsJ2BGE1=m(xY%G2GvzS9jg7q%JFCqPJJ%XmhTr7SKz z$YG0pgRSDVji+HV;xLRK%ngDObHRoEznE6z_p=lXvdGFSeb|T*K`B`QNpE2C5g;HX z8cktR3stU6m20LmQ?(^)+lq%f+A%?rzNwwoCOy-}*Vn`iauvUJacXFCC{;0|nX#p6 zW?+Z(+=-cPFq=`HF08cTO4;6GNv2M1e0)FFTp1jUqu|?oh*ifAsrP{ z2PY3s9h*Fs+BefW*OfSyb+pG#aeab@cU3i}Y_D@5M@>x=FUI$PV!pZ|$xc_t_a&OX zcnIXEsR>l)mXd@%sh_lD%=K~l;Zq=zg%-b$Extus{OxC#wkz_Mr^ou>1IR%Zxj%-x z`F1-sCvaHh$aWX9hNR)7Q@JQLw+yuvqjHWC*yZ5;aCpeCUWU9b70b|p=*G4b1Q53% zzVHk(I8+2yo*;mU+XKe)9Ntydq)HB~qc{IVS2aDiqL(Lal60(Zi+zn6NqDzdi@Z0h z2!G{(6U+tmh1!wwilHR{Q9uihF*r?CZ6hNHGkIS*XCPb6^d3Ckjj+f4BcVQW8Z@jM zMAYw$!a50#O2#vv1JbGs&w)O80*-#cN<&;>*W+=sD8-T!9@WZ49oB4L3P84kel(}a63K?-42q>Ef;qXNqhz)ju= zD;Zo=!HI5_@cCdPox2rD8*HKr3=evE9q#<&^#h(@(8C+9`H`WsKZmT39-_#b`eCW# zhU2gOY%>)0=kOOn5d)`Q*HERl8-o*riOb2xFNHq$;`rXU7Wpe2o_3>qqC2@QYhIJG z!A7g`eT&7G8|@SAH=dt(KG~ElZb;FY;>Pi=oVoPIzKMN_y%UFFbyH$bc;OV=6UmY3 zmog>IZ?U(p-nu$he$R2Y?p-?bbmzOBKe+hA{_pp{cjixn=`&|D`_E>&&SsuIn_Umd zUrP6!PhYs0_W3gx{PTg(LLia}MAFgGY+x*NVGMffv-Dovee{ZOIZt=tuabS5@%>PZ zgkj+L{kmZJpMu!&&a2N>US63CBJPTX!0Gd3{x*!Amry__4fb-MzUr}X$MVbGa za{M(_{Sno%q|?y42aKL>eQ34P_GH=3>gno-6ht4k)X?_C9uzbWDTqGYWv5-zbBI3N zTtTl(5linw3Zf5pG|*dTH1C*ZO%ExEF1eK2CyE@E0Cs*E_*l#x#`U_ZSS{-L`ir2KU{$#`~Uy| delta 721 zcmXX@J#Q015Z&>8*#w8!I7tDBAfb>`Xh={-}Ih$cOP zEBFl*sazs~L_xzJKtqE>WNZf4(``TZG={My%Q^^9QqGgt|a=7so~ zgT1)0%aL~?5CKG@4GQv=>y1Vag3=+ht-uW|KJCEfM6KGW_ez0tXt&)7_}dv*dmzZ&s(pp6Wz_XEj?!q;}qAJf+eQQyBpvf8$S7` z`K4)a|D*kCR$|u&a)NAQKdUf_D6kw2hDu2Vv=5$+ed1Q zXHBSTV8H;-P2f2O@>oR}k79DwIAal5H>vXm78y4EMO-q@G6TUKa&^eUHwf+$G|AcO z$WfmF30gd|&Ol~V=8m0^Y2fAj+oScltERFPhPW#7`Mpc^YsPm{ZG><0{f3xs?!5%? zrytspb#I+RGuyylHZ(WCaw^r)X%uFs3>zFTWRR^7Fe_x4Z6*8Uq0$4HD!+`kMLv4$ zuU+JywVBq+f5U=Ar57eaXWSWw*y7|sJ~oa81Sc!q+b>Qd>8c}t84j=ykeVze>fk=^#A|> diff --git a/src/__pycache__/data_generation.cpython-312.pyc b/src/__pycache__/data_generation.cpython-312.pyc index 18fb49856365357153d52897fc1ec9a16377a29d..7f1156e54a3482a13fdb157dab3571edb7dd3d14 100644 GIT binary patch delta 1779 zcmb^xU27awbY^#EcJ{kTnzoqG47Mt(Au0vYMuarA39S@r^N=iJn9STsCd|%+duKya zcA0&sNbn)4L5xpU5Nt^yErR$HgubMtpxi`!iJ(v+kRqZlo^xk+6JsBI@W4Iy+;i?Z z=ic-6TlZf^;Xyv1kpR~7FT3C5ZWd0+&dnEIj3it3QstB_*-1~Yq|50_rks%_TOq2G zu+;J@o-WkUT> zJq?WX%FpT_*^?+jMVkBi7wv;Yq$8aGR7%kz(nk<=AnHQYji?jRF+e4a9rW zkKxy!N@45oQcYTG((l2W>vBC2;ynSgN{iaxYw|3<=@0-HzukhUNjQm?@mZ1gmOS3; z$^XICQ$1ls{{eL+#1smcEqt6f8iknG_>B2E1b5{%%pgErJ*XM;4&s{fpDk%2=3hW9 zQfpeoc@q^{{(1bq2( z0}eP2+lJdRc)4dz5s&p7!n6}m!w+c1^xW%a=mx$}p;(*l6Nt$eOoq&q8Co-@c2$mz6S9 z43lS(+lyRzoXZnjAD@hsxIWRMQWzpJpY~(Lb^Kn0e`nY=7|9so5zy5h0sA_15H1eE zV(Wk!(vxSTzW&=6Hcy^;sPr^0E@yZ2%u->ou$uY2_*wCGX1#c)xN-dTP5q7U^}&bw zU}I?e(1qwgX^d_^jaTSd9lbTaSr}-H>~!?3j@;|| zHhk1^p>c7$*s(OfIKOOuw9pv+A=|xtZ6n*aq4ZH4SEV9X{c2@yAx=W1GRuX-aS-t| zqt<|^HHv)^&(T*=awIP5{W_%WWQdINr0a)bI*Jh8k%TW1$UpTrD}i10$XoOrn8GQ@ zh5_v+Wm(=jCv|Q~oj*#wTT*^Y%Kaq0wyPQPsnzHAB-nP(%UyE**414JwtGx$-<{dR M(_a4x*$`g-1|ENuNdN!< delta 383 zcmeyZ@K%)XG%qg~0}!l8Q^T1$Zt1Cj!1EaKX%%-+fr$p&IG0SQg^B3=-i z4@B^T2tg1b3?c+Tgb0w(WGg~40Vr^bv7$&8Br69bia~}cfI*SsWJWF-R&}6&#$+X~ z|4y4c_l?4 zb5=4Gfea~91QNeEY;yBcN^?@}igbZoMj$S>m~0>*!t{Y4cGf-L*|TdW zPVRaqHK=xr6rYaDrc|m^A=ObT5tRM`Qq@BLg0`xBy&@l5sPZ3jrK%=Dii)bX@9o|> z#;BddZ{EDGnc4ZhH*=-k^8>!$d%Z3KE$7{@o@p-lnsfhx(ISzFOp_!=&7Os}R|2EF9JtKKf+o+&LE!7;X1PwGBKOUD-skAQXYC5IG;|#wjb0hI0@goTUF@(`%TGCk%1@%Z8kc3cW({#p~ zfV)QS03~0hjuoS}luHDjA#oS4+Af8|wP6C7&1S1|cSZ{T-bZP1FWr-ybw%BVYXDY$ zES(xv$Cwk0tfkqJ!}XhsTt{zfr5@yPxx-NxYsNtfl2#<IkU^Jl)r@@NaVvyQBj zBN-v%xDHcb%er99Wn39&4Xs&sMjXeb)LJpgJBHlj_*u8L+C;Trl)QSFCmH@L?o}V% zU2`7y6eYg?A+hFF>%n`5hXjLkgMYQh2D9)lRosWh9A zlIq2rB3u4iHGqcM7v9?>eazYOV@3}dk-%NxysJn1^wZPs|VDHMnTPLrby#CZjfkPWk@Z4|_Z|j;TT=In9 ztowQE)z;O0kC!8TA9?ye58{+}ZMcFjLZq>2@kHUo(o5xrz4@Waj(scf(vC-0`Syyt zYk6qZ-QT;)_ug$o;|+7sUuu}oi+zvuAF}=S5Qy!GYF!2~A)9Fhn81opvmB-sr}M@8 z{q2LBV6tV%{{uOIjf2FiwsG?|sg10D+-t!z!^<4N5;F55SYZzm+ja?z!L6#T*;gg9 ztp@*#aJE?vGL)hva?g<{Kg@80pIOu1dTbq&IcjHkxJFLYm6Vod20tO`=L~LAHSD8F zNe8JRCRIS`nBksL5|9aTgj7^898>2Nb?h8K&aEY+r1FG>T6P%1u|AB+Pn}j08kQOp zWfr^wvZ^JRqAP;{&u7xfS#|;p4(5PpuK)prxjp#-L|FTL`)l&zSYfQ}?9BJya@Vi9 z+e+@Xvb!TcaEo`mdi=`Z{NS2rSIM($d1U3l4cm?Wx5aBmO5F$FX?RC^k9${sx24p5 z?7fi>cD{e6)IIcpzB+Pd_4!z7B=+H@Qunu4UwoDoFAy<-2MeO1P9jb&p&0> z+OOaNw_%pqKbm;R&~f~H+gh!(WhtNnt+%zB{_FJ@jIS5}?ri%;%>)l^9IugWEo<9S z+02^Q!pXFD@L7I~)~tISJb(ZIwFy{Zi$wsT*Coi@roWh>84)j}tbL1}HIF^B39zqd z>&(h*-<-j&H`W$Cj<@%=rek=sjklW6-}Jl}A!7%?+J>Xt`hTFYqhM~5sE_pnZ-}x2 zZ;o?@EipN52&w6b$yr0t&PkIB+lzWTQ_PWJlg>g(gwi;nrV!Ea!1(5a43EZeJ|i({ zLeX;yvvR;S%F+{YGZ++odkx+G8e*YNC#Rt-yQ-RaYLX3OBwtNnB?!ETR87Z%4rN(Q z$tp753A`@kGgiuIc(T>nn+sc+Q4ba)>49o`oHplTFM=KJSo;-_Jh>I>UJLbSCn$Yfi2^5Lyt8YEDXNcxEARxMS5@alp~Lq8~UIayPH?}W-Fz( zCJlZAIEg*v&LK0WRDyW}Z;v9@ESW+*fJnHYrZ9Y0M8YBq! zC`8WC1Y8Zz5uVJFsAJfK=h%;5$M)f4>$o@eEg=7dzb$R!v2`rM>v$1F1rw}Rv9u`{ zCfPF}HH2h(toMPa-KbY5&c*@JxddGP@T`a@0ak|V_Y3DQ1N&d>KCR9Z6!~x zV~)a&{#yUy@xt->p{2f($CUUNdKadC^59P&e*NL)oy${K?|b8DsVQ2jkCr_5&r!tO z>B8xyzTykZk;2Qr;NB9ii7Qh#daq4i_r4P>?RlisaAeL|Y43!4z4>bMO0*m~P-;Ig z=URBE9&Z~2p><#RtQhGXHIJNduS7Ave8{1DijB-pfr2|ilXb3L!Mu8h9hF9Ti9L;|KlAjeje7%if;26G17(OM~B_x5H3EvT$ zWY$>>VQs0pl?xy+ocPhE$M9p}uGl0JtbVZJ?ZMEVLP1WYRd~kY&okH&G}sia+aX*5 z!P~{|x?(O2T$HZkE~9h|sM(@TYzP?ZummlkPR_FLqX1tjR_%6g{^nFP#-kW#v3^qF zgVlUgn8nkCIYU&KN66Zc!wKPw6#ey$xenxUNo?y6H28_>cog2-(@Eth`w?idaB1%Y z*|1Sc|3d1_|DI1t!>1&&!E=<~a1hRYmvhs@8wAK58w@whVXLVSXzK<6QdQtEz|jbQ k$Kj_B-rnh;f!m=VZQ0lZv2Ht@pbnW_@lyS>d>Cf_FRKFT%>V!Z delta 994 zcmZuvOKTHR6rMYi$+MZXO`0~XHHlU0NGXagv`R}KRD~k6zGEN^xsy0`9`Viu8eMdg zjkrgpQ zlxm4;&ju!{#E((U)2gQCy65>cc}0wlBBse|7`(n@*q)!NR5aUmJk2v4+pSbs6kIHZ zkU&TxC;+}(Gab!iDHM7TdJ!_{l3b6mK44FUuYkgqU7aXja&_jGJ;ySQ@|;s`TDtAI ztvqi}JoE?x)K-4IY z_g_u~Jr7}HwR5xo8=3zO{I9h+1tSc(#%)~vnklBB2xo(ZvLW+ zFQ`ypc@z@R%hOn^g5mR^EbtFQNBe@`KMY%T4Bzbzr2VndSW1YP5EyCc9Mw_$=tbjWfJDhWEg72sowSTz|^k5nD2Vd^Vv2z}U^4I^Od x@n9-j(bJYgo2EX=mO#Y2cUJ&5B|^wsq4-AVh3`FybFG*WzYOwDaVdo9zW|PC=O_RG diff --git a/src/__pycache__/visualization.cpython-312.pyc b/src/__pycache__/visualization.cpython-312.pyc index 18865a349c3cbed53847761fcf01ed9ed5bdd544..f0a4a79dcbe8a3129f11a664191ce8794e89d060 100644 GIT binary patch literal 10146 zcmcgSTW}P|b~C%PyR%QNRtO0p!60O;6_!8(fiK1oSwe`1WI)*F3fa1=osl%_eTbfs zK$}&rbmNq@F%_*ss#sz>h#OZSu2psUR4SDUm79;7%FnKMv6Q*Eid6VfRX&LEN6b%h z&g{;F(2~Pxo~9dG!9P-EN^E`R)6}TeTGRA6U?mK8rlN4#-W4r+C^= z1?VA~MqKCD4e8aK8Db#U`wao(kTKh48e-KpbHFlWRqGhPEnpwAtGEGZ9YYQk&+{~X zLJd{$Hs16JJ>=wBC{^-ifG*z7TLj~nj<4dR&T(m%2=l+ zpH9Q_xesVc6Hk9lXX?_~on78x7-7~p45eAqEIVtK%^Gjs zsPXKfV!99Ofx;58@TQNODT*vdDBiRUNHcKO8Zr5-TF-nQ(fRE8l7@YqMPA(6LoHgo zx^c>@`;bw`wl3+e8yP6iTE5P%3r$7Xvg7J~720U|JU8wOTVHWpbJ=m32=j{l|B&@E z{M@3hIlF4sz8|cB$yb@5qlWPo?dz!&Ra$*M=dDE))%g|;<84J0HClZ>=j}xlC|pSz zr+CLN3wP&sjexI+SU#tCXM~EVv-+I+lF4(E^K_Mw7k)43r_1;IgZ4vK0^U`$u58(L zttuL;+^TIUqIiWh0hwR6w*S{|qcdyAR~JccE-U%g0=dk-a+22+QM`)e=9ftx(_P=m z6y8a2kCZ0uT+-AGoNih@;aAII?%DyxI6gk<56PQ&foIR&u|A?I}1vkt%nOrhg*LV zcH}7A_qQI{AKrN?FzWFmU!L=aBuS7s7>LVJg>^@`u8bfspZ3r9$C}g3_DA(QZ=bz&cIC<%{oruA{!EhDHrEr~w{Re)j}1PtyJGF1U3x}s zH`FZ98&+G4{_{f{4ITH}lMS8sJ;{bQ7X~(L6^nh*zS!W+OG}q-46W_{$L7Cl{`;11 zcb&L@{+Dgv>^hOQ^=dRj>(zUb)q7Ia%@2;OcVA3)Urcqs|82_$Yo1>n`=;fCwCz%s zGEu!J(RJb5=E1eDU+ws&c`$9e_?WdWvQaixb+dM<_C{Tzp>+iW*uPe_z^2)^H=xxK zb;KfRwn@XM)9en!?NNJT>%KI*9}CE0%XJ5$mZ;^Ms_`^C@r1P}ocr$6E7JYOMCa+> zwkJFL69)$pj(5}Sxks!$W{VH4H?$=i+ENYs6ZP#0M@O1Hpb1pBUfGzeY)n-)CHB0v z)|K3I?16+bozdjbWK!igoMzuF8oWTLEXPD;W1{KET6?nT?FU}ubUMo^QPY-Y_hCV0 z)tP1wm1p%Aj;Dv=ll^dnGO(Za&G-G;=^wxEq#AqaAC;C5epH$VCA)jy^f`*#uoN-LxaHO4b81*VU)5=5;VhgAFe_M1 zoq<`Kp93yZNs5$JhniZ-aj_I|*;>K^ieMb;VfC^jsjFw5wMDEv6S0M1O~XKgCbX}N zV&x6cGi%h&TI4#7yRVG8^zGDI^LZp^Iu*#s<=ZtZPZzd=H1>$yw_9t==i1E6ekDi5 z5wV2PB(IQP)B4D-YgnX0TQ4o2b;@q7)z_k7`8?v}jS(YnT4le^?k{j+Uf!dEH?LaC z_IM-DTf+*C-5JVl8z8s=@6n2ZmuDu0O#H$p_Zr&H)_is9PGghzJQ5ZnfeE;y-Jy`i8N9Kay_D-01leuWVOo^ge~ zs2JoB@d7Vsl|n=@jQK+zP`n;OJTr=s7i15#8l*|TC@Ut=BNLuULD5N*ph3l;$3L#< z`7zX=R|r5D$444*SiN5ek{yT{r%_^w;Ig|b6@#ii6nnsPZNw8mwo|;I*aBj3M6*1g z1dX|pbsAJwh>V~*Rp<$F61mcS3fniL3EhV?RtytrW}FyNrwF+^NqtZ6MVK!@(uZA5 zVvrZTpb^n$DNwH&l>7u~YBU`vTo7PVl1!$&s13=-(7F%)rE0jgK05mL%IU*Y%`g%VH!NiFbYV z-rdW0E~hKn=lcHLRvByl?A^H&PiziV^SyU-cxm{?M=4tq)K%A@9*hgi=U3=db<6y~ zT<-$tKUeHRe9zM5q>Y<9v03I7J{g7!vRj<`_uGBtcIy9O;dC2T|2CGAP3$N*1Y~d2r-lWE18}MrK>ZpvmD(iz4c;yAku8d0Jt?*TBtM(#wVo~EXpj6=EwwCkYA~f&d={hQ+ z%jA3o?_90SUy>19*lM~&D+v(^ zYgr|@t%xEQ0my$6zOIO(A>X25{PrS>GOCiVA1{bUz>1Xfy&DR+*nH(A*-=FCD&xFN zT62XuEAU55Pt0xs9{0c z$7e}1&eh0d-sf+di=X|aP9x$vWz0)yNvhwdC&*|p-i_uAjS zeZMQYyEEzPTrh30RqJeBlC6t(e5Jd~-eFg2Qe1m-d;3GSN?gAJn&-M>1<<_BU&(+r0l5I>Y=>JSINKH=J%X5P?7 zx%kNdqF@LloLr(}SDI-o?XUJZkY)~+5*F~t_DNK=q?x@~uXburGaWDJgcit|`7;UU z;RlAq;Lx|sW#Wgg?#;R{fKn7__KchP&wv!VndK}B&D~I4Cf%$a;=S0vB!NRm=iMvN zA$p&wganFw&c#$I%4vLk!F{PO7sclpaL0_RrlK2;9SG}MLtzI-;4Y{kIqq`nhhY|D zhKTh-G|LZx9fh88>lHHu&E6dwgTR-1{%SJL6jGH0* zVLs$f0VsO71r(jUDgv#Oz?Oqh)PB{ZRdEL{Kq#<8Pv(I54H7Mwph*S+A{ zV2q!hoIkm6I#KIhIhbblV}<&)8`I40Y#|2Qpy8>JGMLtxnj}-R{MyRZwZQ~a^N{IM zzcKnc_`X&2tjZ|B*nYGFnw9~4T{tS;}EMsoI<`o;CLjEwVAQ@LOQPve_Yj3(Rj zuT$k*Q`iwXi%jDOma4v7Frgq6Q6`iyYmiX^smX^*rzAxTa?WP+l?eqDgd&U)dd@26 zTz)?1sQ-e7AO#)Cy|O|0Bez?9xd1?ZV0h;#qqnuQqwQ(1r}JFU1uRJs7WcNcv(@!C zLr}sDHo8T#%V$}5k-$w_l6V$+YC#HCMpsi!z9tRJ=RQAnalTPXKn+tUY-DCA-V4zG%+Lt=br{gWEJbpO@d)x%F`TKdy%( zqR$3k+BNwgC}YLCNCn8*q1EPds6~BVk~Gf%R;i(2k6K>5V(@Bb{W5op{(_bdYiwoo z-_;b!y$t4drc-`PYxNz~uzU_-ARB}q?W+z=DhLC;yoa5ySap`|fmUWo;wv?2z-raI zU7pLZoh^8w_D%)W7y~DVxLo*wlP3g@6vZI8&=}{*JktoAB#uKAhMU57eU2B$#sq>7 zEfAOq5mBB9NNpaE1q{OfP(Y z>Ob3xPh5QItebgZ%roVeIZ@&ULP5cunORXB35JE&oZJBYpz;D!0WKG3!lgr*)!34@ zcv(IL0jN?oFn465MWi@CyoC5)#H%2DRmv+X(kt^S2!55Y8U$OrtPotLPi9_&es)s^OW8E19XA$%x7(nnYf^z^A%lr76cY=@* zA?L9c?Fll7;39(e5WJ7z0|b{4{1gG&0ZLWz&s;|E5mud%Vuh!$5n)mi{h^@Z!UFCd z5sroW)Fr8*OEQF^YU<|=Hf(Zm70(46h zx{F-L0@^1pia*xoE&zyS!uiVwAisc~=qXA6K%BLX&ZVu1JQwa*X`b0z02+BvBZz3Y^<<> z3{T7zi*?bu*wi=X`bW0i%f0JO$C6FQ)~45wpHCh?pR!#5FYP6~AA=J}M^6BuvntjV z^Ddo;?~3=X*S96>+g7I6_w^RVk*~(?`tJCahZF5xiEZzs9Nh`F z`$cE~ z8<}|9@Rwa9*%~$7&(~ delta 476 zcmZ8dzi$&U6poYL zqsSu*V(WxZtBQYs38{1C1=frRrY`UU+xxHWiwzO0$U|k=!1+7f$ zYvg#^J8D*#&;8>fE5G%Q8d)){PQM&peqMi4-U^BHn8_x*f4=%!F)jn4gIJkBs)%v6 zJu9Nyj38w8UA<*nonC)dLW;tw6fr*)%#59{Ac{vEhdxzOfewp~oH_4oIF3vhxW$xH zqhP4TIfq;h3ka?h$&vk0f3{c~L^9zo0TkF)W6$1n4xT%2?&(UB$F4My#`$UfqISOI zBObG`3FX|yJIRB?YTlDEtk|o@&ZB#C_QH|Ol|{@1%4goQH^7lS8~@53vk`5)`h4thcJ=fYF6@nP`0fXDp)U+?ve AqW}N^ diff --git a/src/algorithms.py b/src/algorithms.py index 0b6e176..d69a973 100644 --- a/src/algorithms.py +++ b/src/algorithms.py @@ -1,4 +1,354 @@ import numpy as np +import torch +from torch import nn +from torch.nn import init + +from src.utils import discreteLossPoly, mapToDiscreteValues + +""" +Deep Learning +""" + +def complex_xavier_init(tensor_real, tensor_imag, gain=1.0): + """ + Apply Xavier initialization (using uniform variant) to both real and imaginary parts + """ + init.xavier_uniform_(tensor_real, gain=gain) + init.xavier_uniform_(tensor_imag, gain=gain) + + +class ComplexUnitModulus(nn.Module): + # This class serves as the encoder layer. We are restricted to values which are of the form e^jq where q are trainable parameters + # Notice that the input and output dimensions are half of what the actual vector size is! Because it is a complex value, our dimensions are twice as long + def __init__(self, input_dim, output_dim): + super(ComplexUnitModulus, self).__init__() + # Here we create the q-values of our unitary matrix. These are the parameters we are training such that each entry of our complex matrix to encode our data is |F_ij| = 1 + self.q_values = nn.Parameter(torch.randn(output_dim, input_dim)) + + def forward(self, x): + # Compute unitary weights dynamically in each forward pass + W_real = torch.cos(self.q_values) + W_imag = torch.sin(self.q_values) + W_top = torch.cat([W_real, -W_imag], dim=1) # [W_real, -W_imag] + W_bottom = torch.cat([W_imag, W_real], dim=1) # [W_imag, W_real] + W_total = torch.cat([W_top, W_bottom], dim=0) # Stack rows to form the full matrix + out = torch.matmul(x, W_total.T) + return out + + +class ComplexLinear(nn.Module): + # This custom layer was found to work less well than a regular linear layer, probably because we put restrictions on the network allowing it to be less expressive. + # Notice that the input and output dimensions are half of what the actual vector size is! Because it is a complex value, our dimensions are twice as long. This gets fixed because we make the matrix + # W_total which multiplies [x_real;x_imag] and returns [y_real;y_imag] + def __init__(self, input_dim, output_dim): + super(ComplexLinear, self).__init__() + # Here we create the complex matrix W + # self.W_real = nn.Parameter(torch.randn(output_dim,input_dim))# eye(input_dim)) + # self.W_imag = nn.Parameter(torch.randn(output_dim,input_dim)) #zeros((input_dim,output_dim))) + + self.W_real = nn.Parameter(torch.empty(output_dim, input_dim)) + self.W_imag = nn.Parameter(torch.empty(output_dim, input_dim)) + self.reset_parameters() + + def reset_parameters(self): + # Initialize both the real and imaginary parts using Xavier initialization. + complex_xavier_init(self.W_real, self.W_imag) + + def forward(self, x): + # Compute unitary weights dynamically in each forward pass + W_real = self.W_real + W_imag = self.W_imag + W_top = torch.cat([W_real, -W_imag], dim=1) # [W_real, -W_imag] + W_bottom = torch.cat([W_imag, W_real], dim=1) # [W_imag, W_real] + W_total = torch.cat([W_top, W_bottom], dim=0) # Stack rows to form the full matrix + out = torch.matmul(x, W_total.T) + return out + + +class LearnedAutoencoder(nn.Module): + def __init__(self, input_dim, encoding_dim, hidden_dims): + super(LearnedAutoencoder, self).__init__() + + self.encoder = ComplexUnitModulus(input_dim, encoding_dim) + layers = [] + prev_dim = encoding_dim * 2 + for dim in hidden_dims: + layers.append(nn.Linear(prev_dim, dim * 2)) + layers.append(nn.ReLU()) + prev_dim = dim * 2 + self.decoder = nn.Sequential( + *layers, + nn.Linear(prev_dim, input_dim * 2) + ) + + def forward(self, x): + encoder_out = self.encoder(x) + + return self.decoder(encoder_out) + + +class LearnedAutoencoderWithNoise(nn.Module): + def __init__(self, input_dim, encoding_dim, hidden_dims, variance): + super(LearnedAutoencoderWithNoise, self).__init__() + self.variance = variance + self.encoder = ComplexUnitModulus(input_dim, encoding_dim) + self.encoding_dim = encoding_dim + layers = [] + prev_dim = encoding_dim * 2 + for dim in hidden_dims: + layers.append(nn.Linear(prev_dim, dim * 2)) + layers.append(nn.ReLU()) + prev_dim = dim * 2 + self.decoder = nn.Sequential( + *layers, + nn.Linear(prev_dim, input_dim * 2) + ) + + def forward(self, x): + encoder_out = self.encoder(x) + noise_np = np.random.normal(0, self.variance, size=self.encoding_dim * 2) + noise = torch.tensor(noise_np, dtype=torch.float) + noisy_y = encoder_out + noise + return self.decoder(noisy_y) + + +# It should be noted that all previous autoencoders are less general versions of this neural network architecture. +# If we set the IQ imbalance to 0 and the SNR to inf(), then we get previous architectures +class LearnedAutoencoderWithIQImbalance(nn.Module): + def __init__(self, input_dim, encoding_dim, hidden_dims, b, d, variance): + super(LearnedAutoencoderWithIQImbalance, self).__init__() + self.encoder = ComplexUnitModulus(input_dim, encoding_dim) + self.encoding_dim = encoding_dim + self.variance = variance + self.r = torch.tensor(0.5 * (1 + b * np.exp(1j * d)), dtype=torch.complex64) + layers = [] + prev_dim = encoding_dim * 2 + for dim in hidden_dims: + layers.append(nn.Linear(prev_dim, dim * 2)) + layers.append(nn.ReLU()) + prev_dim = dim * 2 + self.decoder = nn.Sequential( + *layers, + nn.Linear(prev_dim, input_dim * 2) + ) + + def forward(self, x): + encoder_out = self.encoder(x) + y_real = encoder_out[:, :self.encoding_dim] + y_imag = encoder_out[:, self.encoding_dim:] + y = torch.complex(y_real, y_imag) + yiq = self.r * y + (1 - self.r.conj()) * (y.conj()) + yiqr = yiq.real + yiqi = yiq.imag + yiqstack = torch.cat((yiqr, yiqi), dim=1) + noise_np = np.random.normal(0, self.variance, size=self.encoding_dim * 2) + noise_tensor = torch.tensor(noise_np, dtype=torch.float) + y_iq_stack_noisy = yiqstack + noise_tensor + return self.decoder(y_iq_stack_noisy) + +def trainModels(dataloader,SNR_values,imb_percentages,encoding_dims,epochs,signal_variance = 133,hidden_dims=[60,80], input_dim=100): + # Function takes as inputs: + # dataloader: The dataloader object of the training data set + # SNR_values: Signal to noise ratios + # imb_percentages: imbalance percentages + # encoding_dims: Encoding dimensions + # epochs: Maximum amount of epochs we want the model to run for + # signal_variance: The variance of the original signal + # hidden_dims: Hidden dimensions for the neural network + # Returns the best model with corresponding MSELoss + models = [] + for model_num,(SNR,imb_percentage,encoding_dim) in enumerate(zip(SNR_values,imb_percentages,encoding_dims)): + abs_noise_ratio = 10**(SNR/10) + variance = signal_variance/abs_noise_ratio + b = 1 - (0.2 * imb_percentage) + d = imb_percentage * np.pi/8 + hidden_dims = np.array([60,80]) + current_training_model = LearnedAutoencoderWithIQImbalance(input_dim,encoding_dim,hidden_dims,b,d,variance) + optimizer = torch.optim.Adam(current_training_model.parameters(), lr=1E-3, betas=(0.9,0.999)) + MSEloss_fn = nn.MSELoss() + + # Training loop + losses = [] + lowest_loss = float("inf") + for epoch in range(epochs): + for batch in dataloader: + inputs, targets = batch # Unpack the tuple + optimizer.zero_grad() + output = current_training_model(inputs) + loss = MSEloss_fn(output, targets) + loss.backward() + optimizer.step() + losses.append(loss.item()) + if loss< lowest_loss: + lowest_loss = loss + early_stopping_counter = 0 + best_model = current_training_model + else: + early_stopping_counter += 1 + if early_stopping_counter > 100: + current_training_model = best_model + print(f"Stopped early after {epoch+1} epochs, with loss of {lowest_loss:.6f}") + break + print(f"SNR:{SNR}, Imbalance Percentage:{imb_percentage}, Encoding dimension:{encoding_dim}, Epoch {epoch+1}, Loss: {loss.item():.6f}") + models.append(best_model) + losses.append(lowest_loss) + return models, losses + +def trainModelsForDiscreteSet(dataloader,SNR_values,imb_percentages,encoding_dims,signal_variance = 133,hidden_dims=[60,80], input_dim=100, scale_factor=0.05): + # Function takes as inputs: + # dataloader: The dataloader object of the training data set + # SNR_values: Signal to noise ratios + # imb_percentages: imbalance percentages + # encoding_dims: Encoding dimensions + # signal_variance: The variance of the original signal + # hidden_dims: Hidden dimensions for the neural network + # scale_factor: Hyperparameter for the discretization step + models = [] + discrete_values = np.array([-np.pi, -0.5*np.pi,0,0.5*np.pi,np.pi]) + for model_num,(SNR,imb_percentage,encoding_dim) in enumerate(zip(SNR_values,imb_percentages,encoding_dims)): + abs_noise_ratio = 10**(SNR/10) + variance = signal_variance/abs_noise_ratio + b = 1 - (0.2 * imb_percentage) + d = imb_percentage * np.pi/8 + hidden_dims = np.array([60,80]) + current_training_model = LearnedAutoencoderWithIQImbalance(input_dim,encoding_dim,hidden_dims,b,d,variance) + optimizer = torch.optim.Adam(current_training_model.parameters(), lr=1E-3, betas=(0.9,0.999)) + MSEloss_fn = nn.MSELoss() + + # Training loop + losses = [] + lowest_loss = float("inf") + for epoch in range(10000): + for batch in dataloader: + inputs, targets = batch # Unpack the tuple + optimizer.zero_grad() + output = current_training_model(inputs) + qweights = current_training_model.encoder.q_values + loss = discreteLossPoly(qweights,scale_factor) + MSEloss_fn(output, targets) + loss.backward() + optimizer.step() + losses.append(loss.item()) + if loss< lowest_loss: + lowest_loss = loss + early_stopping_counter = 0 + best_model = current_training_model + else: + early_stopping_counter += 1 + if early_stopping_counter > 100: + current_training_model = best_model + print(f"Stopped early after {epoch+1} epochs, with loss of {lowest_loss:.6f}") + break + print(f"SNR:{SNR}, Imbalance Percentage:{imb_percentage}, Encoding dimension:{encoding_dim}, Epoch {epoch+1}, Loss: {loss.item():.6f}") + best_qvalues = best_model.encoder.q_values + mapped_best_qvalues = mapToDiscreteValues(best_qvalues,discrete_values) + best_model.encoder.q_values = mapped_best_qvalues + models.append(best_model) + losses.append(lowest_loss) + return models + +class LearnedAutoencoderWithVarIQImbalance(nn.Module): + def __init__(self, input_dim, encoding_dim,hidden_dims,variance,b=1, d=0): + super(LearnedAutoencoderWithVarIQImbalance, self).__init__() + self.encoder = ComplexUnitModulus(input_dim,encoding_dim) + self.encoding_dim = encoding_dim + self.variance = variance + self.b = b + self.d = d + layers = [] + prev_dim = encoding_dim*2 + for dim in hidden_dims: + layers.append(nn.Linear(prev_dim,dim*2)) + layers.append(nn.ReLU()) + prev_dim = dim*2 + self.decoder = nn.Sequential( + *layers, + nn.Linear(prev_dim,input_dim*2) + ) + + def forward(self,x): + encoder_out = self.encoder(x) + self.r = torch.tensor(0.5*(1+self.b*np.exp(1j*self.d)), dtype=torch.complex64) + y_real = encoder_out[:, :self.encoding_dim] + y_imag = encoder_out[:, self.encoding_dim:] + y = torch.complex(y_real,y_imag) + yiq = self.r * y + (1-self.r.conj()) * (y.conj()) + yiqr = yiq.real + yiqi = yiq.imag + yiqstack = torch.cat((yiqr,yiqi),dim=1) + noise_np = np.random.normal(0,self.variance,size=self.encoding_dim*2) + noise_tensor = torch.tensor(noise_np,dtype=torch.float) + y_iq_stack_noisy = yiqstack + noise_tensor + return self.decoder(y_iq_stack_noisy) + + class AdversarialNetwork(nn.Module): + def __init__(self, input_dim, encoding_dim, hidden_dec_dims, hidden_pred_dims, variance): + self.encoder = ComplexUnitModulus(input_dim, encoding_dim) + self.encoding_dim = encoding_dim + self.variance = variance + dec_layers = [] + prev_dim = encoding_dim * 2 + for dim in hidden_dec_dims: + dec_layers.append(nn.Linear(prev_dim, dim * 2)) + dec_layers.append(nn.ReLU()) + prev_dim = dim * 2 + self.decoder = nn.Sequential( + *dec_layers, + nn.Linear(prev_dim, input_dim * 2) + ) + pred_layers = [] + prev_dim = encoding_dim * 2 + for dim in hidden_pred_dims: + pred_layers.append(nn.Linear(prev_dim, dim * 2)) + pred_layers.append(nn.ReLU()) + prev_dim = dim * 2 + self.predictor = nn.Sequential( + *pred_layers, + nn.Linear(prev_dim, 2), + ) + + def forward(self, x): + # Encoder output + encoder_out = self.encoder(x) + + # Predictor output, we scale the output by our predefined ranges (softmax normalizes between [0,1]) and add bias + predictor_out = self.predictor(encoder_out) # Size: B x 2 where B is batch size + b_raw = predictor_out[:, 0] + d_raw = predictor_out[:, 1] + b_tensor = torch.tanh(d_raw) * 0.1 + 0.9 # Scale between 0.1 and -0.1 and add bias + d_tensor = torch.tanh( + b_raw) * np.pi / 16 + np.pi / 16 # We scale it between pi/16 and -pi/16 and then add pi/16 + + cos_d_tensor = torch.cos(d_tensor) + sin_d_tensor = torch.sin(d_tensor) + K1R_tensor = 0.5 * (1 + b_tensor * cos_d_tensor) + K1I_tensor = 0.5 * b_tensor * sin_d_tensor + K2R_tensor = 0.5 * (1 - b_tensor * cos_d_tensor) + K2I_tensor = 0.5 * b_tensor * sin_d_tensor + + # Some nice information about the mean b and d distortion + self.b_mean = torch.mean(b_tensor) + self.d_mean = torch.mean(d_tensor) + + # Here we add IQ imbalance + y_real = encoder_out[:, :self.encoding_dim] # Size: B x E where E is encoding dimension + y_imag = encoder_out[:, self.encoding_dim:] # Size: B x E where E is encoding dimension + y_IQ_real = (K1R_tensor + K2R_tensor).unsqueeze(1) * y_real + (-K1I_tensor + K2I_tensor).unsqueeze( + 1) * y_imag + y_IQ_imag = (K1R_tensor + K2I_tensor).unsqueeze(1) * y_real + (K1R_tensor - K2R_tensor).unsqueeze( + 1) * y_imag + y_IQ = torch.cat([y_IQ_real, y_IQ_imag], dim=1) + + # Finally we add noise + noise = torch.randn_like(y_IQ) * self.variance + y_IQ_noisy = y_IQ + noise + + # And run the decoder + return self.decoder(y_IQ_noisy) + + +""" +OMP/PSOMP +""" def omp(A, y, epsilon, max_iterations=np.inf): """ diff --git a/comparison.py b/src/comparison.py similarity index 95% rename from comparison.py rename to src/comparison.py index e7042bf..9a78f76 100644 --- a/comparison.py +++ b/src/comparison.py @@ -2,10 +2,10 @@ import matplotlib.pyplot as plt import scipy as sp -from data import build_dataset, DataConfig -from pretrained_models import load_pretrained_models, evaluate_pretrained_models -from utils import generate_sensing_matrix, apply_iq_imbalance -from models import omp, psomp +from src.data_generation import build_dataset +from src.eval import load_pretrained_models, evaluate_pretrained_models +from src.algorithms import omp, psomp +from src.utils import DataConfig,generate_sensing_matrix, apply_iq_imbalance config = DataConfig(dataset_size = 1, diff --git a/src/data_generation.py b/src/data_generation.py index 045e80d..6fd5029 100644 --- a/src/data_generation.py +++ b/src/data_generation.py @@ -2,6 +2,9 @@ import scipy as sp from src.utils import Config import random +import torch +from torch.utils.data import TensorDataset, DataLoader + def build_dataset(config: Config): """ @@ -56,4 +59,32 @@ def generate_sparse_vector(sparsity: int, vector_size: int, max_amplitude: int): indices = random.sample(range(vector_size), sparsity) amps = np.random.uniform(-max_amplitude, max_amplitude, sparsity) # Use negative and positive values x[indices, 0] = amps - return x \ No newline at end of file + return x + + +def generate_dataloader(config): + """ + Generates a torch.Dataloader object of dense vectors + Parameters: + config : Config + Configuration object containing parameters for dataset generation. + + Returns: + dataloader : torch.utils.data.Dataloader + dataloader object used to access training and test data + variance : np.float + variance of labels, used for normalization + """ + dense_data, sparse_data = build_dataset(config) + + X = np.concatenate((dense_data.real,dense_data.imag)).T + Y = np.concatenate((dense_data.real,dense_data.imag)).T + + X_tensor = torch.tensor(X,dtype=torch.float) + Y_tensor = torch.tensor(Y,dtype=torch.float) + dataset = TensorDataset(X_tensor,Y_tensor) + + dataloader = DataLoader(dataset,batch_size = 500,shuffle = True, ) + variance = np.var(Y) + return dataloader, variance + diff --git a/pretrained_models.py b/src/eval.py similarity index 96% rename from pretrained_models.py rename to src/eval.py index 819aecc..329ef7b 100644 --- a/pretrained_models.py +++ b/src/eval.py @@ -1,13 +1,15 @@ -import matplotlib.pyplot as plt import numpy as np import torch -from torch import nn - -from data import generate_dataloader, DataConfig -from models import LearnedAutoencoderWithNoise, LearnedAutoencoderWithIQImbalance -from plotting import plot_several_models -from utils import calc_IRR_ratios +import torch.nn as nn +from src.data_generation import generate_dataloader +from src.algorithms import LearnedAutoencoderWithNoise, LearnedAutoencoderWithIQImbalance +from src.visualization import plot_several_models +from src.utils import DataConfig, calc_IRR_ratios +import matplotlib.pyplot as plt +""" +Model Evaluation Utilities +""" def load_pretrained_models(): # Initialize pretrained models diff --git a/src/utils.py b/src/utils.py index ae982c0..98a94f3 100644 --- a/src/utils.py +++ b/src/utils.py @@ -1,6 +1,12 @@ -from dataclasses import dataclass import numpy as np import scipy as sp +import torch +from torch import nn +from dataclasses import dataclass + +"""" +Dataclass Configurations +""" @dataclass class Config: @@ -16,6 +22,86 @@ class Config: alg: str = "omp" # Options: "omp", "psomp", "ml" model_path: str = "models/sparse_recovery_model.pth" +@dataclass +class DataConfig: + vector_size: int = 100 + dataset_size: int = 10000 + max_amplitude: int = 100 + min_sparsity: int = 3 + max_sparsity: int = 7 + + +""" +Deep Learning Utilities +""" + +def validateModels(dataloader,models,loss_fn,signal_variance=133): + models_losses = [] + with torch.no_grad(): + for model in models: + current_model_losses = [] + model.eval() + for batch in dataloader: + inputs, targets = batch # Unpack the tuple + output = model(inputs) + loss = loss_fn(output, targets) + current_model_losses.append(loss.item()) + models_losses.append(np.average(current_model_losses)) + + models_losses = np.array(models_losses) + normalized_models_losses = models_losses/signal_variance + return normalized_models_losses,models_losses + +def discreteLossPoly(qweights,scaleFactor): + loss = 0 + pi = torch.tensor(math.pi) + # Note that we need to flatten the weights so that our iteration does not result in us iterating over the rows instead of the weights + qVec = qweights.flatten() + # Efficient implementation of the loss function, by doing vector operations, saves a lot of time in training + loss += torch.linalg.vector_norm(qVec*(qVec-1/2*pi)*(qVec-1*pi)*(qVec+pi)*(qVec+1/2*pi),1) + loss = loss*scaleFactor # Scale the resulting loss + return loss + + +def mapToDiscreteValues(weights, discrete_values): + # Input is a tensor (possibly a matrix) of weights, and a np array of discrete values + discrete_values = discrete_values.flatten() + weights_np = weights.detach().cpu().numpy() # Convert to numpy array + shape = weights_np.shape + weights_vector = np.reshape(weights_np, (-1, + 1)) # flatten the matrix to a vector such that subtracting from the discrete values results in a matrix! + + # Create a matrix of distances, then make a vector of indices from this matrix. Each value of the vector is the index of the closest discrete value + distances = np.abs(weights_vector - discrete_values) + indices = np.argmin(distances, 1) + + # Map the weights to the closest discrete values and reshape into original matrix, and turn into a nn.Parameter object + mappedWeights = discrete_values[indices] + mappedWeights = np.reshape(mappedWeights, shape) + mappedWeights = np.float32(mappedWeights) # Notice we map it to a float because that is what is used for our model + mappedWeights = nn.Parameter(torch.from_numpy(mappedWeights)) + return mappedWeights + + +""" +Various Utility Functions +""" + +def calc_IRR_ratios(imb_percentage_list): + IRR_ratios = {} + for level in imb_percentage_list: + b = 1 - (0.2 * level) + d = level * np.pi / 8 + r = 0.5 * (1 + b * np.exp(1j * d)) + IRR_ratio = (np.abs(r) ** 2) / (np.abs(1 - r) ** 2) + IRR_ratios[level] = 10 * np.log10(IRR_ratio) + + return IRR_ratios + +""" +OMP/PSOMP +""" + def generate_sensing_matrix(m, n): """ Function to generate a random sensing matrix. diff --git a/src/visualization.py b/src/visualization.py index 35750e5..a03dcd0 100644 --- a/src/visualization.py +++ b/src/visualization.py @@ -6,6 +6,114 @@ import matplotlib.pyplot as plt from src.algorithms import omp from src.utils import generate_sensing_matrix +from src.data_generation import build_dataset + + +def plot_several_models(all_imbalanced_losses, all_measurement_losses, SNR, IRR_ratios, measurement_sizes, all_noisy_losses): + plt.style.use('ggplot') + fig1, (ax1, ax2, ax3) = plt.subplots(ncols=3, nrows=1, figsize=(18, 6)) + + for i in range(4): + if i == 0: + noiseless_loss = all_imbalanced_losses[0][0] + ax1.plot(SNR.keys(), [noiseless_loss for i in SNR.keys()]) + ax2.plot(IRR_ratios.values(), [noiseless_loss for i in IRR_ratios.values()]) + ax3.plot(measurement_sizes, [noiseless_loss for i in measurement_sizes]) + + ax1.plot(SNR.keys(), all_noisy_losses[i], marker="o") + ax1.set_xlabel("SNR $(dB)$") + ax1.set_ylabel("NMSE") + ax1.set_title("Noisy Model Performance") + ax1.grid(True) + ax1.legend(["baseline model", "sparsity 3-5", "sparsity 5-7", "sparsity 7-9", "sparsity 10-30"]) + # Debugging + print(f"Imbalanced losses for sparsity {i}: {all_imbalanced_losses[i]}") + print(f"IRR ratios: {IRR_ratios.values()}") + # Debugging + ax2.plot(IRR_ratios.values(), all_imbalanced_losses[i], marker='s') + ax2.set_xlabel("IRR $(dB)$") + ax2.set_title("IQ Imbalanced Model Performance") + ax2.legend(["baseline model", "sparsity 3-5", "sparsity 5-7", "sparsity 7-9", "sparsity 10-30"]) + ax2.grid(True) + + ax3.plot(measurement_sizes, all_measurement_losses[i], marker='^') + ax3.set_xlabel("Measurement Dimension") + ax3.set_title("Measurement Model Performance") + ax3.legend(["baseline model", "sparsity 3-5", "sparsity 5-7", "sparsity 7-9", "sparsity 10-30"]) + ax3.grid(True) + + plt.show() + +def visualizeReconstruction(model, max_amplitude=100, min_sparsity=3, max_sparsity=5, vector_size=100): + h, x = build_dataset(max_amplitude, min_sparsity, max_sparsity, vector_size, 1) + + H = np.concatenate((h.real, h.imag)).T + + H_tensor = torch.tensor(H, dtype=torch.float) + + H_hat = model(H_tensor) + + h_hat = np.array(H_hat.detach()) + + h_real, h_imag = np.split(h_hat, 2, 1) + h_hat = h_real + 1j * h_imag + h_hat = h_hat.reshape(-1, 1) + DFT = sp.linalg.dft(vector_size) / np.sqrt(vector_size) + iDFT = DFT.conj().T + + x_hat = iDFT @ h_hat + indices = range(len(x_hat)) + + plt.vlines(indices, 0, x, linewidth=3) + plt.vlines(indices, 0, x_hat, colors="orange") + + plt.legend(("x", "x_hat")) + +def plotting(imb_percentage_list, SNR_list, normalized_losses, encoding_dims_list): + # Quick calculation for the sake of plotting + imb_db_list = [] + + for perc in imb_percentage_list[13:19]: + b = 1 - 0.2 * perc + d = np.pi / 8 * perc + r = 0.5 * (1 + b * np.exp(1j * d)) + IRR_abs = np.abs(r) ** 2 / np.abs(1 - r) ** 2 + imb_db_list.append(10 * np.log10(IRR_abs)) + + plt.style.use('ggplot') + fig1, (ax1, ax2, ax3) = plt.subplots(ncols=3, nrows=1, figsize=(18, 6)) + + ax1.plot(SNR_list[6:13], normalized_losses[6:13], marker="o", color="g") + ax2.plot(imb_db_list, normalized_losses[13:20], marker='s', color='b') + ax3.plot(encoding_dims_list[0:6], normalized_losses[0:6], marker='^', color='r') + + ax1.set_xlabel("SNR $(dB)$") + ax1.set_ylabel("NMSE") + ax1.set_title("Noisy Model Performance") + ax1.grid(True) + ax1.legend(["Discrete Model"]) + + ax2.set_xlabel("IRR $(dB)$") + ax2.set_title("IQ Imbalanced Model Performance") + ax2.legend(["Discrete Model"]) + ax2.grid(True) + + ax3.set_xlabel("Measurement Dimension") + ax3.set_title("Measurement Model Performance") + ax3.legend(["Discrete Model"]) + ax3.grid(True) + plt.savefig("Images/discrete_model_performance.pdf", format="pdf", bbox_inches="tight") + +def plot_losses(IRR_ratios, normalized_losses): + fig, ax = plt.subplots() + ax.plot(IRR_ratios, normalized_losses, '-o') + ax.set_xlabel('IRR Ratios [-]') + ax.set_ylabel('NMSE [-]') + + # Turn off the offset notation + ax.ticklabel_format(useOffset=False, style='plain', axis='y') + + def visualize_reconstruction(config: Config, model = None): """ diff --git a/test.py b/test.py deleted file mode 100644 index 4a4d8c1..0000000 --- a/test.py +++ /dev/null @@ -1,45 +0,0 @@ -import numpy as np -import scipy.linalg -import scipy.signal -import matplotlib.pyplot as plt -from cosamp import cosamp - - -n = 100 # number of measurements -t = np.linspace(0.0, 1.0, num=n) - -x = np.sin(91*2*np.pi*t) + np.sin(412*2*np.pi*t) # original signal (to be reconstructed) - -# randomly sample signal -p = 103 # random sampling (Note that this is one eighth of the Shannon–Nyquist rate!) -aquis = np.round((n-1) * np.random.rand(p)).astype(int) -y = x[aquis] # our compressed measurement from the random sampling - -# Here {y} = [C]{x} = [C][Phi]{s}, where Phi is the inverse discrete cosine transform - -Phi = scipy.fft.dct(np.eye(n), axis=0, norm='ortho') -CPhi = Phi[aquis,:] -print(CPhi.shape, y.shape) -# l1 minimization (through linear programming) -s = cosamp.cosamp(CPhi, y, 10) # obtain the sparse vector through CoSaMP algorithm -xrec = scipy.fft.idct(s, axis=0, norm='ortho') # Reconstructed signal - - - -figw, figh = 7.0, 5.0 # figure width and height -plt.figure(figsize=(figw, figh)) -plt.plot(t, s) -plt.title('Sparse vector $s$') -plt.show() - - -# Visualize the compressed-sensing reconstruction signal -figw, figh = 7.0, 5.0 # figure width and height -plt.figure(figsize=(figw, figh)) -plt.plot(t, x, 'b', label='Original signal') -plt.plot(t, xrec, 'r', label='Reconstructed signal') -plt.xlim(0.4, 0.5) -legend = plt.legend(loc='upper center', shadow=True, fontsize='x-large') -# Put a nicer background color on the legend. -legend.get_frame().set_facecolor('C0') -plt.show() \ No newline at end of file From 9698f909d47afa3cc872ff932ed52b7f3abf23ad Mon Sep 17 00:00:00 2001 From: tomlijding Date: Tue, 2 Dec 2025 17:59:27 +0100 Subject: [PATCH 08/16] Nearly finished with debugging. See debugging notes in comparison.py --- src/__pycache__/algorithms.cpython-312.pyc | Bin 24945 -> 24945 bytes .../data_generation.cpython-312.pyc | Bin 4219 -> 4219 bytes src/__pycache__/utils.cpython-312.pyc | Bin 8713 -> 8711 bytes src/__pycache__/visualization.cpython-312.pyc | Bin 10146 -> 10146 bytes src/comparison.py | 44 +++++++++++------- src/utils.py | 2 +- 6 files changed, 29 insertions(+), 17 deletions(-) diff --git a/src/__pycache__/algorithms.cpython-312.pyc b/src/__pycache__/algorithms.cpython-312.pyc index 87016e9b4870ffbb5bdb17f771c20ba11d46a6dd..cfa8a972ec12007932701c0e300f88f52c725231 100644 GIT binary patch delta 21 bcmex(i1FhgMy}Jmyj%=GkRq^=D?JeaRTTzV delta 21 bcmex(i1FhgMy}Jmyj%=G;KjL-D?JeaR8|H! diff --git a/src/__pycache__/data_generation.cpython-312.pyc b/src/__pycache__/data_generation.cpython-312.pyc index 7f1156e54a3482a13fdb157dab3571edb7dd3d14..37757084e164b2357ba039b8c327f9eabd744231 100644 GIT binary patch delta 19 ZcmeyZ@LPfFG%qg~0}!MLY~(5w0029F1mFMw delta 19 ZcmeyZ@LPfFG%qg~0}!m|-N;oa002EP1t2%>e&CAQh00i~C`kCPyc|-XHEEpLWrZZ$R)H2pExG=;{-dx15z{p+0n9Rh; z5X`{BP&s*~z&_#GKs^l%Hw1+nylx1pd}3f{m71I-SjTsfL-GN? Date: Thu, 11 Dec 2025 10:10:43 +0100 Subject: [PATCH 09/16] bug fixes --- comparison.py | 108 ++++++++++++++++++++++++-------------------------- models.py | 4 +- plotting.py | 2 +- utils.py | 10 +++-- 4 files changed, 61 insertions(+), 63 deletions(-) diff --git a/comparison.py b/comparison.py index e7042bf..426c0de 100644 --- a/comparison.py +++ b/comparison.py @@ -1,18 +1,22 @@ import numpy as np import matplotlib.pyplot as plt +import torch +from matplotlib import use import scipy as sp +from torch import nn +import torch from data import build_dataset, DataConfig from pretrained_models import load_pretrained_models, evaluate_pretrained_models from utils import generate_sensing_matrix, apply_iq_imbalance from models import omp, psomp - +use("Qt5Agg") config = DataConfig(dataset_size = 1, vector_size= 100, max_amplitude= 100, min_sparsity= 5, - max_sparsity= 10) + max_sparsity= 7) noise_level= 1 omp_epsilon= 1 omp_max_iterations= 10 @@ -23,15 +27,12 @@ noise_levels = [2, 5, 8, 11, 14, 17, 20] sensing_sizes = [5, 10, 20, 30, 40, 50] - noisy_pretrained_models, imbalanced_pretrained_models, measurement_pretrained_models = load_pretrained_models() all_imbalanced_losses, all_measurement_losses, SNR, IRR_ratios, measurement_sizes, all_noisy_losses = evaluate_pretrained_models(noisy_pretrained_models, imbalanced_pretrained_models, measurement_pretrained_models) - -print("training (PS)OMP model") +loss_fn = nn.MSELoss() OMP_noisy_losses = [] PSOMP_noisy_losses = [] for noise_level in noise_levels: - print(f"Printing models with {noise_level}dB of noise") variance = 133 / (10 ** (noise_level / 10)) h, x = build_dataset(config) Phi = generate_sensing_matrix(sensing_matrix_rows,config.vector_size) @@ -39,21 +40,21 @@ y = Phi @ x y = y + np.random.normal(0, variance, size=y.shape) x_hat_omp = omp(Phi,y,omp_epsilon,omp_max_iterations) - x_hat_psomp = psomp(Phi,y, config.max_sparsity) + x_hat_psomp, A_aug = psomp(Phi,y, config.max_sparsity) DFT = sp.linalg.dft(config.vector_size)/np.sqrt(config.vector_size) h_hat_omp = DFT @ x_hat_omp - h_hat_psomp = DFT @ x_hat_psomp + h_hat_psomp = A_aug @ x_hat_psomp indices = range(len(x_hat_omp)) - OMP_MSE = sum((x-x_hat_omp)**2)/len(y) - OMP_noisy_losses.append(OMP_noisy_losses) - PSOMP_MSE = sum((x-x_hat_psomp)**2)/len(y) - PSOMP_noisy_losses.append(PSOMP_noisy_losses) + OMP_MSE = sum((h-h_hat_omp)**2)/len(y) + OMP_noisy_losses.append(OMP_MSE) + PSOMP_MSE = sum(sum((h-h_hat_psomp))**2)/len(y) + PSOMP_noisy_losses.append(PSOMP_MSE) + OMP_imbalanced_losses = [] PSOMP_imbalanced_losses = [] for IRR_ratio in IRR_ratios: - print(f"Printing models with {IRR_ratio} IRR ratio") variance = 133 / (10 ** (noise_level / 10)) h, x = build_dataset(config) Phi = generate_sensing_matrix(sensing_matrix_rows, config.vector_size) @@ -61,71 +62,66 @@ y = Phi @ x y = apply_iq_imbalance(y, IRR_ratio)[sensing_matrix_rows:] x_hat_omp = omp(Phi, y, omp_epsilon, omp_max_iterations) - x_hat_psomp = psomp(Phi,y, config.max_sparsity) + x_hat_psomp, A_aug = psomp(Phi,y, config.max_sparsity) DFT = sp.linalg.dft(config.vector_size) / np.sqrt(config.vector_size) h_hat_omp = DFT @ x_hat_omp - h_hat_psomp = DFT @ x_hat_psomp + h_hat_psomp = A_aug @ x_hat_psomp indices = range(len(x_hat_omp)) - OMP_MSE = sum((x - x_hat_omp) ** 2) + OMP_MSE = sum((h-h_hat_omp) ** 2)/len(y) OMP_imbalanced_losses.append(OMP_MSE) - PSOMP_MSE = sum((x - x_hat_psomp) ** 2) + PSOMP_MSE = sum(sum((h-h_hat_psomp)) ** 2)/len(y) PSOMP_imbalanced_losses.append(PSOMP_MSE) OMP_sensing_size_losses = [] PSOMP_sensing_size_losses = [] for sensing_size in sensing_sizes: - print(f"Training models with sensing matrix with {sensing_size} columns") variance = 133 / (10 ** (noise_level / 10)) h, x = build_dataset(config) Phi = generate_sensing_matrix(sensing_size, config.vector_size) # First generate the output y = Phi @ x x_hat_omp = omp(Phi, y, omp_epsilon, omp_max_iterations) - x_hat_psomp = psomp(Phi,y, config.max_sparsity) + x_hat_psomp, A_aug = psomp(Phi,y, config.max_sparsity) DFT = sp.linalg.dft(config.vector_size) / np.sqrt(config.vector_size) h_hat_omp = DFT @ x_hat_omp - h_hat_psomp = DFT @ x_hat_psomp + h_hat_psomp = A_aug @ x_hat_psomp indices = range(len(x_hat_omp)) - OMP_MSE = sum((x - x_hat_omp) ** 2) - OMP_imbalanced_losses.append(OMP_MSE) - PSOMP_MSE = sum((x - x_hat_psomp) ** 2) - PSOMP_imbalanced_losses.append(PSOMP_MSE) + OMP_MSE = sum((h-h_hat_omp) ** 2)/len(y) + OMP_sensing_size_losses.append(OMP_MSE) + PSOMP_MSE = sum(sum((h-h_hat_psomp)) ** 2)/len(y) + PSOMP_sensing_size_losses.append(PSOMP_MSE) -print("model training complete") -plt.style.use('ggplot') +plt.style.use('bmh') fig1, (ax1, ax2, ax3) = plt.subplots(ncols=3, nrows=1, figsize=(18, 6)) -for i in range(4): - if i == 0: - noiseless_loss = all_imbalanced_losses[0][0] - ax1.plot(SNR.keys(), [noiseless_loss for i in SNR.keys()]) - ax2.plot(IRR_ratios.values(), [noiseless_loss for i in IRR_ratios.values()]) - ax3.plot(measurement_sizes, [noiseless_loss for i in measurement_sizes]) - - ax1.plot(SNR.keys(), all_noisy_losses[i], marker="o") - ax1.plot(SNR.keys(), OMP_noisy_losses, marker="o") - ax1.plot(SNR.keys(), PSOMP_noisy_losses, marker="o") - ax1.set_xlabel("SNR $(dB)$") - ax1.set_ylabel("NMSE") - ax1.set_title("Noisy Model Performance") - ax1.grid(True) - ax1.legend(["baseline model", "sparsity 3-5", "sparsity 5-7", "sparsity 7-9", "sparsity 10-30", "OMP", "PSOMP"]) - - ax2.plot(IRR_ratios.values(), all_imbalanced_losses[i], marker='s') - ax2.plot(IRR_ratios.values(), OMP_imbalanced_losses, marker="s") - ax2.plot(IRR_ratios.values(), PSOMP_imbalanced_losses, marker="s") - ax2.set_xlabel("IRR $(dB)$") - ax2.set_title("IQ Imbalanced Model Performance") - ax2.legend(["baseline model", "sparsity 3-5", "sparsity 5-7", "sparsity 7-9", "sparsity 10-30", "OMP", "PSOMP"]) - ax2.grid(True) +ax1.plot(SNR.keys(), all_noisy_losses[1], marker="o") +ax1.plot(SNR.keys(), OMP_noisy_losses, marker="o") +# ax1.plot(SNR.keys(), PSOMP_noisy_losses, marker="o") +ax1.set_xlabel("SNR $(dB)$") +ax1.set_ylabel("NMSE") +ax1.set_title("Noisy Model Performance") +ax1.grid(True) +# ax1.set_yscale("log") +ax1.legend(["Auto-encoder", "OMP", "PSOMP"]) + +ax2.plot(IRR_ratios.values(), all_imbalanced_losses[1], marker='s') +ax2.plot(IRR_ratios.values(), OMP_imbalanced_losses, marker="s") +# ax2.plot(IRR_ratios.values(), PSOMP_imbalanced_losses, marker="s") +ax2.set_xlabel("IRR $(dB)$") +ax2.set_title("IQ Imbalanced Model Performance") +ax2.legend(["Auto-encoder", "OMP", "PSOMP"]) +ax2.grid(True) +# ax2.set_yscale("log") + +ax3.plot(measurement_sizes, all_measurement_losses[1], marker='^') +ax3.plot(measurement_sizes, OMP_sensing_size_losses, marker="^") +# ax3.plot(measurement_sizes, PSOMP_sensing_size_losses, marker="^") +ax3.set_xlabel("Measurement Dimension") +ax3.set_title("Measurement Model Performance") +ax3.legend(["Auto-encoder", "OMP", "PSOMP"]) +ax3.grid(True) +# ax3.set_yscale("log") - ax3.plot(measurement_sizes, all_measurement_losses[i], marker='^') - ax3.plot(measurement_sizes, OMP_sensing_size_losses, marker="^") - ax3.plot(measurement_sizes, PSOMP_sensing_size_losses, marker="^") - ax3.set_xlabel("Measurement Dimension") - ax3.set_title("Measurement Model Performance") - ax3.legend(["baseline model", "sparsity 3-5", "sparsity 5-7", "sparsity 7-9", "sparsity 10-30", "OMP", "PSOMP"]) - ax3.grid(True) plt.show() diff --git a/models.py b/models.py index 6c21562..32fa8f3 100644 --- a/models.py +++ b/models.py @@ -349,7 +349,7 @@ def omp(A, y, epsilon, max_iterations=np.inf): Orthogonal Matching Pursuit (OMP) algorithm for sparse signal recovery. Parameters: - D : np.ndarray + A : np.ndarray The sensing matrix (size: m x n). y : np.ndarray The observed vector (size: m x 1). @@ -442,4 +442,4 @@ def psomp(A, y, K, sigma2=None): # --- Step 3: update residual --- r = y - A_sub @ z_sub - return z_hat \ No newline at end of file + return z_hat, A_aug \ No newline at end of file diff --git a/plotting.py b/plotting.py index c8b4cf1..870351e 100644 --- a/plotting.py +++ b/plotting.py @@ -7,7 +7,7 @@ from data import build_dataset def plot_several_models(all_imbalanced_losses, all_measurement_losses, SNR, IRR_ratios, measurement_sizes, all_noisy_losses): - plt.style.use('ggplot') + plt.style.use('bmh') fig1, (ax1, ax2, ax3) = plt.subplots(ncols=3, nrows=1, figsize=(18, 6)) for i in range(4): diff --git a/utils.py b/utils.py index 79432d9..7921016 100644 --- a/utils.py +++ b/utils.py @@ -59,10 +59,12 @@ def calc_IRR_ratios(imb_percentage_list): b = 1 - (0.2 * level) d = level * np.pi / 8 r = 0.5 * (1 + b * np.exp(1j * d)) - IRR_ratio = (np.abs(r) ** 2) / (np.abs(1 - r) ** 2) - IRR_ratios[level] = 10 * np.log10(IRR_ratio) - - return IRR_ratios + if r == 1: + IRR_ratios[level] = 50 + else: + IRR_ratio = (np.abs(r) ** 2) / (np.abs(1 - r) ** 2) + IRR_ratios[level] = 10 * np.log10(IRR_ratio) + return IRR_ratios def find_x_xi(z: np.ndarray): """ From 4b51c54d1eb530385c55274ffa52338359e60575 Mon Sep 17 00:00:00 2001 From: daan Date: Thu, 11 Dec 2025 10:20:01 +0100 Subject: [PATCH 10/16] corrected h_hat_psopmp --- comparison.py | 17 ++++++++++------- models.py | 2 +- 2 files changed, 11 insertions(+), 8 deletions(-) diff --git a/comparison.py b/comparison.py index 426c0de..45d4f06 100644 --- a/comparison.py +++ b/comparison.py @@ -8,7 +8,7 @@ from data import build_dataset, DataConfig from pretrained_models import load_pretrained_models, evaluate_pretrained_models -from utils import generate_sensing_matrix, apply_iq_imbalance +from utils import generate_sensing_matrix, apply_iq_imbalance, find_x_xi from models import omp, psomp use("Qt5Agg") @@ -40,10 +40,11 @@ y = Phi @ x y = y + np.random.normal(0, variance, size=y.shape) x_hat_omp = omp(Phi,y,omp_epsilon,omp_max_iterations) - x_hat_psomp, A_aug = psomp(Phi,y, config.max_sparsity) + z_hat = psomp(Phi,y, config.max_sparsity) + x_hat_psomp, xi_hat = find_x_xi(z_hat) DFT = sp.linalg.dft(config.vector_size)/np.sqrt(config.vector_size) h_hat_omp = DFT @ x_hat_omp - h_hat_psomp = A_aug @ x_hat_psomp + h_hat_psomp = DFT @ x_hat_psomp indices = range(len(x_hat_omp)) OMP_MSE = sum((h-h_hat_omp)**2)/len(y) @@ -62,10 +63,11 @@ y = Phi @ x y = apply_iq_imbalance(y, IRR_ratio)[sensing_matrix_rows:] x_hat_omp = omp(Phi, y, omp_epsilon, omp_max_iterations) - x_hat_psomp, A_aug = psomp(Phi,y, config.max_sparsity) + z_hat = psomp(Phi,y, config.max_sparsity) + x_hat_psomp, xi_hat = find_x_xi(z_hat) DFT = sp.linalg.dft(config.vector_size) / np.sqrt(config.vector_size) h_hat_omp = DFT @ x_hat_omp - h_hat_psomp = A_aug @ x_hat_psomp + h_hat_psomp = DFT @ x_hat_psomp indices = range(len(x_hat_omp)) OMP_MSE = sum((h-h_hat_omp) ** 2)/len(y) @@ -82,10 +84,11 @@ # First generate the output y = Phi @ x x_hat_omp = omp(Phi, y, omp_epsilon, omp_max_iterations) - x_hat_psomp, A_aug = psomp(Phi,y, config.max_sparsity) + z_hat = psomp(Phi,y, config.max_sparsity) + x_hat_psomp, xi_hat = find_x_xi(z_hat) DFT = sp.linalg.dft(config.vector_size) / np.sqrt(config.vector_size) h_hat_omp = DFT @ x_hat_omp - h_hat_psomp = A_aug @ x_hat_psomp + h_hat_psomp = DFT @ x_hat_psomp indices = range(len(x_hat_omp)) OMP_MSE = sum((h-h_hat_omp) ** 2)/len(y) diff --git a/models.py b/models.py index 32fa8f3..be33aa3 100644 --- a/models.py +++ b/models.py @@ -442,4 +442,4 @@ def psomp(A, y, K, sigma2=None): # --- Step 3: update residual --- r = y - A_sub @ z_sub - return z_hat, A_aug \ No newline at end of file + return z_hat \ No newline at end of file From 654d98822451e14cf980e2b9bcaedac56465c61f Mon Sep 17 00:00:00 2001 From: tomlijding Date: Thu, 11 Dec 2025 10:20:32 +0100 Subject: [PATCH 11/16] Changed x MSE to h MSE --- src/comparison.py | 12 ++++++------ 1 file changed, 6 insertions(+), 6 deletions(-) diff --git a/src/comparison.py b/src/comparison.py index a2a4879..d33b461 100644 --- a/src/comparison.py +++ b/src/comparison.py @@ -49,9 +49,9 @@ h_hat_psomp = DFT @ x_hat_psomp indices = range(len(x_hat_omp)) - OMP_NMSE = sum((x-x_hat_omp)**2)/sum(x**2) + OMP_NMSE = sum((h-h_hat_omp)**2)/sum(h**2) OMP_noisy_losses.append(OMP_NMSE) - PSOMP_NMSE = sum((x-x_hat_psomp)**2)/sum(x**2) + PSOMP_NMSE = sum((h-h_hat_psomp)**2)/sum(h**2) PSOMP_noisy_losses.append(PSOMP_NMSE) OMP_imbalanced_losses = [] @@ -72,9 +72,9 @@ h_hat_psomp = DFT @ x_hat_psomp indices = range(len(x_hat_omp)) - OMP_NMSE = sum((x - x_hat_omp) ** 2)/sum(x**2) + OMP_NMSE = sum((h - h_hat_omp) ** 2)/sum(h**2) OMP_imbalanced_losses.append(OMP_NMSE) - PSOMP_NMSE = sum((x - x_hat_psomp) ** 2)/sum(x**2) + PSOMP_NMSE = sum((h - h_hat_psomp) ** 2)/sum(h**2) PSOMP_imbalanced_losses.append(PSOMP_NMSE) OMP_sensing_size_losses = [] @@ -94,9 +94,9 @@ h_hat_psomp = DFT @ x_hat_psomp indices = range(len(x_hat_omp)) - OMP_NMSE = sum((x - x_hat_omp) ** 2)/sum(x**2) + OMP_NMSE = sum((h - h_hat_omp) ** 2)/sum(h**2) OMP_sensing_size_losses.append(OMP_NMSE) - PSOMP_NMSE = sum((x - x_hat_psomp) ** 2)/sum(x**2) + PSOMP_NMSE = sum((h - h_hat_psomp) ** 2)/sum(h**2) PSOMP_sensing_size_losses.append(PSOMP_NMSE) print("model training complete") From a04afb588db9c4a3e9ba7a8feffc04596329811f Mon Sep 17 00:00:00 2001 From: tomlijding Date: Thu, 11 Dec 2025 10:29:11 +0100 Subject: [PATCH 12/16] Merged main into dev --- src/__pycache__/algorithms.cpython-312.pyc | Bin 24945 -> 24945 bytes .../data_generation.cpython-312.pyc | Bin 4219 -> 4219 bytes src/__pycache__/utils.cpython-312.pyc | Bin 8711 -> 8711 bytes src/__pycache__/visualization.cpython-312.pyc | Bin 10146 -> 10146 bytes 4 files changed, 0 insertions(+), 0 deletions(-) diff --git a/src/__pycache__/algorithms.cpython-312.pyc b/src/__pycache__/algorithms.cpython-312.pyc index cfa8a972ec12007932701c0e300f88f52c725231..d79d7378d9da0fe23b84cd712b878593f2a00d8d 100644 GIT binary patch delta 22 ccmex(i1FhgM()$Ryj%=GAkk~JkvlCB09*J5#Q*>R delta 22 ccmex(i1FhgM()$Ryj%=GkRqVJkvlCB09xk;i2wiq diff --git a/src/__pycache__/data_generation.cpython-312.pyc b/src/__pycache__/data_generation.cpython-312.pyc index 37757084e164b2357ba039b8c327f9eabd744231..1d827bc9756c32b8ecfc7e6f67ad7c0074da44cb 100644 GIT binary patch delta 20 acmeyZ@LPfVG%qg~0}x2`T5aSm5C8x{F9l2h delta 20 acmeyZ@LPfVG%qg~0}!ML=x^jM5C8x`9t98p diff --git a/src/__pycache__/utils.cpython-312.pyc b/src/__pycache__/utils.cpython-312.pyc index 62f0ccf3a3f7bbb12f56ca572cea612e1ce9ca84..30fe122ffa0dd03ff72a1288fb99938b3a323efd 100644 GIT binary patch delta 20 acmZp7X?Nj1&CAQh00a`fRvWqhC;|XBFa=2f delta 20 acmZp7X?Nj1&CAQh00ds5`Ww0bC;|X9hXnWl diff --git a/src/__pycache__/visualization.cpython-312.pyc b/src/__pycache__/visualization.cpython-312.pyc index bdc62b283ce3c8d382a6f09dc9a576423f30ea77..4c5a294681c47a4583e4655496d17df51ba71582 100644 GIT binary patch delta 20 acmZ4FzsR5aG%qg~0}x2`T5aT>t_}b?`UN%s delta 20 acmZ4FzsR5aG%qg~0}!ML=x^knt_}b>=>+-! From 66699dc733acb5f475f5f0498268b5f14ffaf646 Mon Sep 17 00:00:00 2001 From: daan Date: Thu, 11 Dec 2025 10:49:52 +0100 Subject: [PATCH 13/16] corrected h_hat_psopmp --- src/comparison.py | 18 +++++++++--------- src/eval.py | 6 +++--- src/utils.py | 7 +++++-- utils.py | 2 ++ 4 files changed, 19 insertions(+), 14 deletions(-) diff --git a/src/comparison.py b/src/comparison.py index c886b13..15a9e6f 100644 --- a/src/comparison.py +++ b/src/comparison.py @@ -50,9 +50,9 @@ h_hat_psomp = DFT @ x_hat_psomp indices = range(len(x_hat_omp)) - OMP_NMSE = sum((h-h_hat_omp)**2)/sum(h**2) + OMP_NMSE = sum((h-h_hat_omp)*np.conjugate(h-h_hat_omp))/sum(h*np.conjugate(h)) OMP_noisy_losses.append(OMP_NMSE) - PSOMP_NMSE = sum((h-h_hat_psomp)**2)/sum(h**2) + PSOMP_NMSE = sum((h-h_hat_psomp)*np.conjugate(h-h_hat_psomp))/sum(h*np.conjugate(h)) PSOMP_noisy_losses.append(PSOMP_NMSE) OMP_imbalanced_losses = [] @@ -72,9 +72,9 @@ h_hat_psomp = DFT @ x_hat_psomp indices = range(len(x_hat_omp)) - OMP_NMSE = sum((h - h_hat_omp) ** 2)/sum(h**2) + OMP_NMSE = sum((h - h_hat_omp) * np.conjugate(h-h_hat_omp))/sum(h*np.conjugate(h)) OMP_imbalanced_losses.append(OMP_NMSE) - PSOMP_NMSE = sum((h - h_hat_psomp) ** 2)/sum(h**2) + PSOMP_NMSE = sum((h - h_hat_psomp) * np.conjugate(h-h_hat_psomp))/sum(h*np.conjugate(h)) PSOMP_imbalanced_losses.append(PSOMP_NMSE) OMP_sensing_size_losses = [] @@ -93,9 +93,9 @@ h_hat_psomp = DFT @ x_hat_psomp indices = range(len(x_hat_omp)) - OMP_NMSE = sum((h - h_hat_omp) ** 2)/sum(h**2) + OMP_NMSE = sum((h - h_hat_omp) * np.conjugate(h-h_hat_omp))/sum(h*np.conjugate(h)) OMP_sensing_size_losses.append(OMP_NMSE) - PSOMP_NMSE = sum((h - h_hat_psomp) ** 2)/sum(h**2) + PSOMP_NMSE = sum((h - h_hat_psomp) * np.conjugate(h-h_hat_omp))/sum(h*np.conjugate(h)) PSOMP_sensing_size_losses.append(PSOMP_NMSE) plt.style.use('bmh') @@ -103,7 +103,7 @@ ax1.plot(SNR.keys(), all_noisy_losses[1], marker="o") ax1.plot(SNR.keys(), OMP_noisy_losses, marker="o") -# ax1.plot(SNR.keys(), PSOMP_noisy_losses, marker="o") +ax1.plot(SNR.keys(), PSOMP_noisy_losses, marker="o") ax1.set_xlabel("SNR $(dB)$") ax1.set_ylabel("NMSE") ax1.set_title("Noisy Model Performance") @@ -113,7 +113,7 @@ ax2.plot(IRR_ratios.values(), all_imbalanced_losses[1], marker='s') ax2.plot(IRR_ratios.values(), OMP_imbalanced_losses, marker="s") -# ax2.plot(IRR_ratios.values(), PSOMP_imbalanced_losses, marker="s") +ax2.plot(IRR_ratios.values(), PSOMP_imbalanced_losses, marker="s") ax2.set_xlabel("IRR $(dB)$") ax2.set_title("IQ Imbalanced Model Performance") ax2.legend(["Auto-encoder", "OMP", "PSOMP"]) @@ -122,7 +122,7 @@ ax3.plot(measurement_sizes, all_measurement_losses[1], marker='^') ax3.plot(measurement_sizes, OMP_sensing_size_losses, marker="^") -# ax3.plot(measurement_sizes, PSOMP_sensing_size_losses, marker="^") +ax3.plot(measurement_sizes, PSOMP_sensing_size_losses, marker="^") ax3.set_xlabel("Measurement Dimension") ax3.set_title("Measurement Model Performance") ax3.legend(["Auto-encoder", "OMP", "PSOMP"]) diff --git a/src/eval.py b/src/eval.py index 329ef7b..f268e8d 100644 --- a/src/eval.py +++ b/src/eval.py @@ -44,7 +44,7 @@ def load_pretrained_models(): noisy_pretrained_models[(i, db)] = LearnedAutoencoderWithNoise(vector_size, encoding_dim, hidden_dims, variance) noisy_pretrained_models[(i, db)].load_state_dict(torch.load( - f"Models/noisy_models/sparsity_{min_spars}-{max_spars}/noisy_model_{db}_{min_spars}-{max_spars}.pt", + f"../Models/noisy_models/sparsity_{min_spars}-{max_spars}/noisy_model_{db}_{min_spars}-{max_spars}.pt", weights_only=True)) # Initialize pretrained imbalanced_models @@ -58,7 +58,7 @@ def load_pretrained_models(): imbalanced_pretrained_models[(i, level)] = LearnedAutoencoderWithIQImbalance(vector_size, encoding_dim, hidden_dims, b, d, variance) imbalanced_pretrained_models[(i, level)].load_state_dict(torch.load( - f"Models/imbalanced_models/sparsity_{min_spars}-{max_spars}/imbalanced_model_{level:.3f}_{min_spars}-{max_spars}.pt", + f"../Models/imbalanced_models/sparsity_{min_spars}-{max_spars}/imbalanced_model_{level:.3f}_{min_spars}-{max_spars}.pt", weights_only=True)) # Initialize pretrained measurement models @@ -74,7 +74,7 @@ def load_pretrained_models(): hidden_dims, b, d, variance) measurement_pretrained_models[(i, encoding_dim)].load_state_dict(torch.load( - f"Models/measurement_models/sparsity_{min_spars}-{max_spars}/measurement_model_{encoding_dim}_{min_spars}-{max_spars}.pt", + f"../Models/measurement_models/sparsity_{min_spars}-{max_spars}/measurement_model_{encoding_dim}_{min_spars}-{max_spars}.pt", weights_only=True)) return noisy_pretrained_models, imbalanced_pretrained_models, measurement_pretrained_models diff --git a/src/utils.py b/src/utils.py index d235dcb..4b22f93 100644 --- a/src/utils.py +++ b/src/utils.py @@ -93,8 +93,11 @@ def calc_IRR_ratios(imb_percentage_list): b = 1 - (0.2 * level) d = level * np.pi / 8 r = 0.5 * (1 + b * np.exp(1j * d)) - IRR_ratio = (np.abs(r) ** 2) / (np.abs(1 - r) ** 2) - IRR_ratios[level] = 10 * np.log10(IRR_ratio) + if r == 1: + IRR_ratios[level] = 50 + else: + IRR_ratio = (np.abs(r) ** 2) / (np.abs(1 - r) ** 2) + IRR_ratios[level] = 10 * np.log10(IRR_ratio) return IRR_ratios diff --git a/utils.py b/utils.py index 7921016..2db4556 100644 --- a/utils.py +++ b/utils.py @@ -83,8 +83,10 @@ def find_x_xi(z: np.ndarray): alpha = np.linalg.norm(z_1) ** 2 beta = np.linalg.norm(z_2) ** 2 gamma = z_1.T @ z_2 + print(2 * (alpha - beta + np.conj(gamma) - gamma)) xi_hat = (alpha - beta - 2 * gamma + np.sqrt((alpha - beta) ** 2 + 4 * np.abs(gamma) ** 2)) / ( 2 * (alpha - beta + np.conj(gamma) - gamma)) + x_hat = (np.conjugate(xi_hat)*z_1 + (1-xi_hat)*np.conjugate(z_2))/() x_hat = z_1 / xi_hat return x_hat.reshape(-1, 1), xi_hat From f8db9f706a50839b23e63d6ffb750649119c79c8 Mon Sep 17 00:00:00 2001 From: daan Date: Thu, 11 Dec 2025 11:32:15 +0100 Subject: [PATCH 14/16] improved xi_hat --- src/algorithms.py | 3 +-- src/comparison.py | 27 ++++++++++++++------------- src/utils.py | 4 ++-- 3 files changed, 17 insertions(+), 17 deletions(-) diff --git a/src/algorithms.py b/src/algorithms.py index d69a973..e315323 100644 --- a/src/algorithms.py +++ b/src/algorithms.py @@ -448,7 +448,6 @@ def psomp(A, y, K, sigma2=None): # --- Step 3: update residual --- r = y - A_sub @ z_sub - return z_hat def find_x_xi(z : np.ndarray): @@ -469,5 +468,5 @@ def find_x_xi(z : np.ndarray): beta = np.linalg.norm(z_2)**2 gamma = z_1.T @ z_2 xi_hat = (alpha - beta - 2*gamma + np.sqrt( (alpha - beta)**2 + 4*np.abs(gamma)**2))/(2*(alpha - beta + np.conj(gamma) - gamma)) - x_hat = z_1/xi_hat + x_hat = (np.conjugate(xi_hat)*z_1 + (1-xi_hat)*np.conjugate(z_2)) / (abs(xi_hat)**2 + abs(1-xi_hat)**2) return x_hat.reshape(-1,1), xi_hat \ No newline at end of file diff --git a/src/comparison.py b/src/comparison.py index 15a9e6f..9561b23 100644 --- a/src/comparison.py +++ b/src/comparison.py @@ -15,7 +15,7 @@ # - In visualization, we calculate and IRR ratio of infinity for 0% imbalance, which is incorrect. Need to handle 0% case separately. # - Plotting bugs. Namely with visualization of the PSOMP and OMP models alongside the learned models. -config = DataConfig(dataset_size = 1, +config = DataConfig(dataset_size = 100, vector_size= 100, max_amplitude= 100, min_sparsity= 5, @@ -37,18 +37,19 @@ PSOMP_noisy_losses = [] for noise_level in noise_levels: variance = 133 / (10 ** (noise_level / 10)) - h, x = build_dataset(config) - Phi = generate_sensing_matrix(sensing_matrix_rows,config.vector_size) - # First generate the output - y = Phi @ x - y = y + np.random.normal(0, variance, size=y.shape) - x_hat_omp = omp(Phi,y,omp_epsilon,omp_max_iterations) - z_hat_psomp = psomp(Phi,y, config.max_sparsity) - x_hat_psomp, xi_hat_psomp = find_x_xi(z_hat_psomp) - DFT = sp.linalg.dft(config.vector_size)/np.sqrt(config.vector_size) - h_hat_omp = DFT @ x_hat_omp - h_hat_psomp = DFT @ x_hat_psomp - indices = range(len(x_hat_omp)) + hs, xs = build_dataset(config) + for h,x in zip(hs, xs): + Phi = generate_sensing_matrix(sensing_matrix_rows,config.vector_size) + # First generate the output + y = Phi @ x + y = y + np.random.normal(0, variance, size=y.shape) + x_hat_omp = omp(Phi,y,omp_epsilon,omp_max_iterations) + z_hat_psomp = psomp(Phi,y, config.max_sparsity) + x_hat_psomp, xi_hat_psomp = find_x_xi(z_hat_psomp) + DFT = sp.linalg.dft(config.vector_size)/np.sqrt(config.vector_size) + h_hat_omp = DFT @ x_hat_omp + h_hat_psomp = DFT @ x_hat_psomp + indices = range(len(x_hat_omp)) OMP_NMSE = sum((h-h_hat_omp)*np.conjugate(h-h_hat_omp))/sum(h*np.conjugate(h)) OMP_noisy_losses.append(OMP_NMSE) diff --git a/src/utils.py b/src/utils.py index 4b22f93..9f97ba6 100644 --- a/src/utils.py +++ b/src/utils.py @@ -119,9 +119,9 @@ def generate_sensing_matrix(m, n): Phi : np.ndarray The generated sensing matrix (size: m x n). """ - #DFT = sp.linalg.dft(n)/np.sqrt(n) + DFT = sp.linalg.dft(n)/np.sqrt(n) A = np.random.randn(m, n) - Phi = A# @ DFT + Phi = A @ DFT Phi = Phi/ np.linalg.norm(Phi, axis=0, keepdims=True) return Phi From e423ff918682df1f2e58129d1a39fc5fae4b3125 Mon Sep 17 00:00:00 2001 From: daan Date: Thu, 11 Dec 2025 12:20:56 +0100 Subject: [PATCH 15/16] added batch evaluation to OMP and PSOMP --- src/comparison.py | 96 +++++++++++++++++++++++++++++++---------------- 1 file changed, 63 insertions(+), 33 deletions(-) diff --git a/src/comparison.py b/src/comparison.py index 9561b23..ccc212b 100644 --- a/src/comparison.py +++ b/src/comparison.py @@ -38,10 +38,13 @@ for noise_level in noise_levels: variance = 133 / (10 ** (noise_level / 10)) hs, xs = build_dataset(config) - for h,x in zip(hs, xs): + norm_losses_omp = np.zeros(config.dataset_size) + norm_losses_psomp = np.zeros(config.dataset_size) + for i in range(config.dataset_size): + h = hs[i].reshape(config.dataset_size, 1) Phi = generate_sensing_matrix(sensing_matrix_rows,config.vector_size) # First generate the output - y = Phi @ x + y = Phi @ xs[i] y = y + np.random.normal(0, variance, size=y.shape) x_hat_omp = omp(Phi,y,omp_epsilon,omp_max_iterations) z_hat_psomp = psomp(Phi,y, config.max_sparsity) @@ -51,52 +54,79 @@ h_hat_psomp = DFT @ x_hat_psomp indices = range(len(x_hat_omp)) - OMP_NMSE = sum((h-h_hat_omp)*np.conjugate(h-h_hat_omp))/sum(h*np.conjugate(h)) + NSE_OMP = sum((h-h_hat_omp) * np.conjugate(h-h_hat_omp))/sum(h*np.conjugate(h)) + NSE_PSOMP = sum((h-h_hat_psomp) * np.conjugate(h-h_hat_psomp))/sum(h*np.conjugate(h)) + print(NSE_PSOMP) + norm_losses_omp[i] = NSE_OMP[0] + norm_losses_psomp[i] = NSE_PSOMP[0] + + + OMP_NMSE = sum(norm_losses_omp)/config.dataset_size OMP_noisy_losses.append(OMP_NMSE) - PSOMP_NMSE = sum((h-h_hat_psomp)*np.conjugate(h-h_hat_psomp))/sum(h*np.conjugate(h)) + PSOMP_NMSE = sum(norm_losses_psomp)/config.dataset_size PSOMP_noisy_losses.append(PSOMP_NMSE) OMP_imbalanced_losses = [] PSOMP_imbalanced_losses = [] for IRR_ratio in IRR_ratios: variance = 133 / (10 ** (noise_level / 10)) - h, x = build_dataset(config) - Phi = generate_sensing_matrix(sensing_matrix_rows, config.vector_size) - # First generate the output - y = Phi @ x - y = apply_iq_imbalance(y, IRR_ratio)[sensing_matrix_rows:] - x_hat_omp = omp(Phi, y, omp_epsilon, omp_max_iterations) - z_hat_psomp = psomp(Phi,y, config.max_sparsity) - x_hat_psomp, xi_hat_psomp = find_x_xi(z_hat_psomp) - DFT = sp.linalg.dft(config.vector_size) / np.sqrt(config.vector_size) - h_hat_omp = DFT @ x_hat_omp - h_hat_psomp = DFT @ x_hat_psomp - indices = range(len(x_hat_omp)) - - OMP_NMSE = sum((h - h_hat_omp) * np.conjugate(h-h_hat_omp))/sum(h*np.conjugate(h)) + hs, xs = build_dataset(config) + norm_losses_omp = np.zeros(config.dataset_size) + norm_losses_psomp = np.zeros(config.dataset_size) + for i in range(config.dataset_size): + h = hs[i].reshape(config.dataset_size, 1) + Phi = generate_sensing_matrix(sensing_matrix_rows, config.vector_size) + # First generate the output + y = Phi @ xs[i] + y = apply_iq_imbalance(y, IRR_ratio)[sensing_matrix_rows:] + x_hat_omp = omp(Phi, y, omp_epsilon, omp_max_iterations) + z_hat_psomp = psomp(Phi,y, config.max_sparsity) + x_hat_psomp, xi_hat_psomp = find_x_xi(z_hat_psomp) + DFT = sp.linalg.dft(config.vector_size) / np.sqrt(config.vector_size) + h_hat_omp = DFT @ x_hat_omp + h_hat_psomp = DFT @ x_hat_psomp + indices = range(len(x_hat_omp)) + + NSE_OMP = sum((h-h_hat_omp) * np.conjugate(h-h_hat_omp))/sum(h*np.conjugate(h)) + NSE_PSOMP = sum((h-h_hat_psomp) * np.conjugate(h-h_hat_psomp))/sum(h*np.conjugate(h)) + + norm_losses_omp[i] = NSE_OMP[0] + norm_losses_psomp[i] = NSE_PSOMP[0] + + OMP_NMSE = sum(norm_losses_omp)/config.dataset_size OMP_imbalanced_losses.append(OMP_NMSE) - PSOMP_NMSE = sum((h - h_hat_psomp) * np.conjugate(h-h_hat_psomp))/sum(h*np.conjugate(h)) + PSOMP_NMSE = sum(norm_losses_psomp)/config.dataset_size PSOMP_imbalanced_losses.append(PSOMP_NMSE) OMP_sensing_size_losses = [] PSOMP_sensing_size_losses = [] for sensing_size in sensing_sizes: variance = 133 / (10 ** (noise_level / 10)) - h, x = build_dataset(config) - Phi = generate_sensing_matrix(sensing_size, config.vector_size) - # First generate the output - y = Phi @ x - x_hat_omp = omp(Phi, y, omp_epsilon, omp_max_iterations) - z_hat_psomp = psomp(Phi,y, config.max_sparsity) - x_hat_psomp, xi_hat_psomp = find_x_xi(z_hat_psomp) - DFT = sp.linalg.dft(config.vector_size) / np.sqrt(config.vector_size) - h_hat_omp = DFT @ x_hat_omp - h_hat_psomp = DFT @ x_hat_psomp - indices = range(len(x_hat_omp)) - - OMP_NMSE = sum((h - h_hat_omp) * np.conjugate(h-h_hat_omp))/sum(h*np.conjugate(h)) + hs, xs = build_dataset(config) + norm_losses_omp = np.zeros(config.dataset_size) + norm_losses_psomp = np.zeros(config.dataset_size) + for i in range(config.dataset_size): + h = hs[i].reshape(config.dataset_size, 1) + Phi = generate_sensing_matrix(sensing_size, config.vector_size) + # First generate the output + y = Phi @ xs[i] + x_hat_omp = omp(Phi, y, omp_epsilon, omp_max_iterations) + z_hat_psomp = psomp(Phi,y, config.max_sparsity) + x_hat_psomp, xi_hat_psomp = find_x_xi(z_hat_psomp) + DFT = sp.linalg.dft(config.vector_size) / np.sqrt(config.vector_size) + h_hat_omp = DFT @ x_hat_omp + h_hat_psomp = DFT @ x_hat_psomp + indices = range(len(x_hat_omp)) + + NSE_OMP = sum((h-h_hat_omp) * np.conjugate(h-h_hat_omp))/sum(h*np.conjugate(h)) + NSE_PSOMP = sum((h-h_hat_psomp) * np.conjugate(h-h_hat_psomp))/sum(h*np.conjugate(h)) + + norm_losses_omp[i] = NSE_OMP[0] + norm_losses_psomp[i] = NSE_PSOMP[0] + + OMP_NMSE = sum(norm_losses_omp)/config.dataset_size OMP_sensing_size_losses.append(OMP_NMSE) - PSOMP_NMSE = sum((h - h_hat_psomp) * np.conjugate(h-h_hat_omp))/sum(h*np.conjugate(h)) + PSOMP_NMSE = sum(norm_losses_psomp)/config.dataset_size PSOMP_sensing_size_losses.append(PSOMP_NMSE) plt.style.use('bmh') From 18de5e74f3c1dcaf2097b623bc5f2ff2bef3ce4d Mon Sep 17 00:00:00 2001 From: daan Date: Thu, 11 Dec 2025 12:26:46 +0100 Subject: [PATCH 16/16] added batch evaluation to OMP and PSOMP --- src/algorithms.py | 2 +- src/comparison.py | 6 +++--- 2 files changed, 4 insertions(+), 4 deletions(-) diff --git a/src/algorithms.py b/src/algorithms.py index e315323..43d7460 100644 --- a/src/algorithms.py +++ b/src/algorithms.py @@ -469,4 +469,4 @@ def find_x_xi(z : np.ndarray): gamma = z_1.T @ z_2 xi_hat = (alpha - beta - 2*gamma + np.sqrt( (alpha - beta)**2 + 4*np.abs(gamma)**2))/(2*(alpha - beta + np.conj(gamma) - gamma)) x_hat = (np.conjugate(xi_hat)*z_1 + (1-xi_hat)*np.conjugate(z_2)) / (abs(xi_hat)**2 + abs(1-xi_hat)**2) - return x_hat.reshape(-1,1), xi_hat \ No newline at end of file + return x_hat.reshape(-1,1), xi_hat diff --git a/src/comparison.py b/src/comparison.py index ccc212b..b781fc2 100644 --- a/src/comparison.py +++ b/src/comparison.py @@ -134,7 +134,7 @@ ax1.plot(SNR.keys(), all_noisy_losses[1], marker="o") ax1.plot(SNR.keys(), OMP_noisy_losses, marker="o") -ax1.plot(SNR.keys(), PSOMP_noisy_losses, marker="o") +# ax1.plot(SNR.keys(), PSOMP_noisy_losses, marker="o") ax1.set_xlabel("SNR $(dB)$") ax1.set_ylabel("NMSE") ax1.set_title("Noisy Model Performance") @@ -144,7 +144,7 @@ ax2.plot(IRR_ratios.values(), all_imbalanced_losses[1], marker='s') ax2.plot(IRR_ratios.values(), OMP_imbalanced_losses, marker="s") -ax2.plot(IRR_ratios.values(), PSOMP_imbalanced_losses, marker="s") +# ax2.plot(IRR_ratios.values(), PSOMP_imbalanced_losses, marker="s") ax2.set_xlabel("IRR $(dB)$") ax2.set_title("IQ Imbalanced Model Performance") ax2.legend(["Auto-encoder", "OMP", "PSOMP"]) @@ -153,7 +153,7 @@ ax3.plot(measurement_sizes, all_measurement_losses[1], marker='^') ax3.plot(measurement_sizes, OMP_sensing_size_losses, marker="^") -ax3.plot(measurement_sizes, PSOMP_sensing_size_losses, marker="^") +# ax3.plot(measurement_sizes, PSOMP_sensing_size_losses, marker="^") ax3.set_xlabel("Measurement Dimension") ax3.set_title("Measurement Model Performance") ax3.legend(["Auto-encoder", "OMP", "PSOMP"])